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BSE49, a diverse, high-quality 
benchmark dataset of separation 
energies of chemical bonds
Viki Kumar Prasad  1, M. Hossein Khalilian1, Alberto Otero-de-la-Roza2 & Gino A. DiLabio  1 ✉

We present an extensive and diverse dataset of bond separation energies associated with the homolytic 
cleavage of covalently bonded molecules (A-B) into their corresponding radical fragments (A. and B.).  
Our dataset contains two different classifications of model structures referred to as “Existing” 
(molecules with associated experimental data) and “Hypothetical” (molecules with no associated 
experimental data). In total, the dataset consists of 4502 datapoints (1969 datapoints from the Existing 
and 2533 datapoints from the Hypothetical classes). The dataset covers 49 unique X-Y type single bonds 
(except H-H, H-F, and H-Cl), where X and Y are H, B, C, N, O, F, Si, P, S, and Cl atoms. All the reference 
data was calculated at the (RO)CBS-QB3 level of theory. The reference bond separation energies are 
non-relativistic ground-state energy differences and contain no zero-point energy corrections. This 
new dataset of bond separation energies (BSE49) is presented as a high-quality reference dataset for 
assessing and developing computational chemistry methods.

Background & Summary
Bond dissociation enthalpies (BDEs) are a central property in chemistry that have been studied for decades 
experimentally and computationally1–4. BDEs can be used to estimate the selectivity and reactivity of various 
molecules with free radicals (like ·OH, ·OOH, ·OR, ·OOR, ·NO, ·NO2, etc.) that are generated and transformed 
during chemical reactions relevant in chemistry and biology5–10. In this context, the calculation of BDEs for 
C-H, O-H, N-H, S-H, O-O, and S-S bonds in biologically relevant systems can help develop an understanding 
of the efficiency of antioxidants11–13. Furthermore, the calculation of BDEs is fundamental to develop a deeper 
understanding of various enzyme catalytic processes14–16 and surface functionalization chemistry17–19.

In 2012, Drew and Reynisson employed BDE calculations to predict the major metabolic sites of fifty known 
drug molecules20. Similarly, Andersson and co-workers applied BDE calculations to estimate the sensitivity of 
various drug candidates toward autoxidation21. The application of computed BDEs in these works shows how 
computational techniques can be incorporated into the risk assessment of drug products and guide further 
experimentation. Computationally obtained BDEs were also reported in different studies22–24, where the C-O 
and C-C BDEs were calculated for several substituted analogues of lignin, an abundant polymeric organic mate-
rial and a potential renewable source of biofuels and chemicals22–24. The calculated BDEs were used to predict 
the homolytic dissociation of C-C and C-O bonds under thermal decomposition using model compounds rep-
resenting the dominant linkages of lignin.

Given the importance of BDEs in many areas of chemistry and, consequently, the need to accurately predict 
bond energies computationally, a dataset of accurately predicted bond separation energies (BSEs) is developed 
here using an accurate computational chemistry method. Bond separation energies are a molecular property that 
can be computed in a straightforward manner in vacuum and provides direct information about the strength of 
a chemical bond. The BSEs presented in this work are differences between non-relativistic ground-state energies 
and contain no vibrational energy contributions, no zero-point energies, and no attempt has been made at ther-
mally averaging over molecular conformations. As such, the reported BSEs are not comparable to experimental 
BDEs, but they serve as an ideal resource for developing and evaluating lower-cost computational chemistry 
methods used for a wide range of applications in chemistry and biology. Similar datasets to the one proposed 
in this work are available in the literature, but they tend to be small in terms of the total number of datapoints25, 

1Department of Chemistry, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada. 
2Departamento de Química física y Analítica, facultad de Química, Universidad de Oviedo, MALtA consolider team, 
E-33006, Oviedo, Spain. ✉e-mail: gino.dilabio@ubc.ca

DATA DESCRIPTOR

OPEN

https://doi.org/10.1038/s41597-021-01088-2
http://orcid.org/0000-0003-0982-3129
http://orcid.org/0000-0002-3778-3892
mailto:gino.dilabio@ubc.ca
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-01088-2&domain=pdf


2Scientific Data |           (2021) 8:300  | https://doi.org/10.1038/s41597-021-01088-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

lack bond-type diversity26,27 or are calculated using less accurate computational chemistry methods compared 
to the one used in this work28–30. To the best of our knowledge, an accurate and extensive dataset of computa-
tionally predicted BSEs is not available in the literature. The main reason for this absence is that BSE calculations 
with high accuracy require computationally expensive methods that tend to scale poorly with system size.

This work addresses the aforementioned gap in the literature by constructing a large dataset (4502 data-
points) of computationally predicted BSEs of 49 unique bond types, all of which are determined with a high-level 
composite theoretical procedure denoted as (RO)CBS-QB331–33. This approach ensures uniform, high-quality 
reference data and eliminates the need to collect and verify data gathered from various sources, which may differ 
substantially in their accuracy. The (RO)CBS-QB3 method is known to produce BDEs of high accuracy8,33–37. 
Therefore, it is suitable for developing a database of BSEs that can be used to test and parametrize low-cost com-
putational methods. One particular target application of our dataset is for the training of cost-effective compu-
tational approaches like atom-centered potentials38–40 (ACPs) or machine learning potentials28–30.

Methods
Dataset composition. We present the BSE49 dataset, which comprises a broad range of bond separation 
energies for 49 unique bond types. The model systems present in the dataset are neutral molecules with X-H, 
X-F, X-Cl, X-X, and X-Y single bonds, where X and Y are B, C, N, O, Si, P, and S. The number of datapoints 
and the ranges of bond separation energies associated with each bond type are provided in Table 1. The struc-
tures of model systems on which the calculations were performed are divided into “Existing” and “Hypothetical” 
classes. The Existing type structures were built by selecting molecules with experimental data reported in the 
Comprehensive Handbook of Chemical Bond Dissociation Energies41. In contrast, the Hypothetical type structures 
were constructed by functional group substitutions of X-Y single bonds in order to include bond types that were 
not present in the handbook and to increase the diversity and number of datapoints for each bond type in the 
dataset. The candidate molecules for both Existing and Hypothetical subsets were generated using a partially auto-
mated computational workflow as described below.

Dataset generation. The calculated bond separation energies are defined as the negative of the difference in 
the ground-state electronic energies for the reaction

→ . + .‐A B A B

where A. and B. represent the two radical fragments formed by homolytically breaking the A-B covalent bond in 
vacuum. Based on this reaction, the equilibrium geometries of the parent molecules and their respective radical frag-
ments are required to calculate the bond separation energies. The geometries of the parent molecule and the associated 
radicals were constructed manually for both Existing and Hypothetical subsets using the Avogadro42 program. The 
constructed geometries were then used as starting points for a conformer search. The CSD conformer generator43 and 
FullMonte44 codes were used to generate multiple conformers. The geometry of each conformer was relaxed to the 
corresponding local minimum using the Gaussian45 software package. This relaxation was carried out first by using a 
low-level method, combining the B3LYP46–51 density functional and 6-31G*52,53 basis set along with the D354–56 dis-
persion correction scheme using the Becke-Johnson57 damping (B3LYP-D3(BJ)/6-31G*). The optimized conformers 
were ranked using the B3LYP-D3(BJ)/6-31G* relative energies at the local minima. The ten lowest-energy conformers 
were then re-optimized at the higher-level CAM-B3LYP-D3(BJ)/def2-TZVP level of theory54–59. Range-separated 
functionals like CAM-B3LYP minimize the delocalization error, which could be important in the description of rad-
ical species60. The lowest-energy conformer obtained in this procedure was used for calculating the bond separation 
energies using the composite method described below. All calculations employed a default self-consistent field (SCF) 
convergence criterion of 10−8 Hartrees, ultrafine integration grid, and a tight optimization convergence criteria (max-
imum force = 1.5 × 10−5 Hartrees/Bohr, RMS force = 1 × 10−5 Hartrees/Bohr, maximum displacement = 6 × 10−5 
Bohr, RMS displacement = 4 × 10−5 Bohr).

This partially automated workflow produced structures that are not necessarily the global minima. A visual 
inspection of the structures revealed that about 20% of the conformers generated do not correspond to the 
global minima, which reflects the difficulty of solving a global optimization problem (finding the most sta-
ble conformer) for such a large number of systems reliably. In addition, due to computational constraints, no 
attempt was made at evaluating the conformational energy landscape and statistically weighting the low-energy 
conformers associated with each molecule. Therefore, the dataset is not appropriate for direct comparison to 
bond separation energies obtained by back-correcting experimental BDEs, but it is suitable for testing and train-
ing computationally less expensive methods regarding their ability to accurately calculate the energy difference 
between the chosen conformers of products (A. and B.) and reactant (A-B).

The structures obtained from the workflow described above were then used for the final step of refer-
ence data calculation, using the composite (RO)CBS-QB331–33 method. The restricted-open-shell61 CBS-QB3 
or ROCBS-QB3 was employed for the open-shell radical fragments, while restricted closed-shell calcula-
tions were performed for the closed-shell parent molecules with CBS-QB3. The composite (RO)CBS-QB3 
method approximates energies at the complete-basis-set CCSD(T) level, using a series of computationally 
lower-cost methods including: (i) geometry optimization followed by vibration frequency calculation using the 
unrestricted-open-shell62 B3LYP/6-311G(2d,d,p) method46–51,63, (ii) ROMP2/6-311+G(3d2f,2df,2p) level63–65 
energy extrapolated to the complete-basis-set limit, (iii) energy calculation at ROMP4(SDQ)/6-31+G(d(f),p) 
level63,64,66, and (iv) energy calculation at ROCCSD(T)/6-31+G† level63,64,67 (where 6-31+G† is a modified 
6-31+G(d) basis set). Note that the final (RO)CBS-QB3 energy includes additional empirical correction terms 
described in Reference33. Structures were screened to remove any system for which the imaginary frequencies 
were obtained. The (RO)CBS-QB3 energies for the structures associated with a particular bond breaking reac-
tion were used to obtain the bond separation energies for the dataset.

https://doi.org/10.1038/s41597-021-01088-2
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Data Records
The reference bond separation energies (in kcal/mol) and coordinates (in Å) of the structures presented in 
the BSE49 dataset are publicly available free-of-charge from the Figshare68 and GitHub (https://github.com/
aoterodelaroza/bse49) repositories in the plain-text database file format (DB format) described in Table 2. The 
atomic coordinates of the model structures are stored in a plain-text XYZ format in the Geometries directory. 

Bond type Datapoints Range of bond separation energies

B-H 68 77.22–115.14

C-H 395 80.08–141.22

N-H 156 53.05–131.63

O-H 240 68.65–126.75

Si-H 111 74.31–106.06

P-H 118 61.73–87.98

S-H 39 74.80–95.81

B-B 75 47.41–112.40

B-C 83 92.26–142.78

B-N 71 85.50–155.16

B-O 51 100.14–158.50

B-F 82 152.61–177.24

B-Si 84 36.27–110.83

B-P 89 72.64–99.12

B-S 51 84.10–128.28

B-Cl 81 81.86–128.98

C-C 363 64.69–156.08

C-N 98 27.65–122.95

C-O 171 48.31–127.45

C-F 40 103.44–133.45

C-Si 153 36.82–111.67

C-P 85 60.93–115.15

C-S 64 41.42–105.29

C-Cl 129 64.26–113.54

N-N 37 15.64–70.81

N-O 31 22.50–70.80

N-F 36 49.72–83.45

N-Si 64 33.93–122.94

N-P 93 40.82–91.06

N-S 53 24.53–72.61

N-Cl 31 35.89–80.63

O-O 60 21.20–56.42

O-F 90 11.04–51.79

O-Si 144 74.85–144.88

O-P 27 83.10–130.79

O-S 51 46.55–93.05

O-Cl 85 9.38–61.56

F-Si 36 123.92–169.04

F-P 32 99.43–125.94

F-S 99 72.84–107.41

Si-Si 165 34.86–104.94

Si-P 65 60.09–87.04

Si-S 57 62.95–98.18

Si-Cl 102 109.68–123.12

P-P 20 44.37–77.37

P-S 29 67.42–96.01

P-Cl 32 69.91–89.30

S-S 64 37.09–78.33

S-Cl 102 50.44–71.17

Table 1. List of the number of datapoints in the BSE49 dataset and the ranges of bond separation energies associated 
with each bond type calculated using (RO)CBS-QB3. The bond separation energy ranges are in kcal/mol.
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The BSE49 dataset contains one DB format file and three XYZ format files for each bond separation energy. In 
total, deposited files include 4502 DB format files stored in the db-BSE49 directory and 13506 XYZ format files 
stored in their respective Existing or Hypothetical classification directories. Additional files labelled as BSE49_
Existing.org and BSE49_Hypothetical.org are also provided. These files contain the necessary information about 
the reference data for all the model systems.

File format. For each molecule, the reference bond separation energy and the atomic coordinates are stored 
in a file named MoleculeName.db. The Cartesian coordinates of the atoms are stored in files called MoleculeName_
AB.xyz, MoleculeName_A.xyz, and MoleculeName_B.xyz, where AB represents the parent molecule, A represents 
the first radical fragment, and B represents the second radical fragment.

The DB format file contains a header line specifying the reference energy value (in kcal/mol) followed by 
three ‘molc’ (short for molecule) blocks containing a unique integer identifier, charge, multiplicity, and the 
atomic coordinates (in Å) of the parent molecule and its corresponding radical fragments. The XYZ format file 
contains a header line defining the number of atoms N, a comment line containing the charge and multiplicity, 
and N lines with each containing element type and X, Y, Z coordinates (in Å). The BSE49_Existing.org and 
BSE49_Hypothetical.org files are special-character separated plain-text files (where the special character is ‘|’) 
containing multiple lines and eight columns. The columns are: (i) dataset name of the model system, (ii) unique 
integer identifier 1 indicating the A. fragment, (iii) geometry filename of the A. fragment, (iv) unique integer 
identifier 1 indicating the B. fragment, (v) geometry filename of the B. fragment, (vi) unique integer identifier 
-1 indicating the A-B model system, (vii) geometry filename of the A-B model system, and (viii) computational 
reference bond separation energy (in kcal/mol).

Technical Validation
For the generation of reference data, the reliable (RO)CBS-QB3 method was chosen for all the model systems con-
sidered in the BSE49 dataset. The (RO)CBS-QB3 method has been widely used in literature in recent years69–90.  
The developers of the (RO)CBS-QB3 method reported that it predicts heats of formation at 298 K with a mean 
absolute deviation (MAD) from the experiment of 0.91 kcal/mol33. For bond dissociation enthalpies of eleven 
molecules with chemical structures typically found in amino acid sidechains, peptide termini, and peptide 

Line Column Content

1 1 ‘ref ’ string specifying reference energy

1 2 reference bond separation energy (in kcal/mol)

2 1 ‘molc’ string specifying start of the first molecular block

2 2 unique integer identifier, 1 indicating the A. fragment

2 3 the charge of the A. fragment

2 4 the multiplicity of the A. fragment

3, …, n1 + 2 1 element type

3, …, n1 + 2 2 X coordinates (in Å)

3, …, n1 + 2 3 Y coordinates (in Å)

3, …, n1 + 2 4 Z coordinates (in Å)

n1 + 3 1 ‘end’ string specifying end of the first molecular block

n1 + 4 1 ‘molc’ string specifying start of the second molecular block

n1 + 4 2 unique integer identifier, 1 indicating B. fragment

n1 + 4 3 the charge of the B. fragment

n1 + 4 4 the multiplicity of the B. fragment

n1 + 5, …, n1 + n2 + 4 1 element type

n1 + 5, …, n1 + n2 + 4 2 X coordinates (in Å)

n1 + 5, …, n1 + n2 + 4 3 Y coordinates (in Å)

n1 + 5, …, n1 + n2 + 4 4 Z coordinates (in Å)

n1 + n2 + 5 1 ‘end’ string specifying end of the second molecular block

n1 + n2 + 6 1 ‘molc’ string specifying start of the third molecular block

n1 + n2 + 6 2 unique integer identifier, -1 indicating the A-B parent molecule

n1 + n2 + 6 3 the charge of the A-B parent molecule

n1 + n2 + 6 4 the multiplicity of the A-B parent molecule

n1 + n2 + 7, …, n1 + n2 + N + 6 1 element type

n1 + n2 + 7…, n1 + n2 + N + 6 2 X coordinates (in Å)

n1 + n2 + 7, …, n1 + n2 + N + 6 3 Y coordinates (in Å)

n1 + n2 + 7, …, n1 + n2 + N + 6 4 Z coordinates (in Å)

n1 + n2 + N + 7 1 ‘end’ string specifying end of the third molecular block

Table 2. A description of the DB format file (.db) for an A-B molecule containing N number of atoms with two 
radical fragments (A. and B.), which have n1 and n2 number of atoms, respectively.

https://doi.org/10.1038/s41597-021-01088-2
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backbones, Moore et al. reported an MAD of 1.72 kcal/mol from the experimental values8. For small lignin 
model molecules, the CBS-QB3 approach was shown to yield bond dissociation enthalpies within 2.99 kcal/
mol from experimental values34. (RO)CBS-QB3 has been used as a reference method for benchmarking various 
density functional theory methods to estimate bond dissociation enthalpies in a different study on small lignin 
model systems23. Hudzik and co-workers utilized the CBS-QB3 composite method to study the C-H bond sep-
aration energies of a few alkane molecules and reported a good agreement with literature values35. The (RO)
CBS-QB3 has also been used for the prediction of bond dissociation enthalpies in a previous work by Menon et 
al.36 The MAD of (RO)CBS-QB3 was reported to be only 0.60 kcal/mol from the experiment and was suggested 
as being a reliable and efficient procedure for calculating bond separation energies in comparison to the other 
composite methods tested. In another work, bond dissociation enthalpies of 200 molecules were calculated 
using an earlier version of this work’s composite method, CBS-Q37. It was shown that the results of the CBS-Q 
composite procedure predicted bond dissociation enthalpies to within 2.39 kcal/mol of the reported experimen-
tal values. Collectively, these results support the selection of (RO)CBS-QB3 as a practical and accurate method 
for the generation of reference data in this work. Note that the reference bond separation energies reported in 
this work are non-relativistic (RO)CBS-QB3 energies without zero-point energy corrections. This makes the 
reference data suitable to support the development of low-cost computational chemistry methods like those 
described in references28–30,38–40.

Code availability
Throughout this work, the Gaussian software package was used for geometry optimizations, frequency 
calculations, and composite (RO)CBS-QB3 calculations. The Gaussian software package can be purchased 
from Gaussian Inc. (http://gaussian.com/) under a commercial license. CSD conformer generator was used for 
conformer generation. The CSD conformer generator can be purchased under a commercial license from https://
www.ccdc.cam.ac.uk/solutions/csd-enterprise/applications/conformer-generator/. Fullmonte software package 
was also used along with MOPAC16 (PM6-DH2 method). Fullmonte software package can be downloaded free-
of-cost from https://github.com/bobbypaton/FullMonte. Whereas MOPAC16 software package can be installed 
after acquiring a free license from http://openmopac.net/. The Avogadro molecular editor and visualizer is an 
open-source program available at https://avogadro.cc/.
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