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OBJECTIVES 
This bachelor thesis lies within the branch of physical chemistry, being focused in the subfield of 

computational chemistry. Computational chemistry uses computers to solve, usually in an 

approximate manner, theoretical models of chemical problems. In its most simple form, when it 

is applied to model the behavior and properties of small molecules, theoretical chemistry and 

computational modeling (TCCM in the following) tries to solve the non-relativistic Schrödinger’s 

equation (SE) by using general purpose computer programs. After seventy years, these codes have 

become widely accessible, and mastering their use has turned into one of the skills that a 

practicing chemist must dominate. To do that, a basic knowledge of quantum chemistry as well 

as of the basic strategies used to approximate the solution of the SE is needed. In the most 

successful methods devised, the so-called variational strategies, the solution of the SE, a partial 

differential equation, is mapped onto a linear-algebra problem by transforming the infinite 

dimensional Hilbert space into a finite one. With this approximate mapping, all functions are built 

as linear combinations of a set of fixed ones, and the problem reduces to finding the (linear) 

coefficients of these combinations. Since linear algebra is particularly suited for being 

programmed in standard computers, variational methods are very efficient. We call these fixed 

functions the basis set in TCCM. Learning its meaning as well as its impact on the calculation of 

the electronic structure of simple molecules is the aim of this thesis  

 

More specifically, the objective of this thesis is to understand the meaning of a basis set, and 

to study and compare different basis functions in a limited set of diatomic molecules. We have 

employed probably the minimum level of theory that allows for a sensible description of the 

electronic structure of molecules: the Hartree-Fock (HF) method. This allows us to keep our eye 

on the role of the basis set, and not on that of the many other knobs that can be tuned in today’s 

TCCM codes. As the latter are regarded, we have used the ORCA1 (Version 4.1.2) package, which 

is offered for free for academic purposes. In order to interpret results as well as to prepare the 

input filed to ORCA, we have also used the Avogadro2 (Version 1.2.0) suite 
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1 INTRODUCTION 
Chemistry is an experimental science that deals with the constructions, transformations and 

properties of molecular systems. However, since the advent of quantum mechanics and its first 

applications to chemical problems3, it has become clear that the basic laws of physics are able to 

rationalize the chemical world. This was soon recognized to open a new window to the chemical 

community: the possibility to model chemical phenomena ab initio: from our understanding of 

the laws that govern them. As Dirac4 put it, Chemistry had become a branch of Physics.  

Theoretical chemistry is, since then,  the subfield where mathematical methods are combined with 

the fundamental laws of physics to study processes of chemical relevance.5 (Jensen)  

Computational chemistry can be said to be a branch of theoretical chemistry whose goal is 

to create efficient mathematical approximations and computer programs to model chemical 

problems and, in its simplest form, to calculate the properties of molecules. It is to this very 

limited scope that we will refer in the following. The main goal in this very specific topic of 

TCCM is to solve the Schrödinger equation for a given system. This will provide its 

wavefunction, an object that contains all the information that we can extract from the system. To 

solve the SE different methods can be employed. Those methods that do not include empirical or 

semi-empirical parameters, the ones derived directly from theoretical principles, are the so-called 

ab initio methods. Since the SE cannot be solved exactly except in a few academic examples, 

even though ab initio methods do not use empirical parameters, they necessarily assume a number 

of mathematical approximations. 

The simplest level of ab initio calculation of the electronic structure of a molecule employs 

the Hartree-Fock theory. Being a variational procedure, the approximate energies calculated in 

HF are equal or greater than the exact ones. In the Hartree-Fock theory the wavefunction is 

approximated as a Slater determinant composed of a set of occupied spatial orbitals, one per 

electron. The spatial orbitals are approximated as a linear combination of a set of fixed basis 

functions, used to expand the molecular orbitals. The basis functions are some of the most 

important factors that have to be chosen in the calculations as the selection of one or another set 

will lead to a better or worse accurate solution (and to a shorter or longer computer run).  The 

parameters that characterize the basis functions are optimized following the variational principle 

once and for all, usually with the total energy, and no other properties, as a target. This means 

that basis sets that perform better energetically need not to be better when other observables are 

examined.  
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2 THEORY AND METHODS 
One of the main interests in computational chemistry is to find solutions to the Schrödinger 

equation. The time-independent Schrödinger equation can be written as: 

 

𝐻𝛹 = 𝐸𝛹.      (1)  

 

In this equation H is the Hamiltonian operator built as the sum of the kinetic and potential energy 

of a system, 𝛹 is the wavefunction - it depends on the coordinates and spins of the electrons and 

the nuclei and it contains all the information about a system - and  𝐸 is the total energy of the 

system.  

The numerical solution of Schrödinger equation remains a difficult task. Exact solutions of 

the equation are limited to one-electron systems. For more than one electron system, 

approximations must be introduced. The approximations are used to reduce the equations to a 

form that can be solved, resulting in losing some degree of accuracy. The approaches that do not 

use any empirical data are called ab initio methods. When a limited amount of empirical data is 

used the methods are called semi-empirical methods. One of the first developed and easiest ab 

initio method is called Hartree-Fock (HF) theory, although nowadays most of the production 

calculations are performed using the Density Functional Theory (DFT).  

In the Hartree-Fock theory the electron-electron repulsion is taken into account in an averaged 

way, so that each electron feels the field exerted by the average of the rest of the electrons. This 

is a variational calculation, therefore the obtained approximate energies - expressed in terms of 

the systems wavefunction - are always equal to or greater than the exact energy and tend to a 

limiting value called the Hartree-Fock limit.  

To set up a Hartree-Fock calculation it is necessary to understand a hierarchy of decisions 

that take us from Eq. 1 for a molecule to a working computer code and numerical solution. Some 

of them are: 

o The category of approximation method used 

o The Born-Oppenheimer approximation 

o The neglection of relativistic effects 

o The wavefunction written as a Slater determinant 

o The assumption that the variational solution is a linear combination of a finite number of 

basis functions 

They are briefly summarized in the following sections. 
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2.1- Approximation methods 
Approximate methods need to be used when exact solutions to the SE cannot be found. Two 

categories are widely used: the variational method and perturbation theory. Only the variational 

method is here below explained as it is the one used for the Hartree-Fock theory. 

The variational methods are based on the variational principle that introduces a lower bound for 

the expectation value of the Hamiltonian computed from a well-behaved, otherwise general state 

vector. It states that any well-defined normalized function will provide an energy value equal or 

higher than the exact one. 

 

< Ψ|𝐴|Ψ >≥ 𝐸!,    (2)  

 

where 𝐸! is the exact ground state energy. 

This principle is applied by taking a “trial” wavefunction that contains some adjustable 

parameters called “variational parameters”. The variational parameters are adjusted until the 

energy of the trial wavefunctions is minimized. The resulting trial wavefunction and its 

corresponding energy are variational approximations to the exact wavefunction and energy. 

 The variational principle is easily demonstrated by noticing that any trial function can be 

written as a linear combination of the exact eigenfunctions of the problem (𝛹"). The trial 

wavefunction can be written as: 

 

Φ = ∑ 𝑐"𝛹"" ,  

  

And the approximate energy that corresponds to this wavefunction is: 

 

E(Φ) =
< Φ|H|Φ >
< Φ|Φ >

, 

 

Substituting the expansion over the exact wavefunctions: 

 

E(Φ) =
∑ ∑ 𝑐"𝑐#$

#%!
$
"%! < Ψ|H|Ψ >
∑ ∑ 𝑐"𝑐#$

#%!
$
"%! < Ψ|Ψ >

, 

 

Taking into account the fact that 𝐻𝜓" = 𝐸𝜓" and the orthonormality of the 𝜓" , then: 

 

E(Φ) =
∑ 𝑐"&$
"%! 𝐸"
∑ 𝑐"&$
"%!

, 
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The exact ground state energy is subtracted from both sides: 

 

E(Φ) − 𝐸! =
∑ 𝑐"&$
"%! 𝐸" − 𝐸!
∑ 𝑐"&$
"%!

, 

 

Since every term on the right-hand side of the equation is greater than or equal to zero, the left-

hand side must also be greater than or equal to zero, so: 

 

E(Φ) ≥ 𝐸!. 

 

The energy of any approximate wavefunction is always greater than or equal to the exact ground 

state energy 𝐸!.  

With this is mind the variational method works by knowing that the energy of any 

approximate trial function is always above the true energy, then any variations in the trial 

functions - which decrease its energy – are, necessarily, making the approximate energy closer to 

the exact answer. If in the above expressions we built the trial function not as an infinite 

combination of eigensolutions of the Hamiltonian, but as a finite combination of a fixed set of 

functions, that we now call the basis set, we call this the linear variational principle. This is the 

one used in molecular quantum mechanics. When applied to the Hartree-Fock theory, it is usually 

called the Linear Combination of Atomic Orbitals (LCAO). 

 

2.2- The Born-Oppenheimer approximation 
An essential part of solving the Schrödinger equation is the Born-Oppenheimer approximation, 

where the coupling between the nuclei and electronic motion is neglected.6 

The Born-Oppenheimer approximation rests on the fact that the nuclei are much more 

massive than the electrons, which allows saying that the nuclei are nearly fixed with respect to 

the electron motion. This approximation is applied in the Hamiltonian operator. 

A system is described by two types of particles: the electrons (e) and the nuclei (n).   

Those particles are defined in a fixed frame of reference, where we denote (r) the set of electronic 

coordinates and (R) the set of nuclear coordinates. 

The non-relativistic Hamiltonian can be written in a shorthand expression as: 

 

𝐻 = 𝑇'(𝑟) +	𝑇((𝑅) + 𝑉('(𝑟, 𝑅) + 𝑉(((𝑅) + 𝑉''(𝑟).  (3)  

 

The Hamiltonian takes into account five contributions to the total energy of a system: the kinetic 

energies of the electrons (𝑇') and nuclei (𝑇(), the attraction of the electrons to the nuclei (𝑉(') 

plus the interelectronic (𝑉'') and internuclear (𝑉(() repulsions. 
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Following the Born-Oppenheimer approximation in which the nuclei are considered to 

be fixed in a position, the term 𝑇((𝑅) can be neglected and the term 𝑉(((𝑅) can be considered as 

a constant, so, the resulting Hamiltonian is called the electronic Hamiltonian operator - as it is 

solved for the electronic part -.  

 

𝐻') = 𝑇'(𝑟) + 𝑉('(𝑟, 𝑅) + 𝑉(((𝑅) + 𝑉''(𝑟).   (4)  

 

The Schrödinger equation (1) can be written in electronic terms as: 

 

𝐻')Ψ(𝑟; 𝑅) = 𝐸')Ψ(𝑟; 𝑅).    (5) 

  

This provides the electronic energy at each nuclear configuration, leading to the concept of 

potential energy surface which is basic in chemical reactivity. 

 

2.3- Hartree-Fock theory 
The dynamics of many-electron systems is very complex, and consequently requires elaborated 

computational methods. A significant simplification can be obtained by introducing independent-

particle models, where the motion of one electron is considered to be independent of the dynamics 

of all the other electrons.  

In HF, each electron is described by a one-electron function called orbital (spin-orbital 

when the spin is added) and the total wavefunction is given as a product of spin-orbitals; this 

being known as a Hartree Product. This form fails to satisfy the antisymmetry principle, which 

states that a wavefunction describing fermions should be antisymmetric with respect to the 

interchange of any set of space-spin coordinates. 

The antisymmetry of the wavefunction can be achieved by building it as a Slater 

determinant (SD). In the SDs the columns label the spin-orbitals and the rows the electrons. 

For a system with N electrons and spin-orbitals (𝜙) the Slater determinant is: 

 

Φ*+ =
,
√.!

>
𝜙,(1) 𝜙&(1)⋯ 𝜙.(1)
⋮ ⋱ ⋮

𝜙,(𝑁) 𝜙&(𝑁)⋯ 𝜙.(𝑁)
D.   (6)  

 

The trial wavefunction (𝛷) is taken as a single Slater determinant, implying that the electron-

electron correlation is neglected.  

Once the electronic Hamiltonian and the trial wavefunction are selected, the energy needs 

to be minimized by the variational principle and, from that, the Hartree-Fock equations will be 

obtained. 



 
 

- 7 - 

Coming back to the electronic Hamiltonian (4): 

 

𝐻') = 𝑇' + 𝑉(' + 𝑉(( + 𝑉'' . 

 

The terms 𝑉(' and the 𝑇' depend only on one electron coordinate. Term 𝑉'' depends on two 

electron coordinates and so the operators can be grouped depending on the number of electron 

indices; then: 

ℎ" corresponds to the one-electron operator and describes the motion of electron in the field of all 

nuclei. 

ℎ" = − ,
&
∇"& −	∑

0!
|2!34"|

.	(67)'"
8 ,							   (7)  

 

𝑔"# corresponds to the two-electron operator giving the electron-electron repulsion. 

 

𝑔"# =
,

|4"34#|
,								    (8)  

 

The electronic Hamiltonian (4) can be, then, written in a simpler way as: 

 

𝐻') = ∑ ℎ".	')'7
" +∑ 𝑔"#.	')'7

#9" +	𝑉((.								  (9)  

 

Knowing that the wavefunctions can be written as a Slater Determinant and the Hamiltonian in a 

simplified way, the energy of the system is obtained as follows. 

For the calculation of the energy expression, the starting point is that  𝐸' =< 𝛷|𝐻|𝛷 > 

when the wavefunction is normalized. For the energy expression the variational theorem is 

applied, so it can be said that the parameters can be varied until the minimum possible energy is 

achieved. In simplified terms, in HF we try to find the best possible orbitals within a given Slater 

determinant.  

Following some algebraic relationships, the electronic energy can be written in terms of 

integrals of the one- and two-electron operators: 

 

𝐸 = ∑ ℎ".')'7
"%, +	,

&
∑ ∑ (.')'7

#9"
.')'7
"%, 	𝐽"# − 𝐾"#) +	𝑉((.   (10)  

 

In this expression,  

      ℎ" =	< 𝜙"(1)|ℎ"|𝜙"(1) >, 

𝐽"# =< 𝜙"(1)𝜙#(2)|𝑔,&|𝜙"(1)𝜙#(2) >, 

𝐾"# =< 𝜙"(1)𝜙#(2)|𝑔,&|𝜙#(1)𝜙"(2) >. 
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In the followings derivations, the energy is express in terms of Coulomb (J) and exchange (K) 

operators. 

 

𝐸 = L < 𝜙"(1)|ℎ"|𝜙"(1) >
.')'7

"%,

+	
1
2
L (
.')'7

":

< 𝜙#|𝐽"|𝜙# > −< 𝜙#|𝐾"|𝜙# >) +	𝑉((.				 

𝐽"|𝜙#(2) >	=	< 𝜙"(1)|𝑔,&|𝜙"(1) > |𝜙#(2) >, 

𝐾"|𝜙#(2) >	=	< 𝜙"(1)|𝑔,&|𝜙#(1) > |𝜙"(2) >. 

 

The energy expression is symmetric and so the variational theorem holds. Now the set of spin-

orbitals (or molecular orbitals, MOs) that make the energy a minimum need to be determined.  

The Slater Determinant with the lowest energy will give the wavefunction for the 

assumed functional form of the Slater Determinant.  The variation must be carried out in such a 

way that the MOs remain orthogonal and normalized. This is done by minimizing a Lagrange 

functional that uses a Lagrange multiplier for each of the orthonormality conditions: 

 

𝐿 = 𝐸 −	 L 𝜆"#

.')'7

"

O< 𝜙"P𝜙# > −𝛿"#R, 

𝛿𝐿 = 𝛿𝐸 −	 L 𝜆"#

.')'7

"

O< 𝛿𝜙"P𝜙# > −< 𝜙"P𝛿𝜙# >R = 0. 

 

According to the variational principle, the best orbitals shall produce 𝛿𝐿 = 0.  

Introducing the energy expression, the variation of the energy is given by: 

 

𝛿𝐸 = 	 L (< 𝛿𝜙"|ℎ"|𝜙" >
.')'7

"

+< 𝜙"|ℎ"|𝛿𝜙" >) + 

1
2
L T

< 𝛿𝜙"P𝐽# − 𝐾#P𝜙" > +< 𝜙"P𝐽# − 𝐾#P𝛿𝜙" > +
< 𝛿𝜙#|𝐽" − 𝐾"|𝜙# > +< 𝜙#|𝐽" − 𝐾"|𝛿𝜙# >

U
.')'7

"#

. 

 

The third and fifth terms are identical as well as the fourth and sixth terms. They cancel out the 

½ factor and so it can be rewritten using the so-called Fock operator (𝐹") as the variation: 
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𝛿𝐸 = 	 L (< 𝛿𝜙"|ℎ"|𝜙" >
.')'7

"

+< 𝜙"|ℎ"|𝛿𝜙" >) + 

L (
.')'7

"#

< 𝛿𝜙"P𝐽# − 𝐾#P𝜙" > +< 𝜙"P𝐽# − 𝐾#P𝛿𝜙" >), 

𝛿𝐸 = L (< 𝛿𝜙"|𝐹"|𝜙" > +
.')'7

"

< 𝜙"|𝐹"|𝛿𝜙" >), 

𝐹" = ℎ" + ∑ (𝐽# − 𝐾#).')'7
# .   (11)  

 

The Fock operator is an effective one-electron energy operator, describing the kinetic energy of 

an electron and the attraction to all the nuclei (ℎ"), as well as the repulsion to all the other electrons 

(via the J and K operators). The Fock operator is associated with the variation of the total energy, 

so it is substituted in the variation of the Lagrange function: 

𝛿𝐿 = L (< 𝛿𝜙"|𝐹"|𝜙" > +
.')'7

"

< 𝜙"|𝐹"|𝛿𝜙" >) − L 𝜆"#

.')'7

"

O< 𝛿𝜙"P𝜙# > −< 𝜙"P𝛿𝜙# >R. 

 

As said above, orbitals of interest are those that make 𝛿𝐿 = 0. The use of complex conjugate 

properties in the Lagrange function gives the final set of Hartree-Fock equations: 

 

𝐹"𝜙" = ∑ 𝜆"#𝜙#.')'7
# ,     (12)  

 

It can be shown that one can subject the above orbitals to a rotation that makes the Lagrange 

multipliers diagonal. This leads to the canonical Fock equations, where  𝜆"" = 𝜀" is called the 

orbital energy: 

𝐹"𝜙" = 𝜀"𝜙" .     (13) 

 

Notice that the Fock operator depends on the orbitals that we need to obtain, so that to solve the 

HF equations we need their solution. As usual, this problem is solved by using an initial guess for 

the orbitals, then solving the HF equations to get a new set of orbitals and iterating this procedure 

until there is no change neither in the orbitals nor in the total computed energy. This is the so-

called Self-Consistent Field (SCF) procedure. To transform this technique into an efficient 

computational algorithm, another step needs to be taken. 

 

2.4- Roothaan-Hall equations 
The Hartree-Fock equations may be solved in a numerical way but most of the calculations use a 

basis set expansion to express the unknown MOs in terms of a set of known functions. Each MO 
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(𝜙) is expanded in terms of the basis functions (𝜒), also called atomic orbitals. As stated before, 

this linear expansion of the molecular orbitals is called the Linear Combination of Atomic Orbitals 

(LCAO). 

𝜙" =	∑ 𝐶;"𝜒; .<	=8>">
;        (14)  

 

Finding the HF orbitals is in this algebraic approximation equivalent to finding the 𝐶;"  parameters 

(expansion coefficients). Substituting the molecular orbitals in the Hartree-Fock equations for the 

expansion - in terms of the atomic orbitals - leads to: 

 

𝐹" ∑ 𝐶;"𝜒;<	=8>">
; = 𝜀" ∑ 𝐶;"𝜒;<	=8>">

; .    (15)  

 

Multiplying and integrating from the left by a basis functions yields the Roothaan-Hall equations: 

 

𝐹𝐶 = 𝑆𝐶𝜀.      (16)  

     

Where: F contains the Fock matrix elements, C is the matrix of the unknown expansion 

coefficients, S is the overlap matrix between basis functions and 𝜀 is the (diagonal) matrix of 

orbital energies. 

𝐹;? =< 𝜒;|𝐹|𝜒? >, 

𝑆;? =< 𝜒;|𝜒? >. 

 

For the determination of the MO coefficients, (𝐶;") the Fock matrix must be diagonalized, but 

the Fock matrix is only known if all the MO coefficients are known. So, the procedure starts with 

a guess of the coefficients, then form the F matrix and diagonalize it. The new set of coefficients 

is then used for calculating a new Fock matrix. There is a continuous process until the set of 

coefficients used for constructing the matrix equals those resulting from the diagonalization of 

the matrix. This set of coefficients determines a self-consistent field solution.7 

Self-Consistent field steps: 

1. Specify the system, basis function and electronic state of interest 

2. Form overlap S matrix. 

3. Guess initial MO 𝐶;" 	coefficients. 

4. Form Fock F matrix. 

5. Solve 𝐹𝐶 = 𝑆𝐶𝜀 

6. Use new MO 𝐶;" 	coefficients to build new Fock F matrix. 

7. Repeat steps 5 and 6 until C no longer changes from an iteration to the next one. 
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2.5- Post Hartree-Fock methods  
One of the limitations of HF calculations is that they do not include electron correlation. This 

means that HF takes into account the average effect of electron repulsion, but not the explicit 

electron-electron interaction. Within HF theory the probability of finding an electron at some 

location around an atom is determined by the distance from the nucleus but not the distance to the 

other electrons. This is not physically true, but it is the consequence of the central field 

approximation, which defines the HF method.  

Some calculation types begin with a HF calculation and then they correct for correlation. Some 

of these methods are: Møller-Plesset perturbation theory (MP), the generalized valence bond 

(GVB) method, multiconfigurational self-consistent field (MCSCF), configuration interaction 

(CI) and couple cluster theory (CC) as a group. All these methods are referred to as correlated 

calculations. Correlation is important for many different reasons; including correlation, generally, 

improves the accuracy of computed energies and molecular geometries.  

 

2.6- Basis sets  
We are now in a position to understand what basis sets are used in the calculation of the electronic 

structure of molecules. In the derivation of the Roothaan-Hall equations the concept of basis 

functions was introduced, and a basis function can be defined as a linear combination of 

mathematical functions. The set of basis functions used for a particular calculation with a specific 

set of parameters are called the basis set. The type of basis function used influences the accuracy 

of the calculations: typically, the smaller the basis the poorer the representation. It also impact the 

computational effort of ab initio methods. If the number of basis functions is M, then the number 

of two-electron integrals to be computed scales - formally at least - as 𝑀@ so it is ,of course, of 

high importance to make the basis set as small as possible without compromising the accuracy.8 

An ideal basis set should have a number of properties such as: 

- The basis functions should reflect the nature of the problem. 

- Basis sets should allow calculations for not only the energy and energy-related quantities 

but also for a range of other properties. 

- For atom-dependent basis functions, the basis sets should be available for all atoms in the 

periodic table. 

The requirement of computational efficiency is often incompatible with some of the properties, 

such as the universality of the basis functions. A basis set that is capable of a given accuracy for 

a variety of properties will always be larger than a tuned one for a specific purpose.  
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2.6.1- Types of basis functions 
There are two great categories of basis functions commonly used in electronic structure 

calculations for isolated molecules, known as the Slater Type Orbitals (STOs) and the Gaussian 

Type Orbitals (GTOs). In the case of periodic solids, it is also customary to employ planewaves, 

but we will not discuss them. 

Slater Type Orbitals appear in the solution of the SE equation for a hydrogen-like atomic 

system. This means that STOs should be well suited for achieving a good representation of AOs 

with only a few functions. An STO is formally the following three-dimensional function, 

 

𝜒A,(,),C(𝑟, 𝜃, 𝜑) = 𝑁𝑌),C(𝜃, 𝜑)𝑟(3,𝑒3A4 .    (17)  

 

where N is a normalization constant, 𝑌),C are spherical harmonic functions, 𝜉	is the orbital 

exponent – a parameter that needs to be optimized-and n is the principal quantum number. 

Calculation of 3- and 4- center two-electron integrals with STO functions is difficult and 

computationally inefficient. 

The common way to overcome this limitation in electronic structure calculations is to replace the 

STOs by GTOs. They can be written in terms of polar or cartesian coordinates: 

 

𝜒A,(,),C(𝑟, 𝜃, 𝜑) = 𝑁𝑌),C(𝜃, 𝜑)𝑟&(3&3)𝑒3A4
$ , 

𝜒A,)%,)&,)'(𝑥, 𝑦, 𝑧) = 𝑁𝑥)%𝑦)&𝑧)'𝑒3A4$ .    (18)  

 

The sum of 𝑙D , 𝑙E and 𝑙F determines the type of orbital (0 for s functions, 1 for p, 2 for d, and so 

on) and the orbital exponent 𝜉 defines the radial extent of the function. 

Most of the ab initio calculations use GTOs as basis functions. In particular the cartesian GTOs, 

since the molecular integral formulas over them are straightforward to derive and to code. 

The 𝑟& dependence in the exponent makes the GTOs inferior to the STOs, since it is 

analytically known that the behavior of the exact wavefunction both in the vicinities of the nuclei 

(Kato’s cusp theorem9) and in the large distance asymptotic regime10 is exponential. The usual 

way of improving the accuracy is to use linear combinations of a few GTOs to describe a single 

STO. Although the number of basis functions (also the integrals) are increased, the ease by which 

these integrals can be calculated makes GTOs the preferred basis functions in practical electronic 

structure calculations. 
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2.6.2- Classification of Gaussian Type Basis Sets 
A given basis set is uniquely defined by the number of functions of each type (s-,p-,d-, etc), the 

exponent value for each function and how the functions are combined into fixed linear 

combinations. We call each of these functions a primitive.  The combination of these three sets 

of parameters provides a lot of degrees of freedom, which is reflected by the large number of 

referenced proposed basis sets .11 

Combining the full set of basis functions, known as the primitive GTOs (PGTOs), into a 

smaller set of functions by forming fixed linear combinations is known as basis set contraction, 

and the resulting functions are called contracted GTOs (CGTOs). 

A first classification according to the number of contracted functions used for describing 

the occupied AOs can be made. If we use the smallest number of possible functions, we call the 

basis set minimal. Only enough AOs functions are employed to contain all the electrons of the 

neutral atom, i.e. one per electron. They are denoted as single zeta (SZ) basis sets. For the 

Hydrogen and Helium atoms this means a single s-functions (1𝑠), which can be of up or down 

spin in the second case; instead for the second row it means two s-functions (1𝑠 and 2𝑠) and one 

set of p-functions (2𝑝D , 2𝑝E , 2𝑝F), and so on.  

If the number of basis functions is double the number of electrons, then it is called of the 

double zeta type (DZ). A DZ basis employs two s-functions (1𝑠 and 1𝑠´) for Hydrogen and 

Helium and four s-functions (1𝑠, 1𝑠´, 2𝑠 and 2𝑠´) and two sets of p-functions (2𝑝 and 2𝑝´) for 

second row elements. Doubling the number of basis functions allows for a much better description 

of the electron distribution. 

The next one in the hierarchy basis set size is a triple zeta basis (TZ). It contains three 

times as many primitives as the minimum basis. The increase in the number of basis functions 

can continue into quadruple zeta (QZ) and quintuple zeta and beyond (5Z, 6Z, etc). Increasing 

the number of functions allows the basis set to describe the bonding in all the directions and 

environments. It is important to notice, however, that basis sets are usually optimized in free 

atoms, and that the molecular environment tends to be rather different than the atomic one. For 

instance, spherical symmetry is no longer present, so deformations of the electron density are 

expected. Similarly, intra- or intermolecular charge transfer effects may increase or decrease the 

number of electrons locally, making it necessary to increase the number of basis functions to 

accommodate for them. 

Improvement of the computational efficiency of basis sets can thus be guided by chemical 

knowledge of the expected properties of the solutions. There are three simple possibilities that are 

used in this regard: core electrons, for instance, tend to stay frozen when a molecule is formed, 

so the number of basis functions used to represent them may be smaller than in the case of the 

valence. Similarly, distortion from sphericity may advice the use of extra functions with other 
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angular dependence. Finally, if we deal with anions, or with electron rich regions due to charge 

transfer, extra functions to take this larger number of electrons will be needed. This leads to the 

concepts of split valence basis, polarization, and diffuse basis functions. 

Since the core electrons of a molecule are less affected by the chemical environment than 

the valence electrons, they are sometimes treated with a minimal basis set while the valence 

electrons are treated with a larger basis set such as a DZ or TZ. This is what is called the Split 

Valence Basis Set (SV), and it is useful to reduce the time required for large molecules 

calculation. 

Other way of increasing the size of the basis set is by adding polarization functions. A 

polarization function is any higher angular momentum orbital used in a basis set that is not 

normally occupied in the separated atom. The use of polarization basis functions allows for the 

atomic electron densities to be polarized in order to better represent the molecule’s electron 

density. Polarization functions are needed to obtain a better representation of the electron density 

in the bonding regions; an example is that the Hydrogen atom only contains a s-orbital (spherical) 

but when the Hydrogen atom is bonded to a more electronegative atom such as Lithium, the 

electron density is no longer spherical. The addition of a p-orbital function will allow the electron 

density to be shifted (or polarized) in the direction of the bond. Polarization functions are usually 

p-orbitals, d-orbitals or f-orbitals since the p-orbitals introduces a polarization of the s-orbitals 

and the d-orbitals can be used for polarizing p-orbitals and so on. Adding a single set of 

polarization functions to the DZ basis forms a Double Zeta plus Polarizations type basis (DZP). 

There is a variation where polarization functions are only added to non-hydrogen atoms, 

considering that hydrogens often have a “passive” role. As Hydrogen often account for a large 

number of atoms in the system, a saving of three basis functions per each Hydrogen is significant. 

Diffuse basis functions are extra basis functions that are added to the basis set to represent very 

broad electron distribution. They are very useful for representing the electron density in ions or 

in intermolecular complexes. 

 

2.6.3- Contracted Basis Functions 
Contraction denotes the practice of forming predefined linear combinations of primitive basis 

functions which are held fixed, thus decreasing the number of linear parameters to be computed. 

It improves computational efficiency, but, at the same time, it carries a degradation of the 

accuracy that can be achieved. The main effort in contracting basis sets is to achieve the largest 

computational saving without affecting the accuracy of the primitive basis set. 

In a contraction we take a set of k primitive Gaussian basis functions (PGTOs) to form a new 

fixed contracted (the CGTO). 

𝜒(𝐶𝐺𝑇𝑂) = ∑ 𝛼"𝜒"(𝑃𝐺𝑇𝑂)G
" .    (19)  
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Here 𝛼" 	are the contraction coefficients, which are optimized once and for all as the orbital 

exponents of the functions. 

Contracting a basis set will always increase the energy, since it is a restriction of the number of 

variational parameters, and makes the basis set less flexible, but will significantly reduce the 

computational cost. 

Specification of a basis set in terms of primitive and contracted functions is given by the notation: 

 

(10s4p1d/4s1p) → [3s2p1d/2s1p] 

 

The basis in parentheses is the number of primitives for the heavy atoms (second row elements) 

before the slash and for hydrogen atoms after the slash, all before contraction. After contraction 

takes place, we indicate the final number of primitives in square brackets. This notation provides 

no information about how the contraction is done. 

There are two different schemes for basis set contractions: segmented and general 

contraction. In a segmented contraction, each primitive function only contributes to one 

contracted function and both the exponent and the contraction coefficient are simultaneously 

optimized by a variational optimization. In a general contraction all the primitive functions are 

allowed to contribute to all contracted functions but with different contraction coefficients. Most 

basis sets in use contain elements of both; segmented and general contraction schemes at the same 

time. The primitive functions with large exponents describe, primarily, the inner-shell orbitals 

while the smaller exponent primitive functions mainly contribute to the description of the outer-

valence orbitals. 

 

2.6.4- Optimization of basis set parameters 
The exponents of the primitive functions and the contraction coefficients are basis set parameters 

that must be assigned values by a suitable criterion. The most common method for that purpose 

is to employ the variational principle and to minimize the energy as a function of these variables.12  

The basis sets parameters describing the occupied AOs can be optimized at the atomic 

level, while polarization functions must be optimized for molecular systems. The diffuse 

functions for the occupied orbitals can be variationally optimized by minimizing the HF energy 

of selected anions, while keeping fixed the exponents of the underlying basis set. 

The common procedure of optimizing basis set parameters by minimizing the total energy 

has the consequence that only the energetically important region in function space for the target 

systems is adequately covered.13  
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The optimization of basis sets is something not to really worry about, as most of the 

optimized basis sets of different qualities and sizes are available in tables, websites or built in 

within the available computer programs. 

 

2.6.5- Complete Basis Sets  
Solution of the HF equations with an infinite complete basis set would provide the exact Hartree-

Fock energy. This is defined as the HF limit. Carrying out such calculations is of course 

impossible, but one may try to check how the energy varies on increasing the basis set size and 

extrapolate from this the HF limit with a fair degree of confidence. This extrapolation is called a 

Complete Basis Set (CBS) limit extrapolation. This procedure tries to remove any error due to 

the linear combination of atomic orbitals approximations. The extrapolation is based on a 

minimum of three separate calculations with increasingly larger basis sets. There are some basis 

sets than have been expressly designed for that purpose (cc-pVnZ for example), as they increase 

in size in a consistent fashion with each increment on n. One can imagine plotting some particular 

computed property as a function on 𝑛3, and extrapolating for a curve through those points, then 

back to intercept the one corresponding to 𝑛 = ∞.  

 

2.6.6- Property Basis Sets  
Design of basis sets for molecular properties is not as straightforward as for the energy; there is 

no equivalent to the variational principle for properties. A common procedure is to manually 

identify deficiencies in a standard (energy-optimized) basis set and then adding necessary 

functions for performance improving. 

 

3 COMPUTATIONAL METHODOLOGY 
After presenting the meaning and classification of the basis sets commonly used in electronic 

structure calculations, a particular choice of the computational environment with which we will 

examine some examples needs to be made. There is a significant number of electronic structure 

computer programs available in the literature. Some of them are completely open software, while 

others are free only for academic purposes. Finally, some of them lie behind a company paywall. 

Almost every computational chemist is familiar with a small number of general purpose big 

packages: Gaussian, Gamess, Dalton, Orca, NWChem, etc7. These software-packages are self-

sufficient and include many built-in quantum chemical methods.  Being coded for research 

purposes, they usually stand within the input-code-output paradigm. The codes read an input file 

(appendix 7.1) in which the method, system and basis functions, that the user wishes to use, are 

specified and the program generates an output with the desired calculations and properties. 
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Usually both the input and the output files are generated and analyzed with additional codes that 

ease this task. It is at this step that graphical interfaces may appear.  

Most of the programs share the same global strategy, and a calculation is divided into a set of 

independent tasks: 

1. Preparation of the calculation: 

a. Steps that the computation should follow 

b. Specification of the system’s geometry 

c. Specification of the system’s characteristics (charge, spin state) 

d. Choice of the basis set to be employed 

e. Choice of the level of theory that will be used: HF, DFT, etc.  

2. Calculation of the basic integrals. 

3. Preparation of an initial guess 

4. SCF calculation. 

5. Rest of calculations 

a. Post-SCF calculations 

b. Search for stationary points in the geometric configuration 

6. Properties calculations 

 

As stated, we have used the ORCA package for this Thesis. It is a free software available for all 

the common operating systems. ORCA describes itself as an ab initio1, DFT and semi-empirical 

electronic structure package. All the basic theory levels are implemented in ORCA, ranging from 

Hartree-Fock to DFT and multi-reference models. 

 

3.1- Level of theory 
The level of theory chosen for this Thesis is the Hartree-Fock theory. As already explained, the 

Hartree-Fock method is an ab initio method within the Born-Oppenheimer approximation that 

neglects relativistic effects. It is the cheapest of all the possibilities available in ORCA, but it 

serves well the purpose of studying the role of basis sets. The method is selected in the input by 

specifying the keyword HF .14  

 

3.2- Choosing a suitable Basis Set 
The choice of a basis set is nothing but a compromise between accuracy and computational 

efficiency, and both factors apply to the wavefunctions selection as well. As a general rule, the 

more sophisticated a method is the larger the basis set it requires. Since the Hartree-Fock method 

is not a high-performance method, it is usually used with low quality basis such as DZP, unless 

the HF results are used as a component in more elaborated extrapolation schemes. 
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Basis sets are available from many different sources and often provided as an integral 

part of electronic structure programs so they can be employed by just specifying an input suitable 

keyword. 

The different selected basis sets for this work come from three of the main research groups 

that have worked on basis set selection over the years: the Pople, the Dunning and the Alhrichs 

groups, and these names label them. These groups of basis sets are some of the most used for 

calculations and they are highly studied and optimized. The main difference between them is the 

optimization method of the exponents and contraction coefficients. From each group as least three 

basis sets were selected for this work. The nomenclature of each of them is described below: 

1. Basis sets from Pople’s group: 

The basis sets published by the group of John Pople (who was a Nobel prize winner in 

1998) are amongst the most popular basis sets in ab initio molecular calculations. They 

offer low to high quality basis sets. The most used basis functions are the split-valence 

basis sets in where minimal basis functions are used for core orbitals, but valence orbitals 

are split into two or three parts. The parameters were optimized by variational procedures 

with the restriction the same exponents are used for both the s- and p-functions in the 

valence, decreasing the flexibility of the basis set but increasing the computational 

efficiency. The nomenclature is K-nlmG in where K corresponds to the number of PGTOs 

used for describing the core orbitals and nlm indicate how many functions the valence 

orbitals are split into as well as the number of PGTOs used to describe them. If there are 

only two values (nl) it corresponds to a double-zeta and if there are three values (nlm), it 

corresponds to a triple-zeta. Some of the most common Pople group basis sets used are 

the 3-21G, 6-31G and 6-311G. 

In order to improve the basis sets with polarization functions or diffuse functions the 

nomenclature used is * and + respectively. The polarization functions are indicated with  

* that means that one set of d-type polarization functions is added to each non-hydrogen 

atom in the molecule and ** means that one set of d-type polarization functions is added 

to non-hydrogen and one set of p-type polarization functions is added to Hydrogen. The 

diffuse functions are indicated with + that means that one set of sp-type diffuse basis 

functions is added to non-hydrogen atoms. The use of a ++ label means that one set of 

sp-type diffuse functions is added to each non-hydrogen atom and one s-type diffuse 

function is added to Hydrogen atoms. 

2. Correlation consistent basis sets (Dunning group): 

The ab initio total energy of an HF wavefunction is in error with respect to the true 

nonrelativistic energy by an amount called “the correlation energy”. The correlation 

consistent (cc) basis sets come from an upgrade from the Dunning basis sets (DZ,TZ…). 

The cc basis sets were made to recover the correlation energy of the valence electrons. 
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The cc means that the basis sets are designed such, those functions that contribute similar 

amounts of correlation energy, are included at the same level - independent of function 

type-. They provide systematic improvements that converge toward the complete basis 

set limit. The nomenclature of the basis sets is cc-pVNZ in where the cc corresponds to 

correlation consistent, the p to polarized, the V indicates that they are valence-only basis 

sets and N indicates the level of multiplicity (D=double, T=triple…) 

The smallest member of this series and thus often the starting point for correlated 

calculations is the cc polarized double zeta (cc-pVDZ) set. There are also the cc-pVTZ, 

cc-pVQZ, etc, sets. 

3. Alhrichs group Basis Sets: 

These basis sets were developed as second generation basis sets and are labelled as the 

def2 basis sets, in particular def2-SVP, def2-TZVP, def2-TZVPP, def2-QZVP, where SV 

denotes split valence, TZV denotes valence triple zeta and so on. Parameters optimization 

was done by means of gradient techniques. The def2 basis sets are designed to provide 

consistent accuracy across the whole periodic table whereas this is not true for the more 

commonly used basis sets from Pople and Dunning groups. 

The basis sets from the Pople and Ahlrichs groups were designed following a segmented 

contraction scheme; instead the Dunning group basis sets were designed following a general 

contraction scheme. 

The basis sets chosen from the three groups for this work are those who do not have a high 

computer-processing time while, at the same time, they provide a good representation of each 

category. In total thirteen (13) different basis sets were chosen, and the table below contains a 

brief description of each of them. Characteristics such as whether the basis sets are double, triple 

or quadrupole-zeta, if polarized or diffuse functions are added, and the contraction followed 

depending on whether the elements are from the s- or the p- block, can be found in Table 1 below. 
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Table1. Description of the basic features of the basis sets used in this work. The quality, origin, 
standard name, the use of polarization or diffuse functions, and the contraction scheme are 
specified for second row s- and p-block elements (Li-Ne) 

Quality Group Name 

Polarization 

or diffuse 

functions 

Composition 

s-Block elements p-Block elements 

SV Alhrichs Def2-SVP Polarization (7s4p) → [3s2p] (7s4p1d) → [3s2p1d] 

DZ Pople 3-21G None (6s3p) → [3s2p] (6s3p) → [2s2p] 

DZ Pople 6-31G None (10s4p) → [3s2p] (10s4p) → [3s2p] 

DZ Pople 6-31G* Polarization (10s4p1d) → [3s2p1d] (10s4p1d) → [3s2p1d] 

DZ Pople 6-31G+ Diffuse (10s4p1d) → [3s2p1d] (10s4p1d) → [3s2p1d] 

DZ Dunning cc-pVDZ Polarization (9s4p1d) → [3s2p1d] (9s4p1d) → [3s2p1d] 

TZ Pople 6-311G None (11s5p2d) → [4s3p2d] (11s5p2d) → [4s3p2d] 

TZ Pople 6-311G* Polarization (11s5p2d1f) → [4s3p2d1f] (11s5p2d1f) → [4s3p2d1f] 

TZ Pople 6-311G+ Diffuse (11s5p2d1f) → [4s3p2d1f] (11s5p2d1f) → [4s3p2d1f] 

TZ Dunning cc-pVTZ Polarization (11s5p2d1f) → [4s3p2d1f] (10s5p2d1f) → [4s3p2d1f] 

TZ Alhrichs Def2-TZVP Polarization (11s4p1d) → [5s3p1d] (11s6p2d1f) → [5s3p2d1f] 

QZ Dunning cc-pVQZ Polarization 
(12s6p3d2f1g) → 

[5s4p3d2f1g] 

(12s6p3d2f1g) → 

[5s4p3d2f1g] 

QZ Alhrichs Def2-QZVP Polarization (15s7p2d1f) → [7s4p2d1f] 
(15s8p3d2f1g) → 

[7s4p3d2f1g] 

 

3.3- Systems studied 
The systems studied in this work are diatomic molecules of the second period of the periodic 

table. In computational chemistry the second period of the periodic table is also known as the first 

row, so some confusion may arise. In total 10 systems have been used. they are homonuclear 

diatomic molecules (Li2, Be2, B2, C2, N2, O2 and F2) and heteronuclear diatomic molecules (LiF, 

BF and NF). Not all the fluorides corresponding to the second period were selected, only the ones 

with an even number of electrons. With this, we avoid the problem of constructing appropriate 

single determinant functions for non-singlet states. This is a severe problem that is usually solved 

by allowing up and down spin electrons to be described by different functions. This approach is 

known as unrestricted but gives rise to wave functions which are not spin eigenfunctions. Several 

of their properties are collected in Table 2: the experimental electronic ground state, the bond 

order, the number of electrons the system contains, the harmonic vibrational frequency, the 

equilibrium internuclear distance and the point group. Some of these values are used for 

comparison in the results and discussion Section. 
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Table 2. Some properties of the molecules studied in this work. Data taken from the NIST 
Webbook15 .  

Systems 
Electronic 

Ground state 

Bond 

order 

Number of 

electrons 

Vibrational 

frequency (𝒄𝒎3𝟏) 

Internuclear 

distance (𝒓𝒆) 

(Å) 

Point group 

Li2 L
J

K

,

 1 6 351.43 2.673 𝐷$L 

Be2 L
J

K

,

 1 8 - 2.460 𝐷$L 

B2 L
3

K

M
 2 10 1051.3 1.590 𝐷$L 

C2 L
J

K

,

 3 12 1854.71 1.243 𝐷$L 

N2 L
J

K

,

 3 14 2358.57 1.098 𝐷$L 

O2 L
3

K

M
 2 16 1580.19 1.208 𝐷$L 

F2 L
J

K

,

 1 18 916.64 1.412 𝐷$L 

LiF L
J,

 1 12 910.34 1.564 𝐶$N 

BF L
J,

 1 14 1402.1 1.304 𝐶$N 

NF L
3M

 1 16 1141.37 1.317 𝐶$N 

 

Several systems are isoelectronic such as N2 and BF, O2 and NF and C2 and LiF. The couple O2 

and NF are systems that may give very similar results due to the closeness of the elements N, O 

and F in the periodic table, so their properties are expected to be similar. Instead, the couples 

conformed by N2 and BF and C2 and LiF are well separated so their properties will differ more. 

The Be2 system is quite special; Although Be has a 1𝑠&	2𝑠& electronic configuration which 

indicates that there should not exist a covalent bond in the diatomic, it is well known that it suffers 

from an important multiconfigurational character. This means that the Be2 system won’t follow 

the trends of the other systems. 
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4 RESULTS AND DISCUSSION 
The electronic computer programs offer a wide range of properties that can be calculated, going 

from the total energy of the system to the vibration or rotation frequencies. As most of the basis 

sets have variational parameters optimized for the total energy, the main property, in which the 

work is focused, is the systems total energy. Other properties such as the internuclear distance or 

the harmonic vibrational force constant have also been computed and are commented later in the 

discussion to compare the accuracy of the basis set with respect to these properties.  

All values obtained from the calculations can be found in Appendix 7.2. Tables are 

numbered and so a cross-relation can be followed. We use atomic units, so energies are given in 

Hartrees (Eh), that has an equivalence of 1 Eh= 27.2113824 eV. 

We have used two different approaches to examine the performance of basis sets:  

I. Changing the basis set at a fixed geometry of the system. 

II. Changing the basis set with an optimization of the geometry of the system. 

The initial selected geometries for both approaches were obtained from the CCCBDB 

(Computational chemistry comparison and Benchmark database)16 and they are experimental 

data; these geometries are found in Appendix 7.3 table 9. From Table 10 to Table 19 the optimized 

geometries generated by ORCA are collected for all the systems.  

Calculations are done following these two approaches in order to see how the basis sets affects 

the geometry. In the case of the optimization of the geometry it will give a better result as the 

objective of geometry optimization is to find an atomic arrangement which makes the molecule 

most stable and molecules are most stable when their energy level is optimized. 

There is not a criterion to follow to indicate which basis sets are “the best or the worst”, but 

there are some theoretical concepts that provide an indication of which basis sets must give a 

higher accurate result than others. For example, the number of primitives functions used to 

describe an orbital can vary from minimal, double, triple and so on, and it is known that as size 

increases, results should improve. 

Tables 3 and 4 in Appendix 7.2 provide values obtained for the total energy of the systems at 

fixed and optimized geometry. After some detailed analyses, several features arise: 

o The worst basis set amongst the ones examined is the 3-21G for all the systems 

o The best basis set for most of the systems is def2-QZVP but for 𝐿𝑖& the best basis set is 

cc-pVQZ and for 𝐵𝑒& the best basis set is 6-311G+. 

o Inside each different group of basis sets the poorest values are obtained from the smallest 

basis set. 

o In the basis sets of the Pople group the basis functions of the same size give better results 

with the addition of diffuse and polarize functions. 

o The optimization of the geometry looks for the most stable arrangement and in the case 

of diatomic molecules, the difference with respect to the fixed geometry is of about 0.01 
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𝐸L. It is expected that if the molecules were bigger -in number of atoms- the optimization 

of the geometry will improve considerable the results of the total energy 

 

In order to obtain a visual representation of the results, the energy values for the Li2 system with 

optimized geometry are represented with respect to the corresponding basis set in Figure 1: 

 

 
Figure 1. Evolution of the energy in Li2  with the different basis sets explored. The geometry has 
been optimized in all the basis sets. 

 

Figure 1 represents the Li2 system. It is of small size (it only has 6 electrons) and its total energy 

is about -15 Eh. This value is relatively easy to rationalize if we take into account the hydrogenoid 

expression 𝐸( = − 0$

&($
, which provides a value of -4.5 Eh  for a Li-like 1s function and of about 

-1.1 for a 𝐿𝑖-like 2s electron. Two basis sets stand out from the rest: the 3-21G set and the def2-

SVP set. The first one offers a much higher energy value than the rest concluding that “it is not a 

good-enough” basis set. For the def2-SVP set, it presents a bump a little higher in energy than the 

tendency around it. The def2-SVP set is a split-valence polarized one, in which the core and the 

valence are described differently. The basis sets after the def2-SVP are from the same group and 

it can be seen that with an increase of their size the energy value improves a lot.  

 

In Figure 1 the difference between functions of the same size (DZ, TZ…) is not well visible, for 

that reason in Figure 2 the basis sets 3-21G and def2-SVP are removed: 
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Figure 2.  Evolution of the energy in Li2  with the different basis sets explored. The geometry has 
been optimized in all the basis sets. The 3-21G and the def2-SVP sets have been deleted.  

 

Figure 2 shows the difference in energy between the other sets, which is better visualized.  

The range in energy values between the best and the worse basis set is 6 mEh; that is 3.8 kcal/mol. 

This is considered a high difference as the so-called chemical accuracy is prescribed at the 1 

kcal/mol level.   

It can also be noticed that basis sets of the same size - but different groups - offer divergent 

values. In the three triple-Zeta basis sets that are represented (6-311G, def2-TZVP and cc-pVTZ) 

there is an energy difference of 2 mEh	(2.26 kcal/mol). This difference in between functions with 

similar size is due to the method followed from each group for the optimization of the variational 

parameters. The importance in the optimization of the parameters can also be seen by comparing 

the cc-pVDZ function and the 6-311G function, the first one is a DZ and the second one a TZ, 

but their energy values are pretty similar.  

 

Most of the basis sets used in the work do not consider explicitly the ionic character of 

the systems and so they do offer bad results for them. In Pople´s basis sets we can specifically 

tune for that by adding diffuse or polarization functions ad hoc in order to obtain a better 

representation of the orbitals. For ionic systems the addition of diffuse functions helps to improve 

the results. One of the systems of study is Be2, it offers better results with the addition of diffuse 

functions. This is due to the fact that Be2 can be said to be a Van der Waals system. These systems 

are described by their intermolecular interactions, so the addition of diffuse functions helps to 

construct better the chemical environment. The behaviour of the Pople group sets in this system 

is presented in Figure 3, below, with the energy values following the two approaches: 
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Figure 3. Energies for the Be2  molecule at fixed geometry (blue) and at basis set optimized 
geometry (orange) for the basis sets of the Pople Group. The optimized geometries for each basis 
sets are collected in appendix 7.3. 

 

In Figure 3 the basis sets represented are the 6-31G (DZ) and the 6-311G (TZ) together 

with those coming from adding polarization (*) and diffuse (+) functions. It can be observed how 

the addition of diffuse functions improves the energy considerably. It is the case that the diffuse 

DZ value is better than the non-diffuse TZ one.  The values obtained with 6-31G+ and 6-311G+ 

are some of the best values obtained for all the basis sets studied as it can be seen in Tables 3 and 

4. Improvements thanks to the addition of diffuse functions prove how important is to use basis 

sets that can describe the appropriate chemical environment of a system, and warns about a blind 

use of computational prescriptions.   

 

Another way of representing the outcome of our calculations is by showing the difference 

in energy when varying the basis set with respect to a given reference. This allows to compare 

systems with widely varying total energies on the same footing. We have chosen as a reference 

basis set the 3-21G one, as it is the poorest one for all systems. The values of this energy difference 

are collected in Tables 5 and 6 of the Appendix 7.2. The data is better visualized in Fig. 4, that 

contains the values for the optimized geometry. Notice that is plot 𝐸(basis) − 𝐸(6-31G), so that 

better sets display larger positive differences. 
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Figure 4. Energy difference with respect to the 3-21G basis set for all the systems at their optimized 
geometry that can be found in appendix 7.3. 

 

The main considerations that can be extracted from Figure 4 are: 

o Except for the Be2 and the N2 systems, the rest of systems follow a tendency marked by 

the depression at the def2-SVP set. 

o The isoelectronic pairs of systems (same number of electrons) do offer very similar 

results.  In the case of O2 and NF (green and light brown lines, respectively) they are 

almost overlapping; this indicating that both systems have very similar properties. The 

pair formed by N2 and BF (light blue and dark grey lines, respectively) does not show a 

high overlap - as the others – although a clear similarity is evident. Even though they are 

isoelectronic, the difference of the elements in the position of the periodic table is higher. 

Finally, the couple C2 and LiF (yellow and dark brown lines, respectively) does not come 

close at all. Charge transfer is so large in this case for LiF that it destroys any possible 

similarity. 

o Considering the size of the basis sets; as they increase the energy difference increases as 

expected. Trend is DZ < TZ < QZ. 

o It can be again noticed how necessary diffuse functions are for diberyllium.  
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As said before, most basis sets, including the ones used for these calculations, are only 

optimized for the energy and so their performance as other properties are examined may not 

follow the same trend. To examine this possibility, we have computed the harmonic vibrational 

frequency at the potential energy curve minimum as well as the internuclear distance for our 

systems. Notice that both quantities have only a definite meaning at minima Table 2 collects 

together with the corresponding values obtained from the NIST (National Institute of Standards 

and Technology) database15 As the method followed is Hartree-Fock, it is expected for the 

property values to diverge from the reference ones, as HF works differently with each system. 

Tables 7 and 8 in Appendix 7.2 show the value for each property with optimized geometry: the 

internuclear distance (𝑟') in Angstrom and the vibrational frequency 𝜈' in 𝑐𝑚3,. 

The observed tendency in these two properties and probability if others were studied, is 

that, as the size of the basis set increases the results tend to stabilize to a certain value. Given the 

limited size of the basis sets, it is unclear how close these results are to the HF limit, which is the 

limiting asymptote. 

The behavior of the internuclear distance does not seem to follow a well-defined trend 

for any system. This is well-known in the case of HF, which over- or underestimates bond 

distances depending on the type of chemical bond existing between the atoms examined.  In 

general, the higher basis sets in size (TZ and QZ) do stabilize in a value for the internuclear 

distance. As an example, Figure 5 shows the values for the C2 molecule:  

 

 
Figure 5. Evolution of the optimized internuclear distance with the basis set for the C2  system. The 
NIST reference (orange) is also given. The basis sets are ordered in increasing size. 

 

The basis sets in Figure 5 are ordered in a different way to the one used until now. Now 

we organize them according to their size, this allowing us to observe how the values stabilize as 
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we approach completeness. In the case of C2, values are pretty close to the reference one with the 

highest difference being of 0.02 Å.  This is a typical accuracy for HF data. 

As well as the internuclear distance values, the ones obtained for the vibrational constant 

are diverse and vary with respect to the reference value. In Figure 6, below, a representation of 

the C2 systems vibrational constant appears. 

 

 
Figure 6. Evolution of the computed harmonic vibrational frequency 𝜈( with the basis set in C2 .  
The reference NIST distance is also plotted in orange. The size of the basis set increases to the 
right.  

 

The evolution of the vibrational frequency is found in Fig. 6, and it shows that apart from 

some low-quality Pople’s sets, the frequency in this system stabilizes relatively soon. The sets    

3-21G, 6-31G and 6-311G are closer to the reference and the other basis sets give values above 

the reference one. This behavior follows that of the internuclear distance and shows that 

sometimes low-quality sets provide better answers than high-quality ones. This is completely 

spurious. An interesting point is also obvious. Since the asymptotic HF distance in dicarbon is 

shorter than the experimental one, the asymptotic frequency is larger. This is also quite general. 

Harmonic force constants increase with decreasing distances: shorter bonds tend to be tighter.  
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5 CONCLUSIONS 
Performance comparisons of different basis sets are an important ingredient of contemporary 

computational chemistry Typically, the choice is driven by a wish for high data accuracy and 

confined by how costly the calculation process will become. In this Thesis a few basis set 

performance studies have been undertaken using the Pople, Dunning and Alhrichs basis sets for 

a limited set of diatomic molecules. We have used for that the ORCA software package. 

 

The basis sets cannot be compared based on just one property as they vary in many factors 

such as: the procedure used for the optimization of the variational parameters, the method used 

for the calculations and the systems to be analyzed.  In this Thesis the level of theory employed 

was the Hartree-Fock method, that is based on the variational principle. Relativistic effects have 

been neglected. With the data collected in this thesis the conclusions obtained are collected below: 

 

o Hartree-Fock is the simplest ab initio method but allows to perform a preliminary study 

of different basis sets and helps for future calculations. 

o Two approaches were followed in the calculations: fixed geometry and optimized 

geometry. As expected, the better results were obtained from the optimized geometry. 

Knowing that for the systems studied, diatomic molecules, the optimization of the 

geometry allows an improvement in the total energy of the system; it can be said that the 

optimization of the geometry is recommended to use in all calculations and specially for 

bigger molecules. 

o The addition of diffuse functions is convenient when calculating ionic systems or systems 

with non-covalent bonds. 

o The Pople basis sets do offer low quality results in general even when using large TZ 

sets. 

o The Dunning group sets gives really good results, with a clear improvement with the size 

of the functions and for all type of systems. 

o The Alhrichs group contains a poor basis sets, the def2-SVP, that gives values far from 

the expected ones for a basis set of that size, but, as the size of the basis sets is increased, 

results improve. 

o Considering that most of the basis sets are optimized for the total energy, we have 

observed that other properties tend to stabilize to their asymptotic limit only when large 

sets, for instance, of quadruple-zeta quality, are used. 
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7 APPENDIX 

7.1- Orca input 
The input file has the general structure: 

 

(1)         # Comments – Anything can be written here, and it won’t affect the calculations 

(2) ! Keywords – Method, basis sets… 

(3) *xyz   Charge.  Mult 

(4) Atom A  0.000 0.000 0.000 

(5) Atom B  0.000 0.000 0.000 

(6) * 

(7) … 

 

Keywords can be given in any order and can be written in more than one line. The coordinates 

can be written in cartesian or in z-matrix. 

 

7.2- Energy tables 
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Table 3. Energy values in Eh  at fixed geometry for all the basis sets  
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Table 4. Energy values in Eh  at optimized geometries for all the basis sets 
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Table 5. Energy difference in Eh  at fixed geometry with respect to the 3-21G basis set 
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0. 8392 

0. 9026 

0. 8959 

0. 6992 

0. 8738 

0. 8693 

0. 8305 

0. 8326 

0. 8255 

0. 7837 

- 152. 8458 

N
F 
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Table 6. Energy difference in Eh  at optimized geometries with respect to the 3-21G basis set 

∆E
 (cc-

pV
Q

Z
) 

∆E
 (cc-

pV
T

Z
) 

∆E
 (cc-

pV
D

Z
)  

∆E
 (def2-

Q
Z

V
P) 

∆E
 (def2-

T
Z

P) 

∆E
 (def2-

SV
P)  

∆E
 (6-

311G
+) 

∆E
 (6-

311G
*)  

∆E
 (6 -311G

) 

∆E
 (6- 31G

+)  

∆E
 (6 -31G

*) 

∆E
 (6- 31G

) 

3-21G
 

System
s/ 

Functions 

0.1028  

0. 1027 

0 .1008  

0 .1028  

0 .1019  

0 .0867  

0 .1014  

0 .1013  

0 .1012  

0 .0981  

0 .0972  

0 .0971  

- 14. 7686 

L
i2  

0.2486  

0 .2343  

0 .2083  

0 .2481  

0 .2241  

0 .1830  

0 .2855  

0 .2192  

0 .2180  

0 .2798  

0 .1403  

0 .1390  

- 28.6938 

B
e

2  

0.2944  

0 .2922  

0.2863 

0 .2947 

0.2930 

0.2308 

0.2884 

0.2877 

0.2752 

0.2807 

0.2739 

0.2624 

- 48.7492 

B
2  

0.4518  

0 .4475  

0 .4329  

0 .4524  

0 .4496  

0 .3553  

0.4404 

0 .4397  

0.4088 

0.4287 

0.4247 

0.3946 

- 74.9540 

C
2  

0.6908  

0 .6832  

0 .6539  

0 .6921  

0 .6879  

0 .5519  

0.6714 

0 .6692 

0.5939 

0.6450 

0.6416 

0.5675 

-108.3003 

N
2  

0.9157 

0. 9038 

0. 8575 

0. 9182 

0. 9116 

0. 7196 

0. 8883 

0. 8842 

0. 8263 

0. 8471 

0. 8417 

0. 7760 

- 148. 6854 

O
2  

1.1241  

1 .1079  

1 .0415  

1 .1280  

1 .1202  

0.8626 

1 .0876 

1. 0829 

1. 0648 

1. 0338 

1. 0257 

1. 0019 

-197.6441 

F
2  

0.6372  

0 .6266  

0 .5921 

0 .6383  

0 .6306  

0. 4954 

0. 6216 

0. 6151 

0. 6085 

0. 5917 

0. 5797  

0 .5674  

-106.3535 

L
iF  

0.7337  

0 .7236  

0.6754 

0 .7358 

0. 7300 

0. 5706 

0. 7068 

0. 7045 

0. 6695  

0.6773 

0 .6690  

0 .6252  

-123.4322 

B
F  

0.8994 

0 .8874  

0. 8393 

0. 9021 

0. 8955 

0. 6982 

0. 8735 

0.8690 

0 .8319  

0.8333 

0 .8260  

0 .7849  

-152.8441 

N
F 
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Table 7. Internuclear distance in Angstrom at optimized geometry for all the basis sets 

cc - pV
Q

Z
 

cc- pV
T

Z
 

cc-pV
D

Z
 

def2 -Q
Z

V
P  

def2 -T
Z

P  

def2 -SV
P  

6-311G
* 

6- 311G
 

6- 31G
* 

6-31G
 

3- 21G
 

N
IST

 

System
s/ 

Functions  

2.7839  

2 .7836  

2 .8086  

2 .7839  

2.798 

2 .8549  

2.7844  

2 .7846  

2 .8111  

2 .8155  

2 .8157  

2. 673 

L
i2  

2.4266 

2. 4322 

2.4412 

2.4345 

2.2545 

2.4385 

2.4185 

2.4794 

2.3523 

2.3876 

2.4117 

2.46 

B
e

2  

1.674 

1 .6761  

1 .6875 

1 .6739  

1 .6744  

1 .6749  

1 .6766  

1 .7001  

1 .6686  

1 .6971  

1 .7004  

1.59 

B
2  

1.2389 

1. 2409 

1.2523  

1 .2388  

1 .2397  

1 .2454  

1 .2442  

1 .2577  

1 .2447  

1 .2623  

1 .2573  

1. 243 

C
2  

1.0656  

1 .0671  

1 .0773  

1 .0654  

1 .0661  

1.0735 

1.0703 

1. 086 

1 .0781  

1.081 

1 .0828  

1. 098 

N
2  

1.1535 

1 .1549 

1 .1569 

1 .1532 

1 .1541 

1 .1512 

1. 154  

1 .1935 

1 .1648 

1 .1933 

1 .2419 

1. 208 

O
2  

1.3275  

1 .3291  

1 .3476  

1. 327 

1 .3282  

1 .3341  

1 .3314  

1 .3968  

1 .3472  

1 .4125  

1 .4025  

1. 412 

F
2  

1.5537 

1. 5671 

1. 5788 

1. 5581 

1. 5548 

1. 5406 

1.559 

1. 5651 

1. 5567 

1. 5712 

1. 5203 

1 .564 

L
iF 

1.2453  

1 .2485  

1 .2717  

1 .2451  

1 .2492  

1 .2518  

1 .2524  

1 .2882  

1 .2613  

1 .3182  

1 .3026  

1. 304 

B
F  

1.2675 

1. 2689 

1. 2729 

1. 2671 

1. 2682 

1.262 

1. 2869 

1. 3395 

1. 2801 

1. 343 

1. 3635 

1. 317 

N
F 
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Table 8. Vibrational constant in 𝑐𝑚)* at optimized geometry for all the basis sets 

cc - pV
Q

Z
 

cc- pV
T

Z
 

cc-pV
D

Z
 

def2-Q
Z

V
P  

def2- T
Z

P  

def2 -SV
P 

6-311G
*  

6-311G
 

6-31G
* 

6- 31G
 

3- 21G
 

N
IST

 

System
s/ 

Functions 

339.36  

339.53 

338.78  

339.36  

333.89  

326.8 

338.67  

336.49  

338.09  

340.57  

342.11  

339.36  

L
i2  

268.97 

276.35 

295.61 

261.13 

385.21 

300.18 

- 

267.01 

- 

348.83 

320.72 

268.97 

B
e

2  

872.2 

872.82  

879.11  

871.84  

873.29  

914.97 

875.41 

825.47  

885.24 

854.42 

820.36  

872.2 

B
2  

1904.22  

1903.72  

1913.42 

1904.05 

1906.93 

1951.39 

1904.48 

1824.25 

1925.08 

1851.73 

1837.37 

1904.22 

C
2  

2729.31  

2731.27 

2757.86 

2730.13 

2734.85 

2791.82 

2734.05 

2591.94 

2754.25 

2661.1  

2612.13 

2729.31 

N
2  

1981.35  

1978.8 

1996.79  

1981.21  

1979.02  

2048.36  

1997.11 

1815.07 

1989.26 

1762.49 

1599.75 

1981.35 

O
2  

1263.81 

1266.78 

1180.11 

1264.25 

1267.61 

1222.3  

1224.72 

1105.12 

1226.42 

1141.5  

1295.83 

1263.81 

F
2  

924.72 

944.11 

1042.6 

926.84 

928.34 

957.63 

959.31 

972.42 

956.62 

1019.43  

954.94 

924.72 

L
iF 

1395.48 

1412.69 

1423.24 

1394.63 

1415 

1422.23 

1385.45 

1395.15 

1426.12 

1502.54 

1659.3  

1395.48 

B
F  

1128.55  

1137.31  

1130.49  

1126.71  

1130.23  

1126  

1131.5 

1234.26  

1166.42  

1239.26  

1309.54  

1128.55  

N
F  
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7.3- Geometries  
The internuclear distances of the systems were obtained from the CCCBDB16. These geometries 

were used directly as well as optimized for each of the basis sets studied.  

 
Table 9.  Experimental internuclear distances used in the input for the calculations following both 
approaches. 

System Re (Å) 

Li2  2.6730 

Be2 2.4600 

B2 1.5900 

C2 1.2425 

N2 1.0980 

O2 1.2075 

F2 1.4119 

𝐋𝐢𝐅 1.5514 

𝐁𝐅 1.2734 

𝐍𝐅 1.3114 

 

 

In Tables 10 to 19 the optimized geometries generated by ORCA are collected for all the 

systems and corresponding basis sets. 

 
Table 10. Optimized internuclear distances for the Li2  molecule for all the basis sets. 

Li2 Re (Å)  

3-21G 2.8157 

6-31G 2.8155 

6-311G 2.7846 

def2-SVP 2.8549 

def2-TZVP 2.7980 

def2-QZVP 2.7839 

cc-pVDZ 2.8085 

cc-pVTZ 2.7836 

cc-pVQZ 2.7839 

 

 
 



 
 

- 39 - 

Table 11. Optimized geometries for the Be2  systems at all the basis sets in cartesian coordinates. 

Be2 Re (Å) 

3-21G 2.4117 

6-31G 2.3876 

6-311G 2.4793 

def2-SVP 2.4385 

def2-TZVP 2.2545 

def2-QZVP 2.4344 

cc-pVDZ 2.4412 

cc-pVTZ 2.4322 

cc-pVQZ 2.4266 

 
Table 12. Optimized geometries for the B2  systems at all the basis sets in cartesian coordinates. 

B2 Re (Å) 

3-21G 1.7004 

6-31G 1.6870 

6-311G 1.7000 

def2-SVP 1.6750 

def2-TZVP 1.6744 

def2-QZVP 1.6739 

cc-pVDZ 1.6875 

cc-pVTZ 1.6818 

cc-pVQZ 1.6740 

 
Table 13. Optimized geometries for the C2  systems at all the basis sets in cartesian coordinates. 

C2 Re (Å) 

3-21G 1.2573 

6-31G 1.2622 

6-311G 1.2577 

def2-SVP 1.2454 

def2-TZVP 1.2397 

def2-QZVP 1.2388 

cc-pVDZ 1.2523 

cc-pVTZ 1.2409 

cc-pVQZ 1.2389 
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Table 14. Optimized geometries for the N2  systems at all the basis sets in cartesian coordinates. 

N2 Re (Å) 

3-21G 1.0828 

6-31G 1.0891 

6-311G 1.0860 

def2-SVP 1.0735 

def2-TZVP 1.0661 

def2-QZVP 1.0654 

cc-pVDZ 1.0773 

cc-pVTZ 1.0671 

cc-pVQZ 1.0659 

 
Table 15. Optimized geometries for the O2  systems at all the basis sets in cartesian coordinates. 

O2 Re (Å) 

3-21G 1.2419 

6-31G 1.1933 

6-311G 1.1935 

def2-SVP 1.1512 

def2-TZVP 1.1542 

def2-QZVP 1.1532 

cc-pVDZ 1.1570 

cc-pVTZ 1.1549 

cc-pVQZ 1.1535 

 
Table 16. Optimized geometries for the F2  systems at all the basis sets in cartesian coordinates. 

F2 Re (Å) 

3-21G 1.4025 

6-31G 1.4125 

6-311G 1.3967 

def2-SVP 1.3341 

def2-TZVP 1.3282 

def2-QZVP 1.3270 

cc-pVDZ 1.3476 

cc-pVTZ 1.3291 

cc-pVQZ 1.3275 
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Table 17. Optimized geometries for the LiF systems at all the basis sets in cartesian coordinates. 

LiF Re (Å)  

3-21G 1.5203 

6-31G 1.5712 

6-311G 1.5651 

def2-SVP 1.5406 

def2-TZVP 1.5548 

def2-QZVP 1.5581 

cc-pVDZ 1.5788 

cc-pVTZ 1.5671 

cc-pVQZ 1.5537 

 
Table 18. Optimized geometries for the BF systems at all the basis sets in cartesian coordinates. 

BF Re (Å) 

3-21G 1.3026 

6-31G 1.3182 

6-311G 1.2882 

def2-SVP 1.2518 

def2-TZVP 1.2492 

def2-QZVP 1.2451 

cc-pVDZ 1.2717 

cc-pVTZ 1.2485 

cc-pVQZ 1.2453 

 
Table 19. Optimized geometries for the NF systems at all the basis sets in cartesian coordinates. 

NF Re (Å) 

3-21G 1.3635 

6-31G 1.3430 

6-311G 1.3395 

def2-SVP 1.2620 

def2-TZVP 1.2682 

def2-QZVP 1.2671 

cc-pVDZ 1.2729 

cc-pVTZ 1.2689 

cc-pVQZ 1.2674 

 


