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Abstract. Concept Drift is one of the main problems presents in data
stream processing for Data Mining and Machine Learning. This study
focuses on Virtual Concept Drift. A common approach includes i) the
detection of the drift with a specialized algorithm, and ii) the adaptation
of the model to the current scenario. This work studies how well-known
pre-processing methods affect abrupt Virtual Concept Drift detection in
data streams. The proposed pre-processing techniques are: i) deleting the
trend and ii) transforming the data stream from time to spectral domain.
Moreover, three Virtual Concept Drift detection methods are compared
over three publicly available data sets. According to the results, a slight
improvement in the detection of Virtual Concept Drift is achieved when
the trend is deleted. In contrast, no detection of Virtual Concept Drift
is reported on the spectral domain.

Keywords: Data Stream Mining, Concept Drift Detection, Pre-processing
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1 Introduction

Nowadays, the exponential increase of IoT devices and sensors is generating a
continuous information flow. This continuous flow of data is commonly known as
a data stream [1]. The general characteristics of data streams imply a challenge
for Data Mining and Machine Learning [2]. The main constraints imposed by
data stream mining are the processing time, system memory and the adaptability
of the algorithms. In this context of adaptability, algorithms have to deal with the
constantly evolving nature of data. This phenomenon is known as Concept Drift
(CD) [3] and leads to a decrease in model performance over time for any given
task [4–6]. Conceptually, CD happens when the joint probability distribution,
p(X, y), for the same pair of input and output data streams, X and y, changes
in time: pt(X, y) 6= pt+1(X, y) [7].

Based on its source, CD can be classified into two different types [8]. i) Real
Concept Drift (RCD), where the change over time is in the relationships between
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input and output data, represented by the evolution of conditional probability
distributions pt(y|X) 6= pt+1(y|X). ii) Virtual Concept Drift (VCD), where the
change over time is in the distributions of the input data, pt(X) 6= pt+1(X).
Another dimension of CD is the type and velocity of the changes over time.
Four classes of CD can be distinguished in this regard [8]: abrupt, gradual,
incremental and recurring.

Two common approaches are developed to deal with CD. In one of them, the
model is continuously updated by the new incoming data. Whereas in the other,
the CD is firstly detected, with a specialized algorithm, and then the model has
adapted consequently. In this study, is considered the second approach, mainly
in CD detection.

Algorithms specialized in CD detection can be divided into two categories,
depending on the CD source. i) RCD detection methods, which are mainly fo-
cused on the model’s accuracy change [5, 6, 13, 14]. ii) VCD detection methods
(VCD-DMs), focused on the change in input data stream statistical properties
[11, 12, 17]. There is a vast amount of research papers about CD detection [2,
4, 8–10]. Depending on the CD type and velocity of change over time, some
detection methods show better performance than others [2].

The majority of studies in the literature are focused on RCD detection be-
cause these algorithms directly measure the decrease in model accuracy. VCD-
DMs become interesting since the real output variable y is, in many cases, un-
known -thus RCD is not possible-. Furthermore, the study and detection of VCD
allow measuring changes in the input data distributions over time, favouring the
model to update and tune. Therefore, interest in VCD is justified.

In Data Mining methodology, it is common to apply a pre-processing method
(PPR-M) to the input data stream before any processing algorithm [15]. These
techniques aim to remove noise or unwanted properties from the data, to add
information from other sources or to adapt the input data stream for the pro-
cessing algorithms.

This study focuses on the detection of abrupt VCD on data streams. This
research aims to compare some of the most known techniques for VCD detec-
tion, together with different PPR-Ms. This study tries to answer the following
questions:

1. How does the VCD-DMs vary if the trend is filtered by a PPR-M?

2. How does the VCD-DMs work in the spectral domain?

3. Which are the differences among VCD-DMs when using the same PPR-M?

4. How is the performance of the VCD-DMs techniques affected by the nature
of the sliding window?

The rest of the paper is organized as follow: the next section describes the
PPR-Ms and VCD-DMs techniques to be studied in the comparison. The data
sets and experimental setup are detailed in section 3. Section 4 depicts the ob-
tained results and discusses the answers to the questions previously formulated.
Finally, the study ends with the conclusions and future work.
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2 A description of the technologies

As shown in Fig. 1, the most common approach in data stream mining to extract
knowledge from drifting data is described below.

1. The arriving data is buffered creating chunks of data of a pre-defined length.

2. PPR-M is applied to the data chunk.

3. When selected, a CD detection method is performed; if CD is detected, then
the model is adapted in consequence.

4. Run the adapted model to obtain some knowledge from evolving data.

Fig. 1. Scheme of a system adapted to Concept Drift

This section outlines the PPR-Ms that are considered in this study, as well
as the VCD-DMs to be compared.

2.1 Pre-processing alternatives

Let X(t) be the input data stream. Up to four different standard and well-known
PPR-Ms are used in this study, which are listed below.

1. Identity (ID): X(t) −→ X(t), in essence, it does not transform the original
data stream.

2. Calculate Local Derivative (LDV): X(t) −→ (X(t)−X(t− 1)) /∆t,
where ∆t is the local increment in time defined as ∆t = ti − ti−1.

3. Subtract Simple Moving Average (S-SMA):X(t) −→ X(t)−SMA(X(t)),
where SMA stands for Simple Moving Average.

4. Calculate Spectral Distribution (SDT):X(t) −→ X̃(f), Discrete Fourier
Transform (DFT) [16] will be used to transform data stream from time-
domain -X(t)- to frequency-domain -X̃(f)-.

The first method has been proposed to have a comparison baseline. The
second and third ones aim to remove the trend from the data stream. It is worth
noticing that the latter transformation normalizes seasonal components of the
data stream by changing to the spectral domain. For a comprehensive study on
PPR-Ms for CD see [15].
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2.2 Virtual Concept Drift detection methods

The majority of the VCD-DMs proposed in the literature are based on the com-
parison of the statistical properties between different portions of the data stream.
These portions are called windows of data. A window of data W on input data
stream X(t) is considered a time-ordered subset of consecutive elements x ∈ X(t)
that acts as a buffer. These windows can have fixed or variable length and their
elements may vary over time. Depending on the number of windows and their
properties, different VCD-DMs have been developed [2, 9]. According to the re-
sults in [2], two-windows-based VCD-DMs show better performance for abrupt
VCD detection than other alternatives. Therefore, the proposed methods in this
study belong to this category. These methods are: Adaptive sliding window al-
gorithm (ADWIN) [17], Kolmogorov-Smirnoff Test (KS-Test) [19] and Fourier
Inspired Windows for Concept Drift detection (FIWCD) [21].

Let Wt be a window of data at time t on X(t). Let WO
t and WR

t be two
subwindows of data on X(t). Their lengths are nO and nR, respectively, and
WR

t is the most recent of the two. We denote Wt = WO
t ∪WR

t with length n,
where n accomplishes Eq. 1, which means, there could be an overlap between
the two subwindows. The lengths of WO

t and WR
t may vary according to the

current VCD-DM, but Eq. 1 must be always satisfied.

n ≤ nO + nR (1)

In these conditions, it is considered that VCD has happened whenever re-
markable differences are found among the descriptive statistics calculated for
each subwindow [17]. The chosen methods follow two different strategies to de-
tect the existence of a remarkable difference: to set some specific bound base on
confidence level α, like ADWIN or KS-Test, or to set a similarity threshold λ
like FIWCD.

It should be noted that no underlying model is needed for these detection
methods, so it can be applied to any system that computes data streams. In the
following sections, the proposed methods are going to be explained. It should be
highlighted that the notation is slightly different from that of the original papers
to unify it.

Adaptive sliding window algorithm. ADWIN method [17] compares the
mean values calculated for WO

t and WR
t . Non-overlapping subwindows are con-

sidered, so WO
t ∩ WR

t = ∅ holds. Their lengths are varied until the absolute
difference of calculated means is higher than a given threshold εcut (see Eq. 2).

|µO
t − µR

t | ≥ εcut (2)

The value of εcut is firstly calculated by computing the harmonic mean (Eq.
3) of two subwindows.

m =
nO · nR

nO + nR
(3)
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Let us assume a confidence level α ∈ (0, 1) is given. It must be adjusted
by Bonferroni-Dunn correction [18], Eq. 4, where c is the number of considered
pairs of subwindows for each Wt. Then, threshold εcut is computed following Eq.
5, with σt the standard deviation of data in window Wt.

α← α

c
(4)

εcut =

√
2

m
· σ2

t · ln
2

α
+

2

3m
ln

2

α
. (5)

Whenever Eq. 2 is met, the data from WO
t and WR

t come from different
distributions under α confidence level and VCD is detected. ADWIN method
can be also applied when the lengths of the subwindows remain constant. In this
case, the Bonferroni-Dunn correction, Eq. 4, does not apply.

Kolmogorov-Smirnoff Test. KS-Test is a statistical non-parametric test with
no assumptions of underlying distributions. This test compares two samples of
data by the supreme distance D between their cumulative distributions F (x).
The null hypothesis is that the distributions of two samples are the same. Ap-
plying KS-Test for VCD detection has been reported in [19], [20], and is valid
for non-overlapping subwindows.

The supreme distance at time t is computed by Eq. 6. FO
t (x) and FR

t (x)
are cumulative distributions at time t of WO

t and WR
t , respectively, m is the

harmonic mean given by Eq. 3 and α is the confidence level. Similarly to ADWIN,
when KS-Test uses variable length subwindows, Bonferroni-Dunn correction, Eq.
4, must be applied. Finally, VCD is detected if Eq. 7 is met.

Dt = sup
x
|FO

t (x)− FR
t (x)| (6)

Dt >

√
1

2m
· ln 1

α
, (7)

Fourier Inspired Windows for Concept Drift detection. FIWCD method
[21] is based on the Bhattacharyya coefficient [22] to determinate the similarity
between the distributions of WO

t and WR
t . These two subwindows may have an

overlapping region.
Lengths of WO

t and WR
t are fixed and calculated by a method based on

DFT. This transformation is applied to different samples of historical data, as
it is specified in the original study [21]. Once nO and nR have been determined,
µR
t and σR

t of WR
t are computed. These statistics are compared against the next

element in the data stream xt+1, leading to three possible scenarios. First, if
|xt+1−µR

t | ≤ 0.5 ·σR
t , then update the mean and the standard deviation of WR

t

with xt+1 and without xt−nR . Second, if 0.5 · σR
t ≤ |xt+1 − µR

t | ≤ 2 · σR
t , then

just pass to the next element without any update. Third, if |xt+1−µR
t | ≥ 2 ·σR

t ,
then VCD is suspected at time t + 1. Finally, when VCD is suspected, let pass
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elements of the data stream until WO
t+1 = WR

t and compute Bhattacharyya
coefficient (bc) by Eq. 8 between probability distributions of subwindows WO

t+1

and WR
t+1. If similarity threshold λ is upper bc, then VCD event is detected.

bc =
∑

x∈Wt+1

√
pOt+1(x) · pRt+1(x). (8)

3 Materials and methods

In this section, the performance on abrupt VCD detection of the proposed meth-
ods is analyzed in three data sets. For this purpose, three common classification
metrics are compared. Below, the details of these data sets and the experimental
set-up are presented.

3.1 Virtual Concept Drift Data sets

Data sets used in this research are those reported in [21]. They represent abrupt
VCD in real scenarios related to financial processes that have been manually
segmented and labelled by experts. These data sets are:

1. BSE: Bombay Stock Exchange. The closing values from 19-Feb-1999 to 18-
Feb-2019 formed the data set. In this dataset, 24 dates are labelled as VCD.

2. GOOGLE: The data is the daily closing value of Google stock on trading
days from 27-Mar-2014 to 07-Dec-2018. In this data set, 9 dates are labelled
as VCD.

3. USD-SGD: USD to SGD exchange rate. The weekly data from 08-Jan-1988
to 15-Oct-2015 formed the data set. In this dataset, 19 dates are labelled as
VCD.

3.2 Experimental set up

The experimentation is schematized as follows. Each data set is analyzed indi-
vidually with each possible combination of PPR-M and VCD-DM. The same
performance measurement will be calculated for each case, so the results can be
compared.

Table 1. Values for free parameters that will be established in the experimental set-up.

Parameter Values Parameter Values

n 100, 150 ∆n 1, 5, 10
pR 0.5, 0.7 α 0.01, 0.05

(pmin,∆s) (0.3, 10), (0.4, 5) λ 0.6, 0.7, 0.75

Four relevant parameters of the VCD-DMs implementation are analyzed:
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1. The length of window Wt, n.
2. The step of variation for Wt, ∆n.
3. The subwindow parameter. If fixed length is chosen, this parameter is the

percentage of elements of WR
t , pR. Instead, if variable length is chosen,

this parameter is the tuple of the minimum percentage of elements for each
subwindow and the step of variation, (pmin, ∆s).

4. The statistical bound, according to desired tolerance of the method, α or λ.

These four parameters apply to the implementations of ADWIN and KS-
Test. However, for FIWCD, only the fourth parameter λ is applied since the
first, second and third ones are fixed by the method.

Table 1 shows the set of parameters that have been established for the dif-
ferent VCD techniques. These values have been extracted from the literature
[17, 19–21]. A grid search is applied using all possible combinations of param-
eters, to optimize each PPR-M plus VCD-DM performance. The performance
condition to select the best method is: higher Specificity meanwhile Sensibility
is non-zero, if possible. The Accuracy (ACC), the Sensitivity (SENS) and the
Specificity (SPEC) (see Eqs. 9, 10 and 11) have been selected as performance
measures because they have been used thoroughly in the literature. TP, TN, FP
and FN are the True Positive, True Negative, False Positive and False Negative
counters.

ACC = (TP + TN)/(TP + FN + FP + TN) (9)

SENS = TP/(TP + FN) (10)

SPEC = TN/(TN + FP ) (11)

4 Results and discussion

Results from the experimentation are shown in Table 2. Some interesting issues
arose when studying these results. A slight improvement in VCD detection is
observed for ADWIN and KS-Test when the trend is deleted with LDV and S-
SMA. In contrast, VCD is not detected in the spectral domain, independently
of the method and data set. Moreover, a high dispersion in the performance of
ADWIN has been observed, while KS-Test seems to be a robust method, with
more stable and better performance when the trend is deleted. Surprisingly, FI-
WCD performed better when no PPR-M was used; this behaviour is not normal
and raises suspicion about the method. Besides, the reported results in [21] were
not obtained even though we reproduced their experimentation. Results after a
grid search also show that there are not better parameters for a given method
and they have to be tuned for each specific problem.

According to the experimental results, the initial questions of this study
remain unanswered due to a lack of evidence. These issues motivate future work.
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Table 2. Results of the different combinations of PPR-M and VCD-DM for each data
set (DS). Parameters for methods that meet performance condition are specified along
its ACC, SENS and SPEC values

DS PPR-M VCD-DM n pR (pmin,∆s) ∆n α λ ACC SENS SPEC

BSE

ID
ADWIN 100 0.5 – 10 0.05 – 0.1203 0.9167 0.1164
KS-Test 100 0.5 – 10 0.01 – 0.1143 0.9167 0.1104
FIWCD 98 0.5 – 1 – 0.6 0.2942 0.7917 0.2918

LDV
ADWIN 100 0.5 – 10 0.01 – 0.6039 0.2500 0.6057
KSTest 100 – (0.4, 5) 10 0.01 – 0.2079 0.8333 0.2048
FIWCD 98 0.5 – 1 – 0.6 0.9952 0.0000 1.0000

S-SMA

ADWIN 100 0.5 – 10 0.01 – 0.3376 0.5417 0.3366
KS-Test 100 0.5 – 10 0.01 – 0.1396 0.8333 0.1362
FIWCD 98 0.5 – 1 – 0.6 0.9369 0.0833 0.9410

SDT
ADWIN 150 0.7 – 5 0.05 – 0.9655 0.0417 0.9699
KS-Test 100 0.5 – 10 0.01 – 0.9558 0.0833 0.9600
FIWCD 98 0.5 – 1 – 0.6 0.9952 0.0000 1.0000

GOOGLE

ID
ADWIN 150 0.7 – 10 0.05 – 0.1909 0.8889 0.1855
KS-Test 150 0.5 – 5 0.05 – 0.1824 0.8889 0.1770
FIWCD 51 0.5 – 1 – 0.6 0.4088 0.7778 0.4060

LDV
ADWIN 150 0.5 – 10 0.01 – 0.8632 0.1111 0.8689
KSTest 100 – (0.4, 5) 10 0.01 – 0.2652 0.7778 0.2613
FIWCD 51 0.5 – 1 – 0.6 0.8649 0.1111 0.8706

S-SMA

ADWIN 100 0.5 – 10 0.01 – 0.3243 0.7778 0.3209
KS-Test 100 0.5 – 10 0.01 – 0.2044 0.6667 0.2009
FIWCD 51 0.5 – 1 – 0.6 0.7373 0.2222 0.7413

SDT
ADWIN 150 0.7 – 5 0.05 – 0.9924 0.0000 1.0000
KS-Test 150 0.7 – 5 0.05 – 0.8674 0.1111 0.8732
FIWCD 51 0.5 – 1 – 0.6 0.9924 0.0000 1.0000

USD SGD

ID
ADWIN 100 – (0.4, 5) 10 0.01 – 0.7298 0.5263 0.7304
KS-Test 100 0.5 – 10 0.01 – 0.1059 0.7895 0.1040
FIWCD 97 0.5 – 1 – 0.6 0.4393 0.6316 0.4388

LDV
ADWIN 150 0.7 – 5 0.05 – 0.9973 0.0000 1.0000
KSTest 100 – (0.4, 5) 10 0.01 – 0.1966 0.7368 0.1959
FIWCD 97 0.5 – 1 – 0.75 0.9294 0.1053 0.9316

S-SMA

ADWIN 150 0.5 – 5 0.05 – 0.9973 0.0000 1.0000
KS-Test 100 0.5 – 10 0.01 – 0.1282 1.0000 0.1258
FIWCD 97 0.5 – 1 – 0.6 0.9297 0.1579 0.9318

SDT
ADWIN 150 0.7 – 5 0.05 – 0.9973 0.0000 1.0000
KS-Test 150 0.7 – 5 0.05 – 0.9973 0.0000 1.0000
FIWCD 97 0.5 – 1 – 0.6 0.9973 0.0000 1.0000
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5 Conclusions and future work

In this study, several Virtual Concept Drift methods have been compared with
different pre-processing methods on three publicly available data sets. This re-
search aimed to determine which method can be considered the best and whether
a pre-processing method performs better than others. It was found that trend
suppression before applying a Virtual Concept Drift detection method has the
capability to improve detection performance. This is reported for different data
sets and methods but, results do not show how this improvement on performance
works. Furthermore, it was found that when the spectral domain was used, by
applying Discrete Fourier Transform, it was not possible to obtain valid results
in the Virtual Concept Drift detection.

Future work should follow two different approaches. First, study how deleting
the trend affects VCD detection. Second, understand how VCD is transformed
from time to the spectral domain and develop a method that can detect it in this
domain. After this work, the questions raised by this study could be answered.
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