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1 Introduction: Brief history of quantum mechanics

The development of quantum mechanics shook our image of the physical world. Under-

standing its origin, together with its social and political backgrounds, helps contextualising

how the modern world works.

By the time the electron was discovered in 1897, its location within the atoms was

completely unknown, and although electrons lie at the root of chemical behavior, the

study that triggered the origin of quantum mechanics came from a completely different

field, heat radiation, and from a simple plot, the spectrum of an idealised model of a

perfect absorber and emitter of electromagnetic radiation, the so-called black body.

By the year 1900, many scientists were trying to come with a quantitatively accurate

explanation of the spectrum of heat radiation as a function of temperature. Later that

year, Berliner Max Planck disclosed a mathematical expression that fit the experimental

results flawlessly. On the other hand, he could not find any classical explanation to this

formula – it just worked. It was on the 14th of December of 1900 when he explained

that not every possible exchange of energy between the radiation field and the black body

could occur, but that only some specific values were allowed. This date is considered the

birthday of quantum mechanics.

These ideas led to the development of the so-called old quantum theory, where classi-

cal mechanics holds, but with the assumption that only some specific values of physical

quantities were allowed. These quantities were said to be quantised. It was desired to

guess a general set of quantisation rules that would operate for all circumstances. For

instance, in 1905, Albert Einstein theorised that the total energy of a beam is quantised.

Additionally, Arnold Sommerfeld started working on the outcomes of energy quantisa-

tion for position and speed in 1911. In that same year, Ernest Rutherford discovered the

atomic nucleus. It is worth highlighting that it was in this late stage of the development of

quantum mechanics when a qualitative picture of the atom was obtained. In 1913, Niels

Bohr presented his quantisation ideas for the hydrogen atom.

The development of quantum mechanics was negatively affected but not completely

stopped by the start of WWI in 1914. Throughout the war, in 1915, William Wilson

progressed on the meaning of energy quantisation for position and speed. Sommerfeld

persevered with his work in the same direction. G. N. Lewis proposed the concept of

electron pairs to rationalise chemical bonds in 1916. With the truce in 1918, the work in

quantum mechanics developed rapidly. This development and the investigation of issues

such as the helium problem and the peculiar Zeeman effect ended in an almost total

breakdown of Bohr’s atomic theory in less than a year.

The development of quantum mechanics at that time took place mostly at Niels Bohr’s

Institute of Theoretical Physics in Copenhagen, and at the University of Göttingen in

northern Germany. The most relevant participants at Göttingen were Max Born, an

established professor, and Werner Heisenberg, a PhD student from Sommerfeld in Munich.

Heisenberg started developing systematic tables of allowed phyisical quantities, and Born

interpreted them as mathematical matrices, which was an advanced and abstract technique
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back in 1925. Heisenberg polished his work and simplified the formulation. However,

he worried about his scheme being inconsistent, violating the principle of conservation of

energy. Several months later, Heisenberg, Born and Pascual Jordan, developed a complete

and consistent quantum theory.

In 1923, Louis de Broglie vaguely associated a wave with a particle. It was Erwin

Schrödinger, in 1925, who turned this idea into a theory of wave mechanics. The two

versions of quantum mechanics appeared completely different, emerging a sharp debate

over which of them was correct. Luckily, it was proven by Schrödinger and, independently,

Carl Eckert, in 1926 that both theories were analogous to each other. It was in that same

year when Schrödinger equation was postulated. Later, in 1927, Walter Heitler and Fritz

London determined how to use this equation to explain how two hydrogen atoms formed

a covalent bond.

With these two formulations of quantum mechanics, the quantum theory grew ex-

plosively. It easily solved the helium problem mentioned above, which collapsed the old

quantum theory. This theory answered questions regarding the structure of stars, the na-

ture of superconductors, and the properties of magnets. A very important actor, P.A.M.

Dirac, extended the theory to relativistic and field-theoretic scenarios in 1926. Addition-

ally, in 1931, Linus Pauling developed quantum mechanical concepts to explain chemical

bonding by using both Lewis and Heitler-London ideas. Furthermore, John C. Slater intro-

duced the Slater determinant in 1929 for confirming the anti-symmetry of a many-electron

wave function,[1] although the wave function only appeared in a determinant format in

Heisenberg’s and Dirac’s articles in 1932. In this same year, Robert Mulliken introduced

the concept of orbital, who primarily worked on the molecular orbital (MO) theory (1933)

– a method describing the electronic structure of molecules using quantum mechanics –

with Friedrich Hund.[2]
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2 Methods

2.1 Aims

The main aim of this thesis is to calculate the wave function for a set of different molecules

and extract its chemical information by making use of mathematical tools such as quan-

tum chemical topology (QCT) and the quantum theory of atoms in molecules (QTAIM).

With this chemical information, it will be proven that the molecular graph, which is a

fuzzy concept derived from experience that tends to use accepted knowledge and tables of

interatomic distances, can be built from a molecule’s wave function through the use of the

critical points of the electron density scalar field, which can be extracted computationally.

Different groups of molecules, such as aliphatic hydrocarbons, organic cyclic com-

pounds, polar inorganic compounds and hypervalent halogen compounds, are subject to

analysis. Calculations are performed with Avogadro, Orca and AIMall computer pro-

grams, employing the variational Hartree-Fock method with a basis set composed of

Gaussian-Type orbital functions (GTO), which will allow a mathematical description of

the molecular orbitals of the compounds to be analysed.

2.2 The basis of the QM formalism as applied to Chemistry

In this section, different methods employed in quantum mechanics for the calculation and

understanding of wave functions are discussed. Such methods include the explanation

and physical meaning of familiar terms, such as operators, Slater determinants, the Born-

Oppenheimer approximation, the variational principle, Pauli’s principle, and how they are

applied and support the QM methods of interest in this project.

Once the quantum mechanics formalism was developed thanks to the work of Born,

Heisenberg, Schrödinger, etc, all the information from the wave function and its evolution

is translated thanks to the application of an object called operator. The equation of the

evolution of the wave function is called Schrödinger’s equation.

2.2.1 Operators and their properties

Operators play a key role in quantum mechanics. They operate on a function to produce

a new function. Additionally, every physical magnitude has an operator associated to it.

Being the time-dependent Schrödinger equation in one dimension for a single particle of

mass m and wave function ψ:

i}
∂ψ(x, t)

∂t
= − }2

2m

∂2ψ(x, t)

∂x2
, (1)

where i is the imaginary unit, } is the reduced Planck’s constant, x is position and t is

time.

The square of the wave function, ψ2, is interpreted, after the Copenhaguen interpre-

tation, as the probability of finding the particle at a given point in space. Being this a
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probability, its integration must equal 1, since the particle must be located somewhere in

the physical space.

The Hamiltonian operator, Ĥ, which corresponds to the total energy of a system

including kinetic and potential energy, is expressed for a single-particle system as follows:

Ĥ =
p̂2

2m
+ V̂ , (2)

where p̂ is the momentum operator and V̂ is the potential energy operator.

The right-hand side of (1) is −(}2/2m)∇2, whereas in momentum space, it equals

p̂2/2m. This involves:

p̂2 = −}2∇2. (3)

Now, the operator V̂ is defined as:

V̂ f(r) = V (r)f(r), (4)

where r is the position.

In (4), V̂ is acting on f(r) – this operator picks up the value of the potential at the

r position, and then multiplies by f(r). By making use of (3), a complete description of

the Hamiltonian operator is obtained:[3]

Ĥψ(r, t) =

[
p̂2

2m
+ V̂

]
ψ(r, t) =

[
−}2∇2

2m
+ V (r)

]
ψ(r, t). (5)

Regarding the properties of operators in quantum mechanics, it is assumed that all

operators are lineal and Hermitian, which play a key role in this field.

In order to understand the concept of Hermiticity, the expectation value of an operator

needs to be introduced. The expectation value of an operator Â, equal to the scalar

product
(
ψ, Âψ

)
, is independent of momentum or coordinate space being used for the

wave function. While the operator Â is time-independent, its expectation value, 〈Â〉, is

not:

〈Â〉 =

∫
drψ∗(r, t)Âψ(r, t) =

∫
dpΦ∗(p, t)ÂΦ(p, t), (6)

where Φ is the wave function in momentum space.

An operator is Hermitian when
(
Âψ, ψ

)
=
(
ψ, Âψ

)
. In Dirac’s notation, 〈 ψ|Â|ψ〉.

They are associated with every measurable dynamic physical observable. Moreover, there

is a complete set of eigenfunctions ψa(r) related to the Hermitian operator Â, such that:

Âψa(r) = aψa(r). (7)
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Hence, if a property of a particle is measured, one of the possible eigenfunctions of

the operator associated to that property is found. Additionally, when the eigenfunctions

and eigenvalues of the energy operator are found, the wave function of the system can be

determined.

It is only when two operators commute that both their properties can be measured

simultaneously. Considering that operators do not necessarily commute in quantum me-

chanics, the commutator Ĉ of two operators Â and B̂ is defined as:

Ĉ =
[
Â, B̂

]
= ÂB̂ − B̂Â = −

[
B̂, Â

]
. (8)

If the Hamiltonian of a system is time-independent, then we can separate variables to

obtain particular solutions which are stationary. To that end, we write the wave function

as a product of a time-dependent phase factor and a spatial term. Calling E the separation

constant,

ψ (r, t) = ϕ(r)Φ(t), (9)

Ĥψ = i}
∂

∂t
ψ, (10)

Φ = e
−iEt

~ , (11)

ĤϕE(r) = EϕEr. (12)

where equation (12) is the time independent Schrödinger equation, and E becomes iden-

tified with the energy of the state described by ψ.

Equation (12) represents an eigenvalue equation, where E is the eigenvalue and ϕE(r)

is the corresponding eigenfunction. When solutions to equations of this kind are always

available, the operators are Hermitian (vide infra Section 3.4.1). Additionally, the

eigenfunctions of a Hermitian operator can be automatically orthogonal or can be selected

to be orthogonal.

To summarise, the importance of operators is clear when stating that, by finding the

eigenfunctions and eigenvalues of the Hamiltonian operator, all properties of quantum

systems can be derived.[4]

2.2.2 Particle statistics

When working with non-relativistic Hamiltonian operators, the concept of electron spin

as an ad hoc quantum effect must be established.

In quantum mechanics, elemental particles can be grouped in particles with spin 1
2

(fermions) and particles with integer spin 1, 2, 3, etc (bosons). Electrons have a spin 1
2 ,

i.e., they are fermions. In the presence of a magnetic field, the two states ms = ±1
2 are

revealed. These states correlate with the orientation towards the field. The analogous

spin functions are orthonormal, and are referred to α and β for orientations along and
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opposite to the field, respectively.

〈α|α〉 = 〈β|β〉 = 1.

〈α|β〉 = 〈β|α〉 = 0.
(13)

Exact solutions to the Schrödinger equation are only available for simple systems such

as the hydrogen atom, and other systems containing only one electron. For more complex

systems, approximate solutions must be generated by making use of the of the variational

principle, which states that any approximate wave function has an energy greater than the

exact energy, or equal only if the wave function is exact. This principle also determines

the best set of single-electron wave functions, or orbitals. In addition, an orbital in a

molecule is called a molecular orbital.

The energy of an approximate wave function can be expressed as:

Ee =
〈ψ|Ĥe|ψ〉
〈ψ|ψ〉

, (14)

where Ee is the electronic contribution to the energy, and He is the electronic Hamiltonian.

Wave functions must be normalised so that 〈ψ|ψ〉 = 1. Thus, (14) can be simplified to

Ee = 〈ψ|Ĥe|ψ〉. Additionally, the total electronic wave function must be antisymmetric

with respect to the interchange of any two electron coordinates. This condition is in

agreement with the Pauli Exclusion principle, which claims that two electrons cannot

occupy the same quantum state. On the other hand, in the case of bosons, there is no

limitation as to more than two particles occupying the same quantum space.

If the wave function is not antisymmetric by itself, this requirement can be accom-

plished by constructing trial wave functions from single Slater determinants. These de-

terminants have single-electron wave functions (or orbitals), φ, occupying their columns

and electron coordinates filling their rows. In addition, the Slater determinant must be

normalised. For that, it is essential that φi and φj are orthonormal:

〈φi|φj〉 = δij . (15)

For a general case of N electrons and N spinorbitals, the Slater determinant is given

as:[4]

ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φN (1)

φ1(2) φ2(2) . . . φN (2)
...

...
. . .

...

φ1(N) φ2(N) . . . φN (N)

∣∣∣∣∣∣∣∣∣∣
; 〈φi|φj〉 = δij , (16)

where δij = 1 when i = j.

A Slater determinant is the simplest solution to the Schrödinger equation, implying
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that electron correlation is ignored, i.e., that electron- electron repulsion are only included

as an average effect.

2.2.3 The Born-Oppenheimer approximation

When the Schrödinger equation is being solved for a molecule, two types of particles are

present: electrons and nuclei. The wave function will then depend on electron coordinates,

ri, and nuclei coordinates, Ri.

The Born-Oppenheimer approximation (BO) is the assumption that electronic

and nuclear wave functions can be treated separately. The total, non-relativistic, Hamil-

tonian operator can be expressed by means of the kinetic and potential energies of the

nuclei and electrons.

Ĥtotal = T̂n + T̂e + V̂ne + V̂ee + V̂nn, (17)

where T̂n is the operator for the kinetic energy of the nuclei, T̂e is the electronic kinetic

energy operator, V̂ne is the operator for the attractive nucleus-electron potential, V̂ee is

the repulsive electron-electron potential operator, and V̂nn is the repulsive nucleus-nucleus

potential operator.

This approximation contemplates electrons to move in the ambit of a defined poten-

tial, whereas the nuclei remain fixed. This assumption arises from the difference in mass

between electrons and nuclei. The kinetic energy of the nuclei equals
p̂2N

2MN
– which is in-

versely proportional to the mass. Hence, the kinetic energy of the nuclei can be considered

to be negligible when compared to the electronic kinetic energy. Under this situation, the

Hamiltonian of the system can be expressed solely as the electronic Hamiltonian.

Ĥelec = T̂e + V̂ne + V̂ee (18)

= −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
|ri −RA|

+
N∑
i>j

1

|ri − rj |
. (19)

After applying the BO approximation, it is not wrong to express the time-independent

Schrödinger equation solely in electronic terms and the repulsion between the nuclei:

Etotal = Eelec +
∑
A>B

ZAZB
|RA −RB|

, (20)

where Eelec is one of the eigenvalues of the electronic Hamiltonian.

Nevertheless, it could not be possible to locate nuclei in space if the Born-Oppenheimer

approximation is not applied. In addition, without this approximation, the concept of

molecular geometry would not be plausible anymore. This would also not be reasonable

when more than one solution to the Schrödinger equation are very close in energy. The

geometry of the molecule varies, and the wave function tends to degeneracy.[4]
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2.2.4 The SCF approximation, Hartree-Fock methods

In the case of a wave function being obtained as a Slater determinant, the best possible

orbitals need to be chosen. These are obtained from the Self-Consistent Field theory

or Hartree-Fock method. Numerical Hartree-Fock methods are employed for highly

symmetric system, such as atoms and diatomic molecules, while algebraic ones, based on

expanding orbitals in a fixed basis, are used for larger systems.

The desired orbitals, i.e., those leading to the smallest energy, can be obtained by

minimisation by using Lagrange multipliers that force the mutual orthonormality of the

different functions.

L = E −
N∑
ij

λij (〈φi|φj〉 − δij) , (21)

where L is the Lagrangian and λ is the Lagrange multiplier.

It can be seen that the term in parenthesis in (21) cancels out in the final solution,

given the condition specified by (15). Hence, the minimum in energy is obtained. In the

same way, the final set of Hartree-Fock equations is written as:

F̂iφi =

Nelec∑
j

λijφj , (22)

being F̂ an operator called the Fockian operator.

Finally, the orbital energy, εi, is expressed as follows:

εi = 〈φi|F̂i|φj〉 = hi +

Nelec∑
j

(Jij −Kij) , (23)

where h is the monoelectronic Hamiltonian. J accounts for Coulomb integrals and K for

exchange integrals.

Nonetheless, the total energy of the system is not the sum of all molecular orbital

energies. The Fock operator includes terms accounting to all other electrons (Ĵ and

K̂ operators). Simply summing over molecular energies would count the interelectron

repulsion twice, which is incorrect and must be rectified.[4]

2.2.5 Electron correlation and post-HF methods

The Hartree-Fock method produces solutions to the Schrödinger equation where the

electron-electron interaction is approximated by an average interaction. Hence, some

of the total energy is not considered due to this approximation.

The difference in energy amidst the HF and the lowest energy in the specific basis set

is termed Electron Correlation (EC) energy.[5]

Ecorr = Eexact(non−relativistic) − EHF , (24)
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where Eexact is the exact, non-relativistic energy, and EHF is the energy obtained through

Hartree-Fock methods.

Whilst the size of the molecule increases, the number of electron pairs belonging to

the different spatial molecular orbitals enlarge faster than the referred ones to the same

molecular orbital.

Opposite spin correlations can also be known as Coulomb correlation. Additionally,

for correlations for same spin electrons, an alternative term is the Fermi correlation, being

the former contribution greater than the latter.

There can also be dynamic and static electron correlation. The former is related with

instant correlation between electrons, i.e., electrons situated in the same spatial orbital.

Nevertheless, the static part relates with electrons evading each other on a permanent

manner, i.e., electrons situated in different spatial orbitals.[4]

2.2.6 The algebraic approximation

In most cases, each orbital φ is expanded as a linear combination of a set of fixed func-

tions, called basis functions, χ, or atomic orbitals in a relaxed language. However, these

are typically not solutions to the atomic Hartree-Fock problem. The algebraic approxi-

mation finds these linear coefficients and transforms the Hartree-Fock integro-differential

equations into matrix equations. Each orbital is thus written as

φi =

Mbasis∑
α

cαiχα, (25)

where c are molecular orbital coefficients.

Basis sets expansions are virtually employed to express unknown molecular orbitals in

terms of a set of known functions. Two steps for choosing the basis functions are needed:

1. The behaviour of such functions must match with the physics of the issue. This

guarantees convergence as more basis functions are added rapidly.

2. The chosen functions should make it easy to calculate all the required integrals. This

condition is a practical one.

Even though the first measure recommends using exponential functions located on the

nuclei, this is a difficult task computationally speaking. On the other hand, Gaussian

functions are computationally much easier to deal with. Nevertheless, these functions

provide poorer descriptions of electronic structures, but the computational effort being

decreased is worth the loss of accuracy. For a deeper description of basis sets, vide infra

Section 2.2.7.

The Hartree-Fock equations can be written as an alternative to (22):

Fi

Mbasis∑
α

cαiχα = εi

Mbasis∑
α

cαiχα. (26)
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When multiplying this expression from the left by a given basis function and integrat-

ing, the Roothaan-Hall equations are obtained,[6] which determine the eigenvalues and

eigenvectors of the Fock Matrix. These are the HF equations in the atomic orbital basis.

All the Mbasis equations can be summarised in a matrix fashion:

FC = SCE, (27)

Fαβ = 〈χα|F |χβ〉 , (28)

Sαβ = 〈χα|χβ〉 , (29)

where S is a matrix containing the overlap integrals between basis functions, E is a diag-

onal matrix that contains the different orbital energies and C is the matrix of coefficients

used in equation (26).

Each Fαβ element holds two portions from the Fock operator: integrals dealing with

one-electron operators and a sum over occupied MOs of coefficients multiplied with two-

electron integrals involving electron repulsion.

Fαβ = hαβ +
∑
γδ

GαβγδDγδ, (30)

F = h + G ·D, (31)

D = C†C =


DAA DAB DAC . . .

DAB DBB DBC . . .

DAC DBC DCC . . .
...

...
...

. . .

 , (32)

where h is the one-electron (core) matrix, D is the so-called density matrix and G ·D
represents the contraction of the so-called density matrix with the four-dimensional G

tensor.

Additionally, the total energy in terms of integrals over basis functions can be expressed

as:

E =

Mbasis∑
αβ

Dαβhαβ +
1

2

Mbasis∑
αβγδ

(DαβDγδ −DαδDγβ) 〈χαχγ |g |χβχδ〉+ Vnn. (33)

To determine the unknown MO coefficients cαi in (29), the Fock matrix must be di-

agonalised. Since the Fock matrix is only known if all MO coefficients are known, the

approach begins by guessing some of the coefficients, forming said matrix and diagonal-

ising it. Iteratively, the new set of coefficients are employed for calculating a new Fock

matrix, until all the coefficients equal the ones obtained from diagonalisation. This set of

coefficients determines the SCF solution.[4]
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2.2.7 Basis sets

The basis set approximation is employed to reveal the unknown molecular orbitals of

a system. To determine the molecular orbital coefficients, the Fock matrix must be

analysed.

Since the Fock matrix is only established when all molecular orbital coefficients are

known, a new set of coefficients are used for calculating a new Fock matrix. One-electron

integrals, also known as core integrals, are required for building this matrix. These in-

tegrals are one-dimensional. Additionally, these are ab initio HF methods. An iterative

process is carried out until the set of molecular orbitals equals those resulting from diag-

onalisation.

Following the variational principle, the greater the number of basis functions, the

better the accuracy of the molecular orbitals. However, an increase in the number of basis

functions also means more time-consuming calculations. Given that the computational

effort of ab initio methods scales at least M4
basis, it is essential to find a compromise

between using a small basis set without jeopardising the accuracy[7]. In order to achieve

a relatively fast convergence, the choose of basis set must be in accordance with the

physics of the problem. Another requirement is for the chosen functions to make it easy

to calculate the required integrals.

Nevertheless, in the limit of a complete basis set, results match the ones obtained by

numerical Hartree-Fock methods. This limit is never achieved in practical calculations,

and could not be the exact solution to the Schrödinger equation.[4]

The two types of basis functions frequently used in electronic structure calculations are

Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). None of these functions

have any radial nodes.

Slater type orbitals[8] are of the form:

χζ,n,l,m (R, θ, ϕ) = NYl,n (θ, ϕ) rn−1e−ζr, (34)

where N is the normalisation constant and Yl,m are the spherical harmonic functions.

Moreover, Gaussian type orbitals can be written in terms of polar or Cartesian coordinates:[9]

χζ,n,l,m (r, θ, ϕ) = NYl,m (θ, ϕ) r2n−2−le−ζr
2
, (35)

χζ,lx,ly ,lz (x, y, z) = Nxlxylyzlze−ζr
2
, (36)

where the sum of lx, ly and lz determines the type of orbital.

More GTOs are needed for fulfilling a given accuracy compared with STOs. Never-

theless, three times as many GTOs as STOs are indispensable for getting to a given level

of accuracy.

On the other hand, increasing the number of GTO basis functions is more compu-

tationally efficient as a consequence of their ease of which the required integrals can be
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calculated. GTOs are almost universally used in electronic structure calculations,[4] and

will be the ones chosen in the development of this thesis.

The next enhancement is doubling, tripling and even quadrupling all basis functions,

as well as including polarisation and diffuse functions. Polarisation functions are functions

of larger angular momentum value than that of the electron configuration of the atom that

is being described, and are used to correct for the lower symmetry of atoms in molecular

environments with respect to the atomic ones. Diffuse functions are slowly decaying

functions used when dealing with long-range interactions or excited states. Adding these

types of functions improves the accuracy of the results – yet, more computational effort

is required.
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3 Wavefunction analysis

While theoretical chemistry provides energies, it does not provide chemical information

attached to it straightforwardly. How this information is extracted is usually called wave

function analysis.

3.1 From ψ to chemistry: population analysis – Mulliken and Löwdin

problems

The concept of population analysis involves isolating atoms within molecules from a pre-

viously calculated wave function. The simplest wave function analysis method is called

the Mulliken population analysis. This method uses the D · S matrix – which requires

an explicit calculation of the S matrix (29) – for allotting the electrons into atomic

contributions.[10] An additional frequently used method is the Lödwin partitioning, con-

sisting in the use of the S
1
2 · D · S

1
2 matrix for wave function analysis.[11] In both cases

we come with the so-called gross populations, which are found as diagonal elements of a

matrix and provide information about the number of electrons residing in an atom, and

the overlap populations, coming from non-diagonal elements, which inform about bond

orders. There are many common problems with these type of population analysis based

on partitioning the wave function in terms of basis functions:

1. Diagonal elements could be larger than two. This would involve more than two

electrons per orbital, violating the Pauli principle.

2. Off-diagonal elements can become negative. This implies a negative number of

electrons between two basis functions, which clearly is physically impossible.

3. There is no unbiased motive for dividing the off-diagonal contributions evenly be-

tween the two orbitals. The most electronegative atom should take most of the

shared electrons.

4. Basis functions centered on atom A may have small exponents, describing electrons

far from this atom. Additionally, the electron density − probability of finding an

electron − is counted as only be owned by A.

5. Dipole, quadrupole, etc, moments are generally not conserved: an arrange of popu-

lation atomic charges does not reproduce the original multipole components.

The Mulliken method suffers from all mentioned problems, whereas the Löwdin ap-

proach solves problems 1, 2 and 3.

The primary issue relies in basis functions describing electron density near the nucleus

instead of the one they are centred on. Atomic charges calculated from Mulliken or Löwdin

methodologies will not converge to a constant value as the size of basis set is enlarged. This

ususally involves adding more diffuse basis functions, heading to unpredictable changes in

atomic charges.[4]
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In order to solve these problems, other methods not depending on orbitals have been

proposed. To understand these methods, the electron density function will be defined in

the next section.

3.2 Electron density and its Laplacian

The electron density is defined as the number of electrons per unit volume element. It is

designated by ρ(r) and its formula in terms of the wave function ψ is:

ρ(r) = N

∫
· · ·
∫
|ψ(x1,x2, . . . ,xN )|2ds1dx2 . . . dxN , (37)

where s1 is the spin coordinate for electron 1, and xi are the spatial and spin coordinates

of the electrons.

This is a positive simple function of three variables (x, y, z) that integrates to the total

number of electrons N : ∫
ρ(r)dr = N. (38)

It is clear that if a region for each atom could be defined, then the number of electrons

for a particular atom could be obtained by integrating ρ in its region, as equation (38)

states. This is what the topological method provides: a way of distributing the space in

regions associated to atoms.

For atoms in their ground state, it is known that the electron density decays uniformly

away from the nucleus.[12] In the case of molecules, densities are close to superimposed

atomic densities, although a more rigorous analysis shows slight accumulations of density

present in bonding sections.[13]

Since the wave function is expressed in terms of a single Slater determinant for Hartree-

Fock (and density functional) theories, the electron density can be reduced to

ρ(r) =

N∑
k=1

nk|φk(r)|2, (39)

where nk is the occupation number of each orbital, equal to 1 or 2.

Another concept of great interest for this thesis is the Laplacian of the electron den-

sity, ∇2ρ. It measures the local curvature of a function in all its dimensions, three for ρ.

The Laplacian contains a lot of valuable chemical information, it helps revealing further

information about ρ, and it supports the VSEPR model,[14] which is used in chemistry

to predict the structure of molecular compounds from the number of electron pairs sur-

rounding their central atoms.

The Laplacian is the trace of the second derivatives matrix of ρ, the Hessian, and

thus it is also equal to the sum of its eigenvalues, as it will be described in the following

section. It can be shown that when the sign of the Laplacian is negative, the value of ρ(r)
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is greater than the average of its values over an infinitesimal sphere with centre r. The

contrary is true if the Laplacian is positive at a given point.

Local accumulations are decoupled from the value of the density itself. There is a

possibility where the electron density has a small value while being locally accumulated

and, on the other hand, the opposite situation can be found near the nucleus: the electron

density can be very high at some points, but locally depleted. The measure of ∇2ρ de-

scribes how strong the effect of concentration or depletion is.[15] The sign of the Laplacian

of the electron density can describe whether there is a local accumulation or leakage in

the charge. Having ∇2ρ < 0 means a local accumulation of charge with respect to its

vicinity. On the other hand, ∇2ρ > 0 means that the charge is depleting in regard to its

surroundings.[20]

3.3 The topological approach

Provided that density functional theory proves that the electron density contains all the

information necessary to reconstruct the wave function of the system, and thus its energy,

a number of authors envisioned that the study of this scalar field would also be important

to formalise the concepts of the theory of chemical bonding. This is possible after a

partition of the physical space R3 is performed.[16]

In this section, quantum chemical topology (or QCT), which consists of a series of

methods dealing the topology of a scalar field to extract chemical information from sys-

tems, will be discussed.

3.3.1 Topology of a scalar field: critical points, gradient fields and basins

Being the electron density a physical quantity with a definite value at each point in space,

it is also a scalar field defined over the three-dimensional space. The topological approach

of this scalar field is explained with regard to number and type of critical points. These

are points where the gradient of a function vanishes. There can be maxima, minima, and

saddle points, and each type of critical point can be determined by the sign of its second

derivative or curvature, as it will be seen later.

Critical points of a scalar f are characterised for being points where the gradient

vector, ∇f , equals 0. The characterisation of CPs is done by employing a 3 × 3 matrix

involving second derivatives, called the Hessian matrix. Three eigenvalues are obtained

when the matrix is diagonalised, and said eigenvalues can take different structures. A

more detailed view of the Hessian matrix is developed in Section 3.4.1.

The topology induced by the density scalar is obtained by studying the associated

gradient vector field – whose properties are characterised by associating both a direction

and a magnitude – of the electron density: ∇ρ(r), which vanishes at critical points. If

starting from a point we follow the gradient vector, a gradient trajectory of steepest slope

develops until a maximum in the electron density is reached or a ∇ρ = 0 point is found.

Due to the behavior of the electron density, maxima coincide (almost always) with nuclei.

The set of points whose gradient lines end up at a given nuclei form its attraction basin.
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Figure 1: Left: Graphical representation of the isolines of ρ and the position of the bond
critical point (BCP) for lithium fluoride. Fluorine atom at the left and lithium atom at
the right. The separatrix and the gradient field lines, showing the steepest path following
the isolines, are shown for each atom. Right: Relief map for the electron density of LiF
in 3D and its BCP position. Fluorine atom at the left and lithium atom at the right.
Minimum electron density ρ = 0.0001. Images generated with AIMall [17] by analysing the
Orca [18] output of a HF optimization using a def2-TZVP basis set.

Attraction basins are separated by the so-called separatrices. All non-nuclear critical

points of the field are located on these surfaces. An example of the topology of ρ can be

found in figure 3.3.1 for the LiF molecule.

There exist four possible types of critical points in the electron density, each of them

related to a specific chemical object. Besides the nuclear points we find bond, ring, and

cage critical points.

For a random selection of coordinate axes, nine second derivatives of the type ∂2ρ
∂x∂y

exist in the resolution of the curvatures of the electron density at a point in space. This

3× 3 array is denoted as the Hessian matrix of ρ. Since this is a real, symmetric matrix,

it can be diagonalised – this is equivalent to finding a rotation of the coordinate axes such

that all the off-diagonal elements become zero. The three eigenvalues are the curvatures

of the density along the direction of the new principal axes.

H =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂y

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2

 . (40)

As it was mentioned in the previous section, the sum of the diagonal elements of

the Hessian matrix corresponds to the Laplacian and it is invariant to a rotation of the

coordinate system.

∇2ρ = ∇ · ∇ρ =
∂2ρ

∂x2
+
∂2ρ

∂y2
+
∂2ρ

∂z2
. (41)

Critical points are classified firstly through the rank, ω, which equals to the number of

non-zero eigenvalues or non-zero curvatures of the electron density at the CP. Additionally,

the signature, σ, is the algebraic sum of the signs of eigenvalues. Hence, the critical point
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is labelled as (ω, σ) [19] (vide infra Section 3.4.1).

If we start a gradient line along the principal curvatures at a critical point we can

have two behaviors: convergence (attraction) toward the CP if the eigenvalue is negative

or divergence (repulsion) if it is positive. If there are three negative eigenvalues (e.g., at

a nucleus) then we find a 3D region of gradient lines converging toward it. This is the

attraction basin. If there are two negative eigenvalues there is an attracting surface and

a repulsive line, an attracting line and a repulsive surface when there is one, and a 3D

repulsion basin when the three eigenvalues are positive. Thus the flow of ∇ρ around a CP

allows to classify it according to the dimensionality of its basin of attraction or basin

of repulsion.

Neglecting surfaces, lines, or points with respect to bulk 3D regions, the full space can

thus be decomposed into a finite number of subsets if we use the attraction basins of the

maxima or the repulsion basins of the minima. Since maxima coincide (almost always)

with nuclei, the first partition is an atomic one. The surfaces separating these atomic

basins are zero flux surfaces[20]: ∫
S
∇ρ(r) · n(r)ds = 0. (42)

3.4 The QTAIM

The QTAIM, or quantum theory of atoms in molecules, emerges from applying the QCT

to the electron density – a scalar field – due to the fact that the topology divides the three

dimensional space into atoms, and atoms show maxima in electron density.

This theory provides expected values for each subsystem, which will be called atomic

observable. Any molecular observable can be built from atomic observables.[20]

3.4.1 Properties at CPs

As it was mentioned earlier, the QTAIM provides abundant profitable chemical informa-

tion. To extract this information, the properties at critical points need to be known.

In this thesis, critical points with ω = 3 are studied. There are four possible signature

values for this constraint:[19]

• (3, -3) – all curvatures are negative and ρ is a local maximum at rc. This type of

critical points is nuclear attractor, or NACP.

• (3, -1) – two curvatures are negative and ρ is a maximum at rc in the place defined

by their corresponding axes. ρ is a minimum at rc along the third axis, which is

perpendicular to this plane. This corresponds to a BCP, or bond critical point.

• (3, +1) – two curvatures are positive and ρ is a minimum at rc in the plane defined

by their corresponding axes. ρ is a maximum at rc along the third axis which is

perpendicular to this plane. This describes a RCP, or ring critical point.
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• (3, +3) – all curvatures are positive and ρ is a local minimum at rc. This type of

critical point is a cage one, or CCP.

Bond critical points appear between two atoms that are understood to be linked.

Accumulation of electron density between nuclei translates into an increase in inter-nuclear

density, hence, stronger bonding.

In the QTAIM, operators must be Hermitian so real solutions of the Schrödinger

equation can be obtained.[20] The hermiticity condition in real space looks as:∫
(Ĥψ)∗ψdr =

∫
ψ∗(Ĥψ)dr, (43)

which holds for the full space but not necessarily for a spatial domain Ω.

One of the operators affected by this constraint is the kinetic energy operator, T̂ :

T̂ =
p2

2m
=
−}2

2m
∇2. (44)

After performing several mathematical transformations, T̂ can be expressed as:

}2

4m

∫
Ω

(∇2′ +∇2)ρ(r; r′)|r→r′dr =
}2

2m

∫
Ω
∇′∇ρ(r; r′)|r→r′dr−

}2

4m

∮
S
∇ρ · dS. (45)

Two feasible kinetic energy densities are introduced: K, which accounts for the Lapla-

cian contribution, and G, a positive definite density corresponding to gradient contri-

butions:

K = − }2

4m
(∇2′ +∇2)ρ(r; r′). (46)

G =
}2

2m
∇′∇ρ(r; r′). (47)

And also an operator directly correlated with the Laplacian of the electron density, L:

L = − }2

4m
∇2ρ. (48)

Hence, (45) can be expressed as:

∫
Ω
K(r)dr =

∫
Ω
G(r)dr−

∫
Ω
∇2ρrdr, (49)

KΩ = GΩ + LΩ. (50)

The −
∫

Ω∇
2ρ(r)dr term, which corresponds to L, equals zero if the region is one of

the regions of the QTAIM. In this case, the kinetic energy of an atomic region is well

defined.[20]

The density along a bond path is minimum at the critical point. Here, the Hessian

matrix has a positive eigenvalue along the direction of curvature being tangent to the
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bond path, and two negative eigenvalues along the two directions generating the tangent

plane to the interatomic surface. Let us call this curvatures λ1, λ2 and λ3. The ellipticity

ε of a BCP can be defined as

ε =
λ1

λ2
− 1. (51)

This magnitude is correlated with the π character of a chemical bond. Additionally,

the π character of a bond is not an observable magnitude. However, it is linked to

a type of orbital description. Nevertheless, ε measures the anisotropy in an electron

density distribution, having no direct information about the orbital contribution of said

anisotropy.[20]

Another useful magnitude related to the π character of a bond is the delocalisation

index :

DI(A,B) = 2

∫
A

∫
B
ρxc (r1, r2) dr1dr2, (52)

where A and B are two quantum atoms and ρxc(r1, r2) is the exchange-correlation density.

The exchange-correlation density is formally equal to ρ1(r1)ρ1(r2)− ρ2(r1, r2), and it

is sometimes defined with opposite sign. By solving equation (52) averaging the exchange-

correlation density over a pair of basins, a measure of the number of electron pairs that

are being shared between quantum atoms A and B is obtained, i.e. this magnitude is a

direct representation of the bond order.[21]
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4 Results and discussion

4.1 The problem to be solved

The main problem to be solved in this work consists in solving the Schrödinger equation,

from which the wave function is obtained, therefore the electron density distribution,

for a set of different molecules. From this density distribution chemical information will

be extracted by making use of QCT. A proper understanding of the bonding behavior

and topology of the electron density leads to a good interpretation of the energy and

equilibrium geometry of a molecule. We will show that the topology of the electron

density allows to build automatically the molecular graph of a molecule.

We understand as molecular graph a mathematical undirected graph where a vertex

is associated to each of the nuclei of a system and an edge is placed between each pair of

vertices to which a chemical bond is assigned.

4.2 Systems studied, computational conditions, basis sets, validation

Different sets of molecules have been studied by making use of different computational

programs, such as Avogadro,[22] Orca,[18] and AIMall.[17] The different groups of molecules

to be studied are the following:

• Aliphatic hydrocarbons: methane, ethane, ethene and ethyne.

• Polar inorganic compounds: hydrogen oxide, ammonia, phosphine, lithium flu-

oride and hydrochloric acid.

• Cyclic organic molecules: ethylene oxide, cyclopropane, cyclobutane, cyclobuta-

diene, cyclohexane (chair conformation) and benzene.

• Hypervalent halogens: chlorine trifluoride, chlorine pentafluoride, bromine triflu-

oride oxide.

An adequate basis set was chosen for performing the calculations. As it was previously

discussed in Section 2.2.7, the greater the number of Gaussian basis functions, the more

accurate the results, but also the greater the computational effort. A compromise between

accurate results and less time-consuming operations must be found for the development

of all the calculations. To simplify as much as possible, the Hartree-Fock approximation

has been chosen.

Input files are created with Avogadro, where a scheme of the molecular geometry is

drawn and its energy is optimised in order to get the most stable geometry using a very

cheap force field. For the basis set validation method, an ethane molecule is drawn and

different input files are created including the different basis sets to be analysed. Input

files for basis set validation test can be found in appendix 1.

For a given molecule, results are considered valid when its total energy does not differ

more than 4kJ/mol (1.5936 · 10−3Eh/mol) from its reference value provided in the text
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by Jensen.[4] Considering this, a basis set validation method for ethane (total energy

−79.2587E
[23]
h ) can be found in table 1.

Basis set # Gaussian functions Total energy (Eh) Total run time (s)

def2-SVP 90 -79.17288286 10
def2-TZVP 140 -79.25679678 11
def2-TZVPP 188 -79.25865137 25
def2-QZVPP 352 -79.26271189 312
ma-def2-SVP 98 -79.17339469 5
ma-def2-TZVP 148 -79.25681211 13
ma-def2-TZVPP 196 -79.25868101 29
ma-def2-QZVPP 360 -79.26271371 376

Table 1: Basis set validation test for ethane. Calculations performed with Orca through
a numerical HF method. All data in a.u.

Given the compromise between level of accuracy and shortest analysis time, the most

suitable basis set is the def2-TZVP, a triple zeta valence polarised basis set. It could be

logical to consider picking a basis set where the accuracy is even better but computational

time is slightly greater. On the other hand, ethane is a rather simple molecule, and the

more complex molecules employed in this thesis would make the computational effort scale

considerably (at least M4
basis). Thus, the selected basis set functions will provide accurate

and fast results.

It is worth mentioning that this validation method will be employed for all types of

molecules analysed in this work. It is not the aim of this work to find a particular basis set

for each type of molecule and calculations developed here, and that is why this validation

test will be extrapolated.

Once the adequate basis set is chosen, the required calculations for the rest of the

molecules are performed with Orca in the same manner. Prior generation of input files

including the desired basis set are created and optimised with Avogadro.

4.3 A case in detail

A particular molecule is described in detail in this section. The selected molecule to be

described is benzene, belonging to the family of aromatic cyclic compounds in organic

chemistry. This molecule has been chosen due to its variety of critical points and bond

behavior – benzene possess nuclear attractor critical points, bond critical points with

different bond orders, and a ring critical point given that it is a cyclic compound. Ad-

ditionally, benzene belongs to the D6h point group:[24] its high symmetry allows a great

simplification of its data since all hydrogen and carbon atoms are equivalent among each

other.

The molecular graph of benzene in figure 3 shows C-C and C-H bonds as they are

expected with their usual bond distances.

The Mulliken atomic charges are +0.1254 for carbon and -0.1254 for hydrogen. Given

that there are six carbon atoms and six hydrogen atoms, the net charge of the molecule

equals 0.
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NO LB X Y Z

0 C -7.848656 4.905748 -0.000000
1 C -7.763316 2.263306 0.000000
2 C -5.432226 1.015992 -0.000000
3 C -3.186494 2.411120 -0.000000
4 C -3.271834 5.053543 -0.000000
5 C -5.602906 6.300857 -0.000000
6 C -9.652041 5.870699 -0.000000
7 H -5.668933 8.345125 -0.000000
8 H -9.500674 1.184008 0.000000
9 H -5.366218 -1.028257 0.000000
10 H -1.383091 1.446170 -0.000000
11 H -1.534458 6.132861 -0.000000

Table 2: Cartesian coordinates of benzene
in a.u. generated with Orca using the HF
method and a def2-TZVP basis set. It can
be observed it is a planar molecule given that
all coordinates in the Z axis are 0.

Table 3: Molecular graph of ben-
zene visualised with AIMall. BCPs
are shown in green. Image gener-
ated with AIMall by analysing Orca
through the HF method using a
def2-TZVP basis set.

Considering the structure of benzene, twelve NACPs i.e., one for each nucleus, twelve

BCPs and one RCP are determined, satisfying the Poincare-Hopf Relationship, which

states that NumNACP + NumNNACP − NumBCP + NumRCP − NumCCP = 1. The

values of the electron density, Laplacian and ellipticity are almost identical between C-C

BCPs, suggesting that all these six bonds are identical. The same happens with the C-H

bonds: they show almost the same values for the before mentioned parameters, suggesting

all C-H bonds are equivalent. A summary of these values can be found in table 4.

Type of CP Atom(s) ρ ∇2ρ ε K DI(A,B)

NACP C 122.1 NA NA NA NA
NACP H 0.4355 NA NA NA NA
RCP C ring 0.0221 0.1473 NA -0.0047 NA
BCP C-C 0.3259 -1.0678 0.2162 0.3644 1.3921
BCP C-H 0.2939 -1.1201 0.01540 0.3149 0.9692

Table 4: Critical points for Benzene, where the type of CP, electron density and its
Laplacian, ellipticity, kinetic energy and delocalisation indexes DI(A,B) are included. All
data in a.u. Results generated with AIMall performing a QTAIM study with the HF
method and a def2-TZVP basis set using Orca.

Regarding ρ in the carbon and hydrogen NACPs, their high values are expected, given

that these CPs are located in the nucleus of each atom. The difference in value accounts

also for the difference in size between carbon and hydrogen. A greater value is expected

for a bigger atom, given that the electron cloud surrounding its nucleus will be bigger as

well.

In relation to the RCP of benzene concerning all carbon atoms forming the aromatic

ring, its low value of the electron density shows that the probability of finding an electron

in that region is rather low. The positive value of the Laplacian shows that there is

actually a local charge loss with respect to its surroundings.
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Figure 2: From left to right: contour map of the electron density in 2D, contour map of the
electron density in 3D showing the total electrostatic potential, Laplacian and relief map
of the electron density for benzene. All figures in the plane containing the twelve nuclei.
Images generated with AIMall by analysing Orca with the HF method and a def2-TZVP
basis set.

Concerning the BCPs of benzene, the values for ρ in the carbon-carbon bonds are

larger than the values for the carbon-hydrogen bond. These values suggest that both types

of bonding are covalent – given that a covalent bond is characterised by the sharing of

electron pairs between atoms. Anyhow, the higher value of the C-C bond has the physical

meaning of a higher probability of finding electrons in that region of space, suggesting

that the C-C bond is stronger than the C-H bond.

The ellipticity of a BCP is directly related with the π character of a bond. This

value in the C-C BCP is an indicator of its partial double bond.[20] This idea can also be

supported by looking at the delocalisation index, DI(A,B). The value of 1.3921 in the C-C

BCP means that this bond is in a state between single and double, which justifies the π

cloud within the aromatic ring in this molecule. On the other hand, the C-H bond gives

a value very close to 1 – this bond is a single covalent one.

4.4 Aliphatic hydrocarbons

Figure 3: Molecular graphs of methane, ethane, ethene and ethyne. BCP shown in green.
Images generated with AIMall by analysing Orca through the HF method using a def2-
TZVP basis set.

In this section, compounds shown in figure 3 are described. The parameters to be

discussed are found in table 5.

Concerning atomic charges, all molecules are neutral. Regarding ρ at the nuclei, all

values are quite similar for H (∼ 0.4) and for C (∼ 122). The negative value of the

Laplacian at the BCPs can be interpreted as an accumulation of negative charge located
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Molecule Type of CP q ρ ∇2ρ ε K DI(A,B)

NACP, C 0.0347 121.9 NA NA NA NA
Methane, Td NACP, H -0.0087 0.4196 NA NA NA NA

BCP, C-H NA 0.2713 -0.9585 0.0000 0.2761 0.9818

NACP, C 0.0882 121.9 NA NA NA NA
Ethane, D3d NACP, H -0.0294 0.4256 NA NA NA NA
(Staggered) BCP, C-C NA 0.2606 -0.7546 0.0000 0.2429 1.0104

BCP, C-H NA 0.2733 -0.9704 0.0029 0.2796 0.9644

NACP, C -0.0355 122.1 NA NA NA NA
Ethene, D2h NACP, H 0.0177 0.4312 NA NA NA NA

BCP, C-C NA 0.3662 -1.2500 0.3907 0.4538 1.8982
BCP, C-H NA 0.2903 -1.0969 0.0119 0.3087 0.9775

NACP, C -0.1803 122.3 NA NA NA NA
Ethyne, D∞h NACP, H 0.1803 0.4146 NA NA NA NA

BCP, C-C NA 0.4186 -1.2378 0.0000 0.6167 2.8710
BCP, C-H NA 0.3019 -1.2210 0.0000 0.3358 0.9549

Table 5: Topological indexes for the aliphatic hydrocarbons studied. The point group
of each molecule,[24] type of CP and atoms involved, electron density and its Laplacian,
ellipticity, kinetic energy and delocalisation indexes are displayed in this table. All data
in a.u. Results generated through a QTAIM study with AIMall by analysing them with
Orca through the HF method using a def2-TZVP basis set.

at the bond critical point, i.e., covalent character. Additionally, the greater the value of ρ

in BCPs the stronger the bond at which that BCP is contained: C-C bonds are stronger

than C-H bonds.

The most interesting feature to discuss in this section is the delocalisation index

DI(A,B). As it was mentioned before, this index is directly correlated with the π character

of a bond. Hence, it is also correlated with its bond order, BO. Being methane a molecule

with one carbon atom linked to four hydrogen atoms, there is no other possibility for

the bonds to be single since it is physically unachievable for hydrogen (Z = 1) to form

multiple bonds. This is also supported by its value of bond ellipticity (0.00), which shows

no π character. In the case of ethane, ethene and ethyne, which are linear molecules

containing two carbon atoms, the values of DI(A,B) provide chemical information about

their bond multiplicity. Being these values 1.0104 for ethane, 1.8982 for ethene and 2.8710

for ethyne, their C-C bonds are single, double and triple, respectively. This statement is

in accordance with the usual representation of these molecules, and can also be supported

with their values of bond ellipticities. For ethane, the value of 0.00 means a total absence

of π character, whereas the value of 0.3907 in ethene shows it. On the other hand, ethyne

has a value of 0.00 for the ellipticity even though it is well known that this bond has a

strong π character. This can be explained by the symmetry of this molecule (D∞h) and

its linearity. Nonetheless, having a value of DI(A,B) > 1 confirms π character in the

molecule. On a side note, the value of the kinetic energy K proportionally increases with

the number of electrons. This is a general trend and it will be applied on the following

sections in the same manner.
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4.5 Cyclic organic compounds

Figure 4: Molecular graphs of ethylene oxide, cyclopropane, cyclobutane, cyclobutadiene
and cyclohexane (chair conformation). BCPs represented in green. Images generated with
AIMall by analysing Orca with the HF method using a def2-TZVP basis set.

By looking at the molecular graphs (figure 4) generated by performing a QTAIM

study, it cannot be denied that molecular graphs can be constructed by a QCT analysis,

finding their respective CPs (table 6) that lead us to locate nuclei in space and their

corresponding bonds. As it can be seen in figure 2 in section 4.3, further properties of the

CPs can be visualised, such as the local charge accumulation and depletion, represented

by the Laplacian of the electron density.

For these compounds, as well as for the previous aliphatic compounds, the negative

value of the Laplacian at the BCPs shows covalent character. In the case of cyclobutadiene,

the smallest π conjugated system, it can be seen that one type of C-C bond is single and the

other has double character. This can be concluded by looking at the values of DI(A,B).

In contrast to benzene, where all C-C bonds are equivalent with DI(A,B) = 1.3921,

cyclobutadiene has 4n π electrons, making this system antiaromatic, which makes this

molecule unstable. This involves having the π electrons located within bonds possessing

double character rather than forming an electron cloud.

It is worth pointing out the strain of these cyclic compounds. As it can be seen

in figure 4, the bonds are not entirely linear. This has been successfully related to the

concept of strain. Cyclobutane can be the highlight regarding this property: this molecule

adopts a puckered conformation (figure 5), in a similar way cyclohexane adopts the chair

conformation in its most stable form. Altogether, puckering and non-linear BCP lines

make the C-C-C angles approach the tetrahedral ones.

Figure 5: Cyclobutane molecular graph showing its puckered confirmation. BCPs are
shown in green. Image visualised with AIMall by analysing Orca with the HF method
using a def2-TZVP basis set.

It is interesting to talk about the electron density at the RCPs. In the case of ethylene
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Molecule Type of CP q ρ ∇2ρ ε K DI(A,B)

NACP, C 0.5043 122.0 NA NA A NA
NACP, H 0.0464 0.4223 NA NA NA NA

Ethylene NACP, O -1.1939 301.8 NA NA NA NA
oxide, C2v RCP NA 0.2237 0.1561 NA 0.1640 NA

BCP, C-C NA 0.2561 -0.6340 0.4473 0.2483 0.8974
BCP, C-H NA 0.2822 -1.0489 0.0305 0.2897 0.9259
BCP, C-O NA 0.2634 -0.2932 0.6851 0.4026 0.8942

NACP, C -0.0619 121.9 NA NA NA NA
NACP, H 0.0310 0.4160 NA NA NA NA

Cyclopropane, RCP NA 0.2034 0.0178 NA 0.1345 NA
D3h BCP, C-C NA 0.2397 -0.5125 0.6258 0.2204 0.9785

BCP, C-H NA 0.2731 -0.9689 0.0380 0.2771 0.9530

NACP, C 0.06 122.0 NA NA NA NA
NACP, Hequat. -0.03 0.4263 NA NA NA NA

Cyclobutane, NACP, Haxial -0.04 0.4258 NA NA NA NA
D2d RCP NA 0.0951 0.3891 NA 0.0165 NA

BCP, C-C NA 0.2586 -0.7291 0.0128 0.2400 0.9709
BCP, C-Hequat. NA 0.2751 -0.9914 0.0040 0.2824 0.9602
BCP, C-Haxial NA 0.2712 -0.9544 0.0043 0.2758 0.9484

NACP, C -0.0491 122.2 NA NA NA NA
NACP, H 0.0481 0.4241 NA NA NA NA

Cyclobutadiene, RCP NA 0.1164 0.5891 NA 0.0285 NA
D2h BCP, C-Cdouble NA 0.3676 -1.2199 0.4480 0.4570 1.8404

BCP, C-Csingle NA 0.2875 -0.9115 0.0035 0.2950 1.0129
BCP, C-H NA 0.2900 -1.1048 0.0274 0.3089 0.9704

NACP, C 0.0906 121.9 NA NA NA NA
NACP, Haxial -0.046898 0.4293 NA NA NA NA
NACP, Hequat. -0.043957 0.4293 NA NA NA NA

Cyclohexane, RCP NA 0.0205 0.1069 NA -0.0025 NA
D3d (chair) BCP, C-C NA 0.2563 -0.7276 0.0001 0.2342 0.9744

BCP, C-Haxial NA 0.2732 -0.9686 0.0026 0.2800 0.9419
BCP, C-Hequat. NA 0.2744 -0.9774 0.0011 0.2818 0.9507

Table 6: Topological indexes for the cyclic organic compounds studied. The point group
of each molecule,[24] type of CP and atoms involved, electron density and its Laplacian,
ellipticity, kinetic energy and delocalisation indexes are displayed in this table. All data
in a.u. Results generated through a QTAIM study with AIMall by analysing them with
Orca with the HF method using a def2-TZVP basis set.
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Molecule Type of CP q ρ ∇2ρ ε K DI(A,B)

NAPC, H 0.5994 0.3878 NA NA NA NA
H2O, C2v NACP, O -1.1988 301.4 NA NA NA NA

BCP, O-H NA 0.3371 -2.2641 0.0225 0.6257 0.6501

NACP, H -1.1097 0.4052 NA NA NA NA
NH3, C3v NACP, N 0.3699 198.2 NA NA NA NA

BCP, N-H NA 0.3175 -1.4744 0.0413 0.4185 0.8722

NACP, H -0.5810 0.3716 NA NA NA NA
PH3, C3v NACP, P 1.7698 2104.0 NA NA NA NA

BCP, P-H NA 0.1570 -0.0571 0.1188 0.1478 0.8153

NACP, H 0.3285 0.3105 NA NA NA NA
HCl NACP, Cl -0.3285 3101.0 NA NA NA NA

BCP, H-Cl NA 0.2047 -0.5336 0.0000 0.1675 0.9417

NACP, F -0.9479 434.9 NA NA NA NA
LiF NACP, Li 0.9479 13.42 NA NA NA NA

BCP, Li-F NA 0.0390 0.3207 0.0000 -0.0113 0.1353

Table 7: Topological indexes for the polar inorganic compounds studied. The point group
of each molecule,[24] type of CP and atoms involved, electron density and its Laplacian,
ellipticity, kinetic energy and delocalisation index are displayed in this table. All data
in a.u. Results generated through a QTAIM study with AIMall by analysing them with
Orca with the HF method using a def2-TZVP basis set.

oxide and cyclopropane, the value of ρ is very similar to the values at the BCPs. On the

other hand, the value of ∇2ρ is positive, which shows a local depletion in the charge in that

region. Nevertheless, the values of ρ decrease in the tendency: cyclobutane, cyclobutadiene

and cyclohexane – electron density in the RCP decreases when the C-C-C angle increases.

Such increase in angle can be manifested in their molecular graphs presented in figure 4.

Note how, for cyclobutane and cyclohexane, not all the hydrogens – and C-H bonds – are

equivalent. This can be explained by the fact that some of the hydrogens are in equatorial

positions whereas others are in axial positions. This statement is in accordance with

how these molecular graphs are constructed regarding their bond distances and angles,

meaning that graphs generated by computational methods, in this case QCT, are valid

and reliable. Additionally, the value of the Laplacian decreases as well, still keeping the

positive sign, which means more local charge depletion in the RCP region.

4.6 Polar inorganic compounds

Figure 6: Molecular graphs of hydrogen oxide, ammonia, phosphine, hydrochloric acid and
lithium fluoride. BCPs are shown in green. Images generated with AIMall by analysing
them with Orca with the HF method using a def2-TZVP basis set.

As one can observe in the atomic charges of these compounds (table 7), they are neutral
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molecules. Nevertheless, this group of molecules shows different properties compared to

previous ones: these molecules are highly polarised with a higher electron density near the

most electronegative atom due to their lone pair electrons. This can be explained with

the delocalisation indexes: their low values at the BCPs are due to the polarity of these

molecules. The very low value of DI for LiF (0.1353) reveals why this is the bond with the

highest dipole moment among all these molecules, as it is expected due to the difference

in electron density between lithium and fluorine.

In consideration of bonding, while all compounds showing negative value of ∇2ρ at

their BCPs contain covalent bonds, an exception for lithium chloride where its Laplacian

is positive happens: the Li-F bond has ionic character, which is not surprising due to

the electron transfer from metal atom (Li) to non-metal atom (F). Moreover, the covalent

compounds showing non-zero delocalisation indexes suggest electron delocalisation withing

bonds.

On a side note, it is compelling to compare ammonia and phosphine molecules: even

though the point group between these two molecules is identical, it is not hard to see that

if we add the BCPs to the molecular graphs they differ clearly – while nitrogen is one of

the most electronegative atoms in the periodic table, placing the BCP considerably near

the hydrogen atoms, phosphorous is not: the BCP is somewhat in the middle position of

the bond path. P-H bonds are also stretched, and hold significantly higher values of ε

compared to N-H bonds.

4.7 Hypervalent halogen compounds

Figure 7: Molecular graphs of chlorine trifluoride, chlorine pentafluoride and bromine
trifluoride oxide. BCPs shown in green. Images generated with AIMall by analysing
them with Orca with the HF method using a def2-TZVP basis set.

This section is devoted to the study of hypervalent hylogens (figure 7). As one may

find in table 8, the central atoms in these molecules are positively charged; yet, the net

charge of the molecules is zero, i.e., they are neutral. The main focus in this section is to

determine whether the central atom has an expanded octet or not. This question can be

answered and easily proved by examining the values obtained by QCT.

The values of ∇2ρ in BCPs for chlorine trifluoride are negative, meaning that, at first

glance, these bonds would have some covalent character. On the other hand, if the values

of the Laplacian for the equatorial F are compared with the axial ones, the latter are much

smaller than the former – the Cl-Faxial bond is more ionic and highly polarised. This fact

is also supported with the charge of axial fluorides and their delocalisation index, which
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Molecule Type of CP q ρ ∇2ρ ε K DI(A,B)

NACP, Cl 1.522715 3103 NA NA NA NA
NACP, Faxial -0.585713 435.5 NA NA NA NA

ClF3, C2v NACP, Fequat. -0.350687 435.9 NA NA NA NA
BCP, Cl-Faxial NA 0.1914 -0.0992 0.2269 0.1589 0.8696
BCP, Cl-Fequat. NA 0.2075 -0.2375 0.2293 0.1655 0.9990

NACP, Cl 2.4330 3109.0 NA NA NA NA
NACP, Faxial -0.5211 435.63 NA NA NA NA

ClF5, C4v NACP, Fequat. -0.4639 435.63 NA NA NA NA
BCP, Cl-Faxial NA 0.2074 0.1393 0.0808 0.1376 0.7987
BCP, Cl-Fequat. NA 0.2095 0.0435 0.0001 0.1491 0.8674

NACP, Br 2.7083 28800 NA NA NA NA
NACP, F -0.6332 435.6 NA NA NA NA

BrF3O, C3v NACP, O -0.8090 302.7 NA NA NA NA
BCP, Br-F NA 0.1530 0.1918 0.0096 0.0928 0.7521
BCP, Br-O NA 0.2595 -0.0864 0.0000 0.2547 1.6108

Table 8: Topological indexes for the hypervalent halogen compounds studied. The point
group of each molecule,[24] type of CP and atoms involved, electron density and its Lapla-
cian, ellipticity, kinetic energy and delocalisation index are displayed in this table. All
data in a.u. Results generated through a QTAIM study with AIMall by analysing them
with Orca through the HF method using a def2-TZVP basis set.

show a more ionic behavior. A graphical representation of this phenomena (figure 8) shows

the bond character of these molecules.

In the case of ClF5 and BrF3O, the halogen-halogen BCPs show a small but positive

value of the Laplacian, which can be translated in local charge depletion in that region, i.e.,

ionic character bonds. Nonetheless, the Br-O bond in bromine trifluoride oxide shows a

covalent character due to the small but negative value of the Laplacian. Additionally, even

though the bond ellipticity equals 0, suggesting there is no π character within this bond is

incorrect – the non-zero value of DI(A,B) says otherwise: there is electronic delocalisation

in this region.

Figure 8: Laplacian of the electron density for chlorine trifluoride, chlorine pentafluoride
and bromine trifluoride oxide. All figures in a plane containing the different types of bonds
within each molecule. A local charge depletion is seen at the vicinity of the BCPs. Images
generated with AIMall by analysing Orca with the HF method and a def2-TZVP basis
set.

It can then be concluded that the charge of the atom, as well as the ionic character of

some of the bonds in these molecules provided by QCT, show there is no octet expansion.
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5 Conclusions

Chemical information from a wave function can be extracted and interpreted by making

use of QCT and QTAIM techniques. The molecular graph can be constructed from the

CPs of a molecule, which can be extracted computationally.

Quantum mechanics and the Born-Oppenheimer approximation play a key role regard-

ing molecular geometry. This approximation also simplifies the calculation by expressing

the Schrödinger equation solely in electronic terms. The HF method can be used for these

type of calculations, providing accurate and reliable results, as well as employing GTO

functions, which lower the computational effort.

Methods using electron density, a positive simple function of three coordinates, sim-

plifies the interpretation of the wave function. Extracting information from its Laplacian,

which measures local curvature of a function in all its dimensions, provides profitable

chemical data and helps reveal further information about the electron density, while sup-

porting the VSEPR theory. The QTAIM emerges from applying QCT to the electron

density due to the fact that topology divides the three-dimensional space into atoms,

which behave as maxima of the density.

Reliable molecular graphs were constructed for all molecules by making use of QTAIM

studies through a HF method with a def2-TZVP basis set, proved by validation in being the

most suitable basis set for the development of this thesis, finding a satisfactory compromise

between accuracy and computational effort. QCT and QTAIM provides information about

CPs, with which molecular graphs can be built. Equivalency between CPs arises to finding

point group symmetries and simplifying the amound of data. All molecules studied were

expected to be neutral, which was checked using their atomic charges.

It was found that all bonds in the aliphatic hydrocarbons studied had covalent charac-

ter with different bond strength and multiplicity, as expected. Thanks to the delocalisation

index, it is proved that ethane, ethene and ethyne have single, double and triple character

in their C-C bonds, respectively. Electron density in RCPs for cyclic compounds decreases

when increasing the C-C-C angle, and local charge depletion is shown by positive values

of Laplacian. Distinctions between axial and equatorial hydrogens were made for the case

of cyclobutane and cyclohexane. Whether a compound is aromatic was checked by exam-

ining ellipticity values and delocalisation indexes, which can be used to sense π character.

Dipole moments were also extracted with QTAIM and QCT methods, as it was done in

the case of polar inorganic compounds: low values of DI in BCPs are due to polarity.

If the position of BCPs is added to the molecular graph, structural differences can be

found between molecules with the same point group symmetry, as it can be shown for

the P-H bonds in phosphine as compared to the N-H bonds in ammonia. In agreement

with modern thinking, it was also proved that octet expansion does not happen in the

hypervalent halogens studied. Their atomic charges and delocalisation indexes – as well

as the positive value of the Laplacian – find ionic character in most bonds forming these

molecules, respecting the constrain of having 8 electrons around each atom.
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