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Abstract

In 1985, Gabidulin introduced the rank metric in coding theory over finite fields, and used this kind of
of codes in a McEliece cryptosystem, six years later. In this paper, we consider rank metric codes over
Galois rings. We propose a suitable metric for codes over such rings, and show its main properties. With
this metric, we define Gabidulin codes over Galois rings, propose an e�cient decoding algorithm for them,
and hint their cryptographic application.
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1. Introduction

The notion of error correcting codes was presented by Shannon in [11] as an e↵ective method to improve
communication through a noisy channel. Their applications, however, go beyond this. In fact, coding
theory is also used for cryptographic purposes, e.g., encrypting a codeword by encoding and decoding to
retrieve it, while keeping the code secret [10].

Initially, only linear subspaces over finite fields Fq were considered to represent codes, while the
Hamming distance between codewords, i.e., the number of components in which they di↵er, was considered
as the metric. However, in 1970, Gabidulin proposed a new family of codes [4]. These codes were also
linear subspaces over finite fields, but the rank metric was considered, instead of the Hammming distance.
Unfortunately, these codes are nowadays discarded for their use in the McEliece cryptosystem [5] [7].

On the other hand, the concept of linear codes has been generalized multiple times to submodules over
finite rings (see [3] or [8]). Inspired by the cryptographic applications, in this paper we will define a rank
metric distance over residual integer rings and define the Galois ring analogs to the Gabidulin codes. The
metric can be directly connected to the cardinal of the codes considered, and so we call it cardinal rank
metric.

In section 2 of this paper, we give a quick preview of some notions of rank metric codes. In section 3,
we introduce the notion of cardinal rank metric over residual integer rings and prove some of its properties.
In section 4, we define cardinal rank metric and MCRD codes, and generalizations of Gabidulin codes are
presented in the final section.

2. Preliminaries

The rank metric over finite fields is defined as follows.

Definition 1 (Rank metric). Let q be a power of a prime number, and m,n 2 N. The rank weight of an
element x = (x1, . . . , xn) 2 Fn

qm is defined as

wR(x ) = rankx = dimFq hx1, . . . , xni,

where Fqm is seen as an m-dimensional Fq-vector space, and h·i denotes Fq-linear closure. Moreover, the
rank distance between two elements x ,y 2 Fn

qm is defined as dR(x ,y) = wR(x � y).

⇤
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Using this definition of rank metric, Gabidulin proposed the following linear codes in [4].

Definition 2 (Gabidulin codes). Let q be a power of a prime number p, m, k, n 2 N such that k  n,
and g 2 Fn

qm . The Gabidulin code of length n, dimension k and parameter g over Fqm is defined as

GabFqm
(n, k, g) = {(f(g1), f(g2), . . . , f(gn)) | f(X) 2 Pk(Fqm)} ,

where

Pk(Fqm) =

(
k�1X

i=0

piX
p
i

| pi 2 Fqm , i = 0, . . . , k � 1

)
.

It can be shown that the dimension of a Gabidulin code is k. Moreover, they are in fact maximum
rank distance (MRD) codes, i.e., they attain the largest minimum distance d = n�k+1. This implies the
ability to detect up to n� k rank errors and correct up to bn�k

2 c. A generator matrix for the Gabidulin
code GabFpm

(n, k, g) is

0

BBBB@

g1 gp1 gp
2

1 . . . gp
k�1

1

g2 gp2 gp
2

2 . . . gp
k�1

2
...

...
...

. . .
...

gn gp
n

gp
2

n
. . . gp

k�1

n

1

CCCCA
.

In the next section we generalize these concepts to a Galois ring E = GR(prh, pr), i.e., E is a degree
h extension of the residual integer ring R = Z/prZ. In this ring, the set

�(E) = {a 2 R | ap
h

= a}

is called the Teichmüler coordinate set of E. This set contains a complete set of representatives of
additive cosets mod p, is multiplicatively closed, and it is a field isomorphic to Fph with respect to the

usual multiplication and the addition a � b 2 �(E) such that a+ b = a� b for all a, b 2 �(E), where ·
denotes the projection of E onto E/pE ⇠= Fph . This set allows us to write a p-adic decomposition of the
elements of E. In fact, for every x 2 E, there exist unique x0, . . . , xr�1 2 �(E) such that

x = x0 + px1 + · · ·+ pr�1xr�1.

We denote each coordinate of x as xi = �i(x) for every i = 0, . . . , r � 1.
Since the direct product of copies of R forms an R-free module, every R-module homomorphism

f : Rm ! Rn can be associated with an n ⇥ m sized matrix. We will be using some properties of
equivalence of matrices over R. The set of all n⇥m sized matrices over R will be denoted by Mn,m(R).

Definition 3. We say two matrices A,B 2 Mn,m(R) are equivalent if they can be associated with the
same R-module homomorphism f : Rm ! Rn.

Due to Rn and Rm being free modules, we can use change of basis matrices to prove that two matrices
A,B 2 Mn,m(R) are equivalent if and only if there exist P 2 GLn(R) and Q 2 GLm(R) such that
B = PAQ. It can also be proved that every matrix A is equivalent to its Smith normal form, i.e., that
there exist unique k0, . . . , kr�1 2 N [ {0} such that A is equivalent to the diagonal matrix

0

BBBBBBB@

Ik0

pIk1

p2Ik2

. . .
pr�1Ikr�1

0

1

CCCCCCCA

, (1)

where 0 denotes the zero matrix of size (n�
P

r�1
i=0 ki)⇥ (m�

P
r�1
i=0 ki) and Ik the k⇥ k identity matrix.
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3. Cardinal rank metric

Our definition of a rank metric over Galois rings shall generalize the concept of rank distance in codes
over finite fields. We will introduce a weight function in GR(prh, pr)n such that, if we consider r = 1 and
compute the weight of an element, the result is exactly the same as with Definition 1. As we shall see,
properties of this definition are directly connected to the cardinal of R-submodules of Rn, and so it will
be called cardinal rank weight.

3.1. Cardinal rank of matrices over residual integer rings

First of all, let us define the rank weight of a matrix over R, inspired by the rank of matrices over
finite fields. Let us consider a matrix A 2 Mn,m(R) and denote by MA the R-submodule generated by
the columns of A. As a generalization of the concept of rank over finite fields, we want rankA to satisfy
the following properties.

(R1) Two equivalent matrices have the same rank.

(R2) The rank of A is 0 if and only if A is the zero matrix, i.e., rankA = 0 if and only if MA = 0.

(R3) The rank is always non-negative, i.e., rankA � 0.

(R4) The rank of a block diagonal matrix is the sum of the ranks of each block, i.e., if MA = MB ⇥MC

(where ⇥ denotes the external direct product) for some matrices B and C, then rankA = rankB +
rankC.

(R5) If MA ✓ MB , then rankA  rankB.

(R6) If MA is a free module of rank k, then rankA = k.

If we want to preserve properties (R1)� (R6), our rank function must take the following form.

Proposition 1. Let n,m 2 N and rank : Mm,n(R) ! R. Then rank(·) satisfies properties (R1)� (R6) if
and only if there exist 0 < �r�1  · · ·  �1  1 such that for any A 2 Mm,n(R) of Smith normal form (1)

rankA = k0 +
r�1X

i=1

�iki.

Proof. First, a rank satisfies (R1) if and only if the rank of a matrix depends only on its Smith normal
form. Dividing this form into blocks, by (R4), the rank function has the form

rankA =
r�1X

i=0

�iki,

where �i = rank
�
pi
�
. Property (R6) is satisfied if and only if �0 = 1, and from (R2) and (R3), it

follows that �i > 0 for every i = 0, . . . , r � 1. Finally, (R5) is true if and only if �i  �i�1 for every
i = 1, . . . , r � 1.

With these axioms in mind, we present the following rank function, in connection to the cardinal of
the submodule MA generated by the columns of A.

Definition 4. Let n,m 2 N and A 2 Mn,m(Z/prZ). We define the cardinal rank of A as

rankA = log
pr |MA|.

In fact, this function satisfies the conditions we wanted.

Proposition 2. The cardinal rank function from Definition 4 satisfies conditions (R1)-(R6).
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Proof. Let A have the Smith normal form (1). Then, the cardinal of the module generated by the
columns of the Smith normal form of A is exactly (pr)k0(pr�1)k1 . . . pkr�1 . From Definition 4, rankA =P

r�1
i=0

r�i

r
ki = k0 +

P
r�1
i=1 �iki, with �i =

r�i

r
, for all i = 1, . . . , r � 1. So, because 0  �r  · · ·  �1  1,

we conclude that, by Proposition 1, it satisfies conditions (R1)-(R6).

Remark. With our definition of cardinal rank, the converse of (R1) is not true in general. Unlike the case
of matrices over fields, two matrices of the same size over residual integer rings with the same rank need
not be equivalent. For example, we consider the following matrices over Z/4Z

A =

✓
2 0 0
0 2 0

◆
, B =

✓
1 0 0
0 0 0

◆
.

Both A and B have the same size and rank 1. However, if A and B were equivalent, we would be able to
get A by making elementary invertible transformations on the rows and columns of B, which is not true,
as they are their own Smith normal forms and A 6= B.

Corollary 1. Let n,m 2 N and A 2 Mn,m(R). Then, rankA> = rankA.

Proof. The cardinal rank of A is exactly the cardinal rank of its Smith normal form S(A). It is straight-
forward that rankS(A) = rankS(A)>, so from (R1) we conclude that rankA = rankA>.

Remark. As a consequence of Corollary 1, we have that Definition 4 of cardinal rank can be given in terms
of columns or rows.

Let us prove the triangle inequality for the matrix cardinal rank weight.

Lemma 1. Let n,m 2 N and A,B 2 Mn,m(R). Then,

rank(A+B)  rankA+ rankB.

Proof. Since the intersection between MA and MB need not be zero, we have

|MA +MB |  |MA ⇥MB | = |MA||MB |.

Moreover, since the columns of A + B belong to the module MA + MB , it follows that MA+B is a
submodule of MA +MB . Hence, |MA+B |  |MA||MB |. Taking the logarithms yields the result.

As a consequence of Lemma 1, the cardinal rank weight defines a distance over the matrix ring
Mm,n(R).

Theorem 1. Let n,m 2 N and d : Mn,m(R)⇥Mn,m(R) ! R such that d(A,B) = rank(A�B). Then, d
is a metric over the ring Mn,m(Z/prZ).

Proof. Let A,B 2 Mn,m(R). First, note that the cardinal rank application is always positive or zero, so
d(A,B) � 0. Moreover, d(A,B) = 0 if and only if 0 = rank(A � B) = log

pr |MA�B |, which happens if
and only if A � B = 0. Furthermore, since �1 is a unit in the ring, MC = M�C for all C 2 Mm,n(R),
and therefore d(A,B) = rank(A�B) = rank(�(A�B)) = d(B,A). Finally, by Lemma 1,

d(A,B) = rank(A�B) = rank(A� C + C �B)

 rank(A� C) + rank(C �B) = d(A,C) + d(C,B),

for all C 2 Mn,m(R).
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3.2. Cardinal rank metric over Galois rings
We can extend the notion of a rank weight to n-tuples of elements of the Galois ring E. In fact, if

we consider an R-basis of the free module En, any tuple x = (x1, . . . , xn) of this kind can be written
as a matrix whose i-th column is given by the coordinates of xi with respect to the chosen basis, for
i = 1, . . . , n.

Definition 5. Let n 2 N and B be a basis of the free E-module En, and x 2 En. We define the matrix
associated to x with respect to B, denoted MB(x ) 2 Mh,n(R), as the matrix formed by the coordinates
(x1i, . . . , xhi)B of x as columns, for i = 1, . . . , n.

Remark. Note that, given a basis B of E, then the map MB : En ! Mh,n(R) is R-linear, i.e., MB(↵x +
�y) = ↵MB(x ) + �MB(x ) for all ↵,� 2 R and x ,y 2 En.

Using this bijection, we can easily define the following metric.

Definition 6. Let B be a basis of the free R-module E. Then, we define the cardinal rank of an element
x 2 E as rankB x = rankMB(x ) and the cardinal rank distance dR : En ⇥ En ! R as dBR(x ,y) =
d(MB(x ),MB(y)) = rank(x � y), where d is the matrix cardinal rank distance defined in Theorem 1.

Remark 1. Note that, by Theorem 1, d is a distance, so dBR is also a distance over En.

Theorem 2. The cardinal rank distance dBR in Definition 6 is independent of the choice of B.

Proof. Let B1 and B2 be two R-bases of E, and z = (z1, . . . , zn) 2 En. Let Q be the invertible change of
basis matrix between B1 and B2. Then, for every zi = (zi1, . . . , zih)B1 = (z0

i1, . . . , z
0
ih
)B2 , we have

Q(zi1, . . . , zih)
> = (z0

i1, . . . , z
0
ih
).

Thus, there exists an invertible matrix Q such that MB2(z ) = QMB1(z ). Hence, MB2(z ) and MB1(z ) are
equivalent matrices and therefore, by (R1), they have the same rank, concluding that the cardinal rank
of an element does not depend on the chosen basis. Moreover, if we consider x ,y 2 En, then, since both
MBi maps are linear,

dB2
R (x ,y) = rank(MB2(x )�MB2(y)) = rankMB2(x � y)

= rankMB1(x � y) = rank(MB1(x )�MB1(y))

= dB1
R (x ,y).

Notation. From now on, for the sake of simplicity, we will denote the cardinal rank of an element x 2 En

as rankx , and the cardinal rank distance between x ,y 2 En as d(x ,y), since they do not depend on the
chosen basis of En. Furthermore, we will simply write a matrix associated to the element x 2 E as M(x ),
assuming we are always computing this matrix with respect to the same basis.

Comparing the cardinal rank weight we have defined with the one over finite fields, we have the
following result.

Proposition 3. The cardinal rank of an element x 2 E is greater or equal than the rank of its projection
x over E/pE ⇠= Fph .

Proof. Since both the ring and projection field cardinal rank metrics do not depend on the chosen basis for
the corresponding space, we choose B = {b1, . . . bh} an R-basis for E and B the corresponding Fpr -basis of
E/pE ⇠= Fprh . Then, �1b1 + · · ·+ �hbh = �1b1+· · ·+�hbh for any choice of the coe�cients �1, . . . ,�h 2 R.

Thus, MB(x ) = MB(x ) and therefore rankx = log
pr |MMB(x)| � log

pr |MMB(x)| � log
p
|MMB(x)|. This

MMB(x) submodule is actually a linear subspace, and the p-logarithm of its cardinality is exactly the rank
of x from Definition 1.

Remark. In coding theory, given a subset A ✓ En one may wonder what the minimum weight of its
nonzero elements is. This number is called the minimum weight of A and is denoted by w(A), However,
Proposition 3 does not imply that w(A) � w(A). In fact, there may exist x 2 A such that x = 0 but
x 6= 0 and rankx  w(A). We will study these properties in Section 4.1.
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3.3. Comparison with other metrics

As we have seen in the previous section, defining a rank metric in En can be reduced to giving a rank
of matrices of size h ⇥ n over R. In the literature, there have been other proposals for the definition
of rank of matrices over residual integer rings R. In Section IV of [2], for instance, a rank function is
given over arbitrary commutative rings. In the particular case of residual integer rings, the rank function
corresponds to rankA, where A denotes the matrix formed by the projections of the entries of A 2 Mh,n(R)
over R/pR ⇠= Fp, and rank(·) is the cardinal rank introduced in this paper.

Observe that this definition generalizes the usual rank over matrices over finite fields, and it verifies
some of the properties given in the previous section. However, this weight does not satisfy condition (R2),
and therefore does not define a metric d1(A,B) = rank1(A�B) over Mh,n(R). Let us illustrate this with
an example.

Example 1. We consider the following matrices over Z/4Z

A =

✓
1 1 0
1 0 0

◆
, B =

✓
3 3 0
3 0 0

◆
.

Then, d1(A,B) = rank1(A�B) = rank0 = 0, but A 6= B.

This rank weight function was also proposed by Kamche and Mouaha in [8], despite noticing that it
does not define a true metric. Kamche and Mouaha also propose the following matrix weight, for a matrix
A with Smith normal form (1).

rank2 A =
r�1X

r=0

ki.

Proposition 1 shows that this rank satisfies properties (R1)-(R6), and [8] also shows that rank2 defines a
metric d2 over En. However, while it does have the interesting applications shown in [8], does not seem
to work as well as our proposed metric from a cryptographic point of view. In fact, let N(k0, . . . , kr�1)
denote the set of matrices of a fixed size m⇥ n whose Smith normal form is (1). Then, if we consider the
balls of radius t < n, denoted by B(0, t) for our metric and B2(0, t) for the rank2 metric, we have

B(0, t) =
X

St

STn

N(k0, . . . , kr�1) >
X

STt

N(k0, . . . , kr�1) = B2(0, t),

where S =
P

r�1
r=0

r�i

r
ki and ST =

P
r�1
r=0 ki.

This means that there exist more words in a ball of the same radius in our metric and so, in particular,
there exist more words of low weight in En with the rank from Definition 6 than with the rank2 of [8].
In the same line of thought as [4], this might suggest that the cardinal rank decoding problem might be
more di�cult in our setting, than with the rank2 metric, because the number of potential supports of a
bounded size is bigger. On the other hand, specific structural attacks for this kind of cardinal rank metric
codes might weaken a McEliece-cryptosystem based on them. The existence of this kind of attacks is far
beyond the scope of this paper, and we leave it as future work.

Moreover, the cardinal rank metric satisfies that, besides (R5), if MA ( MB , then rankA < rankB,
from the strictly decreasing choices for �i’s in Proposition 1.

Finally, we compare this rank with the Hamming weight over En. If we count the number of words
in En of weight t, it results in a total of

�
n

t

�
(prh � 1) words. This is the result of choosing the nonzero

position of the words and the elements in E that can fill the rest of the components, i.e., the number of
nonzero elements of E. With our metric, we observe that the number of elements of rank t is

X

S=t

N(k0, . . . kr�1).

Since a concrete expression of this number is cumbersome, we will give a bound for N(t, 0, . . . , 0), which
is, by Proposition 1, part of the sum for any rank metric over En satisfying conditions (R1)-(R6).
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h d |B(0, d)| |B2(0, d)| |BH(0, d)| h d |B(0, d)| |B2(0, d)| |BH(0, d)|

2
0 1 1 1

5
1 1 1 1

1 88 82 31 1 6976 6046 2047
2 268 202 241 2 1049568 961218 1047553

3
0 1 1 1

6
1 1 1 1

1 400 358 127 1 28288 24382 8191
2 4152 3186 4033 2 16781248 16035202 16773121

4
0 1 1 1

7
1 1 1 1

1 1696 1486 511 1 113920 97918 32767
2 65776 55906 65281 2 268451712 262322946 268419073

Table 1: A comparison of the balls of di↵erent metrics for extensions of degree h of Z/4Z. Here, BH(0, d) denotes the ball

of radius d with the Hamming metric.

In order to fix the elements x 1, . . . ,xn 2 E of A, let us choose first a free module MA of rank t.
There are exactly

⇥
n

t

⇤
p
ways to fix the projection MA

⇠= Ft

p
, where

⇥
n

t

⇤
p
denotes the Gaussian binomial

coe�cient. In order to fix x 1, . . . ,x t, we compute the number of possible ordered bases for Ft

p
, which is

P =
Q

t�1
i=1(p

t � pi). Besides, once fixed x i, we can choose x i in p(r�1)h di↵erent ways, which gives us a
total of

p(r�1)htP


n

t

�

p

possible ordered choices for the linearly independent columns of A. If we add n � t dependent columns
in MA to fill A and take into account the

�
n

t

�
possible choices for the free columns of A, there are more

than

p(r�1)ht

✓
n

t

◆
n

t

�

p

P

possible elections for A, which is a way larger number than the result obtained with the Hamming weight.

A comparison of the cardinal of the balls of our cardinal rank metric with those of the metrics men-
tioned in this section can be seen in Table 1, for n = 2 and di↵erent extensions of Z/4Z. As we have
mentioned, computations for higher values of n are tricky, but the di↵erence between the metrics is bigger
when n is a larger number.

Summarizing, from a cryptographic point of view, the cardinal rank might yield harder instances of
the syndrome decoding problem than with the other metrics mentioned in this section. However, as
mentioned, the actual security of those cryptographic schemes is yet to be proven and is left for future
work.

4. Cardinal rank metric codes over Galois rings

4.1. Definition and properties

Let us begin this section with a simple definition of cardinal rank metric codes over En.

Definition 7. Let n 2 N. A cardinal rank metric code C of length n over a Galois ring E is a submodule
of the E-module En. If this submodule is free, then C is said to be a free cardinal rank metric code.

As with linear rank metric codes over Fqh , we can just take the minimum rank of codewords, as the
minimum distance of the code.

Lemma 2. Let C be a cardinal rank distance code over a Galois ring. Then, its minimum distance d(C)
satisfies

d(C) = min
x2C\{0}

rankx.
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Proof. It is straightforward. In fact,

d(C) = min{dR(x ,y) | x ,y 2 C,x 6= y}
= min{rank(x � y) | x ,y 2 C,x 6= y}
= min

x 6=0,x2C
rankx .

In order to give a proper bound to the minimum distance of cardinal rank metric codes, we prove the
following lemmas.

Lemma 3. Let U = {ui}ki=1 ✓ En be a linearly independent set over E and M = hu | u 2 Ui the linear
E-closure of U . Then, M \ (pj) = hpju | u 2 Ui for all j 2 N [ {0}, where (pj) = (pjE)n.

Proof. The inclusion hpju1, . . . pjuki ✓ M \ (pj) is straightforward. Let us prove the converse. Let
{u1, . . . , uk, uk+1, . . . , un} be a basis of the free E-module En. Observe that the extension of U to an
E-basis of En can be done via Nakayama’s lemma, since E is a local ring. Note that if we take an element
u of M \ (pj), then u can be written as both pj�1u1 + . . . pj�nun 2 (pj) and µ1u1 + . . . µnuk 2 M , for
some �1, . . . ,�n, µ1, . . . , µk 2 E. Since {ui}ni=1 is a basis, then the coe�cients must coincide, and u can
be written as

u = pj�1u1 + . . . pj�nuk 2 hpju1, . . . p
juki.

As proved in [1], every E-submodule C of En can be written as a direct sum of submodules of the type
piCi, where Ci is free. In fact, if we write a generator system of C as the rows of a matrix in a certain
order, one can apply Gaussian-like elimination to reduce it to the form

G̃ =

✓
G
0

◆
P , where P is a permutation matrix,

G =

0

BBBBBBBBB@

Ik0 C0,1 C0,2 . . . C0,kr�2 C0,kr�1

0 pIk1 pC1,2 . . . pC1,kr�2 pC1,kr�1

0 0 p2Ik2

. . .
...

...

0 0 0
. . . pr�3Ckr�3,kr�2 pr�3Ckr�3,kr�1

...
...

...
. . . pr�2Ikr�2 pr�2Ckr�2,kr�1

0 0 0 . . . 0 pr�1Ikr�1

1

CCCCCCCCCA

, (2)

and |M | =
P

r�1
i=0 ph(r�i)ki . Therefore, C can be written as

L
r�1
i=0 piCi, where each Ci is minimally

generated by the corresponding ki rows of G̃, i.e., ki is the minimum amount of elements needed to
generate Ci. By looking at G, one can also tell that

L
r�1
i=0 Ci is a free module of rank k =

P
r�1
i=0 ki. If

C is an code over E, GP is said to be a generator matrix of C, i.e. C = {(GP )>x | x 2 Ek} (observe
that the final rows of G̃ are not needed to generate C). Alternatively, G is called a generator matrix in
systematic form of a permutation equivalent code of C.

Lemma 4. Let C ✓ En be an E-module such that C =
L

r�1
i=0 Ci, where Ci is generated by a minimal

generator system {piu(i)
j
}ki
j=1 and U = {u(i)

j
| j = 1, . . . , ki, i = 0, . . . , r� 1} is a linearly independent set.

Then, the ideal C \ (pr�1) is a �(E)-vector space with basis {pr�1u | u 2 U}, and is isomorphic to C 0,
where C 0 = hu | u 2 Ui.

Proof. Observe that the E-module C \ (pr�1) can be seen simply as a �(E)-linear space, since for any
� 2 E there exists �0 2 �(E) such that �pr�1x = �0pr�1x . We now check that B = {pr�1u | u 2 U}
is a basis of this �(E)-space. By Lemma 3, hb |b 2 Bi = C 0 \ (pr�1), so every generator of C 0 \ (pr�1)
belongs to C. Since C is a subspace of C 0, it follows that B is also a generator system for C \ (pr�1).
Moreover, let

P
u2U

�u(pr�1u) = 0 for some values of �u 2 �(E). Since U is a basis of C 0, it follows that

8



pr�1�u = 0 and therefore �u 2 (p). Since we have chosen the �u’s to lie in �(E), we conclude that �u = 0
for all u 2 U .

On the other hand, for every x 2 C \ (pr�1), there exists x 0 2 �(E)n such that x = pr�1x 0. In fact,
this x 0 is unique since, if x = pr�1x 0 = pr�1x 00 for an x 00 2 �(E)n, then x ⌘ y mod p, which implies
x 0 = x 00. Hence, the application ' : C \ (pr�1) ! C 0 given by '(pr�1x ) = x is well-defined. Moreover,
it is easy to check that ' is a �(E) ⇠= Fh

p
-linear space isomorphism. In fact, the sum in pr�1) works

identically to the sum mod p in C 0, and so does the external product by �(E) ⇠= Fph .

Theorem 3 (Singleton-like bound). Let n, k 2 N such that k  n and C ✓ En be a cardinal rank metric
code generated by G 2 Mk,n(E). Then,

d(C)  n� k + 1

r
.

Moreover, d(C) = d(C0)
r

, where C0 is the linear code of the previous lemma.

Proof. We will prove the lemma for a code C with generator matrix in systematic form (2), whereP
r�1
i=0 ki = k. This type of generator matrix can always be obtained with permutations in the columns

without altering the minimum distance of the generated code.
By Lemma 2, there exists x 2 C a nonzero codeword such that rankx = d(C). Note that px is also a

codeword in C, but

rank px = log
pr |hpx1, . . . , pxni| < log

pr |hx1, . . . , xni| = rankx .

By the election of x , this is only possible if px = 0, which means x 2 (pr�1) \ C. This space, by Lemma
4, is isomorphic as a �(E)-module to the linear code C0 generated by

G0 =

0

BBBBBBBBB@

Ik0 C0,1 C0,2 . . . C0,k�2 C0,kr�1

0 Ik1 C1,2 . . . C1,kr�2 C1,kr�1

0 0 Ik2

. . .
...

...

0 0 0
. . . Ckr�3,kr�2 Ckr�3,kr�1

...
...

...
. . . Ikr�2 Ckr�2,kr�1

0 0 0 . . . 0 pr�1Ikr�1

1

CCCCCCCCCA

,

If x = pr�1y is the word of minimum weight, then y must be the word of minimum weight in C0, so

|hx1, . . . xni| = |hy1, . . . yni| = pd(C
0), which by the Singleton bound implies rankx = d(C0)

r
 n�k+1

r
.

Corollary 2. Let C and C̃ be two codes of length n over E. If C \ (pr�1) = C̃ \ (pr�1), then d(C) = d(C̃).
In particular, d(C) = d(C0) = d(C \ (pr�1)).

Let us define the equivalent notion, in our cardinal rank metric, to MRD codes over Galois rings.

Definition 8 (MCRD codes). Cardinal rank metric codes C of length n over and generator matrix
G 2 Mk,n(E) which satisfy d(C) = n�k+1

r
are called Maximum Cardinal Rank Distance (MCRD) codes.

As a consequence of Theorem 3, we have the following result on MCRD codes.

Corollary 3. Let C ✓ En be a free code of rank k. Then, d(C) = d(C)
r

 n�k+1
r

. Moreover, C is MCRD

if and only if C is MRD.

Proof. By Lemma 4, C being a free code implies C0 = C. Because of this, C has dimension k and, by
Theorem 3, d(C) = n�k+1

r
if and only if d(C) = n� k + 1, which proves the result.

When C is not free, there is no general relation between C being MRD and C being MCRD. This is
due to the loss of minimum weight codewords when projecting to Fn

q
.
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5. Gabidulin codes

5.1. Definition and properties

In order to define Gabidulin codes over Galois rings, let us introduce the family of linearized polyno-
mials over E.

Definition 9. Let E = GR(prh, pr) be an extension of the Galois ring R = Z/prZ and ⌧ 2 Aut(E | R) an

automorphism of E fixing R. The elements of the set Pt(⌧, E) =
nP

t�1
i=0 fi⌧

i(X) | fi 2 E, i = 0, . . . , n
o

are said to be the the linearized polynomials of degree lower than t over E with respect to ⌧ . We will
denote by P⇤

t
(⌧, E) the set of monic linearized polynomials of degree t� 1 over E, i.e.,

P⇤
t
(⌧, E) = {f(X) + ⌧ t�1(X) | f 2 Pt�1(⌧, E))}.

Remark. With the notation of the previous definition, the group of automorphisms Aut(E | R) is a cyclic
group generated by the generalization of the Frobenius automorphism of the field extension Fph | Fp.
Namely,

⌧(x) = �0(x)
p + p�1(x)

p + · · ·+ pr�1�r�1(x)
p.

In fact, the i-th power of ⌧ is precisely

⌧ i(x) = �0(x)
p
i

+ p�1(x)
p
i

+ · · ·+ pr�1�r�1(x)
p
i

.

From now on, we will work with the Frobenius-like automorphism ⌧ , and for simplicity, we will simply
write Pt(E) (P⇤

t
(E)) to denote the (monic) linearized polynomials with respect to ⌧ .

Now, we are ready to define the Gabidulin codes in our context.

Definition 10 (Gabidulin codes over Galois rings). Let n, k, p, r, h 2 N be such that p is prime and k  n.
Let g = (g1, . . . , gn) 2 E = GR(prh, pr)n such that its components are Z/prZ-linearly independent. We
define the set

GabE(n, k, g) = {(f(g1), . . . , f(gn)) | f 2 Pk(E)}
as the E-Gabidulin code of length n and parameters g and k.

As generalizations of the usual Gabidulin codes, the first thing we note is that their projections over
the corresponding finite fields are actually classic Gabidulin codes.

Lemma 5. The projection over Fn

ph of the GR(prh, pr)-Gabidulin code GabE(n, k, g) is the Fph-Gabidulin

code GabFph
(n, k, g).

Proof. The proof is straightforward. In fact, note that for any i 2 N and x 2 E = GR(prh, pr),

⌧ i(x) = xp
i

.

Therefore, since the components of g are also Z/pZ-linearly independent,

GabE(n, k, g) = = {(f(g1), . . . , f(gn)) | f 2 Pk(E)} = GabFph
(n, k, g),

which is, by definition, the Gabidulin code of length n, parameter g and dimension k over Fph .

Now, let us give a generator matrix for the code.

Proposition 4. Let E = GR(prh, pr) and let C = GabE(n, k, g) be an E-Gabidulin code. Then, |C| = prhk

and a generator matrix for C is

G =

0

BBBBB@

g1 g2 . . . gn
⌧(g1) ⌧(g2) . . . ⌧(gn)
⌧2(g1) ⌧2(g2) . . . ⌧2(gn)

...
... . . .

...
⌧k�1(g1) ⌧k�1(g2) . . . ⌧k�1(gn)

1

CCCCCA
.
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Proof. It is straightforward, by the definition of Pt(E), that

C = {G>x |x 2 Ek}.

Moreover, note that the projection of G over K = Fph is a generator matrix for GabK(n, k, g), which has
dimension k. Thus, the k columns of G are linearly independent over K, and therefore the columns of G
are also E-free, generating a code of cardinality (prh)k.

Next, we observe that Gabidulin codes over rings generalize the distance properties of their classic
counterparts.

Theorem 4. The minimum distance of a Gabidulin code C = GabE(n, k, g) is d(C) = n�k+1
r

.

Proof. Note that, by Corollary 3, C is MCRD if and only if C is MRD, which by Lemma 5 we know it is
the case of a classic MRD Gabidulin code. We conclude that d(C) = n�k+1

r
.

Regarding the error correction capability, we conclude the following result.

Corollary 4. Let C = GabE(n, k, g) be an E-Gabidulin code. Then, C can detect errors of rank  n�k

r

and correct errors of rank  n�k

2r .

Proof. Let x 2 C. If rank e < n�k+1
r

= d(C), it follows that the distance from x + e to x verifies

d(x + e ,x ) = rank(e) < d(C).

Moreover, if rank e < d(C)/2, we assume there exist e 0 of weight also under d(C)/2 and x 0 2 C such that
x + e = x 0 + e 0. In that case,

d(x ,x 0)  d(x ,x + e) + d(x + e ,x 0)

= d(x ,x + e) + d(x 0 + e 0,x 0) = rank e + rank e 0

< d(C),

which is a contradiction.

Corollary 5. For all values of n, k such that k  n  h, there exists a MCRD code over E of cardinality
prhk and length n.

Proof. If k  n  h, we can choose n R-linearly independent elements in E to form g . Moreover, since
k  n, there exists a subcode GabE(n, k, g) of En with prhk elements, which is MCRD by Theorem 4.

5.2. Decoding algorithm

Similar to the decoding methodology of usual Gabidulin codes, a decoding algorithm can be found
over Galois rings. Following the reduction process in [9], we introduce two related problems and reduce
the decoding problem to solving a linear system of equations.

In this section we will work with fixed Galois rings E and R. We will work with parameters y , g 2 En

and k  n assuming there exists x 2 GabE(n, k, g) satisfying rank(y � x )  t = n�k

2r , i.e., there exists
f 2 Pk(E) such that

rank(y � (f(g1), . . . , f(gn)))  t.

Notation. For simplicity, in this section we will use bold letters to denote the tuple formed by the evaluation
of the function in each component, e.g., f (g) will denote (f(g1), . . . f(gn)).

We define the Gabidulin Decoding Problem as follows.

Definition 11 (Gabidulin Decoding Problem). The Gabidulin Decoding Problem GDP(y , g , k) consists
in, given arguments y , g and k, finding x 2 GabE(n, k, g) with rank(y � x )  n�k

2r .

We also introduce the following problem.

11



Definition 12 (First Reconstruction Problem). The First Reconstruction Problem FRP(y , g , k) consists
in finding (V, q) 2 P⇤

brtc+1(E)⇥ Pk(E) such that V (y) = V (q(g)).

We want to reduce the GDP to the FRP, so let us prove the following two lemmas.

Lemma 6. Let f 2 Pk(E) be a nonzero linearized polynomial, {m1, . . . ,mn} ✓ E be a linearly independent
set over R, and M = hm1, . . . ,mni. Then,

(i) A bound for the cardinal of the kernel of f in M is

|Ker f \M |  (pr)n�
r�j
r (n�k+1),

where pj |f(X) but pj+1 - f(X). In particular,

|Ker f \M |  (pr)n�
1
r (n�k+1).

(ii) There exists F 2 P⇤
n+1(E) such that KerF = M .

Proof. Let us begin with part (i). Since pj divides every coe�cient of f , we may write the image of an
element x 2 E as

f(x) =
k�1X

i=0

pjf 0
i
(xp

i

0 + pxp
i

1 + · · ·+ pr�j�1xp
i

r�j�1),

where f 0
i
2 E for all i = 0, . . . , k�1, xi = �i(x) for all i = 0, . . . , r�j�1, and there exists i0 2 {0, . . . , k�1}

where f 0
i0
is a unit. Moreover, if we set f 0(X) =

P
k�1
i=0 f 0

i
⌧ i(X), then x is a zero of f if and only if f 0(x) ⌘ 0

mod pr�j , which happens if and only if

f 0(x) ⌘ 0 (mod ps) (3)

for all s = 1, . . . , r � j. Observe that, since p does not divide f 0, it follows that f 0 6= 0 modulo ps for any
s = 1, . . . , r � j.

If we consider (3) with s = 1, observe that f 0(X) is a nonzero polynomial modulo ps with degree at
most pk�1. Hence, if we want x to be a root of f , x0 2 �(E) can take at most pk�1 possible values.
Moreover, we have that f 0(x0) must belong to the ideal (p), so there exists c0 2 E such that f 0(x0) = pc0.

Suppose now, by induction, that for a s 2 {1, . . . , r � j � 1} there are pk�1 options to choose xs�1 in
order x to satisfy (3), and that there exists cs�1 2 E such that f 0(x0 + px1 + · · ·+ ps�1xs�1) = pscs�1.

Then, considering Equation 3 again for s+ 1, it follows that f 0(x0 + px1 + · · ·+ psxs) must belong to
(ps+1). Due to the linearity of f 0 and the induction hypothesis, expression (3) (for s+ 1) can be written
as

ps(cs�1 + f 0(xs)) ⌘ 0 (mod ps+1),

which means in fact that cs�1 + f 0(xs) must belong to (p). But again, since f 0(X) is not zero modulo p,
cs�1 + f 0(X) is a nonzero polynomial of degree pk�1 modulo p and xs must be a root of cs�1 + f 0(X)
mod p, which means we have up to pk�1 options to choose xs. Moreover, there exists a cs 2 E such that
f 0(x0 + px1 + · · ·+ ps+1xs) = ps+1cs.

Hence, we have at most (pk�1)r�j options to choose (x1, . . . , xr�j�1).
Now, let z, z0 2 M be two zeros of f . Then they can be written as z = z0+pr�jz1 and z0 = z00+pr�jz01

where z0, z00 /2 (pr�j). Note that if z0 = z00 then z � z0 = pr�j(z1 � z01) belongs to both (pr�j) and M ,
so there exists m 2 M such that z = z0 + m. By Lemma 3, M \ (pr�j) = hpr�ju1, . . . , pr�juni, with
cardinality pjn. Summing up, once chosen (x0, . . . , xr�j�1), there are exactly pjn options for completing
the p-adic expression of x. We conclude that an upper bound for the zeros of f in M is (since f is nonzero,
we must take j = r � 1)

|M \Ker f |  p(k�1)(r�j)+nj  pnr�(n�k+1).

Part (ii) can be proved by induction on n. Let n = 1. Since m1 is linearly independent, p - m1 and
the linearized polynomial

F1(X) = ⌧(X)� ⌧(m1)m
�1
1 ⌧0(X) 2 P⇤

2 (E)
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satisfies KerF1 = hm1i.
Suppose now that there exists Fn�1(X) 2 P⇤

n
(X) such that KerFn�1 = hm1, . . . ,mn�1i. Note that

if pr�1Fn�1(mn) = 0, then Fn�1(pr�1mn) = 0 and therefore by Lemma 4 pr�1mn 2 hm1, . . . ,mn�1i,
which is a contradiction because the set {m1, . . . ,mn} is linearly independent. Thus, p does not divide
Fn�1(mn) and the latter is a unit. We conclude that the linearized polynomial

Fn(X) = (⌧ � ⌧(Fn�1(mn))Fn�1(mn)
�1⌧0) � Fn�1)(X)

= ⌧(Fn�1(X))� ⌧(Fn�1(mn))Fn�1(mn)
�1Fn�1(X)

has KerFn = M .

Theorem 5. Let GabE(n, k, g) be a Gabidulin code and y 2 En a decodable word. In this case, the
Gabidulin Decoding Problem and the First Reconstruction Problem are equivalent.

Proof. Let SD and S1 be the set of solutions of GDP(y , g , k) and FRP(y , g , k), respectively.
Let x 2 SD. There exists f 2 Pk(E) such that x = f (g). Since rank(y � f (g))  t, the submodule

S = hy1 � f(g1), . . . , yn � f(gn)i has a minimal generator system of brtc elements in the worst case.
By Lemma 4, there exists a free submodule S0 ✓ E of rank at most brtc such that S ✓ S0. As a
result of Lemma 6, there exists V 2 P⇤

brtc+1(E) such that S ✓ kerV . Hence, there exists V such that

V (y � f (g)) = 0. Since V is linear, (V, f) 2 S1.
Let (V, q) 2 S1. Since y is decodable, there exists f 2 Pk(E) such that x = f (g) 2 GabE(n, k, g) and

rank(y � x )  t. Then, since (V, q) 2 S1 and V is linear,

rank(V � (q � f ))(g) = rankV (y � f (g))  rank(y � f (g))  t.

As a consequence of h(V � (q � f))(gi) | i 2 {1, . . . , n}i having at most prt elements, it also has at most
brtc generators, and by Lemmas 4 and 6 there exists F 2 P⇤

brtc+1(E) such that

((F �V ) � (q � f ))(g) = 0.

Note that, by Lemma 6, if (F � V ) � (q � f) 6= 0 then it would have at most p2brtc+k�1p(r�1)n zeros, but
since the elements in g are linearly independent, it actually has at least prn zeros. By the definition of t,

2brtc+ k � 1 + (r � 1)n  2rt+ k � 1 + rn� n = rn� 1 < rn.

As a consequence, (F � V ) � (p� f) = 0. Moreover, since both F and V belong to P⇤
brtc+1(E), F � V

lies in P⇤
2brtc+1(E) . Hence, if we denote bi the coe�cient of ⌧ i in (q� f)(X), the coe�cient of ⌧2brtc+k�1

in (F � V ) � (q � f) is ⌧2brtc(bk�1), implying bk�1 = 0 and (q � f) 2 Pk�1(E). Similarly, the coe�cient
bk�2 is now forced to be zero, and with the same argument we conclude that q � f = 0, so q = f , and
q(g) = x 2 SD.

The FRP does not seem computationally easy to solve at first sight. We now introduce the final
reconstruction problem, which will lead us to a solution of the GDP.

Definition 13 (Second Reconstruction Problem). The second reconstruction problem SRP (y , g , k) con-
sists in finding (V,N) 2 P⇤

brtc+1(E)⇥ Pbrtc+k(E) such that V (y) = N (g).

Now, we prove that both Reconstruction Problems are equivalent.

Theorem 6. Let GabE(n, k, g) be a Gabidulin code and y 2 En a decodable word. In this case, the First
and Second Reconstruction Problems are equivalent.

Proof. Let S1 and S2 denote the solutions of FRP(y , g , k) and SRP(y , g , k), respectively. Then, let
(V, q) 2 S1. Observe that V � q 2 Pbrtc+k(E) and satisfies V (y) = (V � q)(g), so (V, V � q) 2 S2.

Now, let (V,N) 2 S2. From the definition of y it follows that there exists f 2 Pk(E) such that
rank(y � f (g))  t. Therefore, since both N and V are linear,

rank(N �V � f )(g) = rank(V (y)�V (f (g)) = rank(V (y � f (g))  t,
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so by Lemmas 4 and 6 there exists F 2 P⇤
brtc+1(E) such that F � (N � V (f )) = 0. But, since F 2

P⇤
brtc+1(E) it follows that every coe�cient N � V � f is zero. We conclude that there exists f such that

N = V � f .

We therefore propose the following decoding algorithm.

Theorem 7 (Decoding of Gabidulin codes). Let C = GabE(n.k, g) be a Gabidulin code and y a received
message where d(y, C)  n�k

2r = t. Let c = (n0, . . . , nbrtc+k�1, v0, . . . , vbrtc�1) 2 E2brtc+k such that

Ac = b, where b = (⌧ brtc(y1), . . . , ⌧ brtc(yn)) and

A =

0

BBB@

g1 ⌧(g1) . . . ⌧ brtc+k�1(g1) �y1 �⌧(y1) . . . �⌧ brtc�1(y1)
g2 ⌧(g2) . . . ⌧ brtc+k�1(g2) �y2 �⌧(y2) . . . �⌧ brtc�1(y2)
...

...
. . .

...
...

...
. . .

...
gn ⌧(gn) . . . ⌧ brtc+k�1(gn) �y1 �⌧(yn) . . . �⌧ brtc�1(yn)

1

CCCA
.

If we denote as f the result of the left Euclidean division of
Pbrtc+k�1

i=0 ni⌧ i(X) by
Pbrtc�1

i=0 vi⌧ i(X) +
⌧ brtc(X), then y decodes to (f(g1), . . . , f(gn)) in C.

Proof. If d(y , C)  n�k

2r , then by Corollary 4 there exists x 2 C such that x 2 GabE(n, k, g) and y decodes
to x . By Theorem 5, there exists a solution of FRP(y , g , k). By Theorem 6 there also exists a solution
for SRP(y , g , k). Therefore, there exist N and V solutions of this problem satisfying N (y)�V (g) = 0.
The coe�cients of N and V are exactly the solutions c of the linear system Ac = b. Besides, since there
exists a solution of SRP(y , g , k), by the proof of Theorem 6 there exists a solution of the type (V, f),
where f is the left Euclidean division of N by V in the ring of linearized polynomials. By the proof of
Theorem 5, f also satisfies x = f (g) 2 GabE(n, k, g) and rank(y � x )  t.

This decoding method requires finding the solution of a system of linear equations with a total of
2brtc+ k unknown values. If one has to correct several errors, part of the matrices may be precomputed.
In fact, one can divide A into blocks ✓

A11 A12

A21 A22

◆

such that A11 is square of size brtc+k. Then, A11 is invertible and A11 and A12 are fixed for the same code.
We can also let N = (n0, . . . , nbrtc+k�1), V = (v0, . . . , vbrtc�1) and b = (b1, b2), where b1 2 Ebrtc+k.
Thus, we can solve the following system of equations:

(
(A22 �A21A

�1
11 A12)V = b2 �A21A

�1
11 b1

N = A�1
11 b1 �A�1

11 A12V
,

where A�1
11 and A21A

�1
11 can be computed beforehand.

Furthermore, other techniques such us the iterative algorithm to construct N and V from SRP in
[9] can also be used to build solutions. This algorithm uses techniques from polynomial interpolation,

along with Lemma 6 to build two sequences of linearized polynomials (N (i)
0 , V (i)

0 ), (N (i)
1 , V (i)

1 ) such that

V (i)
j

(ys)�N (i)
j

(gs) = 0 for all s = 1, . . . , i, i = 1, . . . , n, s = 1, 2. In each iteration we can either construct
the next polynomial by the induction process of the proof of part (ii) from Lemma 6, or by crossing both
sequences of linearized polynomials in order not to increase the degree and make one of the pairs get to
step n with their corresponding degrees.

6. Conclusions and future work

Coding theory over rings from a cryptographic point of view has also been studied previously [3].
However, in this paper we have focused on cardinal rank metric codes over Galois rings, using a metric
that, as explained in Section 3.3, is potentially interesting from a cryptographic perspective. This metric
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generalizes its well known analog over finite fields. We presented its properties, as well as the notion of
cardinal rank metric codes. We have also proved the existence of MCRD codes, among which we can
find the generalization of Gabidulin codes. This code has an e�cient decoding algorithm, reducing its
decoding problem to a linear system of equations. A study of the security of a McEliece-like cryptosystem
based on these codes, and in particular the existence of structural attacks in such a setting, is left as a
future work.
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