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Accepted: 7 November 2021
� The Author(s) 2021

Abstract
Total phosphorus (from now on mentioned as TP) and chlorophyll-a (from now on mentioned as Chl-a) are recognized

indicators for phytoplankton large quantity and biomass-thus, actual estimates of the eutrophic state-of water bodies (i.e.,

reservoirs, lakes and seas). A robust nonparametric method, called support vector regression (SVR) approach, for fore-

casting the output Chl-a and TP concentrations coming from 268 samples obtained in Tanes reservoir is described in this

investigation. Previously, we have carried out a selection of the main features (biological and physico-chemical predictors)

employing the multivariate adaptive regression splines approximation to construct reduced models for the purpose of

making them easier to interpret for researchers/readers and to reduce the overfitting. As an optimizer, the heuristic

technique termed as whale optimization iterative algorithm (WOA), was employed here to optimize the regression

parameters with success. Two main results have been obtained. Firstly, the relative relevance of the models variables was

stablished. Secondly, the Chl-a and TP can be successfully foretold employing this hybrid WOA/SVR-based approxi-

mation. The coincidence between the predicted approximation and the observed data obviously demonstrates the quality of

this novel technique.

Keywords Eutrophication in reservoirs � Support vector machines (SVMs) � Whale optimization algorithm (WOA) �
Multivariate adaptive regression splines (MARS) � Regression analysis

1 Introduction

In ecology, a eutrophic crisis of an aquatic ecosystem can

be described as accelerated aging as a consequence of

water nutrient enrichment caused by anthropogenic activ-

ities. The most widespread use refers to the contribution of

inorganic nutrients containing Nitrogen and Phosphorus in

an aquatic ecosystem, such as a reservoir or lake (Arauzo

and Álvarez Cobelas 1994; Ansari et al. 2010). Eutrophi-

cation is a kind of water contamination, giving place to

modifications such as the presence of colored waters,

absence of see-through quality and poisoning by specific

algae releases (Reynolds 2006; Van der Valk 2006; Howell

2017). At present, agriculture is taken into account to be a

principal underlying and lasting cause of eutrophication in

many basins around the world.

Water pollution, such as the eutrophication of lakes, has

gradually become an urgent environmental issue world-

wide (Liu et al. 2011; Lin et al. 2021). According to

statistics from the Water Research Commission, South

Africa, 53%, 54%, 46%, and 28% of lakes in Europe, Asia,

North America, and Africa face eutrophication problems,

respectively (Lin et al. 2021). The eutrophication of lakes

occurs under the combined effect of natural factors and

human activities, and leads to the growth of great amount

of algae. The causes of eutrophication are complex, as

eutrophication involves various ecological, social, eco-

nomic, and other factors (Álvarez et al. 2017). The natural

evolution of reservoirs and lakes from oligotrophic to
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eutrophic is slow, but has been accelerated under human

intervention. Therefore, adopting a scientific method for

assessing water quality and identifying potential risk

sources is urgent, which will help to strengthen ecological

and environmental management (Reynolds 2006; Garcı́a-

Nieto et al. 2019; Lin et al. 2021).

The development of biomass in an ecosystem is limited

by the scarcity of nitrogen or phosphorus, which primary

producers need to develop. Urban effluents, or diffuse

pollution from agrarian or atmospheric sources, can con-

tribute increasing the concentration of these limiting sub-

stances. The results are important consequences on the

composition, structure and dynamics of the ecosystem.

With eutrophication diversity decreases and biomass

increases (Harper 1991; Reynolds 2006; Howell 2017).

When cyanobacteria begin to be dominant, the potable and

recreational use of lake and reservoir waters may be

threatened.

The quality of the water decreases with the proliferation

of algae and when it becomes explosive, it can cause the

appearance of toxins, particularly when cyanobacteria are

predominant; large chlorophyll-a contents, usually mean

harmful algal blooms (HAB) including toxins—(Pip and

Bowman 2014; Yuan et al. 2014). The cyanotoxins liber-

ated by some cyanobacteria in water pose a menace to

recreational and drinking (Watzin et al. 2006; Kalaji et al.

2016). In this sense, the knowledge of the concentration of

Chl-a can be seen as an optional indicator to evaluate the

possibility of blooms of harmful cyanobacteria (HABs)

(Huisman et al. 2010; McQuaid et al. 2011; Shumway et al.

2018) in water bodies. Thus, it is important to predict the

amount of chlorophyll-a when assessing the water quality

so the pollution due to this problem and its health dangers

are avoided (Wheeler et al. 2012; Kinkaid 2014; Shumway

et al. 2018). Nevertheless, chlorophyll-a is still far from

being adequately predicted in lakes and reservoirs (Di Toro

et al. 1971; Brown et al. 2000; Tufford and McKeller

1999).

The overabundance of algae that characterizes

eutrophication causes the water to become cloudy, pre-

venting sunlight from penetrating the bottom of the eco-

logical community. As a consequence, photosynthesis

becomes impossible, while the oxygen-consuming meta-

bolic activity of decomposers increases. In this sense, at the

bottom of the ecosystem oxygen is exhausted quickly and

becomes anoxic. The alteration caused by these variations

makes unviable the life of most of the species of the eco-

logical community.

The eutrophication process can end up turning a reser-

voir or lake into dry land. This occurs because the nutrients

generate large biomass of organisms that are not totally

consumed by degrading organisms. Natural eutrophication

processes can be in ancient channels of the rivers that are

transformed into swamps and later are covered with

vegetation.

Modelling is regarded as an interesting tool (Barnes and

Chu, 2010; Vinçon-Leite and Casenave 2019) since pre-

dictions and understanding of the different process stages

can be made. Chl-a and phosphorus are the main indicators

to assess continental water trophic state (Beiras 2018).

Chl-a is the principal compound involved in photosyn-

thesis, and it is commonly employed as an indicator for

algae growth (Reynolds 2006; Van der Valk 2006).

Checking the amount of chlorophyll, using its optical

characteristics, helps to control the eutrophication pro-

cesses that can arise in reservoirs.

Laplacian mathematical models of water quality relied

on inner physico-chemical actions in reservoirs and lakes

demand a very big quantity of information that is not

reachable from the practical point of view, either because it

cannot be acquired in its completeness, or because it is

complicated to implement or take up too much time to

evaluate (Gul et al. 2020). For this reason, there are more

and more research works that make use of machine

learning techniques to model water quality. For example,

Shamshirband et al. (2019) have developed ensemble

models using the Bates–Granger approach and least square

method to combine forecasts of multi-wavelet artificial

neural network (ANN) models for multi-day ahead fore-

casting of chlorophyll a concentration in coastal waters;

Tiyasha and Yaseen (2020) reports the state of the art of

various artificial intelligent models implemented for river

water quality simulation over the past two decades

(2000–2020); Hadjisolomou et al. (2021) have used artifi-

cial neural networks (ANNs) to model freshwater

eutrophication with limited limnological data; Deng et al.

(2021) have implemented two different machine learning

methods (artificial neural networks (ANN) and support

vector machines (SVM)) to accurately forecast algal

growth and eutrophication in Tolo Harbour in Hong Kong

carrying out a comparative analysis with 30-year measured

data.

In this investigation, a novel approximation obtained

performing a regression that relies on support vector

regression (SVR) in combination with whale optimization

algorithm (WOA) (Mirjalili and Lewis 2016) has been used

to successfully predict the phosphorus and chlorophyll

concentration in a reservoir located in Principality of

Asturias (an autonomous community placed in Northern

Spain) known as Tanes reservoir (see Figs. 1a, b). Algal

atypical rapid reproduction is a grave health matter in lakes

and reservoirs like the Tanes one that provides water to the

main city of the region, Oviedo, that is, it is the supply to

one million inhabitants. To prevent toxic algae blooms

Chl-a and TP concentrations are used as an early alarm.
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This new methodology, which mixes the SVM approach

(Cristianini and Shawe-Taylor 2000; Hansen and Wang

2005; Steinwart and Christmann 2008) with the whale

optimization algorithm (WOA) (Mirjalili and Lewis 2016;

Gharehchopogh and Gholizadeh 2019; Ebrahimgol et al.

2020), to foretell the Chl-a and TP concentrations could be

an interesting procedure that has not been used so far.

Moreover, the SVM method is a mathematical technique

relied on the statistical machine learning which has the

capacity to tackle nonlinearities as well as interactions

among variables (Schölkopf et al. 2000; Steinwart and

Christmann 2008; Bishop 2011). The SVM technique

provides some advantages with respect to the classical

regression methods (Li et al. 2008; Barnes and Chu 2010;

Kuhn and Johnson 2013): (1) The SVM eludes mathe-

matical hydraulic models of the reservoir; (2) In SVMs, the

knowledge of the physico-chemical involved in the pollu-

tants transport in the reservoir is not required; (3) SVMs

allow to deal with the nonlinear relationships among the

input variables of the water body; and (4) by training and

testing SVR (support vector regression) enables to find

nonlinear relationships between data showing an obvious

significance. Certainly, the WOA optimizer has been

employed well enough to determine the optimal SVM

hyperparameters in this investigation. Moreover, earlier

researches point out that SVM is a suitable instrument in a

big number of existing applications as the foretold mod-

elling for solar thermal energy systems (Waseem Ahmad

et al. 2018), air and water quality estimation (Garcı́a-Nieto

et al. 2013; Xu et al. 2019), weighted multiscale SVR

combined with ultraviolet–visible spectra for quantitative

analysis of edible blend oil (Wu et al. 2021), prediction of

the short-term electricity load employing SVR in con-

junction with grey catastrophe and random forest tech-

niques (Fan et al. 2021), analysis of SVR kernels for

energy storage efficiency prediction (Ighravwe and Mashao

2020), SVR for prediction the number of Dengue infections

in the capital of Indonesia (Tanawi et al. 2021), etc. Nev-

ertheless, SVR remains a new method for assessing

Chlorophyll-a and TP concentrations using biological and

physico-chemical variables and thus to evaluate the quality

of the water in lakes and reservoirs.

The foremost aim of the present investigation was to

prognosticate the dependent Chl-a and TP concentrations

using the input physico-chemical and biological variables

in Tanes reservoir-obtained sampling the reservoir peri-

odically (Directive 2000/60/EC; Spatharis and Tsirtsis

2021)—employing SVR in conjunction with WOA. This

methodology describes a novel technique to study closely

Chl-a and TP in water bodies (i.e., lakes and reservoirs),

obtaining measurements of the Chl-a and TP concentra-

tions in them (Smith 2006; Riegl et al. 2014). Certainly, the

Chl-a concentration can be taken into account as an

essential indicator of surplus nutrients such as TP con-

centration in a lake or reservoir, and basically, of the

presence of eutrophication in these water bodies.

This research work is organized as follows: To start

with, the variables and data for the investigation along with

mathematical principles are detailed. Next we present the

results and discoveries acquired with this new approxi-

mation by comparing the observed values with SVR results

and next determining the relevance order for the parame-

ters of the model including the discussion. Finally, con-

clusions derived from this work are explained in detail.

2 Materials and methods

2.1 Study area

The Tanes reservoir is located in the south of the Princi-

pality of Asturias (an autonomous community located in

the north of Spain), specifically within the Redes Natural

Park (this park is considered a biosphere reserve) and in the

Nalón river valley. Furthermore, Tanes reservoir supplies

drinking water to almost the entire urban nucleus of the

Fig. 1 Images from Tanes reservoir: a overview of the study area

showing its location; and b a close-up image of this water body

Stochastic Environmental Research and Risk Assessment

123



Principality of Asturias, including its capital, the city of

Oviedo. Therefore, its importance is paramount from sev-

eral points of view (Kerich 2020; Çadraku 2021). The

Tanes reservoir has the following hydrological character-

istics: (a) volume: 33.27 hm3; (b) area: 159 ha; and

(c) 95 m of depth in the deepest point. Three kilometers

downstream from the Tanes reservoir is the Rioseco

reservoir. The Rioseco reservoir has the following hydro-

logical characteristics: (a) capacity of 4.3 hm3; (b) surface

area of 63 ha; and (c) maximum depth of 28.5 m. Rioseco

and Tanes reservoirs provide water supply to approxi-

mately one million inhabitants. In addition, the Tanes

reservoir has hydroelectric and recreational uses as well as

ornithological interest.

The geological area of the Tanes reservoir is the Central

Carboniferous Basin, whose lithologies are mainly quart-

zites and limestones. Therefore, the nature of the most

common materials is basic.

2.2 Experimental dataset

The data collection in the WOA/SVR-based study were

picked up during ten years. The 268 samples were obtained

monthly, starting in January 2006 and ending in December

2015 (Smith et al. 2008; World Health Organization 1998).

The data was obtained employing a Niskin bottle at the

point in the reservoir where the depth is maximum (see

Fig. 2a). The samples were taken at equally spaced depth

intervals determined in relation to Secchi depth (the design

is not observable on a Secchi disk as a result of the water

turbidity) (see Fig. 2b). In this way, five subsamples were

picked up (Brönmark and Hansson 2005; Quesada et al.

2006) and next homogenized to acquire a unique sample.

The physical–chemical parameters were analyzed by an

ISO17025 accredited laboratory, following the corre-

sponding methods in the Standard Methods for the

Examination of Water and Wastewater (American Public

Health Association 2005; Negro et al. 2000; Van der Valk

2006). A quality assessment program including internal

laboratory control (use of standards, blanks and replicates

during analysis) as well as analysis of blanks, replicates

and blind samples collected in the Tanes reservoir was

applied. During the sampling procedure, field blanks were

also collected. A total of 10% of samples were replicated to

assess variability. Some of these variables were obtained

directly, like the temperature or the pH of the water, while

obtaining others required a certified laboratory.

2.3 Variables of the model

The ultimate purpose of this investigation was to predict

the Chl-a and TP concentrations (lg/L). Chlorophyll-a is

broadly used as an indicator of the biomass of algae and

therefore, as an index of eutrophication (Latif et al. 2003;

Karydis 2009). Very high concentrations of chlorophyll

generally point out the presence of algal blooms (United

States Environmental Protection Agency 2014) and hence a

diminishing in the water quality. Chlorophyll is the sub-

stance directly related with the photosynthesis. Thus,

phytoplankton and Chlorophyll are mutually linked

(American Public Health Association 2005). Besides, as

cyanobacteria are predominant in phytoplankton for

eutrophic ecosystems, Chlorophyll concentration is con-

sidered as a subrogate indicator of them and a measure of

the potential risk to public health since cyanobacteria can

generate cyanotoxins (Wheeler et al. 2012). The con-

structed model (SVR) employs the data from different

kinds of phytoplankton (biological variables) together with

physico-chemical variables as independent parameters,

supplied by the Cantabrian Basin Authority, agency pri-

marily responsible for the management of the hydrographic

basins in the Cantabrian Sea.

Independent variables:

• Biological parameters:

Fig. 2 a Niskin device; b Secchi disks
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• Cyanobacteria concentration (mm3/L): they have pho-

tosynthetic capacity (see Fig. 3a), advertised in envi-

ronments. They should not be present is freshwater

(Quesada et al. 2006; Texeira and Rosa 2006; Willame

et al. 2005).

• Diatoms concentration (mm3/L): another common

organism in phytoplankton community and the major

group of algae concentration (Fig. 3b).

• Euglenophytes concentration (mm3/L): phytoplankton

with photosynthetic capacity contains it (Fig. 3c).

• Dinophlagellata concentration (mm3/L): it is also a type

of phytoplankton (Fig. 3d).

Fig. 3 Microscopic organisms

used in this study:

a Cyanobacteria; b Diatoms;

c Euglenophytes;

d Dinophlagella;
e Chrysophytes; f Clorophytes;
and g Chryptophytes
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• Chrysophytes concentration (mm3/L): they are funda-

mentally photosynthetic (Fig. 3e).

• Chlorophytes concentration (mm3/L): they are one of

the most numerous groups of algae (Fig. 3f).

• Chryptophytes concentration (mm3/L): diminutive type

of phytoplankton (Fig. 3g).

Physico-chemical variables (all of them referred to

water column):

• Water temperature (8C): this parameter refers to the

average value of measures at different depths on water

column. Many chemical and biological processes that

influence, among others, plant development, are sensi-

tive to temperature.

• Orthophosphates concentration (mg PO3�
4 /L): this rep-

resents the phosphorus fraction assimilated by plants

and, consequently, it is also related to plant develop-

ment and eutrophication (it is an essential nutrient for

autotrophic organisms such as phytoplankton and other

chlorophyll organisms).

• Total phosphorus concentration (mg P/L): it includes all

phosphorus compounds so it comprises forms not

assimilated by plants but that can be converted into

them when environmental conditions turn into the

appropriate. Phosphorus is known as a limiting

macronutrient for plant development.

• Nitrite concentration (mg NO2�/L): it is one of the

nitrogen compounds, an intermediate in the oxidizing

process from ammonia to nitrate. It causes several

effects such as, for example, methemoglobinemia in

many species.

• Nitrate concentration (mg NO3
-/L): nitrate is the most

frequent nitrogen ion in water-and this is the nitrogen

form usually taken up by plants. Nitrate is also one of

the nutrients responsible for waters eutrophication.

• Ammonium concentration (mg NHþ
4 /L): ammonium is

the reduced form of nitrogen. It is a toxic excreted by

aquatic organisms. In water, a high amount of this

substance blocks that excretion causing damages even

the death of the organism.

• Dissolved oxygen concentration (mg O2/L): it refers to

the density of oxygen dissolved in water, a key factor

for many chemical and biological processes and tightly

related to algae whose blooms release a lot of oxygen at

daytime and gives place to its depletion at night or

when bacteria decompose the dead algae.

• Iron concentration (mg Fe/L): it is a micronutrient for

phytoplankton growth. Despite being a life essential

element in high concentrations can be toxic. Its

precipitates can cause unbalance in waterbodies.

• Manganese concentration (mg Mn/L): like iron, man-

ganese is an essential trace element for phytoplankton.

However, ferromanganese depositions constrain algal

colonization and growth (Sheldon and Skelly 1990).

• Conductivity (lS/cm): it is an indirect measure of salts

content in watertight related to phytoplankton compo-

sition and abundance (Redden and Rukminasari 2008).

• Volume of water (hm3): it is an important parameter

since nutrients availability for phytoplankton depends

on it. High values imply the dilution of toxic substances

but also the dilution of nutrients diminishing toxicity

and trophic degree, respectively, and therefore, improv-

ing waterbody state.

• pH: it is an expression of acid substance concentration

in water. High values indicate low acid concentration

(high basic substance concentration), typically of

eutrophic waterbodies.

• Secchi depth (m) or depth at which a Secchi disk

immersed in water is no longer visible, measures

turbidity that is mainly generated by phytoplankton so it

is an indicator of its abundance.

2.4 Feature selection using multivariate
adaptive regression splines (MARS)

The feature or variable selection process involves the

picking of only some of the most important characteristics

(known as variables or predictors) for their employ in

modeling construction. Feature selection techniques are

employed for five compelling reasons:

• This permits the simplification of the models for the

purpose of making them easier to understand for users

and researchers;

• It reduces training time: less data indicates that

algorithms can be trained quicker;

• The precision is improved: less erroneous data indicates

that modeling precision ameliorates.

• The curse of dimensionality can be eluded; and

• It reduces overfitting (formally, variance reduction):

less duplicate data means less chance to come to

decisions relied on noise.

One of the most efficient and robust techniques in the

selection of variables is multivariate adaptive regression

splines (MARS). The MARS tool is used here to handle

complex data and to select the important features from the

entire experimental dataset. Some advantages of applying

the MARS method over other existing techniques in-clude

(Friedman and Roosen 1995; Hastie et al. 2003): (1) it

provides more flexible models than linear regression

models; (2) it is easy to interpret and understand; (3) it can

manage continuous and categorical data; (4) the hinge

functions automatically partition the input data, so the

effect of outliers is contained; (5) it does automatic var-
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iable selection (meaning that it includes important vari-

ables in the model and excludes unimportant ones); (6) it

tends to have a good bias-variance trade-off; and (7) it of-

fers an explicit mathematical expression of the dependent

variable as a function of independent variables through an

expansion of the base functions (hinge functions and

products of several hinge functions or interactions).

Next, we will briefly describe the mathematical basics

and benefits of the MARS technique. Multivariate adaptive

regression splines (MARS) is a statistical approach

(Friedman 1991; Sekulic and Kowalski 1992) and it is a

generalization of recursive partitioning regression (RPR)

that can consider complex relationships between a set of k

predictor independent variables, which are denoted by

X1;X2; :::;Xk and a dependent variable designated by Y, and

does not make starting assumptions about any type of

relationship between input and output parameters. The

MARS model is defined as (Friedman and Roosen 1995;

Hastie et al. 2003; Garcı́a-Nieto et al. 2019):

ŷ ¼ f Xð Þ ¼ b0 þ
XM

m¼1

bmhm Xð Þ þ e ð1Þ

where X is a function of the independent variables and their

interactions, b0 is the intercept parameter, b is a vector of

coefficients of the basis function, M is the total number of

these basis functions, h Xð Þ the spline basis function in the

model and e is the fitting error.

To approximate the nonlinear relationships between the

input variables X and the response parameter Y, basis

functions (BF) are used. They consist of a unique spline

function or the product of two or more spline functions for

distinct predictors. Spline functions are piecewise linear

functions, that is, truncated left-hand and right-hand func-

tions, and take the form of hinge functions that are joined at

the knots (Chou et al. 2004; Zhang et al. 2015; Garcı́a-

Nieto et al. 2019):

x� tð Þþ¼
x� t if x[ t
0 if x� t

� �
ð2Þ

t � xð Þþ¼
x� t if x[ t
0 if x� t

� �
ð3Þ

where t is a constant called a node that specifies the

boundary between the regions that have continuity from the

base functions of the regions from left to right and that are

smoothly joined at the given node and adaptively selected

from the data. The ‘‘?’’ sign refers to the positive part and

sets a value equal to zero for negative values of the argu-

ment. For example, Fig. 4 indicates a pair of splines for

q = 1 at the node t = 3.5.

As stated in some references (Xu et al. 2004; Cheng and

Cao 2014; Zhang et al. 2015), MARS forms reflected pairs

for each predictor variable with knots of each value xj; j 2

1; :::; kf g with knots at each observed value xij; i 2
1; :::; nf g of that variable, where n is the sample size. The

set of all possible pairs with the corresponding knots and

the truncated linear basis functions can be expressed by the

set

D ¼ xj � t
� �

þ; t � xj
� �

þ t 2 x1j; x2j; :::; xnj
� �

; j 2 1; :::; kf g
��

n o
:

An adaptive regression algorithm is taken during a

recursive partition strategy to automatically select the

locations of the node or breakpoints, including the two-

stage process: forward-stepwise regression selection and

backward-stepwise elimination procedure (Cheng and Cao

2014; Zhang et al. 2015).

The first step, also called the construction phase, begins

with the intersection and then, in order, adds to the

approximation the predictor that further improves the fit;

that is, when the maximum diminishing in the sum-of-

squares residual error happens. The search for the best

combination of variable and node is done iteratively.

Keeping in mind a model that contains M hinge functions,

the following couple will be added to the approximation in

the form of

bMþ1hm Xð Þmax 0;Xj � t
� �

þ bMþ2hm Xð Þmax 0; t � Xj

� �
:

Given a choice for the hm, the coefficients bm that make up

the vector b are estimated by minimizing the residual sum-

of-squares, that is, by standard linear regression (Friedman

and Roosen 1995; Hastie et al. 2003; Chou et al. 2004).

This procedure persists until a predetermined number of

base functions Mmaxð Þ is accomplished or the R2 alters less

than a limit (Friedman and Roosen 1995; Chou et al. 2004).

A big number of BFs are summed one after another so that

an overfitting model is built. Generally, the maximum

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
5

1.
0

1.
5

x

y

h(x−3.5)

h(3.5−x)

Fig. 4 A graphical representation of a spline basis function. The left

spline (x\t,� x� tð Þ) is shown as a dashed line and the right spline

(x[ t,þ x� tð Þ) as a solid line
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number of BF is 2–4 times the number of predictor vari-

ables (Cheng and Cao 2014; Zhang et al. 2015).

The second step, also called the pruning phase, begins

with the full model and simplifies it by eliminating terms

by applying a backward procedure to avoid oversizing.

MARS identifies the hinge functions that are less relevant

for the model and removes the least significant terms

sequentially. The final model is chosen employing the

generalized cross-validation method (GCV), an adjustment

of the sum-of-squares of the residuals that penalizes the

complexity of the models by the number of hinge functions

and the number of knots (Hastie et al. 2003; Cheng and

Cao 2014; Zhang et al. 2015) and it is given by:

GCV Mð Þ ¼
1
n

Pn
i¼1 yi � f̂M xið Þ

� �2

1� C Mð Þ=nð Þ2
ð4Þ

where M is the number of terms in Eq. (1) (equal to the

number of BFs), n is the number of data sets, yi are the

observed values and f̂M xið Þ denotes the predicted values

from MARS and, finally the value C Mð Þ increases with the

number of basis functions used in the model. The formula

for this value is (Sekulic and Kowalski 1992; Friedman and

Roosen 1995; Hastie et al. 2003):

C Mð Þ ¼ M þ 1ð Þ þ dM ð5Þ

so that d is a coefficient that establishes the relevance of

this parameter.

The relevance of the variables used as predictors can be

assessed in different ways (Xu et al. 2004; Cheng and Cao

2014; Zhang et al. 2015): (a) using the GCV related to the

variables: when we drop a variable from the model the

GVC index increases. This increment is the associated

value; (b) similarly, using the residual sums of squares

(RSS); and (c) we can count the number of subsets

(Nsubsets) that contains a specific variable. The more

subsets, the greater its relevance.

2.5 Support vector regression (SVR)

Support vector machines (SVM) have originally emerged

to address binary classification problems. In view of the

situation, it was rapidly noted that the fundamental

guidelines that endorse them could be employed to con-

front another type of issues such as the regression problems

(Vapnik 1998; Pal and Goel 2007; Chen et al. 2013). In this

sense, let’s consider a dataset, the training set comprises

the values of the output dependent variable yi 2 <; 8i ¼
1; 2; :::;m and the covariates xi 2 <p; i ¼ 1; 2; :::;m. Thus,

the method termed support vector regression (SVR) builds

a function f xð Þ ¼ wTxþ b, so that w represents the per-

pendicular vector to the hyperplane, called director vector

of the hyperplane, and b= wk k is the perpendicular distance

from the coordinate’s origin to the hyperplane. Further-

more, this approximation gives places to not more than a

deviation equal to e from yi for all training cases xi, and

simultaneously, it must be as flat as possible. Flatness is

achieved by minimizing the Euclidean norm wk k2, while
the model is fitted by penalizing the sum of deviations

greater than e. Indeed, the SVR method intends to solve the

next optimization problem (Steinwart and Christmann

2008; Cristianini and Shawe–Taylor 2000; Gu et al. 2006):

min
w;b;nþ;n�

1

2
wk k2þC

Xm

i¼1

nþi þ n�i
� �

ð6Þ

subject to

yi � wTxi þ bð Þ� eþ nþi i ¼ 1; :::;m
wTxi þ bð Þ � yi � eþ n�i i ¼ 1; :::;m

nþi ; n
�
i � 0 i ¼ 1; :::;m

8
<

:

9
=

; ð7Þ

so that C is termed the regularization constant and nþ; n� 2
<m are called slack variables. The constant C in Eq. (6)

takes a positive numeric value that restrains the penalty

enforced on observations that are outside the interval e and
facilitates avoiding the overfitting. This value ascertains

the trade-off between the horizontality of the objective

function and the complexity reduction of the model. The

slack variables are presented for each training vector for

the purpose of permitting deviations greater than e, but
penalizing these digressions in the objective function. The

zone enclosed by yi � e; 8i is termed an e-insensitive tube
(see Fig. 5).

To tackle highly nonlinear problems like this one, we

will use the kernelization method. This method relies on

mapping the original dataset to a larger dimensional space

H termed the feature space. The application is carried out

via a kernel function K xi; xj
� �

, which determines a scalar

product in H. In order to solve the primal optimization

problem given by Eqs. (6) and (7), we are going to express

this problem in its dual form. The dual formulation of the

optimization problem is obtained applying the Karush–

Fig. 5 Representation of the e-insensitive tube in case of regression
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Kuhn–Tucker (KKT) conditions (Li et al. 2008; Gu et al.

2006; Shawe-Taylor and Cristianini 2004):

max
aþ;a�

Xm

i¼1

yi a
þ
i � a�i

� �
� e

Xm

i¼1

aþi þ a�i
� �

� 1

2

Xm

i;j¼1

aþi � a�i
� �

aþj � a�j

	 

K xi; xj
� �

ð8Þ

subject to

Pm

i¼1

aþi � a�i
� �

¼ 0;

0� aþi �C; i ¼ 1; :::;m
0� a�i �C; i ¼ 1; :::;m

8
>><

>>:

9
>>=

>>;
ð9Þ

The regression estimation for a new sample x can be

obtained with the function f xð Þ given by (Steinwart and

Christmann 2008; Garcı́a-Nieto et al. 2013; Gu et al. 2006):

f xð Þ ¼
Xm

i¼1

aþi � a�i
� �

K x; xið Þ þ b ð10Þ

Various common functions utilized as kernels in the

technical bibliography are expressed as (Shawe-Taylor and

Cristianini 2004; Hansen and Wang 2005; Abbaszadeh

et al. 2016):

• Radial basis function termed RBF kernel:

k xi; xj
� �

¼ e�r xi�xjk k2

ð11Þ

• Polynomial kernel:

k xi; xj
� �

¼ rxi � xj þ a
� �b ð12Þ

• Sigmoid kernel:

k xi; xj
� �

¼ tanh rxi � xj þ a
� �

ð13Þ

where a, b and r are parameters that demonstrate the

operation of the kernel.

Furthermore, typical parameters of the SVR approach

can be synthesized as (Shawe–Taylor and Cristianini 2004;

Steinwart and Christmann 2008; Garcı́a-Nieto et al. 2013):

• Regularization constant (C): it is also called cost

function. This constant represents the balance (or

trade-off) between the margin and the slack variables.

It is one of the hyperparameters of the SVR technique

that must be previously determined by tuning.

• e parameter: This value restrains the width of the

allowable margin of error. The second term of the

objective function (see Eq. 8) that relied on e factor is
called the empirical error and is determined by means

of the insensitive loss function, which points out that it

does not ignore errors less than e (that is, at a distance e
of the real value).

• a, b and r: these parameters define the mathematical

expression of the distinct kernels in the final model.

Hence, it is convenient to employ some mathematical

technique that determines the above hyperparameters with

sufficient precision. Moreover, the whale optimizer algo-

rithm (WOA) explained in more detail below was

employed (Mirjalili and Lewis 2016; Gharehchopogh and

Gholizadeh 2019) with triumph in this research work. To

fix ideas, the whale optimizer algorithm (WOA) expounded

in the following subsection was used (Mirjalili and Lewis

2016; Gharehchopogh and Gholizadeh 2019; Ebrahimgol

et al. 2020) in this investigation with success.

2.6 Whale optimization algorithm (WOA)

The Whale Optimization Algorithm (WOA) is an opti-

mization algorithtm first suggested by Mirjalili and Lewis

(Mirjalili and Lewis 2016). It emulates the clever hunt

process performed by humpback whales. The gathering

performance is termed the bubble-net feeding methodol-

ogy, that originate bubbles to surround their victim as they

hunt. They plunge into the water at a depth of about 12 m

and next originate the spiral of bubbles surrounding their

victim. Then they go up pursuing the bubbles. The model

that inspires the spiral bubble-net feeding performance is

described below (Mirjalili and Lewis 2016; Gharehcho-

pogh and Gholizadeh 2019; Ebrahimgol et al. 2020):

• Surrounding prey

The whales identify the position of the victim surround

it. Assuming that the optimum point is not known, WOA

supposes that the present best point is the prey and that this

is close to the optimum. When the best scout is established,

the other scouts will bring up to date their locations to the

best scout. This fact is given by the following mathematical

expressions:

D~ ¼ C~ � X~p tð Þ � X~ tð Þ
���

���

X~ t þ 1ð Þ ¼ X~p tð Þ � A~ � D~
ð14Þ

so that:

• t: This points out the present iteration;

• A~ and C~: they are called coefficient vectors;

• X~p: represents the position of the prey; and

• X~: This represents the whale’s location.

Moreover, the coefficient vectors A~ and C~ are con-

structed according to equations:

A~¼ 2a~ � r~1 � a~

C~ ¼ 2r~2
ð15Þ
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so that components of a~ diminish in a linear form from 2 to

0 with advancing iterations, while r~1, r~2 are random vectors

whose components lie in the interval [0,1].

• Exploitation phase: bubble-net attack procedure

The bubble-net technique is a procedure that mixes two

mathematical approximations given by Mirjalili and Lewis

(2016), Gharehchopogh and Gholizadeh (2019), and

Ebrahimgol et al. (2020):

1. Shrinking surrounding mechanism: This procedure is

accomplished by diminishing a~. As A~ takes a random

value in the interval �a; a½ � so a diminishes from 2 to 0

with advancing iterations. Choosing values for A~ in

�1; 1½ � randomly, the fresh location of a scout can be

set in any point between the novel location and the

position of the best point found so far.

2. Spiral upgrading location: First, the distance between

the whale X~; Y~
� �

and the prey X~
�
; Y~

�	 

is calculated.

Next, an equation called spiral is produced joining the

whale and prey position with an helix:

X~ t þ 1ð Þ ¼ D~
0
ebt cos 2ptð Þ þ X~

� ð16Þ

being:

• D~
0 ¼ X~

�
tð Þ � X~ tð Þ

���
��� is the distance between the prey

and (present best solution until now) and i-th whale;

• b is a constant that determines the form of the

logarithmic spiral; and

• t takes random values that are in the interval �1; 1½ �.

The spiraling path of the whales around their prey

shrinks more and more. To implement this concurrent

performance, we suppose that we choose with a 50%

probability and the spiral path to update the position of the

whales. This is given by the expression (Mirjalili and

Lewis 2016; Gharehchopogh and Gholizadeh 2019;

Ebrahimgol et al. 2020):

X~ t þ 1ð Þ ¼ X~
�
tð Þ � A~ � D~ if p\0:5

D~
0
ebt cos 2ptð Þ þ X~

�
if p� 0:5

( )
ð17Þ

so that p is a number chosen randomly that takes values in

the interval 0; 1½ �. Besides the bubble-net approach, the

whales look for a victim at random. The model is described

below:

• Exploration phase: search for prey

The approximation that relied on the fluctuation of A~ can

be employed to look for victims (this stage is termed

exploration). Indeed, humpback whales look for at random

as stated by their comparative location to each other. As a

consequence, we employ A~ random values within the range

�1;�1ð Þ [ 1;1ð Þ to compel the scout to distance itself

from a given whale. Unlike the exploitation phase, the

location of a scout at this stage is upgraded by means of a

chosen search scout at random. This and A~
���
���[ 1 highlight

exploration and allows WOA algorithm to perform an

overall exploration. This is expressed (Mirjalili and Lewis

2016; Gharehchopogh and Gholizadeh 2019; Ebrahimgol

et al. 2020):

D~ ¼ C~ � X~rand � X~
���

���

X~ t þ 1ð Þ ¼ X~rand � A~ � D~
ð18Þ

so that X~rand gives the random position of the whale (it

is called a random whale).

WOA begins with a collection of random possible

solutions. Hence, according to this methodology, search

agents upgrade their locations taking into account a

selected search agent at random or the best solution

acquired up until now at each iteration. The parameter a

diminishes from 2 to 0 for the purpose of supplying both

exploration and exploitation. A search scout at random is

selected when A~
���
���[ 1, but if A~

���
���\1, the best solution is

found upgrading the location of the search agents. Finally,

WOA ends when a certain stopping criterion is fulfilled.

2.7 Approach accuracy

Twenty independent variables already specified earlier in

subsection 2.3 were used in this investigation to create this

innovative WOA/SVR-relied method. As is well known,

the concentration of Chlorophyll-a is the predicted

parameter. For the purpose of foretelling Chl-a from the

twenty independent variables with enough assurance, we

must choose a good approach to the experimental data.

There are some indexes frequently employed to determine

the goodness-of-fit in a regression problem, but the norm

used in this investigation was the coefficient of determi-

nation R2 (Freedman et al. 2007; Knafl and Ding 2016;

McClave and Sincich 2016). To fix ideas, we will term the

experimental values ti and the predicted values yi. Hence, it

is feasible to specify the following additions as follows

(Freedman et al. 2007; Knafl and Ding 2016; McClave and

Sincich 2016):

• SStot ¼
Pn

i¼1

ti � tð Þ2: is called the total sum of squares,

and it is directly related to the sample variance.

• SSreg ¼
Pn

i¼1

yi � tð Þ2: it is called the regression sum of

squares, or the explained sum of squares.
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• SSerr ¼
Pn

i¼1

ti � yið Þ2: it is called the residual sum of

squares.

so that t is the average of the n experimental data:

t ¼ 1

n

Xn

i¼1

ti ð19Þ

Thus, the coefficient of determination is defined by the

mathematical expression:

R2 	 1� SSerr
SStot

ð20Þ

The closer the R2 statistic is to the value 1.0, the smaller

the disagreement between the experimental and foretold

data. Similarly, the mathematical expressions for the other

two statistics used in this study (RMSE and MAE) are as

follows (Freedman et al. 2007; Knafl and Ding 2016):

RMSE 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ti � yið Þ2
s

ð21Þ

MAE ¼ 1

n

Xn

i¼1

ti � yij j ð22Þ

Higher values of R2 are preferred, i.e. closer to 1 means

better model performance and regression line fits the data

well. Conversely, the lower the RMSE andMAE values are,

the better the model performs.

3 Results and discussion

Tables 1 and 2 show the input variables in this study. Seven

variables are biological (see Table 1) and the remaining

thirteen are physic-chemical (see Table 2). The dataset

consists of 268 samples from Tanes reservoir (Directive

2000/60/EC).

In this study, firstly we have performed a choice of the

principal characteristics or feature selection (input

variables or biological and physicochemical predictors) for

the two eutrophication indicators (Chl-a and TP) in bodies

of water (reservoirs, lakes, etc.) using the MARS technique

(ARESLab package) (Jekabsons 2016; Ciaburro 2017).

This allowed us to build two simplified models (one model

for Chl-a and another model for TP) in order to facilitate

their interpretation for researchers and reduce overfitting.

The feature selection for Chl-a and TP eutrophication

indicators according to the MARS technique are shown in

Tables 3 and 4, respectively. Specifically, the reduced

model for Chl-a consists of thirteen input variables or

predictors while the reduced model for TP consists of

eleven input variables or predictors.

The dataset was split into a training set (80% of the data)

and a testing set (20%). The model is built with the training

data using the SVR model. Previously, the metaheuristic

WOA has been used to optimize the hyperparameters using

a five-fold cross-validation scheme with the training data-

set. The flowchart in Fig. 6 illustrates this stage. Once the

parameters have been chosen, and the model obtained, this

is tested with the testing dataset and predictions for these

values are obtained.

As we have previously indicated, the two output vari-

ables (dependent variables) in this study are the Chl-a

concentration and TP concentration both treated with the

WOA/SVR-relied method. A most important issue in the

efficiency of this technique is the selection of the optimal

hyperparameters noted above: (1) the constant C of regu-

larization; (2) e the insensitive tube width; and (3)

parameter r, which condition the shape of the RBF (radial

basis function) kernel in the ultimate model. The grid

search method used by most computational codes is a brute

force method, and as such, almost any optimization method

improves its efficiency. The grid search is a very simple

method that promotes an extensive searching within a

predetermined grid. It can be easily improved with smarter

searching methods such as the one we have chosen for this

paper, WOA optimization, which is more efficient while

maintaining the simplicity. Indeed, it has been applied to

tune the SVR parameters with success in this study. Table 5

shows the intervals where the three parameters of SVR are

searched by WOA for optimal performance of the model.

Following this process, we get the optimal parameters

for the RBF-SVR model with the WOA optimizer, which

are shown in Table 6.

The value of R2 was obtained with this model and the

testing dataset. The library for support vector machines,

termed LIBSVM, was used here to implement the MARS

technique (Chang and Lin 2011), in combination with the

WOA optimizer (Mirjalili and Lewis 2016).

Taking into account these calculations, the WOA/RBF-

SVR-relied method has permitted to build of a novel hybrid

model that is able to predict the Chl-a and TP

Table 1 Ensemble of biological independent parameters employed in

this work

Biological input variables Name of the variable Mean Std

Cyanobacteria (mm3/L) Cyanobacteria 0.0083 0.0074

Diatoms (mm3/L) Diatoms 0.5965 0.1397

Euglenophytes (mm3/L) Euglenophytes 0.0274 0.0133

Dinophlagellata (mm3/L) Dinophlagellata 0.1755 0.1583

Chrysophytes (mm3/L) Chrysophytes 0.0118 0.0102

Chlorophytes (mm3/L) Chlorophytes 0.1153 0.0790

Chryptophytes (mm3/L) Chryptophytes 0.2973 0.1279
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concentrations using the test dataset. Moreover, in Table 7

we can see the different metrics for the evaluation of the

performance of this WOA/SVR model with different types

of kernels and three additional models adjusted for the Chl-

a and TP concentrations.

The R2 value for the optimal SVR model was 0.8582 for

the variable Chl-a predicted with RBF kernel and 0.9750

for the variable TP also predicted with RBF kernel. Similar

works obtain worse results (Jimeno-Sáez et al. 2020; Liao

et al. 2021).

3.1 Importance of the variables

A significant outcome of the actual research is the relative

importance of the parameters used as predictors in the

models that predict Chl-a and TP concentrations. Table 8

shows the weights of the thirteen variables in the WOA/

SVR-RBF model for the Chl-a forecast. Similarly, Table 9

shows the weights for the eleven variables WOA/SVR-

RBF model for the TP prediction. Taken in absolute value,

these weights illustrate the relative relevance of the vari-

ables in this methodology. The greater the absolute value

of the weight, the greater the relative relevance of the

variable within the model.

In this sense, Chlorophytes concentration is the

weightiest variable in WOA/SVR approach for Chl-a pre-

diction followed, far away, by Cyanobacteria concentra-

tion, volume of water, Euglenophytes, Chryptophytes,

Dinophlagellata, Manganese, Water temperature, Diatoms,

Total phosphorus, Secchi depth, Phosphates and Conduc-

tivity (Table 8 and Fig. 7).

Table 2 Ensemble of physico-

chemical independent

parameters employed in this

work

Physico-chemical input variables Name of the variable Mean Std

Water temperature (8C) Water_temp 11.5146 4.9928

Phosphates concentration (mg PO3�
4 /L) Phosphates 0.0209 0.0136

Total phosphorus (mg P/m3) Phosphorus 6.4585 2.8533

Nitrite concentration (mg NO2�/L) Nitrite 0.0019 0.0061

Nitrate concentration (mg NO3�/L) Nitrate 2.6657 0.9934

Ammonium concentration (mg NHþ
4 /L) Ammonium 0.0500 2:02
 10�16

Dissolved oxygen concentration (mg O2/L) DO 9.3335 1.1257

Iron concentration (mg Fe/L) Iron 0.0230 0.0184

Manganese concentration (mg Mn/L) Manganese 0.0197 0.0113

Conductivity (lS/cm) Conductivity 183.0037 9.5099

Volume of water (hm3) Vol_water 26.8963 4.8194

pH values pH_values 7.8800 0.4060

Secchi depth (m) SD 3.6403 0.5318

Table 3 Feature selection for the eutrophication indicator Chl-a

according to MARS technique

Variable GCV Nsubsets RSS

Euglenophytes 16.742 28 69.814

Dinophlagellata 41.701 35 31.427

Cyanobacteria 26.112 19 69.814

Diatoms 55.792 35 0.000

Chlorophytes 100.000 37 33.921

Chryptophytes 38.665 20 100.000

Water temperature 85.260 37 83.278

Secchi depth 52.199 36 64.365

Phosphates 62.741 34 36.476

Total phosphorus 24.417 22 0.000

Manganese 30.005 23 46.761

Conductivity 16.893 28 83.278

Volume 84.615 36 0.000

Table 4 Feature selection for the eutrophication indicator TP

according to MARS technique

Variable GCV Nsubsets RSS

Chlorophyll 10.588 9 9.596

Euglenophytes 69.364 25 48.088

Dinophlagellata 100.000 33 100.000

Cyanobacteria 33.488 29 69.481

Diatoms 42.795 22 40.531

Chlorophytes 4.168 7 6.543

Chryptophytes 91.475 30 76.789

Phosphates 65.208 22 40.531

Nitrate 64.952 28 62.331

Iron 9.940 9 9.596

Volume 95.085 33 100.000
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However, in the TP forecasting using WOA/SVR

approach Iron concentration is the weightiest variable. The

second one, Chryptophytes concentration, has similar sig-

nificance. The remaining input variables have much less

weight (see Table 9 and Fig. 8): Chlorophytes (0.8964),

Chl-a (0.85939), Dinophlagellata (0.7661), Volume of

water (0.7285), Diatoms (0.6987), Euglenophytes (0.6869),

Cyanobacteria (0.4799), Nitrate (0.3303) and Phosphates

with only a thirtieth of the Iron weight (0.0581 versus

1.4933 for Iron).

As Fig. 7 shows, Chlorophytes influence in Chl-a is

nearly three times all the others. Consequently, in Tanes

reservoir Chl-a concentration can be predicted from

Chlorophytes concentration with remarkably precision

since this water body is mesotrophic. One of the reasons

why chlorophytes outcompete cyanobacteria at high

nutrient levels may be the balance between the rates of

cellular growth and losses (Reynolds 2006; Ansari et al.

2010). Chlorophytes have a high demand for nutrients as

reflected in their high growth rates.

Cyanobacteria is the second most important input vari-

able in the prediction of Chl-a. Indeed, cyanobacteria

include bacteria capable of oxygenic photosynthesis. They

are the only prokaryotes that carry out this type of photo-

synthesis, which is why they are also called oxyphoto-

bacteria. Cyanobacteria have also been known by the

names of blue-green or chloroxybacteria algae, due both to

the presence of chlorophyll pigments that give it that

characteristic tone, and to its similarity with the morphol-

ogy and functioning of algae.

Among the non-biological variables, Water Volume is

the most important one in Chl-a forecast and the third in

the general ranking. The relationship between Water Vol-

ume and phytoplankton growth, or Chl-a concentration,

was pointed out by other authors (Brasil et al. 2016; Costa

et al. 2016) who conclude that in a deep reservoir the

reduction in its Water Volume favours phytoplankton

growth and consequently, Chl-a concentration.

Euglenophytes, Chryptophytes and Dinophlagellata

concentrations are less relevant than other kinds of phy-

toplankton in Chl-a concentration forecasting according to

their fourth, fifth and sixth position, respectively, in the

ranking and their weight, nearly four times lower than

Chlorophytes concentration weight and also lower than

Cyanobacteria concentration weight. The concentration of

Euglenophytes is the fourth most significant variable in the

prediction of Chl-a (output variable) because dammed

waters are usually rich in Euglenophytes. The concentra-

tion of Chryptophytes is the fifth most important variable in

Fig. 6 Flowchart of the construction of the WOA/SVR model

Table 5 Search intervals for the RBF–SVR hyperparameters fitted by

using the WOA optimizer during the tuning process

SVR hyperparameters Lower limit Upper limit

C 10�2 102

e 10�6 100

r 10�2 102

Table 6 Optimal parameters for the RBF–SVR–relied models for the training set encountered with the WOA optimizer for the Chl-a and TP

eutrophication indicators

RBF Kernel Values of optimal hyperparameters

Chlorophyll (Chl-a) Regularization factor C ¼ 1:3327
 100, e ¼ 1:4990
 10�5, r ¼ 1:3499
 100

Total phosphorus (TP) Regularization factor C ¼ 7:4222
 100, e ¼ 1:4990
 10�5, r ¼ 7:8960
 10�1
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Chl-a concentration foretelling. They are important mem-

bers of phytoplankton and can be found in stagnant waters,

withstanding moderate levels of contamination. They are

especially abundant in cold waters such as high mountain

reservoirs and lakes. In general, cryptophytes are mixo-

trophic, that is, capable of both photosynthesis and

Table 7 Coefficient of determination (R2), correlation coefficient (r),
root-mean-square error (RMSE) and mean absolute error (MAE) for
the novel WOA/SVR-relied model with different types of kernels and

linear regression (LR), multilayer perceptron (MLP) and random

forest (RF) models for the Chl-a and TP concentrations for the test

dataset

Model Chlorophyll (Chl-a) Total phosphorus (TP)

RMSE MAE r R2 RMSE MAE r R2

SVM-RBF 1.2288 0.7610 0.9278 0.8582 0.3163 0.1587 0.9877 0.9750

SVM-Linear 2.6015 2.3410 0.6511 0.3645 1.8449 1.5291 0.3993 0.1503

SVM-Polyn 1.4695 1.1059 0.8981 0.7972 0.3493 0.2801 0.9855 0.9695

SVM-Sigmoid 2.6631 2.3853 0.6275 0.3341 1.8682 1.5094 0.3609 0.1287

LR 2.7865 2.4318 0.5389 0.2710 1.8566 1.5102 0.4031 0.1395

MLP 2.1056 1.5021 0.8223 0.5837 1.7510 1.2717 0.7249 0.2267

RF 2.0672 1.7955 0.8525 0.5988 1.2574 1.0337 0.8336 0.6053

Table 8 Relevance of the

variables used as predictors in

the WOA/SVR-RBF model for

the Chl-a forecast

Input variable Weight

Chlorophytes - 2.3263

Cyanobacteria - 0.8200

Volume 0.6386

Euglenophytes 0.6370

Chryptophytes 0.6262

Dinophlagellata 0.5778

Manganese - 0.4954

Water temperature 0.4894

Diatoms 0.3717

Total phosphorus - 0.2453

Secchi depth 0.0268

Phosphates - 0.0231

Table 9 Relevance of the

variables used as predictors in

the WOA/SVR–RBF model for

the TP forecast

Input variable Weight

Iron 1.4933

Chryptophytes 1.4570

Chlorophytes - 0.8964

Chlorophyll 0.8593

Dinophlagellata 0.7661

Volume - 0.7285

Diatoms 0.6987

Euglenophytes 0.6869

Cyanobacteria 0.4799

Nitrate - 0.3303

Phosphates 0.0581

Fig. 7 Relevance ranking of the variables used as predictors for the

WOA/SVR-relied approach to forecast the Chl-a concentration

Fig. 8 Relevance ranking of the variables used as predictors for the

WOA/SVR-relied approach to forecast the TP concentration
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phagotrophy. The concentration of Dinophlagellata is the

sixth most important variable due to the photosynthetic

nature of these organisms.

The less important phytoplanktonic predictor of Chl-a is

Diatoms concentration, the ninth input variable in rele-

vance, despite dominating the phytoplankton groups in

Tanes reservoir. They are important producers within the

food chain (Reynolds 2006; Van der Valk 2006).

Manganese concentration is an essential micronutrient

in phytoplankton growth and appears in position seven in

the ranking of the Chl-a ranking. It is well known for quite

some time that manganese concentration concerns phyto-

plankton structure (Patrick et al. 1969).

Water temperature is the most relevant physico chemi-

cal variable and it is the eighth one in importance for Chl-a

concentration prediction. Increasing temperature favor

phytoplankton growth. In fact, Climate Change is a matter

of concern in water eutrophication (Moss et al. 2011;

Havens 2019).

Much less important is Total phosphorus, the tenth input

variable in significance to predict Chl-a density. Total

phosphorus is correlated to Chl-a because it is a nutrient for

phytoplankton. The other essential nutrient to grow phy-

toplankton and, as a consequence, to increase Chl-a, is

Nitrogen. However, this element is not relevant in Chl-a

forecast perhaps because it is not a limiting factor for

phytoplankton since it can take the Nitrogen up from the

atmosphere (Fields 2004; Moura Ado et al. 2012).

The other input variables (Secchi depth, Phosphates

concentration and Conductivity) hardly are influential on

Chl-a prediction.

The higher the Secchi depth value the lower the tur-

bidity value and therefore more light availability and more

phytoplankton biomass (Costa et al. 2016) or, in other

words, more Chl-a.

Phosphates are the highly biological available form of

phosphorus. They are the soluble fraction of total phos-

phorus, the part easily used by phytoplankton to grow.

They foster the biomass increase of phytoplankton reduc-

ing water quality and unbalancing the ecosystem leading to

some species disappearance. However, they barely have

influence as predictor of Chl-a (weight 0.0231 and twelfth

position in the ranking).

Conductivity seems to have an irrelevant contribution

predicting Chl-a density in the studied reservoir (the thir-

teenth input variable in importance and it has even less

weight than phosphates).

In the case of TP content forecasting, as Fig. 8 shows,

Iron and Chryptophytes concentrations are the most

important input variables. An expected result considering

the strong affinity Iron has for phosphorus (Koopmans

et al. 2020) and the significance of Chryptophytes in phy-

toplankton. They can be found in stagnant waters,

supporting moderate levels of contamination, which cor-

respond to contributions of nutrients rich in phosphorus,

which can be the reason for the importance of this input

variable in the TP foretelling (Abirhire et al. 2015).

The rest of the input variables are much less relevant in

PT prediction-about 50% of the iron or Chryptophytes

weights, or less, depending on the variable considered.

Most of them, except Volumen (the sixth relevant variable

in the foretelling), are phytoplankton species or related to

them as Chl-a concentration.

An explanation of the phytoplankton relevance in total

phosphorus forecast could be that this latter is a nutrient

that stimulates the growth for all these species since the

phosphorus is the limiting nutrient in plant growth, par-

ticularly in lakes and reservoirs as is the case at hand. In

fact, most Chlorophytes, one of the most numerous groups

of algae and the most relevant phytoplanktonic predictor

excluding Chryptophytes, have a wide distribution and

many are cosmopolitan, hence their presence in waters

contaminated with organic material, linked to contributions

rich in phosphorus (Arauzo and Álvarez Cobelas 1994;

Reynolds 2006). Furthermore, Dinophlagellata, the fifth

significant variable—third of phytoplankton species—to

predict PT density, proliferates as the amount of phos-

phorus increases in the water body causing the decrease in

phytoplankton diversity and productivity.

Among all the phytoplankton species, cyanobacteria are

the less relevant predictor of PT content according to the

fact that this kind of organism only dominates environ-

ments with high trophic degree (Quesada et al. 2004), but

Tanes reservoir has a fair trophic state. Cyanobacteria are a

group of photosynthetic bacteria, some of which fix nitro-

gen, living in a wide variety of moist soils and water freely

or in a symbiotic relationship with lichen-forming plants or

fungi.

Chl-a concentration is related to the sum of all kinds of

phytoplankton species measured since all of them are

photosynthetic. Chl-a concentration is the fourth important

variable for TP content.

Volume of water is another relevant variable (the sixth

one according to the proposed model) to predict TP con-

centration; an expected result since concentration depends

on the water volume.

After phytoplankton species, nitrate concentration is the

next input variable :the tenth one in the rank for predicting

TP content, with an influence nearly 70% of cyanobacteria

influence in the prediction—it is another nutrient and it is

usually together with phosphorus in waste water inputs.

This predictor is also connected with the Chl-a concen-

tration since it is a necessary nutrient for the growth of the

phytoplankton, which contains chlorophyll. Excessive

nitrate concentrations in reservoirs and lakes can cause

accelerated eutrophication and loss of dissolved oxygen.
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The last input variable in importance to forecast TP

content in Tanes reservoir, and with much less influence, is

Phosphates concentration. Obviously, there is a relation-

ship between the amount of phosphates and the total

phosphorus given that phosphates are a fraction of total

phosphorus. However, the relationship is not so tight as

with other variables as iron or the measured phytoplankton

species.

On the whole, the SVR–RBF method is an accurate tool

to predict the concentration of Chl-a and TP (output vari-

ables or eutrophication indicators), taking as input

parameters that can be measured easily and frequently.

Certainly, Figs. 9 and 10 compares the observed and pre-

dicted concentrations of Chl-a and TP using the SVR-RBF

technique over the test dataset, respectively. In this

method, it is important to optimize the hyperparameters of

the SVR effectively and robustly. This function is per-

formed by the metaheuristic optimizer WOA. Conclu-

sively, the observed and predicted Chl-a and TP

concentrations obtained with these models were correlated

to a high degree.

Fig. 9 Observed versus predicted Chl-a concentrations employing the WOA/SVR-RBF for model the testing dataset (R2 ¼ 0:8582)

Fig. 10 Observed versus predicted TP concentrations employing the WOA/SVR-RBF model for the testing dataset (R2 ¼ 0:9750)
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4 Conclusions

According to the earlier results, several key findings from

this study can be deduced and reported as follows: (1)

analytical (or Laplacian) models for predicting Chl-a and

TP concentrations from experimental parameters do not

give good enough results due to the nonlinear character of

the problem and the required simplifications. Hence, the

necessity of a machine learning method such as the WOA/

SVR is the verification that Chl-a and TP concentrations

can be calculated precisely using this hybrid approximation

based on WOA/SVR. Indeed, coefficients of determination

of values 0.8582 and 0.9750 were obtained for the con-

centrations of Chl-a and TP, respectively; (2) Moreover,

the relative importance of the predictors in the models was

established. This finding can be considered one of the main

ones of this investigation. In particular, Chlorophytes

concentration must be kept in mind as the most noteworthy

input variable in the foretelling of Chl-a concentration.

Similarly, Iron appears as the most important variable in

the prediction of TP; (3) conclusively, the importance of

the hyperparameters precise tuning in the SVR-based

approximation concerning the regression performance

accomplished for Chl-a and TP concentrations was deter-

mined. The calculation of the optimal hyperparameters

requires solving an optimization problem with inequality

constraints. Here we have used the WOA optimizer with

success.

Moreover, further application to other aquatic environ-

ments with similar characteristics such as ponds in gardens

or rivers in zones with low speed where the assessment of

the eutrophic state is of first importance would be desir-

able. Also, more experimentation is needed to take

advantage of this study, modifying the relevant parameters

obtained in this study to improve the prediction of the

eutrophic state. For instance, an additional future line of

research will be to build other novel hybrid mathematical

models to address new challenges.
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