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Abstract

Sufficient conditions on a smooth, real-valued function g for the nowhere differentia-

bility of g ◦ p are given, where p is Peano’s curve. This generalizes Sagan’s analytic

proof on the nowhere differentiability of the coordinate functions of p. Most of the

proofs are geometrically intuitive. The interest about the composites g ◦ p stems from

their recent applications in technical branches.
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1 Introduction

Continuous, nowhere differentiable functions have been fascinating mathematicians 
since their discovery by Weierstrass in 1872. Almost each known example of these 
functions has been collected in [15]. A deep monograph about this subject can be 
found in [4], and more recent advances are given in [1,9].13

Peano claimed without proof that the coordinate functions of his famous space-14

filling curve p : [0, 1] −→ [0, 1]2 are also nowhere differentiable [12]. A proof for15

Peano’s claim was given by Sagan [14] by means of analytical techniques, although16

in an earlier paper, Alsina proved the nowhere differentiability of Schoenberg space-17

filling curve [2].18
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Section 3 is the core of the present paper and its main result is Theorem 1, which19

proves that g ◦ p has no finite derivative at any point if g is a real valued, Fréchet20

differentiable function with non-null gradient everywhere. Note that among these21

functions g are the coordinate functions g(u1, u2) = ui , i = 1, 2.22

The interest in the composites g◦ p stems from their role in some technical branches23

like image compression [5,6,10,11,16,17].24

The proof of Theorem 1 is geometrically intuitive in contrast with most of the25

known proofs of the existence of continuous, nowhere differentiable functions, which26

are mainly analytic. Let us remark that there are two examples built ad hoc to shed27

geometric light on the subject of nowhere differentiability: the Bolzano function [4,15]28

and Koch’s curve, which resembles a beatiful trace italienne [3].29

Section 3 ends with Propositions 1 and 2 which complement the information pro-30

vided by Theorem 1.31

The Peano curve considered in this article has been taken from [7] because of its32

simple geometric construction. This curve is briefly described in Sect. 2 and will be33

denoted by p from now on (see comments about the geometric Peano curve in Chapter34

2 in [14]). However, it must be pointed out that the methods used here can be applied35

to most of continuous space-filling curves.36

The main tools used are two: the first is the geometric properties of the gradient of37

g, denoted as ∇g as usual. If ‖ ·‖ is a fix norm on R
2, the second tool is that there exist38

a pair of positive constants k and K such that k|a − b| ≤ ‖p(a)− p(b)‖2 ≤ K |a − b|39

if a and b are numbers in [0, 1] which are close enough (in particular, p is a Hölder40

function of class H
1/2 as defined in [13]). This property of p can be guessed from41

the well-known fact that the function p borrowed from [7] preserves the Lebesgue42

measure, that is, if A is a Börel-Lebesgue subset of I then the value of the Lebesgue43

measures of A and p(A) coincide. In particular, this implies g ◦ p and g have the same44

distribution function. Thus, although g ◦ p is a very bad function from the point of45

view of differentiability as shown in the results of Sect. 3, g ◦ p is as well behaved as46

g from the point of view of integrability which enables the implementation of simple47

techniques of integration like those of [8] if g sufficiently simple.48

Notation: N represents the set of positive integers; R denotes the set of real numbers49

and R := R ∪ {−∞,∞}. The unit interval [0, 1] is denoted by I . The set of all limit50

points of a subset A of R is denoted by A′ as usual. Given f : A −→ R and t0 ∈ A∩ A′,51

the derivative of f at t0 is the limit52

lim
t→t0

f (t) − f (t0)

t − t0
∈ R53

if it exists, in which case is denoted by f ′(t0). If t0 ∈ A ∩ [A ∩ (−∞, t0)]′ (alt.,54

t0 ∈ A ∩ [A ∩ (t0,∞)]′), the left-sided (alt., right-sided) derivative of f at t0 is the55

number f ′(t−0 ) := f |′A∩(−∞,t0] (t0) if the derivative at t0 of the restriction of f to56

A ∩ (−∞, t0] exists (alt., f ′(t+0 ) := f |′A∩[t0,∞)
(t0) if it exists). If f has a finite57

derivative at each t ∈ A,–that is, f ′(t) ∈ R– then, f is said to be differentiable.58

Given an open set � in R
n , f : � −→ R

m (n, m ∈ N) is said to be Fréchet59

differentiable at x0 ∈ � if there exists a linear mapping L : R
n −→ R

m such that60
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Nowhere Differentiability Conditions on Composites

limx→x0 ‖ f (x) − f (x0) − L(x − x0)||/||x − x0|| = 0, in which case, L is denoted61

by d f (x0) (let us remind that Fréchet differentiability does not depend on the chosen62

norms in R
n and R

m).63

The distance in R
2 will be measured with the norm ‖(x, y)‖∞ := max{|x |, |y|},64

which will be simply denoted as ‖(·, ·)‖ for short. Let us recall that
√

2
−1‖(·, ·)‖2 ≤65

‖(·, ·)‖∞ ≤ ‖(·, ·)‖2, where ‖(·, ·)‖2 is the Euclidean norm of R
2.66

2 Peano’s Geometric Curve67

Henceforth, a (plain) curve is a continuous function f : [a, b] −→ R
2 where a and b68

are real numbers such that a < b; the points f (a) and f (b) are, respectively, termed69

as initial and terminal points of the curve f .70

A brief geometric description of the space-filling Peano’s curve p : I −→ I 2
71

defined in [7] is necessary. Given two bounded, closed intervals L and J in R, L ≤ J72

means max I ≤ min J .73

The 9-adic subintervals of I of order k ∈ N have length equal to 1/9k and are labeled74

as follows: the intervals of order 1 are Ii := [i/9, (i + 1)/9], i = 0, 1, 2, . . . , 8. Each75

interval Ii1...ik of order k (il = 0, 1, . . . , 8) is divided into nine closed intervals Ii1...ik j ,76

j = 0, 1, . . . , 8, of length 1/9k+1 such that77

(i) Ii1...ik =
⋃8

j=0 Ii1...ik j78

(ii) Ii1...ik 0 ≤ Ii1...ik 1 ≤ · · · ≤ Ii1...ik 8.79

The interval I will be considered as the 9-adic interval of order 0.80

For every k ∈ N, the square I 2 is also divided into closed subsquares whose side81

length is equal to 1/3k ; these subsquares are labeled in a Cartesian manner as follows:82

C
j
i :=

[

i − 1

3k
,

i

3k

]

×
[

j − 1

3k
,

j

3k

]

, 1 ≤ i, j ≤ 3k .83

Henceforth, these subsquares will be called k-subsquares, and the subintervals of84

order k will be called k-subintervals for short. The square I 2 will be referred to as the85

0-square.86

Given n ∈ N, two n-subintervals are said to be adjacent if their intersection is a87

singleton; two n-subsquares are adjacent if they share one and only one side; a finite88

collection {Gi }m
i=1 of n-subintervals (alt., n-subsquares) is called a chain if they are89

pairwise different and Gi and Gi+1 are adjacent for all 1 ≤ i ≤ m − 1.90

Peano’s curve is the uniform limit of a sequence of polygonal curves pn : I −→ I 2
91

which are defined as follows:92

The curve p0 linearly maps the interval I onto the NE diagonal of I 2, so that93

p0(0) = (0, 0) and p0(1) = (1, 1) (the graph of p0 is depicted in Fig. 1, NE).94

For n ∈ N, assume that pn−1 linearly maps each (n − 1)-subinterval Ii1...in−1 onto95

one diagonal of certain (n − 1)-subsquare C . If the graph of pn−1(Ii1...in−1) is of the96

form NE (alt., SE; SW; NW) as indicated in Fig. 1, then pn is piecewise defined97

by linearly mapping each n-subinterval Ii1...in−1 j , 0 ≤ j ≤ 8, onto one diagonal of98
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NE SE SW NW

(a) (b) (c) (d)

Fig. 1 Some corners have been intentionally rounded for clarity

certain n-subsquare contained in C so that the graph of pn |Ii1 ...in−1 j replicates the99

graph depicted in Fig. 1a (alt., b–d).100

Clearly, pn |Ii1 ...in−1
is continuous, and if in−1 < 8, the terminal point of pn |Ii1...in−1

101

coincides with the initial point of pn |Ii1 ...(in−1+1)
. Hence, pn is continuous on I .102

The crucial properties of the curves pn are:103

(iii) if A and B are adjacent n-subintervals, then pn(A) and pn(B) are contained in104

adjacent n-subsquares;105

(iv) if B is an n-subinterval and pn(B) is contained in a n-subsquare C , then106

pn+k(B) ⊂ C for all k ∈ N;107

(v) for each n-subinterval Ii1...in there is a unique n-subsquare C such that108

pn(Ii1...in ) ⊂ C , and vice versa: for every n-subsquare C there exists a unique109

n-subinterval Ii1...in such that pn(Ii1...in ) ⊂ C ; the n-subsquare C will be labeled110

as C = Di1...in .111

It can be proved from (iii), (iv) and (v) that the curves pn converge uniformly to a112

continuous curve p : I −→ I 2. Moreover, it is easy to see that for every (x0, y0) ∈113

I 2, there exists a sequence (Cn) where each Cn is a n-subsquare, Cn ⊃ Cn+1 and114

{(x0, y0)} = ∩∞
n=1Cn . Let In be the only n-subinterval such that pn(In) ⊂ Cn . Then,115

(In) is a decreasing sequence of compact intervals. Thus, {t0} = ∩∞
n=1 In for some116

t0 ∈ I . It is straightforward that p(t0) = (x0, y0) and therefore, p(I ) = I 2. The same117

argument proves p(In) = Cn for all n. As a consequence, p satisfies the following118

properties:119

(iii’) if A and B are adjacent n-subintervals, then p(A) and p(B) are contained in120

adjacent n-subsquares;121

(iv’) if B is a n-subinterval and pn(B) is contained in a n-subsquare C , then p(B) ⊂122

C ;123

(v’) p(Ii1...in ) = Di1...in for all n and all 0 ≤ ik ≤ 8.124
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Nowhere Differentiability Conditions on Composites

(vi’) if t and τ belong to a n-subinterval J then |t − τ | ≤ 1/32n and ‖p(t)− p(τ )‖ ≤125

1/3n . Moreover, if m is the smallest positive integer for which there exists126

a chain {Ki }m+2
i=1 of n-subsquares with p(t) ∈ K1 and p(τ ) ∈ Km+2, then127

|t − τ | ≥ m/32n .128

Detailed proofs of these facts can be found in [7] (see also [12,14] or [15]) or can be129

done by the reader.130

Given n ∈ N ∪ {0}, the ending points of the n-subintervals are called n-nodes.131

In particular, a n-node is a (n + k)-node for any non-positive integer k. The set of132

all n-nodes for any n is denoted N and its elements are called nodes, that is, N =133

{k/9n : n ∈ N ∪ {0}, k = 0, 1, 2, . . . , 9n}.134

The images of the nodes of every n-subinterval J = [t0, t1] are a pair of opposite135

corners of the n-subsquare p(J ) and moreover, p(ti ) = pn+k(ti ) for i = 0, 1 and136

for k = 0, 1, 2, . . .. It is very easy to check that the remaining pair of corners of137

p(J ) are p(ξ0) and p(ξ1) where ξ0 := t0 + 9−n
∑∞

k=1 2/9k = t0 + (1/9n4) and138

ξ1 := t1 − (1/9n4). The numbers ξi are called n-pseudonodes or just pseudonodes139

if the order n is not specified. Note that p(ξi ) /∈ pn(I ) for any n ∈ N. The set of all140

pseudonodes of any order will be denoted as F , each element of p(N ) will be called141

an attainable corner and each element of p(F), a non-attainable corner.142

3 Main Results143

Theorem 1 Let g : R
2 −→ R be a Fréchet differentiable function such that144

∇g(x, y) �= (0, 0) at each (x, y) ∈ R
2. Let f := g ◦ p, where p is the Peano145

curve. Then f is continuous and moreover:146

(i) f has no finite derivative at each t ∈ I ;147

(ii) additionally, if g is of class C(2 then f has no infinite derivative at any t ∈148

I\(F ∪ {0, 1}).149

Proof The continuity of f is immediate since g and p are continuous. In order to prove150

(i) and (ii), fix t0 ∈ I and let (x0, y0) := p(t0). As ∇g(x0, y0) �= (0, 0), it will be151

assumed without loss of generality that
∂g
∂ y

(x0, y0) =: α �= 0 (the case
∂g
∂x

(x0, y0) �= 0152

is similar).153

For every n ∈ N, let Ln be a n-subinterval such that154

Ln ⊃ Ln+1 and {t0} = ∩∞
n=1Ln . (1)155

Denote Cn := p(Ln), so that (x0, y0) = ∩∞
n=1Cn .156

Let s be the orthogonal line to ∇g(x0, y0) that passes through (x0, y0). In the case157

when t0 ∈ N \{0, 1}, if k is the smallest nonnegative integer such that t0 is a k-node,158

then two adjacent k-subintervals Ii1...ik−1 j and Ii1...ik−1, j+1 contain t0; an appropriate159

choice of Lk among these two k-subintervals produces that s ∩ p(Lk) is infinite, and160

once Lk has been selected, the choice of the following intervals Lk+l is univocally161

determined by condition (1). Consequently,162

s ∩ Cn is infinite for alln ∈ N ∪ {0}ift0 ∈ I\(F ∪ {0, 1}). (2)163
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(i) Let r denote the parallel line to the Y -axis that passes through (x0, y0). Note164

that r cannot be orthogonal to ∇g(x0, y0) and s �= r because α �= 0.165

Given n ∈ N, let T and B, respectively, denote the top side and the bottom side of166

Cn . The set (T ∪ B)∩ r has exactly two elements. Among these two elements, choose167

the one is furthest from (x0, y0). Clearly, the element so chosen is of the form (x0, yn),168

and as the length of the sides of Cn is 1/3n , then169

1

2 · 3n
≤ ‖(x0, yn) − (x0, y0)‖ ≤

1

3n
. (3)170

Assume y0 < yn (if yn < y0, the actions to be done are similar). Let C := {Ci0 j : l ≤171

j ≤ q} be a collection of (n + 2)-subsquares vertically stacked and contained in172

Cn such that (x0, y0) ∈ Ci0l and (x0, yn) ∈ Ci0q (note 1 ≤ l ≤ q ≤ 3n+2). Let173

Jl = p−1(Ci0l) and Jq = p−1(Ci0q) and take tn ∈ q such that p(tn) = (x0, yn).174

Inequality (3) yields 3/3n+2 ≤ ‖(x0, yn) − (x0, y0)‖, so l and q satisfy |l − q| ≥ 4.175

In plain words, this means that there are at least three squares of C between Ci0l and176

Ci0q (see Fig. 2), and as C is the shortest chain of (n + 2)-subsquares connecting Ci0l177

with Ci0q , (vi’) yields |tn − t0| ≥ 3/9n+2. Moreover, as both p(tn) and p(t0) belong178

to Cn , it is immediate that |tn − t0| ≤ 1/32n , and this and (3) eventually gives179

3n−1 ≤
‖p(tn) − p(t0)‖

|tn − t0|
≤ 3n+3. (4)180

Since g is Fréchet differentiable, there is a function ω : R
2 −→ R such that ω(x, y) →181

0 as (x, y) → (x0, y0) and182

g(x, y)− g(x0, y0) = dg(x0, y0)(x − x0, y − y0)+‖(x − x0, y − y0)‖ω(x, y). (5)183

Plugging (x, y) = p(tn) and (x0, y0) = p(t0) into (5), we get184

f (tn) − f (t0) = dg
(

p(t0)
)(

p(tn) − p(t0)
)

+ ‖p(tn) − p(t0)‖ω
(

p(tn)
)

. (6)185

As dg
(

p(t0)
)

≡ (
∂g
∂x

(x0, y0), α) and p(tn) − p(t0) = (0, yn − y0), it follows186

∣

∣dg
(

p(t0)
)(

p(tn) − p(t0)
)
∣

∣ = |α| · ‖p(tn) − p(t0)‖. (7)187

Moreover, as p is continuous and tn → t0 as n → ∞, there is n0 ∈ N such that188

|ω
(

p(tn)
)

| < |α/2| for alln ≥ n0. (8)189

Thus, dividing both sides of (6) by tn−t0 and taking their absolute values, a consecutive190

application of (7), (8) and (4) leads to191

∣

∣

∣

∣

f (tn) − f (t0)

tn − t0

∣

∣

∣

∣

≥
(

|α| −
|α|
2

)

‖p(tn) − p(t0)‖
|tn − t0|

≥
|α|
2

3n−1. (9)192
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Nowhere Differentiability Conditions on Composites

Since tn → t0 as n → ∞, formula (9) shows that f has not a finite derivative at t0.193

(ii) One and only one of the following three cases may happen:194

(a) (x0, y0) ∈ Int Cn for all n;195

(b) there exists n0 ∈ N such that (x0, y0) ∈ Fr Cn\p(N ∪ F) for all n ≥ n0;196

(c) (x0, y0) is an attainable corner of Cn for all n ≥ n0 but (0, 0) �= (x0, y0) �= (1, 1).197

Assume (a) holds. Then, for every n ∈ N there exists m ≥ n and a pair of positive198

integers k and l such that199

(x0, y0) ∈ K33 ⊂
⋃

1≤i, j≤5

Ki j =: K ⊂ Cn200

Ki j =
[

k − 1 + i

3m+2
,

k + i

3m+2

]

×
[

l − 1 + j

3m+2
,

l + j

3m+2

]

. (10)201

Let us label as Ji j the corresponding (m + 2)-subinterval so that p(Ji j ) = Ki j and202

t0 ∈ J33.203

Choose (xn, yn) ∈ s ∩ FrK . Note that (xn, yn) belongs to some of the sixteen204

external (m + 2)-subsquares that form K , that is, (xn, yn) ∈ Kuv for some pair (u, v)205

with u ∈ {1, 5} or v ∈ {1, 5}. Let τn ∈ Juv such that p(τn) = (xn, yn). Clearly,206

|τn − t0| ≤ 1/32m and ‖p(τn) − p(t0)‖ ≤ 2/3m+2. Clearly, any chain of (m + 2)-207

subsquares connecting K33 with Kuv must have at least three (m + 2)-subsquares so,208

by virtue of (vi’), 1/32(m+2) ≤ |τn − t0| ≤ 3/32(m+2). Hence,209

‖p(τn) − p(t0)‖2

|τn − t0|
≤ 4. (11)210

Next, since g is of class C(2, Young’s formula provides ψ : R
2 −→ R such that211

ψ(x, y) → 0 as (x, y) → (x0, y0) and212

g(x, y) − g(x0, y0) = dg(x0, y0)(x − x0, y − y0)213

+
1

2
d2g(x0, y0)(x − x0, y − y0)

(2) + ‖(x − x0, y − y0)‖2ψ(x, y).214

(12)215

where d2g(x0, y0) denotes the bilinear form associated with the hessian matrix of g.216

Note that the orthogonality between the vectors p(τn)− p(t0) and ∇g(x0, y0) yields217

dg(x0, y0)
(

p(τn) − p(t0)
)

= 0. (13)218

Moreover, by virtue of (11) there is a constant M such that219

∣

∣

∣

∣

∣

d2g(x0, y0)

(

p(τn) − p(t0)√
|τn − t0|

)(2)
∣

∣

∣

∣

∣

≤ M for alln ∈ N (14)220
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Fig. 2 .

B

L R

T

1/3
n

Cn

y0

x0

r

s p(tn)

p(τn)

Ci0q

Ci0l

1/3
n+2

and since τn −→
n

t0, inequality (11) yields221

‖p(τn) − p(t0)‖2

|τn − t0|
ψ

(

p(τn)
)

−−−−−→
n

0. (15)222

Thus, plugging (x, y) = p(τn)− p(t0) into (12) and dividing both sides of the resulting223

identity by |τn − t0|, an implementation of (13), (14) and (15) shows that the sequence224
(

gp(τn) − gp(t0))/(τn − t0)
)

is bounded. Therefore, since τn −→
n

t0, f cannot have225

an infinite derivative at t0 and this ends the proof for case (a).226

If the case (b) holds then (x0, y0) belongs to one and only one side of Cn0 ; if (x0, y0)227

belongs to the left side (alt. right, top, bottom side) then (x0, y0) belongs to the left228

side of Cn for all n ≥ n0 (alt. right, top, bottom side). Given n ≥ n0, denoted by L229

(alt. R, T , B) its left side (alt., right, top, bottom side). Then there exists m ≥ n and a230

pair of positive integers k and l such that231

(x0, y0) ∈ K33 ⊂
3

⋃

i=1

5
⋃

j=1

Ki j =: K ⊂ Cn232

Ki j =
[

k − 1 + i

3m+2
,

k + i

3m+2

]

×
[

l − 1 + j

3m+2
,

l + j

3m+2

]

(16)233

and labeling as Ji j the corresponding (m + 2)-subinterval so that p(Ji j ) = Ki j and234

t0 ∈ J33, and replacing (10) by (16), the same argument for proving (a) works now235

for case (b) when (x0, y0) ∈ L . The remaining cases when (x0, y0) ∈ R (alt., T , B)236

are similar (the case (x0, y0) ∈ L with m = n is depicted in Fig. 2).237

The case (c) admits a similar proof as case (b). Note that for case (c) is crucial that238

(2) holds true. ⊓⊔239

The reason why each point ξ ∈ F ∪{0, 1} is excluded in Theorem 1 is that s ∩ p(J )240

may be finite, where J is a n-subinterval containing ξ such that p(ξ) is a corner of241

p(J ). However, if s ∩ p(J ) is infinite, the following result can be stated:242
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Nowhere Differentiability Conditions on Composites

Fig. 3 .

(0,1)

1/3
n

En+2 En+1 En

p(t)

∇g(0,1)

Proposition 1 Assume g : R
2 −→ R is of class C(2 and let ξ ∈ J ∩ (F ∪{0, 1}) where243

J is a n-subinterval and p(ξ) is a corner of p(J ). Let s be the line orthogonal to244

∇g
(

p(ξ)
)

that passes through p(ξ) and assume s ∩ p(J ) is infinite. Then g ◦ p has245

no derivative at ξ .246

Proof As s ∩ p(J ) is infinite, the same arguments of Theorem 1 (ii) work for ξ and247

therefore, if f ′(ξ) exists, it cannot be infinite. But Theorem 1 shows that f ′(ξ) cannot248

be finite either. This proves that f has no derivative at ξ . ⊓⊔249

If the assumption that s ∩ p(J ) is infinite is replaced in Proposition 1 by its negation250

then, s ∩ p(J ) must be a singleton. Therefore, the following result completes the251

information.252

Proposition 2 Let g : R
2 −→ R be a differentiable function and let ξ ∈ J∩(F∪{0, 1})253

where J is a n-subinterval and p(ξ) is a corner of p(J ). Let s be the line orthogonal to254

∇g
(

p(ξ)
)

that passes through p(ξ) and suppose s∩ p(J ) is a singleton. Let f = g◦ p.255

Then, the following statements hold:256

(i) if ξ ∈ {0, 1} then, there exists f ′(ξ);257

(ii) if ξ ∈ F then, both sided derivatives f ′(ξ−) and f ′(ξ+) exist but f ′(ξ−) �=258

f ′(ξ+).259

Proof Only the case ξ = 1/4 will be demonstrated since the others admit a similar260

proof. Recall p(ξ) = (0, 1) is a non-attainable corner. In order to avoid cumbersome261

notation, let us relabel262

Jn := I3 n...3,263

En := C1,3n = p(Jn)264

Kn := En\En+1 n ∈ N.265

Note that ξ ∈ Int Jn for all n. Consider Young’s formula266

g(x, y) − g(0, 1) = dg(0, 1)(x, y − 1) + ‖(x, y − 1)‖ω(x, y) (17)267

where ω(x, y) −→ 0 as (x, y) → (0, 1).268
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A. Martínez-Abejón

Without loss of generality, assume the bound vector ∇g(1, 0) with initial point269

at (1, 0) points inwards the square I 2. A moment of reflection will show that the270

hypotheses on ∇g(1, 0) give a real number β > 0 such that dg(0, 1)(u) > β for all271

unitary vectors u = (u1, u2) such that u1 ≥ 0 and u2 ≤ 0.272

Take m ∈ N so that |ω(x, y)| < β/2 for all (x, y) ∈ Em . Hence,273

dg
(

p(ξ)
)

(

p(t) − p(ξ)

‖p(t) − p(ξ)‖

)

+ ω
(

p(t)
)

≥
β

2
> 0, allt ∈ Jm, (18)274

and in combination with (18),275

g
(

p(t)
)

− g
(

p(ξ)
)

t − ξ

{

≤ 0, t ∈ (−∞, ξ) ∩ Jm

≥ 0, t ∈ (ξ,∞) ∩ Jm .
(19)276

Next, given any t ∈ Jm\{ξ} =
⋃∞

n=m(Jn\Jn+1), let n ≥ m such that t ∈ Jn\Jn+1, so277

p(t) ∈ Kn . Since En+2 is separated from Kn by a double belt of (n+2)-subsquares (see278

Fig. 3), (vi’) proves 1/32n+4 ≤ |t −ξ | ≤ 1/32n and 1/3n+2 ≤ ‖p(t)− p(ξ)‖ ≤ 1/3n ,1 279

so280

‖p(t) − p(ξ)‖
|t − ξ |

≥ 3n−2. (20)281

Thus, from (17), (18) and (20),282

∣

∣

∣

∣

∣

g
(

p(t)
)

− g
(

p(ξ)
)

t − ξ

∣

∣

∣

∣

∣

≥
β

2

‖p(t) − p(ξ)‖
|t − ξ |

≥
β

2
3m−2, t ∈ Jm\{ξ}. (21)283

Since ξ ∈ Int Jm , the length of Jm is 1/32m and m can be chosen as large as one284

pleases, it is straightforward from (19) and (21) that there exist f ′(ξ−) = −∞ and285

f ′(ξ+) = ∞. ⊓⊔286
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