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Abstract

Empirical trimmed means have been studied in general spaces and, in partic-
ular, they have been applied to the one-dimensional fuzzy case. They provide
a competing robust estimation procedure of the central tendency for fuzzy
number-valued data, but they are not the only way to define a trimmed mean
in this space. The aim is to adapt trimmed means defined on the basis of
certain depth function to the framework of fuzzy number-valued data and
compare their behaviour with that of empirical fuzzy trimmed means. The
first idea for evaluating the depth of a fuzzy number-valued observation con-
sists of applying an existing functional depth to the expression of such an
observation as a function. The second alternative introduces a depth func-
tion specifically defined for fuzzy numbers. The empirical performance of
both proposals is analyzed.

Keywords: Fuzzy numbers, Empirical fuzzy trimmed mean, Depth-based
fuzzy trimmed mean, Dθ-depth

1. Introduction

In the last decades, numerous statistical techniques have been proposed in
the fuzzy-valued data framework with the aim of providing both solid mathe-
matical foundations and suitable and easy-to-use tools for their applications.
In particular, the robust estimation of the location of fuzzy number-valued
data has been analyzed and some successful alternatives, such as the empiri-
cal fuzzy trimmed mean, the median and M-estimators, have been extended
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(see e.g. Colubi and González-Rodŕıguez [1] and Sinova et al. [2, 3, 4]). All
these measures have been empirically compared in Sinova and Van Aelst [5, 6]
by means of the bias, the variance, the mean square error and the maximum
asymptotic bias. In particular, the empirical fuzzy trimmed mean with trim-
ming proportion equal to .5 and M-estimators have behaved particularly
good. Concerning fuzzy-valued data, the trimmed mean has been proposed
in [1] as an adaptation of the concept of trimmed mean in separable Hilbert
spaces. However, nothing has been stated about other possible adaptations
like trimmed means based on depth functions yet, although this is a very fre-
quent approach in the literature (see Cuesta-Albertos and Nieto-Reyes [7],
Cuesta-Albertos and Fraiman [8] and López-Pintado and Romo [9], among
others).

For adapting trimmed means defined on the basis of certain depth func-
tion to the framework of fuzzy number-valued data, it is obvious that a depth
to evaluate the ‘centrality’ of the fuzzy-valued observations is needed. As far
as the authors know, depths for fuzzy numbers have not been tackled in the
literature yet, so the first proposal takes advantage of the already existing
depths for functional-valued data, by expressing the fuzzy-valued observa-
tions as functions with a common domain determined by the 0-level of all
the sample data. The particularities of the space of fuzzy numbers explain the
interest of studying the empirical performance of this notion since they may
cause important inconveniences when applying functional depths directly.

The second proposal introduces a depth function specifically defined for
fuzzy numbers, with potential interest and implications in, for instance, the
study of the central tendency of fuzzy number-valued data. The empirical
performance of the fuzzy trimmed means based on the depth functions from
both proposals is analyzed.

The manuscript is structured as follows. First, Section 2 revises all the
preliminary concepts and results involving fuzzy numbers that are necessary
for the correct understanding of the remaining sections. The empirical fuzzy
trimmed mean is recalled in Section 3, whereas the adaptation of (functional)
depth-based trimmed means to the one-dimensional fuzzy setting is presented
in Section 4. Their comparison is addressed in Section 5 by considering
both the mean square error as a measure of their finite-sample behaviour
and the maximum asymptotic bias. Section 6 provides the novel concept of
depth expressly defined for fuzzy numbers (the Dθ-depth) and shows some
of its basic properties. Furthermore, the empirical competitiveness of the
corresponding fuzzy trimmed mean based on the Dθ-depth is also shown.
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Finally, Section 7 contains some concluding remarks.

2. Preliminaries on the space of fuzzy numbers

Fuzzy numbers are a generalization of interval-valued data, frequently
used to model characteristics such as perceptions or opinions. In this section,
some preliminaries about their space will be recalled.

Definition 2.1. A fuzzy number is a mapping Ũ : R → [0, 1] such that,

for each α ∈ (0, 1], the corresponding α-level Ũα = {x ∈ R : Ũ(x) ≥ α} is a

nonempty compact interval of R, and the 0-level Ũ0 = cl{x ∈ R : Ũ(x) > 0}
(cl denoting the closure) is a nonempty interval of R.

For each x ∈ R, Ũ(x) represents the ‘degree of membership’ of x to Ũ or

the ‘degree of compatibility’ of x with an ill-defined property Ũ .

Equivalently, a fuzzy number can be defined as a normal (i.e., hav-
ing nonempty 1-level) upper semi-continuous and quasi-concave [0, 1]-valued
function defined on R. The space of fuzzy numbers is denoted by Fc(R).

The arithmetic that will be considered along this paper for dealing with
fuzzy numbers is the usual fuzzy arithmetic based on Zadeh’s extension prin-
ciple (see Zadeh [10]). The two most important operations from the statistical
point of view, the sum and the product by a scalar, extend the corresponding
ones for intervals. Given Ũ , Ṽ ∈ Fc(R) and γ ∈ R, the fuzzy sum of Ũ and

Ṽ is defined as Ũ + Ṽ ∈ Fc(R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α = Ũα + Ṽα =
{
y + z : y ∈ Ũα, z ∈ Ṽα

}
,

and the fuzzy product of Ũ by the scalar γ is defined as γ · Ũ ∈ Fc(R) such
that for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =
{
γy : y ∈ Ũα

}
.

As the previous definition states, this ‘level-wise’ sum of fuzzy numbers
always provides a fuzzy number. It is interesting to notice that the usual
fuzzy arithmetic presented above does not coincide with the usual functional
arithmetic. Figure 1 illustrates how the fuzzy sum and the functional sum
do not coincide in general. Indeed the functional sum from Figure 1 cannot
be a fuzzy number because it takes values outside the unit interval, and the
meaning of fuzzy values could be usually lost.
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Figure 1: Two trapezoidal fuzzy numbers (in grey). In black, their fuzzy sum (solid line)
and their functional sum (dashed line).

Actually, the space Fc(R) endowed with these two operations does not
have a linear, but a semilinear-conical structure. Due to the previous reasons,
fuzzy data should not be treated directly as functional data in the statistical
developments, since the outputs may not belong to the space of fuzzy num-
bers. However, there exists a link with functional data in the following sense:
fuzzy data can be identified with their support functions.

Definition 2.2. The support function of Ũ ∈ Fc(R) (see Puri and Ralescu
[11]) is given by the mapping

sŨ : {−1, 1} × (0, 1] −→ R

(u, α) 7−→ sŨ(u, α) = supv∈Ũα
〈u, v〉,

where 〈·, ·〉 denotes the inner product in R.

Let H denote the space L2({−1, 1} × (0, 1], λ1 × λ) of the L2-type real-
valued functions defined on the unit sphere of R times the interval (0, 1] with
respect to the corresponding normalized Lebesgue measures denoted by λ1

and λ; and let F2
c (R) = {Ũ ∈ Fc(R) : sŨ ∈ H}. A possible way to measure
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the distance between two fuzzy numbers is to define, for any θ ∈ (0,∞), the

mapping Dθ : F2
c (R)× F2

c (R) → [0,∞) such that, for any Ũ , Ṽ ∈ F2
c (R),

Dθ(Ũ , Ṽ ) =

√∫

(0,1]

(
(mid Ũα −mid Ṽα)2 + θ (spr Ũα − spr Ṽα)2

)
dα.

The terms mid and spr denote the mid-point and the radius (or spread) of
the corresponding α-level interval. This L2-type metric (see Montenegro et
al. [12] and Trutschnig et al. [13]) makes the identification between fuzzy
numbers and functional data possible. The function

s : F2
c (R) → H

Ũ 7→ sŨ

states an isometrical embedding of F2
c (R) onto a convex cone of H (in which

the norm associated with the inner product, ‖sŨ − sṼ ‖θ, coincides with

Dθ(Ũ , Ṽ )). Apart from this identification, it is important to notice the true
impact of metrics in the statistical developments with fuzzy data. One con-
sequence of the lack of linearity is the absence of a difference operation that
is always well-defined and preserves the connection it has with the sum in the
real settings. Therefore, the use of distances will allow us to avoid the differ-
ence operator in many situations, and be able to cope with certain statistical
techniques.

The metric Dθ is topologically equivalent to the distance d2 given by (see
Klement et al. [14])

d2(Ũ , Ṽ ) =

√∫

(0,1]

(dH(Ũα, Ṽα))2 dα,

where dH(K,K ′) = |midK − midK ′| + |sprK − sprK ′| is the well-known
Hausdorff metric between two nonempty compact intervals of R.

With respect to the mathematical model that formalizes the association
of a fuzzy value with each outcome of a random experiment, random fuzzy
numbers were introduced by Puri and Ralescu [15] as the level-wise extension
of random intervals, but they can be equivalently formalized in different ways.

Definition 2.3. Given a probability space (Ω,A, P ), a random fuzzy num-

ber is a Borel measurable mapping X : Ω → F2
c (R) w.r.t. A and the Borel

σ-field generated by the topology induced by the metric Dθ on F2
c (R).
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Equivalently, X is a random fuzzy number if and only if sX is a Hilbert-
valued random variable. One of the best-known measures to summarize the
central tendency of a random fuzzy number is the Aumann-type mean value.

Definition 2.4. If X is an integrably bounded random fuzzy number, that is,
if max{| inf X0|, | supX0|} ∈ L1(Ω,A, P ), the Aumann-type mean value

has been defined by Puri and Ralescu [15] as the fuzzy number Ẽ(X ) ∈ F2
c (R)

such that, for each α ∈ (0, 1],

(Ẽ(X ))α = [E(inf Xα), E(supXα)].

Regarding the study of the dispersion of a random fuzzy number, its
variance has been defined as a measure of the “error” (in terms of the Dθ

distance) in estimating the values of the random fuzzy number through the
Aumann-type mean value (see Lubiano et al. [16]).

Definition 2.5. If X is a random fuzzy number associated with a probability
space (Ω,A, P ), such that ‖sX‖θ ∈ L2(Ω,A, P ), the Fréchet variance has

been defined as the real number σ2
X = E

[
(Dθ(X , Ẽ(X )))2

]
.

Despite its nice statistical and probabilistic properties, the Aumann-type
mean presents a clear and severe inconvenience. This location measure is
too sensitive to data changes and outliers, which makes its use inadvisable
in lots of real-life applications because data contamination is very common
in those cases. Some robust location measures have already been introduced
in the literature to tackle this problem, and one of the alternatives with best
performance is the empirical (fuzzy) trimmed mean.

3. The empirical fuzzy trimmed mean and Cuesta-Albertos and

Fraiman’s approximation

Taking into account that every fuzzy number with support function be-
longing to H can be identified with an element of a Hilbert space (its own
support function), Colubi and González-Rodŕıguez [1] adapted the concept
of trimmed means in separable Hilbert spaces (see Cuesta-Albertos and
Fraiman [8]) to the fuzzy-valued framework.

Definition 3.1. For each trimming proportion β ∈ (0, 1), the corresponding
fuzzy trimmed expected value of a random fuzzy number X is defined as
Ẽ[β](X ) = Ẽ(X |APX

) ∈ F2
c (R), with APX

denoting the trimming region
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APX
= arg min

A⊂H
PsX

(A)≥1−β

∫

A

(
Dθ(x̃, Ẽ(X |A))

)2
dPsX (sx̃)

and PsX , the induced probability distribution on the Borel σ-algebra on H.
Analogously, the sample trimming region is

Â = arg min
A⊂{1,...,n}

#A=h

1

h

∑

i∈A

‖sx̃i
−
1

h

∑

j∈A

sx̃j
‖2θ = arg min

A⊂{1,...,n}
#A=h

1

h

∑

i∈A

‖sx̃i
−s 1

h

∑
j∈A x̃j

‖2θ

= arg min
A⊂{1,...,n}

#A=h

1

h

∑

i∈A

(
Dθ

(
x̃i,

1

h

∑

j∈A

x̃j

))2

= arg min
A⊂{1,...,n}

#A=h

V ar(x̃|A),

where x̃ = (x̃1, . . . , x̃n) denotes the sample obtained from X and h = n −
⌊nβ⌋, with ⌊·⌋ the floor function. Then, the empirical fuzzy trimmed

mean becomes 1
h

∑
i∈Â x̃i.

To compute trimmed means in separable Hilbert spaces, Cuesta-Albertos
and Fraiman [8] proposed an algorithm that approximates the empirical
trimmed mean by determining an element of the sample that converges to the
trimmed mean whenever this value is in the support of the considered distri-
bution. However, this algorithm is not applicable for large data sets given its
computational complexity and is clearly theoretically oriented, whereas the
interest could be on practical advantages and not only on theoretical prop-
erties. For this reason, Colubi and González-Rodŕıguez [1] presented a new
algorithm to compute the empirical fuzzy trimmed mean that was inspired
by the FAST-LTS algorithm (see Rousseeuw and Van Driessen [17]). Sinova
et al. [2] adapted this algorithm in order to avoid, as much as possible, that
any local minimum traps the iterative process. Both Cuesta-Albertos and
Fraiman’s and Sinova et al.’s algorithms will be considered in the simulation
study in Section 5.

4. Depth-based fuzzy trimmed means: a first approach

An alternative that has been explored in functional Hilbert spaces is that
of trimmed means based on depth functions (see [7, 8, 9], among others). This
approach has not been considered for fuzzy-valued data yet. Despite the lack
of depth functions for fuzzy-valued data in the literature, a straightforward
option to adapt this notion to the fuzzy-valued framework would be to express

7



fuzzy numbers as functions in order to compute the functional depth directly.
Since a statistical depth evaluates the ‘centrality’ of an observation with
respect to a data set, given the trimming proportion β ∈ (0, 1), depth-based
trimmed means are defined as the means of the n−⌊nβ⌋ deepest observations.
Therefore, once the (functional) depth values have been obtained, the sample
of fuzzy numbers is sorted from largest to smallest depth and the Aumann-
type mean of the non-trimmed observations is computed. This means that
the mean is coherent with the arithmetic on Fc(R) and the expression of
fuzzy values as functions is only needed for the computation of the depth.
Notice that, with the aim of expressing fuzzy numbers as functions for such
computations, it is enough to consider a partition of the domain determined
by the 0-level of all the sample fuzzy numbers.

Definition 4.1. Let X : Ω → F2
c (R) be a random fuzzy number associated

with a probability space (Ω,A, P ) and, for any n ∈ N, let (X1, . . . ,Xn) be a
simple random sample from X . Given an empirical functional depth FDn

and a trimming proportion β ∈ (0, 1), the depth-based fuzzy trimmed

mean estimator is defined as

FD-X n,β =

∑n
i=1 I[γ,∞)(FDn(Xi)) · Xi∑n

i=1 I[γ,∞)(FDn(Xi))
,

with IA denoting the indicator function of the set A ⊂ R and γ ∈ [0,∞)
chosen to guarantee that

1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) ≃ 1− β.

The following proposition shows that the depth-based fuzzy trimmed
mean is indeed a statistic.

Proposition 4.1. Let X : Ω → F2
c (R) be a random fuzzy number associated

with a probability space (Ω,A, P ) and, for any n ∈ N, let (X1, . . . ,Xn) be a
simple random sample from X . Given an empirical functional depth FDn

that is upper semi-continuous and a trimming proportion β ∈ (0, 1), the
depth-based fuzzy trimmed mean estimator is well-defined.

Proof. The Borel measurability of FD-X n,β comes from:
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• the Borel measurability of Xi, i ∈ {1, . . . , n}, due to the notion of
random fuzzy numbers;

• the Borel measurability of the indicator function I[γ,∞);

• the Borel measurability of the empirical functional depth FDn, since
FDn is assumed to be an upper semi-continuous function. Notice that
the upper semi-continuity of FDn is one of the properties a reasonable
depth function must fulfill (see Gijbels and Nagy [18] and Nieto-Reyes
and Battey [19] for more details);

• the Borel measurability of the composition, product, sum and quotient
(when the denominator is always different from 0) of Borel measurable
functions.

Furthermore, it is guaranteed that the depth-based fuzzy trimmed mean es-
timator takes values on the space of fuzzy numbers as it is expressed as
weighted means of the sample observations. �

Additionally, the observation that is closest to the ‘centre’, i.e., the ob-
servation that maximizes the depth, is known as median. In this work, the
interest will be focused on the comparison of depth-based trimmed means
with the empirical fuzzy trimmed mean, but, as we will point out in Section
7, we plan to address the comparative analysis of depth-based medians, fuzzy
medians and M-estimators in the future.

Different proposals of depths for functional data can be found in the
literature. Among them, we consider the following ones throughout this
paper:

• Fraiman and Muniz’s depth [20] is computed by integrating a univariate
depth along the x-axis. The following options for the univariate depth
have been considered for the simulation study: the original choice 1−
|1
2
−Fn(x)|, where Fn denotes the empirical distribution, and the well-

known halfspace and simplicial depths (also known as Tukey and Liu
depths, respectively). If the univariate depth is upper semi-continuous,
the integrated depth is upper semi-continuous too (see Nagy et al. [21]).

• The random Tukey depth [7] approximates the Tukey depth by taking
into account a finite number of one-dimensional projections selected at
random. The upper semi-continuity of this depth has been shown in
Nieto-Reyes and Battey [19].
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• The random projection depth [22] computes the univariate depth of
the projection of the data along a random direction. The depth of each
datum is obtained by averaging such depths computed with a large
number of different random directions (50 throughout this paper).

5. Comparative simulation study

In this section some simulations with fuzzy number-valued data are pre-
sented in order to compare the behaviour of the Aumann-type mean, the
empirical fuzzy trimmed mean, Cuesta-Albertos and Fraiman’s approxima-
tion and the depth-based fuzzy trimmed means listed in Section 4. The
comparison of all these location measures is important to try to answer the
following question: “which estimator should we choose to summarize the
central tendency of a fuzzy number-valued data set?” Two perspectives are
shown in Sections 5.1 and 5.2.

First, the comparison by means of the mean square error searches for the
estimator that provides the nearest (in mean square error sense) fuzzy-valued
estimates to the corresponding population value, and provides us with some
information about the finite-sample behaviour of the estimators. Secondly,
the comparison in terms of the maximum asymptotic bias is presented, with
the aim of analyzing the impact of data contamination on the asymptotic
value of the estimators.

The empirical study uses some distributions that are commonly consid-
ered when working with fuzzy data. Only trapezoidal-valued random fuzzy
numbers have been considered, each of them characterized by four real-valued
random variables:

X1 = midX1, X2 = sprX1, X3 = inf X1− inf X0, X4 = supX0−supX1,

so X = Tra(X1 −X2−X3, X1−X2, X1+X2, X1+X2+X4). Trapezoidal fuzzy
numbers make the computation easier, and as previous sensitivity analysis
have shown, the shape of fuzzy numbers scarcely affect statistical conclusions
(see Lubiano et al. [23]).

5.1. Comparison in terms of the mean square error

A sample of size n = 100 is generated from X and divided into a con-
taminated subsample, of size ncp (cp ∈ {0, .1, .2, .4} is the contamination
proportion), and a noncontaminated subsample, distinguishing two cases.
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In Case 1, {Xi}4i=1 are independent random variables with the following
distributions:

• X1 ∼ N (0, 1) andX2, X3, X4 ∼ χ2
1 for the noncontaminated subsample;

• X1 ∼ N (0, 3)+CD and/or X2, X3, X4 ∼ χ2
4+CD for the contaminated

subsample.

In Case 2, {Xi}4i=1 are dependent and their distributions are:

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + .1 χ2

1 for the noncon-
taminated subsample;

• X1 ∼ N (0, 3) + CD and/or X2, X3, X4 ∼ 1/(X2
1 + 1)2 + .1 χ2

1 + CD for
the contaminated subsample.

In both cases, CD ∈ {0, 1, 5, 10, 100} is the contamination magnitude.
The metric D1/3 has been chosen and NMC = 10000 Monte Carlo replica-
tions have been used to approximate the population measures. The trimming
proportion has been fixed depending on cp (β = .2 if cp ≤ .2 and .45 other-
wise). Finally, a partition of the domain [min{inf(Xi)0}ni=1,max{sup(Xi)0}ni=1]
into 500 equidistant points has allowed us to represent fuzzy numbers as func-
tions and apply the depths given in Section 4, which are implemented in the
R package fda.usc [24, 25]. In order to measure the performance of each lo-
cation measure, the mean square error (MSE) and its standard deviation (s)
have been computed through the following formulas by considering N = 500
replications

MSE =
1

N

N∑

i=1

(
Dθ(

̂̃
T i, T̃ )

)2

, s =

√√√√ 1

N

N∑

i=1

((
Dθ(

̂̃
T i, T̃ )

)2

−MSE

)2

,

where
̂̃
T i denotes the estimator of the population value T̃ obtained for the ith

sample, 1 ≤ i ≤ N . It is important to note that, although trimmed means are
estimators of the population mean in the location-scale model, this does not
hold in a general Hilbert space because it lacks symmetry, which is necessary
for the population trimmed means to coincide with the population mean.

Results in Tables 1 and 2 show that in most situations the empirical fuzzy
trimmed mean provides the minimum MSE (in bold for each situation),
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the differences being clearer in Case 1 than in Case 2. Among the depth-
based fuzzy trimmed means, Fraiman and Muniz’s proposal is the only one
achieving the best performance in a few situations in Table 1, whereas the
random Tukey depth and, more frequently, the random projection depth
sometimes appear highlighted in Table 2 too. Overall, the adaptation of
depth-based trimmed means to the fuzzy framework does not seem to be
good enough and the reason is probably that the 0-level of the generated fuzzy
numbers may be very different, opposite to what happens in the functional
case, where it is assumed that functions share the domain.

5.2. Comparison in terms of the maxbias

In order to complete the comparison of the empirical fuzzy trimmed mean
and the depth-based fuzzy trimmed means, we examine the maximum asymp-
totic bias of these estimators. The maximum asymptotic Dθ-bias (or maxbias

for short) of a fuzzy number-valued estimator
̂̃
T at any distribution Fϑ on

Fc(R) is given by

MB ̂̃
T
(ε, ϑ) = max

F∈Fε,ϑ

Dθ(
̂̃
T∞(F ),

̂̃
T∞(Fϑ)),

where Fε,ϑ = {(1−ε)Fϑ+εG : G ∈ G}, with a family of distributions G, rep-

resents an ε-neighbourhood of Fϑ, and
̂̃
T∞(F ) denotes the asymptotic value

of the estimator (i.e., the limit in probability of the considered estimator).
The maxbias is considered to be the most accurate measure of robustness for
point estimators, since it informs about the behaviour of the estimator when
the fraction of data contamination can be withstood.

Notice that when the location measure is strongly consistent, the asymp-
totic value of the corresponding estimator coincides with the population lo-
cation value, T̃F , and the formula for the maxbias becomes

MB ̂̃
T
(ε, ϑ) = max

F∈Fε,ϑ

Dθ(T̃F , T̃Fϑ
).

The strong consistency of the empirical fuzzy trimmed mean is an imme-
diate consequence of Cuesta-Albertos and Fraiman’s results [8, 26] for general
Hilbert-valued random elements when the metric space (F2

c (R), Dθ) can be
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Table 1: Independent case. Mean square error and, in brackets, its standard deviation for the Aumann-type mean, the
empirical fuzzy trimmed mean (EFTM), Cuesta-Albertos and Fraiman’s approximation of the empirical trimmed mean (C&F)
and the depth-based fuzzy trimmed means w.r.t. the following depths: Fraiman and Muniz’s depth computed with the original
univariate depth (FM-DTM), with the Tukey depth (T-DTM) and with the Liu depth (L-DTM), the random Tukey depth
(RT-DTM) and the random projection depth (RP-DTM) with trimming proportions .2 and .45. In bold, the minimum mean
square error in each situation.

cp CD Mean EFTM (β = .2) C&F (β = .2) FM-DTM (.2) T-DTM (.2) L-DTM (.2) RT-DTM (.2) RP-DTM (.2)

0 0 .01932 (.01999) .02899 (.03512) .14230 (.12906) .01883 (.02190) .01860 (.02170) .01878 (.02175) .02639 (.02765) .02224 (.02443)

.1 0 .07116 (.05494) .03480 (.03664) .17626 (.15142) .03343 (.03381) .02829 (.02813) .02833 (.02909) .05890 (.05052) .03550 (.03439)

.1 1 .11139 (.07926) .03221 (.03179) .19149 (.19687) .03727 (.03612) .02977 (.02846) .02941 (.02859) .07708 (.06820) .04032 (.03832)

.1 5 .40809 (.19119) .03035 (.03227) .20719 (.28315) .07573 (.09143) .04293 (.04427) .04348 (.04583) .16597 (.13406) .06572 (.07184)

.1 10 1.1781 (.48350) .03031 (.03443) .21394 (.24947) .21200 (.30702) .08153 (.12188) .08634 (.12868) .31875 (.29063) .13531 (.15874)

.1 100 86.809 (31.759) .02946 (.03247) .21804 (.35167) 14.709 (22.695) 3.7855 (6.8818) 4.1689 (7.3246) 14.895 (17.135) 8.6391 (13.205)

.2 0 .19575 (.11730) .05338 (.04368) .20626 (.17979) .06572 (.05155) .05451 (.04213) .05455 (.04257) .15126 (.10963) .07962 (.06456)

.2 1 .35665 (.18357) .05661 (.04328) .25335 (.23912) .09377 (.06795) .06866 (.05052) .06835 (.05066) .26242 (.17219) .11395 (.08376)

.2 5 1.6121 (.60118) .06102 (.05012) .78322 (.86716) .27253 (.27552) .16947 (.15573) .17393 (.16335) .99616 (.59201) .31495 (.22904)

.2 10 4.5359 (1.5358) .06757 (.05050) 1.6113 (2.3199) .77279 (1.0795) .40063 (0.4958) .41223 (.51539) 2.4813 (1.3632) .75543 (.68496)

.2 100 349.42 (112.86) .07145 (.04878) 2.1312 (2.9408) 66.729 (100.72) 31.132 (43.922) 32.955 (46.439) 162.89 (95.130) 56.340 (67.794)

cp CD Mean EFTM (β = .45) C&F (β = .45) FM-DTM (.45) T-DTM (.45) L-DTM (.45) RT-DTM (.45) RP-DTM (.45)

.4 0 .72295 (.41615) .10218 (.08814) .20845 (.21625) .09463 (.08125) .10397 (.08813) .09794 (.07290) .47324 (.36000) .29316 (.22318)

.4 1 1.2635 (.60222) .09680 (.08289) .22700 (.18870) .14111 (.15566) .13658 (.11759) .12213 (.08910) .92687 (.62497) .46562 (.35579)

.4 5 6.1007 (2.0100) .08227 (.06614) .30997 (.38059) .94421 (1.2542) .34922 (.41431) .40960 (.48241) 4.1953 (2.5185) 1.5439 (1.0464)

.4 10 18.294 (5.3148) .08301 (.06431) .38450 (.46045) 3.7916 (5.6403) 1.0683 (1.8203) 1.3163 (2.0271) 11.841 (6.8894) 3.7453 (2.5111)

.4 100 1386.3 (436.59) .08165 (.06411) .44090 (.57968) 401.28 (590.78) 97.889 (181.68) 125.19 (206.32) 803.70 (518.33) 258.19 (223.56)
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Table 2: Dependent case. Mean square error and, in brackets, its standard deviation for the Aumann-type mean, the empirical
fuzzy trimmed mean (EFTM), Cuesta-Albertos and Fraiman’s approximation of the empirical trimmed mean (C&F) and
the depth-based fuzzy trimmed means w.r.t. the following depths: Fraiman and Muniz’s depth computed with the original
univariate depth (FM-DTM), with the Tukey depth (T-DTM) and with the Liu depth (L-DTM), the random Tukey depth
(RT-DTM) and the random projection depth (RP-DTM) with trimming proportions .2 and .45. In bold, the minimum mean
square error in each situation.

cp CD Mean EFTM (β = .2) C&F (β = .2) FM-DTM (.2) T-DTM (.2) L-DTM (.2) RT-DTM (.2) RP-DTM (.2)

0 0 .13469 (.02577) .02498 (.03393) .04398 (.05818) .01686 (.02090) .01839 (.02128) .01860 (.02166) .01679 (.02137) .01842 (.02082)

.1 0 .14729 (.03474) .02510 (.03386) .04695 (.07369) .02619 (.03824) .02273 (.03009) .02312 (.03225) .02114 (.02835) .01798 (.02190)

.1 1 .10717 (.03528) .02578 (.03076) .05056 (.09437) .03043 (.03856) .01727 (.01951) .01828 (.02122) .01801 (.02009) .01439 (.01700)

.1 5 .12696 (.12449) .02269 (.02870) .05581 (.14072) .08812 (.12596) .01768 (.02220) .01885 (.02487) .03881 (.03769) .01841 (.02794)

.1 10 .53518 (.35945) .02325 (.02731) .05235 (.16734) .19414 (.31319) .02401 (.03323) .02797 (.03944) .14001 (.17918) .04942 (.09031)

.1 100 82.235 (32.190) .02126 (.02469) .06388 (.24001) 15.750 (24.218) .35878 (1.2388) .60516 (2.9270) 22.434 (28.483) 6.6321 (11.450)

.2 0 .15350 (.03760) .02569 (.03286) .04772 (.08292) .02810 (.04135) .02453 (.03054) .02362 (.03026) .02488 (.03287) .02147 (.02891)

.2 1 .08950 (.05302) .03231 (.03018) .04537 (.06438) .05256 (.06461) .01634 (.01913) .01816 (.01915) .02661 (.02625) .01988 (.02349)

.2 5 .52042 (.33895) .02357 (.02555) .65345 (1.0095) .23113 (.34695) .02877 (.04889) .03618 (.06072) .34249 (.20532) .09577 (.12742)

.2 10 2.5858 (1.1544) .02253 (.01948) 1.0909 (1.4781) .70741 (1.1502) .06771 (.12321) .08375 (.15325) 1.4402 (.88760) .35501 (.48249)

.2 100 325.98 (107.56) .02273 (.02098) 1.2198 (1.5773) 66.900 (105.01) 6.7141 (15.540) 7.6786 (16.755) 177.82 (119.22) 46.486 (61.052)

cp CD Mean EFTM (β = .45) C&F (β = .45) FM-DTM (.45) T-DTM (.45) L-DTM (.45) RT-DTM (.45) RP-DTM (.45)

.4 0 .17274 (.05211) .04318 (.06289) .05771 (.08141) .09010 (.12065) .07830 (.09726) .07134 (.09582) .06709 (.08271) .06722 (.07044)

.4 1 .09708 (.11447 ) .09791 (.07741) .08943 (.13950) .22337 (.28367) .03127 (.03475) .04914 (.04365) .10570 (.10339) .09461 (.08136)

.4 5 2.5030 (1.1320) .06875 (.05150) .13651 (.42402) 1.2336 (2.0305) .07819 (.17334) .14027 (.24784) 1.8025 (1.1410) .48566 (.36616)

.4 10 10.867 (3.9967) .06543 (.04219) .17340 (.40960) 4.7083 (7.9106) .25901 (.80772) .43607 (1.0792) 7.4399 (4.7562) 1.7444 (1.2851)

.4 100 1283.3 (405.77) .06456 (.04232) .17365 (.42412) 517.81 (843.86) 30.274 (94.320) 45.300 (116.17) 753.51 (579.68) 164.71 (187.32)
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isometrically embedded onto a closed convex cone of a Hilbert space (see
Sinova et al. [2]). The closeness of the convex cone holds if the 0-level of the
fuzzy values is allowed to be unbounded (see Gil et al. [27]), as in Fc(R).

With respect to the depth-based fuzzy trimmed means, Fraiman and
Muniz [20] proved the strong consistency of the integrated data depth in
functional spaces under some conditions. They consider that each group of
functions to be analyzed in terms of the depth is obtained as a realization
of n independent and identically distributed stochastic processes with con-
tinuous trajectories defined on an interval (which they assume to be [0, 1]
without any loss of generality), X1(t), . . . , Xn(t). For every t, Ft denotes
the marginal univariate distribution function of X1(t) and Fn,t, the empiri-
cal distribution of the sample x1(t), . . . , xn(t). If J represents the space of
functions defined on the interval that take values on an arbitrary space J , it

is assumed that lim
n→∞

sup
g∈J

∣∣∣
∫ 1

0
Fn,t(g(t)) dt−

∫ 1

0
Ft(g(t)) dt

∣∣∣ = 0 almost surely.

Nagy [28] proved, in general, the uniform strong consistency of the integrated
depths in the setup of Borel measurable functions. On the other hand, the
random Tukey depth was extended to the functional case under the assump-
tion that the sample space is a separable Hilbert space and its uniform strong
consistency was shown in Cuesta-Albertos and Nieto-Reyes [7].

The following result proves the strong consistency of the depth-based
fuzzy trimmed mean in case the empirical functional depth involved in its
computation is uniformly strongly consistent.

Theorem 5.1. Let X : Ω → F2
c (R) be a random fuzzy number associated

with a probability space (Ω,A, P ) and assume that ‖sX‖θ ∈ L2(Ω,A, P ). For
any n ∈ N, let (X1, . . . ,Xn) be a simple random sample from X . Consider an
empirical functional depth FDn which uniformly converges to its population
version, FD, that is,

lim
n→∞

sup
g∈J

|FDn(g)− FD(g)| = 0 almost surely.

Then, for any trimming proportion β ∈ (0, 1) and any θ ∈ (0,∞), the depth-
based fuzzy trimmed mean estimator strongly converges in Dθ-sense (and
hence in the sense of all topologically equivalent metrics, like d2) to the pop-
ulation measure

FD-Ẽ[β] =
Ẽ(I[γ,∞)(FD(X )) · X )

E(I[γ,∞)(FD(X )))
,
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with γ ∈ (0,∞) chosen to guarantee that P (FD(X ) ∈ [γ,∞)) = 1 − β and
assuming that FD is Borel measurable and P (FD(X ) = γ) = 0. That is,

lim
n→∞

Dθ(FD-X n,β, FD-Ẽ[β]) = 0 a.s. [P ].

Proof. First, I[γ,∞)(FD(X )) · X is a random fuzzy number (see the proof
of Proposition 4.1) which is integrably bounded because it is upper bounded
by X , so its Aumann-type mean is well-defined. Since E(I[γ,∞)(FD(X ))) =

P (FD(X ) ∈ [γ,∞)) = 1− β > 0, it holds that FD-Ẽ[β] ∈ F2
c (R).

Let us see that limn→∞Dθ(FD-X n,β, FD-Ẽ[β]) = 0 a.s. [P ], where

Dθ(FD-X n,β, FD-Ẽ[β]) =

(∫

(0,1]

[(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2

+θ
(
spr (FD-X n,β)α − spr (FD-Ẽ[β])α

)2]
dα

)1/2

.

Due to the continuity of the square root function, it is enough to prove that

P

(
lim
n→∞

∫

(0,1]

[(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2

+θ
(
spr (FD-X n,β)α − spr (FD-Ẽ[β])α

)2]
dα = 0

)
= 1.

The properties of limits and integrals allow us to alternatively write the
previous expression as

P

(
lim
n→∞

∫

(0,1]

(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2
dα

+θ lim
n→∞

∫

(0,1]

(
spr (FD-X n,β)α − spr (FD-Ẽ[β])α

)2
dα = 0

)

= P

((
lim
n→∞

∫

(0,1]

(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2
dα = 0

)

⋂(
lim
n→∞

∫

(0,1]

(
spr (FD-X n,β)α − spr (FD-Ẽ[β])α

)2
dα = 0

))
.
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Let us see that the probability of these two intersected events is 1, which
ends the proof. By using the properties of the mid-point and the spread, we
get

mid (FD-X n,β)α =

∑n
i=1 I[γ,∞)(FDn(Xi)) mid (Xi)α∑n

i=1 I[γ,∞)(FDn(Xi))
,

spr (FD-X n,β)α =

∑n
i=1 I[γ,∞)(FDn(Xi)) spr (Xi)α∑n

i=1 I[γ,∞)(FDn(Xi))
,

mid (FD-Ẽ[β])α =
E[I[γ,∞)(FD(X )) midXα]

E[I[γ,∞)(FD(X ))]
,

spr (FD-Ẽ[β])α =
E[I[γ,∞)(FD(X )) sprXα]

E[I[γ,∞)(FD(X ))]
.

For any α ∈ (0, 1],

P

(
lim
n→∞

(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2
= 0

)

= P
(
lim
n→∞

∣∣∣mid (FD-X n,β)α −mid (FD-Ẽ[β])α

∣∣∣ = 0
)

= P

(
lim
n→∞

∣∣∣∣
1
n

∑n
i=1 I[γ,∞)(FDn(Xi)) mid (Xi)α
1
n

∑n
i=1 I[γ,∞)(FDn(Xi))

−
E[I[γ,∞)(FD(X )) midXα]

E[I[γ,∞)(FD(X ))]

∣∣∣∣ = 0

)
.

Notice that [20] showed the almost sure convergence of the denominator
1
n

∑n
i=1 I[γ,∞)(FDn(Xi)) to E[I[γ,∞)(FD(X ))], so the problem reduces to check

the almost sure convergence of the numerator, i.e.,

lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) mid (Xi)α −E[I[γ,∞)(FD(X )) midXα]

∣∣∣∣∣ = 0 a.s. [P ].

By the triangle inequality we have that

lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) mid (Xi)α −E[I[γ,∞)(FD(X )) midXα]

∣∣∣∣∣

≤ lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) mid (Xi)α −
1

n

n∑

i=1

I[γ,∞)(FD(Xi)) mid (Xi)α

∣∣∣∣∣
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+ lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FD(Xi)) mid (Xi)α − E[I[γ,∞)(FD(X )) midXα]

∣∣∣∣∣ .

The Strong Law for Large Numbers guarantees the almost sure convergence of
1
n

∑n
i=1 I[γ,∞)(FD(Xi)) mid (Xi)α to E[I[γ,∞)(FD(X )) midXα], so the second

term equals 0 a.s. [P ]. For dealing with the first term, we follow the ideas in
[20]. If δ is any positive number, the assumption

lim
n→∞

sup
g∈J

|FDn(g)− FD(g)| = 0 almost surely

establishes that there exists n0 ∈ N such that Sn := supg∈J |FDn(g) −
FD(g)| < δ for all n ≥ n0 almost surely. Then,

lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) mid (Xi)α −
1

n

n∑

i=1

I[γ,∞)(FD(Xi)) mid (Xi)α

∣∣∣∣∣

≤ lim
n→∞

1

n

n∑

i=1

∣∣I[γ,∞)(FDn(Xi)) − I[γ,∞)(FD(Xi))
∣∣ |mid (Xi)α|

≤ lim
n→∞

1

n

n∑

i=1

∣∣I[γ,∞)(FD(Xi) + δ)− I[γ,∞)(FD(Xi)− δ)
∣∣ |mid (Xi)α| I{Sn<δ}

+ lim
n→∞

1

n

n∑

i=1

∣∣I[γ,∞)(FD(Xi) + Sn)− I[γ,∞)(FD(Xi)− Sn)
∣∣ |mid (Xi)α| I{Sn≥δ}

by taking into account that the function I[γ,∞) is non-decreasing. The second
limit is upper bounded by limn→∞

1
n

∑n
i=1 |mid (Xi)α| I{Sn≥δ} = 0 a.s. [P ]

because limn→∞ Sn = 0 a.s. [P ]. On the other hand, by applying the Strong
Law for Large Numbers, we get

lim
n→∞

1

n

n∑

i=1

∣∣I[γ,∞)(FD(Xi) + δ)− I[γ,∞)(FD(Xi)− δ)
∣∣ |mid (Xi)α| I{Sn<δ}

= E
[∣∣I[γ,∞)(FD(X ) + δ)− I[γ,∞)(FD(X )− δ)

∣∣ |midXα|
]
a.s. [P ].

This bound is obtained for any δ > 0, so

lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

I[γ,∞)(FDn(Xi)) mid (Xi)α −
1

n

n∑

i=1

I[γ,∞)(FD(Xi)) mid (Xi)α

∣∣∣∣∣
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≤ lim
δ→0

E
[∣∣I[γ,∞)(FD(X ) + δ)− I[γ,∞)(FD(X )− δ)

∣∣ |midXα|
]
.

By the dominated convergence theorem (the function I[γ,∞) is bounded and
monotone and E[|midXα|] < ∞ due to the condition ‖sX‖θ ∈ L2(Ω,A, P )),
the latter limit is equal to 0 almost surely, which completes the proof of

P

(
lim
n→∞

(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2
= 0

)
= 1.

Finally, the sequence {mid (FD-X n,β)α}n is uniformly integrable as function
of α over (0, 1] because it is upper bounded by max{| inf X0|, | supX0|}. Thus,
the conditions to apply Vitali’s Convergence Theorem are fulfilled, whence

P

(
lim
n→∞

∫

(0,1]

(
mid (FD-X n,β)α −mid (FD-Ẽ[β])α

)2
dα = 0

)
= 1.

Analogously, it could be proven that

P

(
lim
n→∞

∫

(0,1]

(
spr (FD-X n,β)α − spr (FD-Ẽ[β])α

)2
dα = 0

)
= 1. �

Figure 2 shows the maxbias curve of the empirical fuzzy trimmed mean
and the depth-based fuzzy trimmed means listed in Section 4. The maxbias
curve is a plot of MB ̂̃

T
(ε, ϑ) as a function of ε, that is, the maxbias an

estimator can present when a fraction ε of the data is contaminated. The
great difficulties that the exact computation of the maxbias implies are the
reason why this problem has only been solved for a limited number of esti-
mators in the classical settings. The usual way to handle the maxbias in the
literature consists of giving an empirical approximation, which establishes a
lower bound for the real value of the maxbias. Following the simulation de-
sign by Sinova and Van Aelst [5], the maxbias curves have been empirically
approximated by the following steps:

Step 1. For each of the different situations, 1000 samples of 1000 trapezoidal
fuzzy number-valued data have been simulated from a random fuzzy
number X as in Case 1 (noncontaminated subsample) of Section 5.1.

Step 2. The population location measures (the empirical fuzzy trimmed mean
and the depth-based fuzzy trimmed means w.r.t. Fraiman and Mu-
niz’s depth with the original univariate depth, the Tukey depth and
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the simplicial depth, the random Tukey depth and the random pro-
jection depth with trimming proportion .5) have been approximated
by Monte Carlo simulation using the samples from Step 1.

Step 3. A fraction ε of contamination (also denoted by cp by analogy with
Section 5.1) has been generated. In this sense, we have distinguished
four different scenarios:

Scenario 3.1 Contaminated data are real-valued and we study the effect
of point contamination at any point CD, where CD ranges in
{0, 100, 200, 300, 400, 500}.

Scenario 3.2 Contaminated data are the translation of the population Aumann-
type mean, Tra(−2,−1, 1, 2), with CD units.

Scenario 3.3 Contaminated data are the population Aumann-type mean
times the factor CD.

Scenario 3.4 Contaminated data are fuzzy numbers generated as in Case
1 (contaminated subsample) of Section 5.1.

Step 4. For each scenario of Step 3 and each value of CD, the population lo-
cation measures have been approximated by Monte Carlo simulation
using the contaminated samples from Step 3.

Step 5. For each scenario of Step 3 and each value of CD, the D1/3 distances
between the noncontaminated and the contaminated approximated
population measures have been computed. Then, the maximum D1/3

distance for each location measure has been computed over the four
scenarios and all values of CD.

Step 6. The interval [0, .49] has been partitioned in 10 equidistant parts and
for each of the resulting 11 equidistant points, cp, Steps 1-5 have
been repeated. Finally, the maximum D1/3 distances from Step 5
have been plotted versus the corresponding value of cp in Figure 2.

The main conclusion that we can draw from Figure 2 is that the maxbias
curves of the depth-based fuzzy trimmed means and the empirical fuzzy
trimmed mean with β = .5 completely differ. Whereas the latter maxbias
is scarcely affected by the contamination and the empirical fuzzy trimmed
mean with β = .5 can tolerate up to 50% of contamination, the behaviour of
the considered depth-based fuzzy trimmed means seems not to withstand any
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Figure 2: Maximum asymptotic biases of the empirical fuzzy trimmed mean (EFTM)
and the depth-based fuzzy trimmed means w.r.t. Fraiman and Muniz’s depth computed
with the original univariate depth (FM-DTM), with the Tukey depth (T-DTM) and with
the Liu depth (L-DTM), the random Tukey depth (RT-DTM) and the random projection
depth (RP-DTM) with trimming proportion .5 as a function of cp. The plot at the bottom
shows the maxbias of the empirical fuzzy trimmed mean in detail.
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contamination proportion. If we enlarge the graph, we will be able to detect
some differences between the fuzzy trimmed mean based on the random pro-
jection depth and the empirical fuzzy trimmed mean even for contamination
proportions smaller than .1 (see Figure 2 bottom).

Why is this approach working so poorly in practice? The answer is
in the use of functional depths to measure the centrality of fuzzy num-
bers. Notice that two fuzzy numbers as different as the ones shown in
Figure 3, Tra(−.7383,−.2316,−.1678, .4500) (generated from the noncon-
taminated distribution) and Tra(498, 499, 501, 502) (generated from the con-
taminated distribution of Scenario 3.2 ), are almost indistinguishable as real-
valued functions defined on an interval that contains, at least, the interval
[−.7383, 502].
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Figure 3: Fuzzy numbers Tra(−.7383,−.2316,−.1678, .4500), in black, and
Tra(498, 499, 501, 502), in grey, as real-valued functions defined on [−100, 600].

For this reason, functional depths fail to evaluate how deep a fuzzy num-
ber lies in the data cloud generated in the simulation study. To illustrate
this with an example, let us remind that the idea of Fraiman and Muniz’s
depth is to measure how long a curve remains in the middle of a sample.
When the noncontaminated and the contaminated fuzzy numbers lie as far
as in Figure 3, all of them vanish at most of the domain determined by their
0-levels, which means that they coincide at many points and, therefore, they
almost always remain in the middle of the sample. Consequently, their depth
is going to be very similar. Figure 4 represents the depths of a data set ob-
tained from Scenario 3.1 with cp = .147 and CD = 500, and it can be seen
that they are all concentrated in [.500, .507].
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Figure 4: Fraiman and Muniz’s depths for all the data from a sample generated from
Scenario 3.1 with cp = .147 and CD = 500.

The previous conclusions motivate the search for a depth function ex-
pressly defined for fuzzy numbers. As far as the authors know, this idea has
not been considered in the literature yet, but its potential interest and impli-
cations in, for instance, the study of the central tendency of fuzzy number-
valued data are irrefutable.

6. A depth for fuzzy numbers: the basis of the second approach

Now we will propose a depth function for fuzzy numbers, which will be
used in the computation of a new depth-based fuzzy trimmed mean in order
to avoid the issues explained in the previous section. As mentioned before,
functional depths failed to detect which fuzzy numbers lie far from the ‘centre’
of the data set because those fuzzy numbers with a very different 0-level are
indeed very similar as real-valued functions defined on a common domain. For
this reason, it seems more natural to measure the depth in terms of a distance
between fuzzy numbers, which really takes into account that fuzzy numbers
with a very different 0-level are not close. The depth of a fuzzy number
should become smaller as it lies further from the ‘centre’. We consider the
Dθ metric for this work, but other choices are, of course, plausible.

Definition 6.1. Given a random fuzzy number X and a fixed value θ ∈
(0,∞), the Dθ-depth of Ṽ ∈ F2

c (R) with respect to the distribution of X is
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given by

DDθ(Ṽ ;X ) =
1

1 + E[Dθ(X , Ṽ )]
.

Given a simple random sample from X , (X1, . . . ,Xn), the empirical Dθ-

depth of Ṽ is given by

DDθ,n(Ṽ ; (X1, . . . ,Xn)) =
1

1 + 1
n

∑n
i=1Dθ(Xi, Ṽ )

.

By simplicity, we will use the notation DDθ,n(Ṽ ) when no confusion is
possible. This proposal is coherent with the general structure for the con-
struction of statistical depth functions established in Zuo and Serfling [29]
(see the information about the Type B depths and, in particular, the Lp

depths). Let us see that the Dθ-depth fulfills some convenient properties.

Proposition 6.1. Let X be a random fuzzy number and Ṽ ∈ F2
c (R). The

Dθ-depth satisfies the following conditions:

• Nonnegativity and boundedness by 1: 0 ≤ DDθ(Ṽ ;X ) ≤ 1.

• Translation and rotation invariance: DDθ(Ṽ +Ũ ;X+Ũ) = DDθ(Ṽ ;X )

for any Ũ ∈ F2
c (R) and DDθ((−1) · Ṽ ; (−1) · X ) = DDθ(Ṽ ;X ).

• Centre: The centremost element is Ṽ0 ∈ F2
c (R) such that E[Dθ(X , Ṽ0)] =

minṼ ∈F2
c (R)

E[Dθ(X , Ṽ )] if this minimum exists. In particular, the cen-
tremost element of a random fuzzy number whose distribution is degen-
erate at Ṽ is Ṽ , and its depth equals 1.

• Monotonicity relative to the deepest point: for any random fuzzy num-
ber X having a unique deepest value Ṽ0, it holds that DDθ(Ṽ ;X ) ≤

DDθ(Ũ ;X ) for any Ũ ∈ F2
c (R) such that E[Dθ(X , Ṽ0)] ≤ E[Dθ(X , Ũ)] ≤

E[Dθ(X , Ṽ )].

• Vanishing at infinity: DDθ(Ṽ ;X ) → 0 as E[Dθ(X , Ṽ )] → ∞, for each
random fuzzy number X .

Proposition 6.1 can be proved straightforwardly thanks to the Dθ metric’s
properties. Notice that the centremost element with respect to the Dθ-depth
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is a notion of fuzzy median that is yet to be analyzed, and extends the dθ-
median of a random interval [30] to random fuzzy numbers. With respect to
the second property of Proposition 6.1, the desirable condition mentioned in
Zuo and Serfling [29] is stronger. Although the affine invariance does not hold
for the Dθ-depth in general, it is possible to define a modified version that
fulfills it. Let X be a random fuzzy number associated with a probability
space (Ω,A, P ) such that ‖sX‖θ ∈ L2(Ω,A, P ). Taking into account that,

for any a ∈ R and Ũ ∈ F2
c (R), σ

2
a·X+Ũ

= a2σ2
X (see e.g. Blanco-Fernández et

al. [31]), the modified version of the Dθ-depth would be

DD∗
θ(Ṽ ;X ) =

1

1 + E
[
Dθ(X ,Ṽ )

σX

] ,

with σX =
√
σ2
X the standard deviation of X .

The following result proves the strong consistency of the empirical Dθ-
depth.

Proposition 6.2. Let X be a random fuzzy number associated with a prob-
ability space (Ω,A, P ) such that ‖sX‖θ ∈ L2(Ω,A, P ). Let (X1, . . . ,Xn) be a

simple random sample obtained from X . For any Ṽ ∈ F2
c (R), it holds that

DDθ,n(Ṽ ) −→
n→∞

DDθ(Ṽ ;X ) a.s. [P].

Proof. Let Ṽ be any (fixed) element of F2
c (R). Since (F

2
c (R), Dθ) is a metric

space, the function

Y : F2
c (R) −→ R

Ũ 7−→ Y (Ũ) := Dθ(Ũ , Ṽ )

is continuous. Consequently, the composition Z = Y ◦ X is a real-valued
random variable defined for each ω ∈ Ω as follows

Z : Ω −→ R

ω 7−→ Z(ω) = Y (X (ω)) = Dθ(X (ω), Ṽ ).

Under the assumption ‖sX‖θ ∈ L2(Ω,A, P ), it is possible to apply the Strong
Law for Large Numbers and conclude that

1

n

n∑

i=1

Dθ(Xi, Ṽ ) −→
n→∞

E[Dθ(X , Ṽ )] a.s. [P].
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Therefore, the denominator of DDθ,n(Ṽ ) converges almost surely to the de-

nominator of DDθ(Ṽ ;X ) and it is guaranteed that

DDθ,n(Ṽ ) −→
n→∞

DDθ(Ṽ ;X ) a.s. [P].

�

A new notion of depth-based fuzzy trimmed mean can be stated in terms
of the Dθ-depth.

Definition 6.2. Let X : Ω → F2
c (R) be a random fuzzy number associated

with a probability space (Ω,A, P ) and, for any n ∈ N, let (X1, . . . ,Xn) be a
simple random sample from X . Given a trimming proportion β ∈ (0, 1), the
Dθ-depth-based fuzzy trimmed mean estimator is defined as

DDθ-X n,β =

∑n
i=1 I[γ,∞)(DDθ,n(Xi)) · Xi∑n

i=1 I[γ,∞)(DDθ,n(Xi))
,

with
1

n

n∑

i=1

I[γ,∞)(DDθ,n(Xi)) ≃ 1− β.

Analogous simulations to the ones considered in Section 5 have been
developed for the comparison of the empirical fuzzy trimmed mean and the
Dθ-depth-based fuzzy trimmed mean, in order to show that the new measure
is a very competing alternative.

First, we conclude from Table 3 that in some situations the Dθ-depth-
based fuzzy trimmed mean even improves the mean square error achieved by
the empirical fuzzy trimmed mean. Regarding the maxbias, in Figure 5 we
can see that the behaviour of both estimators is very similar except from the
value cp = .49 considered in the simulation study. In this latter case, there is
a high percentage of contaminated data, which may be very concentrated (for
instance, their variance equals zero in Scenario 3.1 ) and, therefore, present a
lower depth than some noncontaminated data (whose variance never vanishes
in this simulation study). Anyway, when the contamination proportion is .5,
the empirical fuzzy trimmed mean is neither capable of distinguishing which
half of the data is contaminated.

In summary, the empirical results are very promising for the Dθ-depth-
based fuzzy trimmed mean. Additionally, the algorithmic computation of
this new location measure is faster than that of the empirical fuzzy trimmed
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Table 3: Mean square error and, in brackets, its standard deviation for the empirical
fuzzy trimmed mean (EFTM) and the Dθ-depth-based fuzzy trimmed mean (Dθ-DTM)
with trimming proportions .2 and .45. In bold, the minimum mean square error in each
situation of the independent and the dependent cases.

Independent Dependent
cp CD EFTM (β = .2) Dθ-DTM (β = .2) EFTM (β = .2) Dθ-DTM (β = .2)

0 0 .03104 (.03497) .06123 (.03680) .02521 (.02990) .04346 (.02411)

.1 0 .03447 (.03724) .04408 (.03603) .02664 (.03548) .04135 (.02917)

.1 1 .03130 (.03297) .04450 (.03668) .02918 (.03664) .05534 (.03386)

.1 5 .02718 (.02599) .04435 (.03553) .02657 (.03322) .04118 (.03685)

.1 10 .02801 (.03192) .04717 (.03711) .02366 (.03215) .03935 (.03326)

.1 100 .02911 (.03061) .04658 (.03644) .02314 (.02684) .04023 (.03264)

.2 0 .05058 (.04346) .03316 (.03353) .02879 (.03432) .03815 (.02814)

.2 1 .05343 (.04812) .03555 (.03858) .03717 (.03611) .08332 (.04388)

.2 5 .05531 (.04653) .03791 (.03931) .02479 (.02288) .02941 (.03252)

.2 10 .06294 (.05066) .03226 (.03200) .02447 (.02323) .02379 (.02573)

.2 100 .06930 (.05076) .03188 (.03311) .02449 (.02062) .02339 (.02342)

cp CD EFTM (β = .45) Dθ-DTM (β = .45) EFTM (β = .45) Dθ-DTM (β = .45)

.4 0 .10444 (.08932) .06297 (.05776) .05398 (.08345) .11968 (.06285)

.4 1 .09284 (.08053) .09192 (.09880) .10209 (.09797) .26592 (.11718)

.4 5 .07806 (.06275) .13844 (.14114) .06880 (.05479) .20188 (.17369)

.4 10 .07730 (.05696) .08953 (.09336) .06598 (.04740) .15375 (.11830)

.4 100 .07668 (.05648) .07461 (.06846) .06796 (.04754) .13631 (.09598)

mean considered in Sinova et al. [2], which uses some different starting points
and repeats the initial steps several times in order to try to avoid that any
local minimum traps the iterative process.

7. Concluding remarks

Trimmed means defined on the basis of a depth function have been
adapted for dealing with fuzzy number-valued data by following two different
approaches: the evaluation of a functional depth on the expression of fuzzy-
valued observations as functions, and the introduction of a novel depth for
fuzzy numbers, which has been motivated by the poor empirical performance
of the depth-based fuzzy trimmed means obtained from the first approach.
The fuzzy trimmed mean corresponding to the second approach has shown
very promising empirical results and arises as a competing alternative when
summarizing the central tendency of fuzzy number-valued data sets.
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Figure 5: Maximum asymptotic biases of the empirical fuzzy trimmed mean (EFTM) and
the Dθ-depth-based fuzzy trimmed mean with trimming proportion .5 as a function of cp.

As future research lines, the simulation study could be extended to an-
alyze fuzzy numbers from a given bounded referential (as happens with the
fuzzy rating scale), to apply depths to support functions instead of fuzzy
numbers directly and to compare depth-based medians with fuzzy medians
and M-estimators. More ad hoc depth measures for fuzzy data could also
be proposed and a careful study of which interesting properties they fulfill
should be tackled, including a deeper view of the mathematical properties
of the (functional) depth considered for the first approach as well. Regard-
ing the Dθ-depth, some other properties like the uniform strong convergence
should be analyzed.
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