
A comparative study of machine learning methods
for ordinal classification with

absolute and relative information
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Abstract

The performance of an ordinal classifier is highly affected by the amount of

absolute information (labelled data) available for training. In order to make up

for a lack of sufficient absolute information, an effective way out is to consider

additional types of information. In this work, we focus on ordinal classification

problems that are provided with additional relative information. We augment

several classical machine learning methods by considering both absolute and

relative information as constraints in the corresponding optimization problems.

We compare these augmented methods on popular benchmark datasets. The

experimental results show the effectivenesses of these methods for combining

absolute and relative information.

Keywords: Machine learning, absolute information, relative information,

ordinal classification

1. Introduction

Classification is undoubtedly the most abundant problem setting in machine

learning. Despite the plethora of methods for building a classification model [1],

the ultimate predictive performance obviously still depends on the quantity and
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quality of the training data. Although the era of big data may have rendered this5

problem obsolete in many cases, still many settings remain where labelled high-

quality data is scarce, because of a variety of reasons, such as limited access to

expert labellers, high labelling costs, et cetera [2, 3]. One possible way out is to

tap into another source, for instance by involving novices or by appealing to the

crowd [4, 5, 6]. Although this may lead to an improved predictive performance,10

it also brings along a number of problems, such as source dependence of the

reliability of the data (for instance, experts versus novices) and of the gathered

type of information (for instance, labels in case of experts, or frequency distri-

butions over the label set in case examples are judged by numerous novices).

This calls for a delicate attention when developing a classification model, en-15

suring the traceability of the impact of the source and type of information on

the final model performance. One way to do so is to avoid building a single col-

lective dataset (for instance, as is done by reducing frequency distributions of

novices to labelled data by considering the mode, leading to a single dataset of

labelled objects [5]), but instead assign a distinctive role to the different sources20

or types of information (for instance, by using the data from the second source

for constraining the learning process on the basis of the data from the first

source [7, 8]). Inspiration here can be found in the field of soft-label classifica-

tion [9, 10, 11], giving us a hint of how frequency distributions stemming from a

second source of information could be turned into constraints. For instance, in25

the case of binary soft-label classification, the class label (positive or negative)

comes along with a probability score. These probability scores can be turned

into linear constraints on the objective function of a support vector machine,

enforcing that examples with a higher probability are projected farther away

from the decision boundary than examples with a lower probability of assigning30

the same class label [10, 11].

The focus in this paper is on ordinal classification problems [12, 13], in which

the label set comes along with a natural ordering, which obviously needs to be

taken into account during model development and prediction. Ordinal classifi-

cation is an interesting problem setting that has been recognized in many areas35
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of research, for instance, in social science [14] and in medicine [15]. Various

machine learning methods for classification have been adjusted to deal with

ordinal classification problems (including naive methods, ordinal binary decom-

position methods and threshold methods [16]) and even dedicated methods have

been developed (such as distance metric learning methods [17]). Also, ensem-40

ble methods have been used to combine several ordinal classifiers into a single

best-performing one [18, 19]. Even more so than in the regular classification

setting, however, availability of ordinal labelled data is often limited due to its

dependence on expensive and time-consuming access to expert labellers, pro-

hibiting the collection of a large amount of labelled data (referred to as absolute45

information from here on, i.e., examples with an explicitly given class label).

As mentioned above, one way out is to access an additional source of infor-

mation, for instance by involving novices in the evaluation. However, in the

context of ordinal classification, such novices are usually able to provide relative

information only, in the form of preference orders for couples of examples, ex-50

pressing that one example should receive a higher label than another (thus not

assigning specific labels, but rather excluding possible labels, therefore already

acknowledging the lower reliability of this source of information). Hence, apart

from having to deal with two sources of information, we also have to deal with

two different types of information, where we additionally have to account for55

the fact that relative information is much less informative than absolute infor-

mation. Note that, for obvious reasons, here we do not consider the case (yet)

where numerous novices have expressed a preference order for the same couple

of objects. From the above description, it is clear that it becomes a challenging

research problem to combine absolute and relative information for improving or-60

dinal classification performance, while acknowledging the different information

value of both types of information.

The aim of this paper is to solve ordinal classification problems that come

along with both absolute and relative information. An obvious approach is to

enhance existing methods in order to accommodate relative information as a65

possible source of additional information. Here, we augment several classical
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machine learning methods to combine absolute and relative information for or-

dinal classification by turning preference orders into linear constraints in the

associated optimization problems.

The remainder of this paper is organized as follows. In Section 3, we first70

introduce the problem setting in which two types of information (absolute and

relative) are available. Subsequently, we describe several classical machine learn-

ing methods for ordinal regression and propose augmented versions by incorpo-

rating constraints arising from the relative information into the corresponding

optimization problems. In Section 4, we perform experiments on popular bench-75

mark datasets and analyse the experimental results. Since absolute information

is more informative than relative information, yet also more costly, the relation-

ships between cost and performance, and between entropy and performance are

explored in detail. We end with some concluding remarks in Section 5.

2. Related work80

Although there is a large body of research on ordinal classification, it mainly

focuses on tasks based on absolute information only. Only recently, some efforts

have been made to adapt existing methods enabling them to exploit different

types of information. For instance, Sader et al. [20] proposed an ordinal clas-

sification model based on absolute and relative information, the parameters of85

which are learned by solving a constrained convex optimisation problem. From a

different perspective, the present authors recently augmented the nearest neigh-

bor method for ordinal classification to simultaneously cope with absolute and

relative information [21]. The latter work was then further improved upon by

introducing a distance metric learning method aiming to replace the Euclidean90

distance metric [22]. The extension of this method to the case in which relative

information is gathered from crowds and, therefore, each pairwise comparison

is represented by a frequency distribution of preference orders rather than a

unique preference order, requires careful consideration and was preliminarily

explored in [23]. All mentioned works (perhaps with exception of the latter one,95
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where the type of information available is slightly different) are closely related

to the present study. However, the present work is more ambitious and aims at

augmenting other popular ordinal classification methods and comparing their

performance. It is anticipated that, as in the classical setting, there is no aug-

mented method that will outperform all others and that the method proposed100

by the present authors in [22] will stand the test in the comparison with the

augmented versions of the most popular methods for ordinal classification found

in the literature.

3. Machine learning methods for ordinal classification with absolute

and relative information105

In this section, we first introduce our problem setting and then augment

several machine learning methods for ordinal classification to deal with both

absolute and relative information. There is an abundance of machine learning

methods for solving ordinal classification problems with absolute information;

for a comprehensive overview, see Gutiérrez et al. [16]. Here, we focus on ba-110

sic methods that allow to incorporate the additional relative information as

constraints in the corresponding optimization problems.

3.1. Problem description

Formally, the input data includes two types of information: absolute in-

formation and relative information. For the absolute information, we denote115

the set of input examples by D = {x1,x2, . . . ,xn}. Each input example xi =

(xi1, . . . , xid) belongs to the input space X ⊆ Rd and the corresponding class

label yi belongs to the output space Y = {C1, C2, . . . , Cr}, where the class labels

are ordered as follows: C1 �C2 � . . .�Cr. The absolute information is gathered

in a set A = {(x1, y1), (x2, y2), . . . , (xn, yn)}.120

In addition, we consider the case that some couples of examples do not

have explicitly given class labels but carry relative information. We denote the

subset of couples for which the first example is preferred to the second example
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by C� = {(a1,b1), . . . , (am,bm)} ⊆ X 2. A main characteristic of our problem

setting is that the amount of absolute information is typically smaller than the125

amount of relative information, i.e., n� m.

3.2. Proportional Odds Model with both types of information

The Proportional Odds Model (POM) [24], also called ordinal logistic re-

gression, is a classical approach for solving ordinal classification problems. The

underlying idea is to use a logistic function to predict the probabilities of the

different class labels. Cumulative probabilities are used for taking into account

the ordering among the class labels. Formally, the cumulative probability is

modelled as:

P (Yi �Cj) = φ(θj −w>xi) =
1

1 + exp (w>xi − θj)
, (1)

where Yi is the random (output) variable associated with the input example xi,

the weighing vector w is common across all class labels, the vector of thresh-

olds θ is used for separating different classses and φ(t) = 1
1+exp(−t) . Class la-

bel Ck is associated with the interval [θk−1, θk[, where θ0 = −∞ and θr = +∞.

The probability of example xi being assigned class label Cj then is

P (Yi = Cj) = φ(θj −w>xi)− φ(θj−1 −w>xi) . (2)

The objective function considered is the negative log-likelihood:

L(w,θ) = −
n∑
i=1

log
(
φ(θyi −w>xi)− φ(θyi−1 −w>xi)

)
, (3)

where θyi := θk and θyi−1 := θk−1 when yi = Ck. The goal is to find the

parameters that maximize the likelihood by minimizing the objective function.

In the problem setting considered, additional relative information is pro-

vided. For each couple (a`,b`) ∈ C�, we impose that the ordering a` � b`

is respected after projecting both examples, i.e., the inequality w>a` > w>b`
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holds. We incorporate a unit margin and formulate the following constraint:

w>a` −w>b` ≥ 1 . (4)

In order to allow for the violation of some of the inequalities, slack variables

are introduced, resulting in the following optimization problem:

min
w,θ

F(w,θ) = L(w,θ) +
α

m

m∑
`=1

η` +
λ

2
‖w‖22

s.t. w>a` −w>b` ≥ 1− η` , (5)

η` ≥ 0, ∀` ,

where m is the number of constraints, α is a parameter controlling the impact130

of the relative information, ‖w‖2 is a regularizer to avoid overfitting, λ is a

regularization parameter and η` are slack variables.

In order to better understand the objective function in Eq. (5), we rewrite

it into the following equivalent form:

F(w,θ) = L(w,θ) +
α

m

m∑
`=1

[1 + w>b` −w>a`]+ +
λ

2
‖w‖22 , (6)

where [z]+ = max(z, 0). The subgradient of F(w,θ) at w is given by:

∂F(w,θ)

∂w
=
∂L(w,θ)

∂w
+
α

m

m∑
`=1

ψ`(b
` − a`) + λw , (7)

where

ψ` =

 1 , if 1 + w>b` −w>a` > 0 ;

0 , if 1 + w>b` −w>a` ≤ 0 .
(8)

The subgradient of F(w,θ) at θ is clearly given by

∂F(w,θ)

∂θ
=
∂L(w,θ)

∂θ
. (9)

Finally, we use subgradient descent to update the variables w and θ until the
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objective function converges. We refer to this augmented Proportional Odds

Model with both absolute and Relative information as POM-R.135

Note that there is a related work by Sader et al. [20], proposing a method

for ordinal classification that combines absolute evaluations from experts and

relative evaluations from novices. The method is actually similar to the above

augmented method, the only difference being that Sader et al. [20] uses L1 reg-

ularization, which results in models that are simple and interpretable, whereas140

POM-R uses L2 regularization, which allows to learn complex data patterns.

Due to the similarity between both methods, we do not incorporate this related

work in the experiments.

3.3. Support Vector Learning for Ordinal Regression with both types of infor-

mation145

The idea of Support Vector Learning for Ordinal Regression (SVLOR) [25]

is to consider a utility function U(x; w) = w>x that maps objects from the

input space to the real line, thus partitioning the real line in such a way that

U(x; w) ∈ [θk−1, θk[ if and only if y = Ck with θ0 = −∞ and θr = +∞.

The optimization problem is defined as:

min
w

F(w) = C

n∑
i=1

n∑
j=i+1

ξi,j +
1

2
‖w‖22

s.t. zi,j(w
>xi −w>xj) ≥ 1− ξi,j , (10)

ξi,j ≥ 0, ∀i, j ,

where C > 0 is a trade-off parameter, ξi,j are slack variables, zi,j = +1 when150

yi � yj , zi,j = −1 when yi � yj and zi,j = 0 when yi = yj .

After obtaining the optimal weighing vector w∗, the threshold θk, k ∈

{1, . . . , r − 1}, is computed as

θk =
U(uk; w∗) + U(vk; w∗)

2
, (11)
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where

(uk,vk) = arg min
(i,j),yi=Ck+1,yj=Ck

[U(xi; w
∗)− U(xj ; w

∗)] ,

which means that the threshold θk for the class label Ck lies in the middle of

the utilities of the nearest examples of the k-th class and of the (k+ 1)-th class.

We augment the method in the same way as we did for the proportional

odds model. The corresponding optimization problem is:

min
w

F(w) = C

n∑
i=1

n∑
j=i+1

ξi,j +
α

m

m∑
`=1

η` +
1

2
‖w‖22

s.t. zi,j(w
>xi −w>xj) ≥ 1− ξi,j ,

ξi,j ≥ 0, ∀i, j , (12)

w>a` −w>b` ≥ 1− η` ,

η` ≥ 0, ∀` ,

where m, α, ‖w‖2 and η` are as in Eq. (5).

Rewriting the above optimization problem as:

min
w
F(w) = C

n∑
i=1

n∑
j=i+1

[1−zi,j(w>xi−w>xj)]++
α

m

m∑
`=1

[1+w>b`−w>a`]++
1

2
‖w‖22 ,

(13)

the subgradient of F at w is given by:

∂F(w)

∂w
= C

n∑
i=1

n∑
j=i+1

φij(−zi,j(xi − xj)) +
α

m

m∑
`=1

ψ`k(b` − a`) + w , (14)

where

φij =

 1 , if 1− zi,j(w>xi −w>xj) > 0 ;

0 , otherwise .
(15)

The function ψ`k is computed as in Eq. (8). We also use subgradient descent155

to update w until the objective function converges. We refer to this Support

Vector Learning model for Ordinal Regression with both absolute and Relative

information as SVLOR-R.
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x1

x2

(a)

x1

x2

(b)

Figure 1: Example of incorporating absolute and relative information. (a) Best separating
hyperplane (black line) based on absolute information only. (b) After considering relative
information (each couple is represented by two blue points connected by an arrow pointing
from the most preferred to the least preferred example), the original hyperplane (the black
line) is replaced by a new hyperplane (the red line).

A graphical illustration is given in Figure 1. The left panel describes the

classical support vector machine with absolute information only, while the right160

panel shows the augmented support vector machine with absolute and relative

information with an updated hyperplane.

3.4. Support Vector Ordinal Regression with both types of information

The goal of Support Vector Ordinal Regression (SVOR) [26] is to find an

optimal mapping direction w and r − 1 thresholds, which determine r − 1 par-165

allel discriminant hyperplanes for separating the r classes. It is similar to the

above-mentioned SVLOR, however, SVLOR automatically sets the thresholds

by means of a utility function.

Two different types of thresholds are considered for exploiting the ordering

among the class labels. One way is to consider EXplicit constraints on thresholds

(this method is referred to as SVOREX). For each threshold θj , the empirical

errors are computed for the examples with adjacent class labels Cj and Cj+1.
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The optimization problem is formulated as follows:

min
w,θ

F(w,θ) = C

r−1∑
j=1

(

nj∑
i=1

ξji +

nj+1∑
i=1

ξ∗j+1
i ) +

1

2
‖w‖22

s.t. θj −w>xji ≥ 1− ξji ,

ξji ≥ 0, ∀j = 1, . . . , r − 1, ∀i = 1, . . . , nj , (16)

w>xj+1
i − θj ≥ 1− ξ∗j+1

i ,

ξ∗j+1
i ≥ 0, ∀j = 1, . . . , r − 1, ∀i = 1, . . . , nj+1 ,

θj−1 ≤ θj , ∀j = 2, . . . , r − 1 ,

where C > 0 is a trade-off parameter, nj is the number of examples of the j-th

class, xji is the i-th example of the j-th class, and ξji , ξ
∗j+1
i are slack variables.170

Similarly as above, we incorporate the additional relative information using

the same constraints as in Eq. (4). The new optimization problem then becomes:

min
w,θ

F(w,θ) = C

r−1∑
j=1

(

nj∑
i=1

ξji +

nj+1∑
i=1

ξ∗j+1
i ) +

α

m

m∑
`=1

η` +
1

2
‖w‖22

s.t. θj −w>xji ≥ 1− ξji ,

ξji ≥ 0, ∀j = 1, . . . , r − 1, ∀i = 1, . . . , nj ,

w>xj+1
i − θj ≥ 1− ξ∗j+1

i , (17)

ξ∗j+1
i ≥ 0, ∀j = 1, . . . , r − 1, ∀i = 1, . . . , nj+1 ,

θj−1 ≤ θj , ∀j = 2, . . . , r − 1 ,

w>a` −w>b` ≥ 1− η` ,

η` ≥ 0, ∀` = 1, . . . ,m ,

where m, α, ‖w‖2 and η` are as in Eq. (5).

The second way is to consider IMplicit constraints on thresholds (this method

is referred to as SVORIM). Here, the examples of all the classes are incorporated

in order to estimate the errors for all thresholds. The optimization problem is
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formulated as follows:

min
w,θ

F(w,θ) = C

r−1∑
j=1

(

j∑
k=1

nk∑
i=1

ξjki +

r∑
k=j+1

nk∑
i=1

ξ∗jki ) +
1

2
‖w‖22

s.t. θj −w>xki ≥ 1− ξjki, ξ
j
ki ≥ 0 ,

∀j = 1, . . . , r − 1, ∀k = 1, . . . , j, ∀i = 1, . . . , nk , (18)

w>xki − θj ≥ 1− ξ∗jki , ξ
∗j
ki ≥ 0 ,

∀j = 1, . . . , r − 1, ∀k = j + 1, . . . , r, ∀i = 1, . . . , nk ,

where ξjki, ξ
∗j
ki are slack variables and C > 0, nj and xji are as in Eq. (16).

After incorporating additional relative information, the new optimization

problem becomes:

min
w,θ

F(w,θ) = C

r−1∑
j=1

(

j∑
k=1

nk∑
i=1

ξjki +

r∑
k=j+1

nk∑
i=1

ξ∗jki ) +
α

m

m∑
`=1

η` +
1

2
‖w‖22

s.t. θj −w>xki ≥ 1− ξjki, ξ
j
ki ≥ 0 ,

∀j = 1, . . . , r − 1, ∀k = 1, . . . , j, ∀i = 1, . . . , nk ,

w>xki − θj ≥ 1− ξ∗jki , ξ
∗j
ki ≥ 0 , (19)

∀j = 1, . . . , r − 1, ∀k = j + 1, . . . , r, ∀i = 1, . . . , nk .

w>a` −w>b` ≥ 1− η` ,

η` ≥ 0, ∀` = 1, . . . ,m ,

where m, α, ‖w‖2 and η` are as in Eq. (5).

Similarly as for the preceding methods, we use subgradient descent to op-

timize the objective functions. We refer to Support Vector Ordinal Regression175

considering EXplicit (resp. IMplicit) constraints with both absolute and Rela-

tive information as SVOREX-R (resp. SVORIM-R).
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3.5. Linear Discriminant Learning for Ordinal Regression with both types of

information

The underlying idea of Linear Discriminant Learning for Ordinal Regres-180

sion [27] is to project high-dimensional data onto a low-dimensional space, in

such a way that this projection separates data from different classes as much as

possible while respecting the ordering among the class labels. More specifically,

the aim is to find a projection direction that not only minimizes the within-

class distances and maximizes the between-class distances simultaneously, but185

also preserves the ordering among the class labels.

For ease of discussion, a within-class scatter matrix and a between-class

scatter matrix are defined as follows:

Sw =
1

n

r∑
k=1

n∑
i=1
yi=Ck

(xi −mk)(xi −mk)> , (20)

and

Sb =
1

n

r∑
k=1

nk(mk −m)(mk −m)> , (21)

where nk is the number of examples of the k-th class, mk = 1
nk

∑n
i=1

yi=Ck

xi denotes

the mean vector of the examples of the k-th class and m = 1
n

∑n
i=1 xi represents

the mean vector of all the examples. Linear discriminant learning is formalized

as solving the following optimization problem:

min
w,ρ

J(w, ρ) = w>Sww − Cρ

s.t. w>(mk+1 −mk) ≥ ρ, ∀k = 1, 2, . . . , r − 1 , (22)

where C is a penalty coefficient and ρ > 0. This method aims to minimize the

variance of the data points of the same class and separate the projected mean

vectors of two neighboring classes. The projected mean vectors of all classes are

expected to respect the ordering among the class labels in the projected data190

space. We refer to Linear Discriminant Learning for Ordinal Regression with
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absolute information only as LDLOR.

Similarly as above, we incorporate the additional relative information using

the same constraints as in Eq. (4). The new optimization problem becomes:

min
w,ρ

J(w, ρ) = w>Sww − Cρ+
α

m

m∑
`=1

η`

s.t. w>(mk+1 −mk) ≥ ρ, ∀k = 1, 2, . . . , r − 1 , (23)

w>a` −w>b` ≥ 1− η` ,

η` ≥ 0, ∀` ,

where m, α and η` are as in Eq. (5).

We again use subgradient descent to minimize the objective function. After

obtaining the optimal direction w, the class label of a test example is predicted

by the following decision rule:

f(x) = min{k ∈ {1, . . . , r} | w>x− bk < 0} , (24)

where bk = w>(mk+1 + mk)/2. We refer to Linear Discriminant Learning for

Ordinal Regression with both absolute and Relative information as LDLOR-R.195

x1

x2

(a)

x1

x2

(b)

Figure 2: Example of incorporating absolute and relative information. (a) Best projection
direction (black line) based on absolute information only. (b) After considering relative infor-
mation, the original projection direction (the black line) is changed to a new direction (the
red line).
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A graphical illustration is given in Figure 2. The left panel describes the

classical Linear Discriminant Learning for Ordinal Regression with absolute

information only. The right panel shows the augmented Linear Discriminant

Learning for Ordinal Regression with absolute and relative information with an

updated projection direction.200

3.6. Distance Metric Learning with both types of information

The aim of Distance Metric Learning [28] is to learn a distance metric that

is adapted to the hidden structure of the input data. Here, we restrict the

search to the family of Mahalanobis distance metrics. Formally, the squared

Mahalanobis distance between two examples is defined as205

d2M(xi,xj) = (xi − xj)
>M(xi − xj) , (25)

where M < 0 is a symmetric positive semidefinite (PSD) matrix. In order

to learn the matrix M, some constraints need to be set. These constraints are

commonly represented in a pairwise [29] or triplet [30] form. Here, we exploit

triplet constraints only.

For absolute information, the learned distance metric is expected to satisfy

some natural constraints. Firstly, distances between examples of the same class

should be small and distances between examples of different classes should be

large. The corresponding triplets are given by

RA1
= {(i, j, `) ∈ {1, . . . , n}3 | xj ,x` ∈ N (xi), yi = yj 6= y`} , (26)

where N (xi) is the neighborhood of xi containing its k nearest neighbor exam-

ples. Secondly, the ordering among the class labels needs to be preserved. In

particular, the larger the difference between the class label of a given example

and that of a neighbor example, the larger the distance between these two ex-

amples should be. For instance, in case yi � yj � y` or yi � yj � y`, the distance

between xi and x` should be larger than the distance between xi and xj . The
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corresponding triplets are given by

RA2
= {(i, j, `) ∈ {1, . . . , n}3 | xj ,x` ∈ N (xi), (yi�yj�y`)∨(yi�yj�y`)} . (27)

With each triplet (i, j, `) in RA = RA1
∪ RA2

, an inequality constraint (incor-

porating a unit margin) is associated:

d2M(xi,xj) + 1 ≤ d2M(xi,x`) . (28)

Since our ultimate goal is to use an augmented version of the method of210

nearest neighbours that incorporates relative information, we also need to es-

tablish triplet constraints related to relative information. To that end, for

any pair of examples a and b, we consider both couples (a,b) and (b,a). In

addition to the already-defined set C�, here we also consider the set C≺ =

{(am+1,bm+1), . . . , (a2m,b2m)} = {(b1,a1), . . . , (bm,am)}. Note that if a cou-215

ple (a,b) belongs to C�, then the couple (b,a) belongs to C≺. The entire set of

input couples of examples is denoted by C = C� ∪C≺ = {(a1,b1), . . . , (a2m,b2m)}.

The Mahalanobis distance between couples of examples is defined as a special

case of the product distance (see [31]):

d∗M((u,v), (w, t)) = dM(u,w) + dM(v, t) . (29)

The learned distance metric should satisfy that the distances between any given

couple and the couples in its neighborhood with the same preference order are

smaller than the distances between that couple and the couples in its neighbor-

hood with the opposite preference order, where the neighborhood is considered

to reduce the number of constraints. The corresponding triplets are given by

RR = {(p, q, t) ∈ {1, . . . ,m}2 × {m+ 1, . . . , 2m} | (aq,bq), (at,bt) ∈ N ((ap,bp))} ,

(30)

where N ((ap,bp)) is the neighborhood of the couple (ap,bp). With each triplet
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(p, q, t) ∈ RR, an inequality constraint (incorporating a unit margin) is associ-

ated:

d2∗M((ap,bp), (aq,bq)) + 1 ≤ d2∗M((ap,bp), (at,bt)) , (31)

where we replace d2∗M((as,bs), (ar,br)) by d2M(as,ar) + d2M(bs,br) to reduce

the computational complexity.

As it might be difficult to satisfy all the constraints, a soft margin is consid-

ered to tolerate some violations. The proposed distance metric learning method

with both absolute and relative information then corresponds to the following

optimization problem:

min
M,ξ,η

fL(M) = λTr(M) +
α

|RA|
∑

(i,j,`)∈RA

ξij` +
β

|RR|
∑

(p,q,t)∈RR

ηpqt

s.t. d2M(xi,x`)− d2M(xi,xj) ≥ 1− ξij`

d2∗M((ap,bp), (at,bt))− d2∗M((ap,bp), (aq,bq)) ≥ 1− ηpqt (32)

ξij` ≥ 0, ∀(i, j, `) ∈ RA

ηpqt ≥ 0, ∀(p, q, t) ∈ RR

M < 0 ,

where λ ≥ 0 is a trade-off parameter, α is a parameter to control the impact of220

the absolute information, β is a parameter to control the impact of the relative

information, |RA| is the number of constraints in RA and |RR| is the number of

constraints in RR, and ξij`, ηpqt are slack variables. More details can be found

in [22]. A graphical illustration is given in Figure 3. The left panel shows the

original data points in the Euclidean space. The right panel shows the data225

points in the Mahalanobis space with the learned Mahalanobis distance metric.

Ultimately, the learned Mahalanobis distance metric is used for replacing the

Euclidean distance metric in either the classical k-NN or the augmented version

of k-NN presented in [21], depending on whether only absolute or both absolute

and relative information is involved. We refer to Distance Metric Learning230

with only absolute information within the classical k-NN as DMLNN and to
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x1

x2

(a)

x1

x2

(b)

Figure 3: Example of incorporating absolute and relative information. The ordering among
the class labels is red � yellow � blue. (a) The original data distribution in the Euclidean
space. (b) The new data distribution in the Mahalanobis space with the learned Mahalanobis
distance metric for absolute and relative information.

Distance Metric Learning with both absolute and Relative information within

the augmented k-NN as DMLNN-R.

4. Experiments

4.1. Datasets235

We perform extensive experiments on selected datasets stemming from real

ordinal classification problems as well as datasets obtained by discretizing stan-

dard regression problems. Datasets of the first type were downloaded from

repositories such as the UCI (University of California, Irvine) machine learn-

ing repository [32] and mldata.org [33], while datasets of the second type were240

provided by Chu [34]. As real-life classification datasets usually need to be

collected by experts, their size is typically small. Datasets from discretized re-

gression problems are larger, as they are typically obtained by discretizing the

response variables into ordinal classes of the same cardinality. Table 1 describes

the characteristics of the datasets used, including the number of examples, fea-245

tures, classes and class distribution. All the features have been standardized

(i.e. to have zero mean and unit standard deviation) to avoid the impact of the

scale of features. In all experiments, we use ten-fold cross-validation to compute

the performance.
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Table 1: Description of the benchmark datasets.

Dataset #Examples #Features #Classes #Class distribution

Real ordinal classification datasets

Toy (TO) 300 2 5 (35, 87, 79, 68, 31)
Balance-scale (BS) 625 4 3 (288, 49, 288)
Eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)
Swd (SW) 1000 10 4 (32, 352, 399, 217)
Lev (LE) 1000 4 5 (93, 280, 403, 197, 27)
Winequality-red (WR) 1599 11 6 (10, 53, 681, 638, 199, 18)
Car (CA) 1728 21 4 (210, 384, 69, 65)

Discretized regression datasets

Housing5 (HO5) 506 14 5 ≈ 101 per class
Abalone5 (AB5) 4177 11 5 ≈ 836 per class
Bank1-5 (BA1-5) 8192 8 5 ≈ 1639 per class
Bank2-5 (BA2-5) 8192 32 5 ≈ 1639 per class
Computer1-5 (CO1-5) 8192 12 5 ≈ 1639 per class
Computer2-5 (CO2-5) 8192 21 5 ≈ 1639 per class
Housing10 (HO10) 506 14 10 ≈ 51 per class
Abalone10 (AB10) 4177 11 10 ≈ 418 per class
Bank1-10 (BA1-10) 8192 8 10 ≈ 820 per class
Bank2-10 (BA2-10) 8192 32 10 ≈ 820 per class
Computer1-10 (CO1-10) 8192 12 10 ≈ 820 per class
Computer2-10 (CO2-10) 8192 21 10 ≈ 820 per class

Note that none of these datasets contains relative information. In order to250

compare the augmented methods, we simulate our problem setting by generating

relative information from the available absolute information (see Figure 4). For

each dataset, we initially divide all labelled examples into ten folds, represented

by the ten rows in Figure 4 (left). As in classical cross-validation, we keep

one fold for testing (the red part) and use the remaining folds for training.255

The folds used for training are further split to generate absolute and relative

information. More specifically, we randomly select 5% of the labelled examples

in the remaining folds and keep them unchanged as absolute information (the

yellow part) and use the remaining 95% of the labelled examples (the blue

part) to generate relative information (the green part) by transforming the class260

labels into preference orders between examples. For this purpose, we divide

the labelled examples in the blue part into ten parts of equal size (the ten

orange parts). We then pairwisely compare the class labels of the ten examples

(one from each orange part) in each row to obtain the corresponding preference

orders. For more details on the process of generating relative information, we265

refer to our previous work [21]. In summary, we construct two datasets for each
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Figure 2: Datasets.
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Figure 2: Datasets.

1

Figure 4: Process of generating relative information from absolute information.

original dataset as schematically shown in Figure 4.

4.2. Performance measures

There exists a variety of performance measures used for evaluating ordinal

classification methods [25, 35, 36]. Here, we choose the three most common

ones: the Mean Zero-one Error (MZE), the Mean Absolute Error (MAE) and

the C-index. The MZE describes the error rate of the classifier computed as

MZE =
1

T

T∑
i=1

δ(y∗i 6= yi) = 1−Acc , (33)

where T is the number of test examples, yi is the real class label and y∗i is

the predicted class label; Acc is the accuracy of the classifier. The value of270

MZE ranges from 0 to 1. It describes the global performance, but neglects the

ordering among the class labels.

The MAE is the mean absolute error between yi and y∗i and is computed as

20



MAE =
1

T

T∑
i=1

|yi − y∗i | . (34)

The value of MAE ranges from 0 to r − 1 (maximum absolute error between

classes). Because the real distances among the class labels are unknown, the

numerical representation of the class labels has a considerable impact on the275

MAE.

One way to avoid this impact is to consider the relations between the real

class label and the predicted class label. Here, we use the concordance index or

C-index to represent these relations. The C-index is computed as the proportion

of concordant pairs among the comparable pairs (see [37], page 50):

C-index =
1∑

Cp�Cq
TCp

TCq

∑
yi�yj

(δ(y∗i � y∗j ) +
1

2
δ(y∗i = y∗j )) , (35)

where TCp
and TCq

are the numbers of test examples with class label Cp and Cq,

yi and yj are the ordinal class labels and y∗i and y∗j the predicted class labels.

When there are only two different class labels, the C-index reduces to the area

under the Receiver Operating Characteristic (ROC) curve [38]. It is important280

to mention that the C-index takes no account of the numerical representation

of the class labels and is therefore more suitable than the MZE and MAE.

A lower MZE, lower MAE or a higher C-index indicated a better perfor-

mance. Here, in order to facilitate the discussion of the results and to preserve

the analogy with the other evaluation metrics, we replace C-index by 1 − C-285

index. In this way, a lower MZE, MAE or 1 − C-index represents a better

performance.

4.3. Experimental settings

Here, we employ the methods mentioned in Section 3 and refer to them as

follows:290

POM: Proportional Odds Model with absolute information only;

POM-R: Proportional Odds Model with absolute and Relative information;
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SVLOR: Support Vector Learning for Ordinal Regression with absolute infor-

mation only;

SVLOR-R: Support Vector Learning for Ordinal Regression with absolute and295

Relative information;

SVOREX: Support Vector Ordinal Regression considering EXplicit constraints

with absolute information only;

SVOREX-R: Support Vector Ordinal regression considering EXplicit con-

straints with absolute and Relative information;300

SVORIM: Support Vector Ordinal Regression considering IMplicit constraints

with absolute information only;

SVORIM-R: Support Vector Ordinal Regression considering IMplicit con-

straints with absolute and Relative information;

LDLOR: Linear Discriminant Learning for Ordinal Regression with absolute305

information only;

LDLOR-R: Linear Discriminant Learning for Ordinal Regression with abso-

lute and Relative information;

DMLNN: Distance Metric Learning with only absolute information;

DMLNN-R: Distance Metric Learning with absolute and Relative information.310

For the classical and augmented machine learning methods, the parame-

ters α, λ and C are tuned in the set {10−3, . . . , 103} by three-fold cross-validation

based on the three performance measures. For the distance metric learning

methods, we set λ = 10−4 and α = β = 1.315

4.4. Overall performance analysis

In this subsection, we analyze the performance of the different machine learn-

ing methods discussed in this paper. The experimental results shown in Ta-

bles 2–4 have been obtained using ten-fold cross-validation. From these tables,

several conclusions can be drawn.320

Not surprisingly, considering both absolute and relative information leads to

a better performance than considering absolute information only. For example,
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row “Num” in Table 2 (in terms of MZE) shows that POM-R outperforms

POM on 15 out of 19 datasets, while SVLOR-R outperforms SVLOR on 18 out

of 19 datasets. Looking at the results per dataset, column “Num” shows that325

4 out of 6 augmented methods perform better than the corresponding original

ones on the TO dataset, while all augmented methods perform better on the BS

dataset. Table 3 (in terms of MAE) and Table 4 (in terms of 1 - C-index) can be

read in the same way. Globally, these tables show that the augmented methods

perform better than the corresponding original ones on most of the datasets,330

while on each of the datasets, most of the augmented methods outperform the

corresponding original ones.

For a more comprehensive view of the improvement obtained by incorpo-

rating relative information, Figures 5 and 6 show the absolute and relative

differences in performance in terms of the MZE, MAE and 1− C-index for the335

augmented methods compared to the original ones. The greener the color (i.e.,

the more negative the values), the larger the improvement. SVLOR and LD-

LOR deserve special attention as they greatly improve their performance on

most datasets when considering additional relative information. A further look

at Tables 2–4 shows that the performance of SVLOR and LDLOR is subpar340

compared to the other methods on several datasets only consisting of absolute

information. However, the expected performance is attained when the relative

information is incorporated.

Finally, we test whether there is an overall significant difference in perfor-

mance among the different methods [39]. More specifically, we apply the non-345

parametric Friedman test [40] at a significance level of α = 0.05. The results

are shown in the last row of Tables 2–4. It can be seen that all p-values for the

three performance measures are smaller than α, which means that at least two

machine learning methods behave differently on average and that there is an

overall statistically significant difference between the performances of at least350

two original methods and between those of at least two augmented ones. Post-

hoc analyses are not here shown, but, instead, all pairwise comparisons are

performed.
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Figure 5: Absolute difference in performance in terms of MZE, MAE and 1 - C-index for the
augmented methods compared to the original ones on all datasets. The values are recorded
in percentage.

More specifically, in order to detect whether there is a significant difference

in performance between every two of the augmented methods, we perform the355

Wilcoxon unilateral signed-rank test [41] at a significance level of α = 0.05.

The results are shown in Table 5. We conclude that for the 1 − C-index there

is statistical evidence that SVLOR-R performs better than DMLNN-R, and

that LDLOR-R performs better than the other augmented methods, except for

SVLOR-R.360

In addition, in order to detect whether there is a significant difference in

performance between an augmented method and the corresponding original one,

we compute the median difference and perform the Wilcoxon unilateral signed-

rank test at a significance level of α = 0.05. Table 7 shows that, except for the

p-values for the MZE and 1−C-index for the methods SVORIM and SVORIM-365

R, all other p-values are smaller than α, which means that there is a statistically

significant difference between the performances. Overall, the median differences
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Figure 6: Relative difference in performance in terms of MZE, MAE and 1 - C-index for the
augmented methods compared to the original ones on all datasets. The values are recorded
in percentage.

in Table 6 and the p-values in Table 7 show that there is statistical evidence

that all the augmented methods outperform the original ones for the three

performance measures.370

4.5. Performance analysis from the point of view of cost and information con-

tent

In this subsection, we start by illustrating the obvious positive impact of an

increasing amount of relative information on the performance of the augmented

methods. Note that one can clearly expect the act of labelling to be more375

expensive than that of assigning a preference order, while one can also expect

a labelled example to be more informative than a preference-ordered couple.

Hence, it seems worthwhile to explore the relationship between performance

and cost, where cost refers to the actual cost of data collection or to the amount

of information provided (measured in terms of entropy). For the sake of brevity,380

we restrict our attention in this section to the 1 − C-index (as it is the most
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Table 5: p-values according to the Wilcoxon unilateral test among the augmented methods
based on the three performance measures. p-values smaller than 0.05 are highlighted in
boldface.

Method MZE MAE 1 − C-index

POM-R

SVLOR-R 0.90793 0.16707 0.65631

SVOREX-R 0.96492 0.5 0.5954

SVORIM-R 0.94173 0.93175 0.77175

LDLOR-R 0.83293 0.27304 0.99958

DMLNN-R 0.80097 0.42027 0.51605

SVLOR-R

POM-R 0.09207 0.83293 0.34369

SVOREX-R 0.98353 0.9937 0.22225

SVORIM-R 0.96169 0.99812 0.34369

LDLOR-R 0.75305 0.87008 0.94405

DMLNN-R 0.62625 0.5 0.03508

SVOREX-R

POM-R 0.03508 0.5 0.4046

SVLOR-R 0.01647 0.0063 0.77775

SVORIM-R 0.22299 0.99438 0.54805

LDLOR-R 0.62625 0.57973 0.99295

DMLNN-R 0.17733 0.17733 0.18799

SVORIM-R

POM-R 0.05827 0.06825 0.22825

SVLOR-R 0.03831 0.00188 0.65631

SVOREX-R 0.77701 0.00562 0.45195

LDLOR-R 0.65631 0.18799 0.99835

DMLNN-R 0.17733 0.06825 0.28658

LDLOR-R

POM-R 0.16707 0.72696 0.00042

SVLOR-R 0.24695 0.12992 0.05595

SVOREX-R 0.37375 0.42027 0.00705

SVORIM-R 0.34369 0.81201 0.00165

DMLNN-R 0.5 0.27304 0.0267

DMLNN-R

POM-R 0.19903 0.57973 0.48395

SVLOR-R 0.37375 0.5 0.96492

SVOREX-R 0.82267 0.82267 0.81201

SVORIM-R 0.82267 0.93175 0.71342

LDLOR-R 0.5 0.72696 0.9733

suitable performance measure and results are similar for MZE and MAE).

4.5.1. Impact of the amount of relative information

In Figure 7, we illustrate the impact of the amount of relative information on

the performance on the EU and BS datasets, by fixing the absolute information385

and continuously adding couples to the already present ones. As expected, the

performance levels off after an initial improvement. More specifically, on the EU
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Table 6: Median difference between each augmented method and the corresponding original
one based on the three different performance measures.

Test Methods MZE MAE 1 − C-index

Median difference

POM-R and POM 0.00590 0.01690 0.00200

SVLOR-R and SVLOR 0.09430 0.41050 0.08470

SVOREX-R and SVOREX 0.00430 0.02600 0.00660

SVORIM-R and SVORIM 0.00260 0.00480 0.00100

LDLOR-R and LDLOR 0.04480 0.12940 0.03130

DMLNN-R and DMLNN 0.0151 0.03130 0.00630

Table 7: p-value according to the Wilcoxon unilateral test for each augmented method and
the corresponding original one based on the three different performance measures.

Test Methods MZE MAE 1 − C-index

Wilcoxon

POM-R and POM 0.00080 0.00097 0.01049

SVLOR-R and SVLOR 7.75e-05 9.09e-05 6.59e-05

SVOREX-R and SVOREX 0.02796 0.00500 0.00990

SVORIM-R and SVORIM 0.05596 0.02908 0.07227

LDLOR-R and LDLOR 0.00042 0.00074 0.00048

DMLNN-R and DMLNN 0.01211 0.02929 0.014887

Figure 7: 1−C-index for all the methods provided with a fixed amount of absolute information
and an increasing amount of relative information on the EU and BS datasets.

dataset, there is a clear decreasing trend for the augmented methods DMLNN-R,

POM-R, LDLOR-R and SVLOR-R, while this effect is minimal for SVOREX-

R and SVORIM-R. However, this is not the case for the BS dataset. On this390

dataset, SVOREX-R and SVORIM-R are competitive with other augmented

ordinal classification methods, although SVOREX performs badly compared

to the other original ordinal classification methods (Note that SVOREX and
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SVORIM still perform great on most of the datasets, as can be seen in Tables 2–

4.). The results show that it is not necessary to incorporate as many constraints395

as possible, and that it might be beneficial to try to balance the amounts of

absolute and relative information, and thus also the cost of data collection.

4.5.2. Cost of collecting different types of information

We denote the cost of assigning a class label to an example as CA and the

cost of assigning a preference order to a couple as CR. The total cost of data400

collection is then given by

CT = nCA +mCR , (36)

where n is the number of labelled examples and m is the number of preference-

ordered couples. Here, we fix CA at 1 and denote CR by ρ in order to emphasize

that we are referring to the cost of relative information per unitary cost of

absolute information. The total cost then simply is CT = n+ρm. It is assumed405

that ρ ≤ 1 since absolute information is in general more informative than relative

information and, thus, the latter is only useful when collected at a cheaper cost.

Based on the generation process in Figure 4, from the generated absolute

and relative information for each fold, we randomly sample different num-

bers of examples and couples, corresponding to different amounts of abso-410

lute and relative information, for instance n ∈ {20, 25, 30, . . . , 65} and m ∈

{100, 200, 300, . . . , 1000} for the CA dataset. For each combination of n and m,

we apply the augmented machine learning methods and obtain the performance

via ten-fold cross-validation.

In Figure 8, we show a scatterplot of the performance versus the total cost415

for different values of ρ (here, 1, 0.01 and 0.0001) for DMLNN and DMLNN-R

on the CA dataset. Obviously, the performance of DMLNN-R is better than

that of DMLNN for every value of ρ. Depending on the problem-specific cost

ρ of relative information per unitary cost of absolute information, we can dis-

tinguish three settings. For values of ρ close to 1, both absolute and relative420
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Figure 8: 1 − C-index versus total cost for different values of ρ for DMLNN (empty circles)
and DMLNN-R (solid circles) on the CA dataset. The color gradient represents the amount of
absolute information. At a fixed color, a larger cost corresponds to a larger amount of relative
information.

Figure 9: Heatmap representing the 1−C-index (color gradient) and lines identifying cells with
the same total cost (obtained from different amounts of absolute and relative information) for
three different values of ρ for DMLNN-R on the CA dataset.

information equally contribute to the total cost but the performance is mainly

impacted by the amount of absolute information (since absolute information is

typically more informative than relative information). For moderate values of ρ

(here 0.01), the performance depends on the amounts of both absolute and rela-

tive information. As an illustration, the gap between the two horizontal lines in425
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the middle part of Figure 8 shows the improvement when considering additional

relative information for a fixed amount of absolute information. As can be seen,

the incorporation of more relative information improves the performance w.r.t.

the performance obtained for datasets with a larger total cost (in particular a

larger amount of absolute information and a smaller amount of relative informa-430

tion). Typically, realistic values of ρ are of this type, thus encouraging to jointly

use both absolute and relative information. For small values of ρ (here 0.0001),

the total cost is dominated by the cost of absolute information and the perfor-

mance is mainly impacted by the amount of relative information. In such cases,

collecting as much relative information as possible is always advisable since it435

provides valuable information at an almost free cost. Obviously, a value of ρ

of the first or third type hints that investing in the collection of one of the two

types of information does not actually pay off.

These results are also illustrated in Figure 9, where we show a heatmap of

the performance of DMLNN-R on the CA dataset for different combinations440

of n and m. The superimposed lines connect cells with the same total cost

for the corresponding value of ρ. Obviously, when n and m become larger,

the performance gets better. For values of ρ close to 1, the lines are nearly

horizontal and can be seen not to relate to the improvement in performance.

For moderate values of ρ (here 0.01), both absolute and relative information445

contribute to the improvement in performance. In particular, increasing the

budget (i.e., the allowed total cost) results in a better performance. For small

values of ρ (here 0.0001), the lines are nearly vertical and the performance is

mainly dominated by the fixed amount of absolute information, thus obtaining

a boost in performance at a very low cost when additionally considering relative450

information.

4.5.3. Information entropy

Since the information brought by a labelled example differs from that brought

by a preference-ordered couple, we propose to quantify this information content

in terms of information entropy [42]. Note that in a real-world problem, the455
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distribution of the class labels is usually not uniform. Due to the ordinal nature

of the scale, it is mostly the case that the probability that an example is as-

signed an extreme class label is low compared to that of being assigned a more

central one, although this clearly depends on the problem domain. In medical

diagnosis [43], for instance, the lowest class (absence of disease) typically has a460

high probability, while the higher classes (indicating different levels of intensity

of the disease) come with lower probabilities.

Here, we make use of the prior distribution of the dataset and denote the

probability of an object xi belonging to the k-th class as P (yi = Ck). The

entropy for a labelled object is then computed as:

HA = −
r∑

k=1

P (yi = Ck) log2 P (yi = Ck) . (37)

As an illustration, note that in the unlikely case of a uniform distribution, it

holds that HA = log2 r, increasing quickly at lower values (the typical range for

ordinal classification problems), while slowing down for larger values. For the465

CA dataset (r = 4), the class distribution is (210, 384, 69, 65) and HA = 1.64.

For a preference-ordered couple (aj ,bj), we denote the class label of aj as yaj

and the class label of bj as ybj . The preference order for this couple may either

be aj � bj implying yaj �ybj , or aj ≺ bj implying yaj �ybj . Obviously, it holds

that P (yaj � ybj ) = P (ybj � yaj ) = 0.5. The entropy for a preference-ordered

couple is then given by

HR = −P (yaj � ybj ) log2 P (yaj � ybj )− P (ybj � yaj ) log2 P (ybj � yaj ) = 1 .

(38)

Since entropy is additive for independent observations, the total entropy is com-

puted as

H = nHA +mHR = nHA +m, (39)

where n is the number of labelled examples and m is the number of preference-

ordered couples.
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Figure 10: 1 − C-index versus total entropy for DMLNN-R on the CA dataset. The color
gradient represents the ratio of the entropy for absolute information to the total entropy.
At a fixed color, a larger entropy corresponds to larger amounts of absolute and relative
information.

We denote the ratio of the entropy for absolute information to the to-

tal entropy as λ = nHA
H and the ratio of the entropy for relative informa-470

tion to the total entropy as 1 − λ = m
H . For the CA dataset, the range

of λ is set to {0.2, 0.4, 0.6, 0.8, 1} and the range of the total entropy H is set

to {50, 60, 70, . . . , 120}. We explore the impact of λ on the performance for

each fixed value of the total entropy. More specifically, for each value of H

and each value of λ, we get the corresponding combination of n and m, then475

apply the augmented machine learning methods and obtain the performance

via ten-fold cross-validation. Figure 10 shows a scatterplot of the performance

of DMLNN-R versus the total entropy on the CA dataset (H = 1.64n + m).

The performance is highly correlated with λ. In general, when λ is larger, the

performance tends to get better. However, note that, for many fixed values of480

the total entropy, the performance for λ = 0.8 is similar to that for λ = 1,

which means that relative information can replace absolute information to some

extent and combining both types of information is highly encouraged, even at

a lower information entropy level.
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5. Conclusion485

For the interesting problem setting in which both absolute and relative in-

formation are available for ordinal classification, we augmented several ordinal

classification methods by incorporating the relative information as constraints in

the corresponding optimization problems. We extensively tested these methods

on existing benchmark datasets. While POM-R is very fast to train, its perfor-490

mance is generally a bit worse than that of other methods. Similarly, SVLOR-R

is also fast to train compared to other augmented ordinal classification meth-

ods and generally leads to a better performance. For this reason, POM-R and

SVLOR-R are good options when dealing with large datasets. SVOREX and

SVORIM are good threshold models that usually perform very well on absolute495

information, however, their improvement on most datasets when considering

additional relative information is not so great. Still, both options remain com-

petitive. DMLNN-R is the easiest and most explainable option, since it is based

on the classical k-NN, and leads to a great performance. Even though learning

the distance metric might be a time-consuming task (something that might be500

considered as a disadvantage at first), once accomplished the running time is

similar to that of the other methods. Finally, LDLOR-R is the method leading

to the best results in terms of average performance on the datasets consid-

ered. As a final comment, while all augmented methods perform better than

the original counterparts, it comes as no surprise that there is no absolute best505

augmented method, since there is also no obvious winner in the case of absolute

information only [16]. The final choice is thus left to the user as a matter of

augmenting her personal favourite method.

Since additional relative information effectively helps to improve the ordinal

classification performance, our approach paves the way for potential cost sav-510

ings in real-life ordinal classification problems where relative information might

be obtained at a lower cost. However, although the performance improves when

increasing the amount of relative information, this effect clearly levels off, im-

plying that the amount of relative information should be dosed appropriately.

36



The trade-off between absolute and relative information is an intricate one, not515

only depending on cost but also information content, which is linked with the

cardinality of the ordinal scale.

For future work, it is of interest to explore active learning in this hybrid

setting of absolute and relative information and identify effective objects to

be labelled or couples to be preference ordered. Also, as public crowdsourc-520

ing platforms could provide an effective way of collecting relative information,

the question arises how to deal with couples that have been preference-ordered

multiple times, resulting in a frequency distribution of opinions; or, more for-

mally, how to extend the present framework to the hybrid setting of absolute

information and relative information in the form of frequency distributions. In525

a similar direction, the case in which the novices are asked to provide intensi-

ties preference may also be worth to be taken into consideration. However, it

is admittedly true that this case appears to be less attractive for the setting

of this paper bearing in mind that the main appeal for introducing additional

relative information is that it can be easily gathered from novices. From a dif-530

ferent point of view, the relative information is here understood as a collection

of preference-ordered couples, rather than as a binary relation on the set of

examples. In real-life applications, this binary relation might contain inconsis-

tencies (xi is preferred to xj and xj is preferred to x`, but x` is preferred to xi)

and might be missing some key information drawn from the transitivity of an535

order relation (xi is preferred to xj and xj is preferred to x` implies that xi

is preferred to x`). How to deal with and possibly exploit such inconsistencies

and missing information could also be of interest. All these topics have been

addressed within Multi-Criteria Decision Aiding (MCDA) [44, 45, 46, 47], a field

from which inspiration for future work may surely be drawn.540
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