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Abstract. A new framework for the assessment of Engine Health Mon-
itoring (EHM) data in aircraft is proposed. Traditionally, prognostics
and health management systems rely on prior knowledge of the degra-
dation of certain components along with professional expert opinion to
predict the Remaining Useful Life (RUL). In order to avoid reliance on
this process while still providing an accurate diagnosis, a data-driven ap-
proach using a novel recurrent version of a VAE is introduced. The latent
space learned by this model, trained with the historical data recorded by
the sensors embedded in these engines, is used to visually evaluate the
deterioration progress of the engines. High prognostic accuracy in esti-
mating the RUL is achieved by building a simple classifier on top of the
learned features of the VAE. The superiority of the proposed method is
compared with other popular and state-of-the-art approaches using Rolls
Royce Turbofan engine data. The results of this study suggest that the
proposed data-driven prognostic and explainable framework offers a new
and promising approach.
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1 Introduction

Engineering maintenance and prognostics are a must in modern aircraft engines.
Data is routinely collected from the engine to monitor and prevent it from op-
erating in undesirable conditions. The knowledge of the system built into the
engine and aircraft is configured to trigger alerts that highlight the need for pi-
lot action, maintenance action or directly shut the engine down if a significant
condition is encountered. Over the years, the number of variables and data col-
lected has increased substantially which on the one hand is positive in terms of
making more accurate diagnoses, but at the same time increases the difficulty to
reach them since traditional strategies such as corrective maintenance of failures
and scheduled preventive maintenance are becoming less capable of meeting the
growing industrial demand for efficiency and reliability. On the other hand, smart
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Prognostics and Health Management (PHM) technologies are showing promis-
ing capabilities for application in industries [14]. Remaining useful life (RUL) is
a key metric in this regard and can be estimated from the historical data that
sensors record on each trip, which is very important to improve maintenance
schedules and avoid engineering, safety and reliability failures and, as a conse-
quence, determine engine deterioration, increase engine flight time and reduce
maintenance costs.

Accurate diagnosis can be achieved with model-based approaches if the degra-
dation of the complex system is accurately modeled, some examples are Weibull
distribution [1] or Eyring model [4]. The main limitation of these approaches is
that they require extensive prior knowledge about the physical systems that is
usually not available in practice. This is precisely why data-driven approaches
have been gaining popularity in recent years, as they are able to model degra-
dation characteristics based solely on historical sensor data from which the un-
derlying correlations and causalities in the collected data can be modeled. In
other words, knowledge can be generated from the collected data with little
prior prognostic experience to infer valuable system information, such as RUL.

In this paper we propose a new Deep Learning approach for RUL estimation,
based on a visual diagnosis capable of assessing the evolution of RUL. To this
end, we present a novel recurrent version of a Variational Autoencoder (VAE).
Aircraft data is captured over time, comprising a time series, however, VAE
research is very much oriented to the field of images, and not so much to that of
time series, although some work is beginning to emerge [7]. To the best of our
knowledge, this is the first contribution in which a recurrent VAE is used for
RUL estimation.

Besides, despite achieving very promising results, most Machine Learning
models focus their efforts on predicting a number or a label, leaving aside how
they got there [3]. By making use of the internal representation learned by the
VAE we can elaborate a strong explanatory component, since a simple prediction
may not be informative enough to determine engine deterioration, thus giving
insight into the state of an engine with a simple look to a self-explanatory map.

2 RUL Estimation

In the last decade, the relationship between the use of monitored system data
and the RUL of engines has gained the attention of data-driven prognostic mod-
els. Especially, the use of neural networks has had a great impact given that they
have the advantage of learning to model highly nonlinear, complex and multi-
dimensional systems without experience in the physical behavior of the system.
In this sense, there are works such as [12], where the authors applied multilayer
perceptrons (MLP) for estimating the RUL of laboratory-tested bearings. In ad-
dition, some researchers have integrated fuzzy logic to capture more information
for EHM [5] [9]. It is also worth mentioning works like [11] and [6] where Gradient
Boosting trees and Support Vectors are applied for engine RUL prediction.
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More recently, in this field, as in many other areas such as image or speech
recognition, the application of Deep Learning models has been gaining ground
over the years for RUL estimation as the raw data obtained from machine health
monitoring share a high dimensionality similar to that of image processing stud-
ies. There are clearly two trends: the application of Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN). In the first group, works
as [8] explore RUL estimation using different configurations of CNNs minimizing
prior knowledge about prognostics and signal processing. Regarding RNN, the
most common architecture that can be found in the literature are LSTMs [10]
and in the last years, Bidirectional LSMTs [13] are beginning to gain importance
as their ability to make full use of the sensor date sequence in bi-direction seems
to have promising results.

Again, as discussed above even if these models achieve good results, in the
end, these systems will be used by people outside Machine Learning and what
they will be looking for is a high-quality interpretation of the data. One possible
way to provide this is to establish a Representation Learning approach since, un-
like others, the performance of models following this approach depends directly
on internal representations, which in turn can be leveraged in favor of a better
understanding of the problem itself. In this direction, we propose applying a
VAE.

VAEs are designed to reconstruct the input data while at the same time learn
a compressed representation of it, the so-called latent space. That compression
depends on a probability distribution, causing the data to be organized in a
continuous space, i.e. two nearby points in the latent space should give simi-
lar contents when reconstructed. This also means that similar data are located
close together in the latent space, forming different clusters depending on their
underlying nature.

The framework we propose relies then on a new recurrent VAE to model
the time complexity of the engine data. The fact that it has a recurrent input
offers the possibility to feed the model each time a new data sample becomes
available, allowing online training. The VAE learns different degradation stages
to the point of being able to place in the latent space, which can be understood
as a two-dimensional map, aircraft with similar RUL values in the vicinity. This
is used to, given data of a new aircraft, place it on the map according to the
RUL it has, thus offering a simple and intuitive diagnosis.

3 Model architecture

Variational autoencoders consist of 3 parts: an encoder network, a decoder net-
work and a latent space. The encoder learns to compress the data to the latent
space from which the decoder can generate new samples. The latent space is de-
scribed by the parameters learned by the encoder that initialize the probability
distribution to which the data belong, so that the decoder can not only recon-
struct the input data, as conventional autoencoders do, but can also generate new
samples from that distribution. The loss function introduces the Kullback-Leibler
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divergence, which measures how much one probability distribution diverges from
another, to learn the above-mentioned parameters. The reconstruction error be-
tween the original input and the output of the decoder is also included. In the
end, all together allows the model to produce a latent space in which similar
data will be located close to each other and also enables new data to be sampled
from points that do not belong to the original data, thus having a generative
model.

Given the way the model works, the workflow followed for this problem is
quite simple: a VAE is trained with data from Turbofan engines to learn a
simplified representation. Thus, the learned encoder acts as a feature extractor
by projecting onto the latent space the data according to its properties, which
are different stages of deterioration in the engines. This section explains how
this extraction, can be exploited to create the diagnostic map we are pursuing.
Emphasis is also placed on the recurrent architecture proposed to deal with the
time series, as well as how the latent features give rise to perform other tasks
such as classification or prediction.

Fig. 1: Network structure of the proposed method. The blue and green blocks
are the encoder and decoder respectively and the red blocks refer to the linear
classifier.

Encoder as a feature extractor In a VAE the training process is regularized
to avoid overfitting and to ensure that the latent space has good properties that
enable the generative process. To obtain these properties, the encoder must be
able to map the data in the latent space in such a way that similar data are
close. This allows not only that the decoder can reconstruct the data efficiently
but also that it can generate new data from a point in the latent space that does
not correspond to the encoding of any training data.

A VAE, given an input, tries to find a latent vector that is capable of de-
scribing it and at the same time has the instructions to generate it again. The
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process can be described as: p(x) =
∫
p(x|z)p(z)dz. Given that the integral of

this formula is intractable due to the continuous domain of z, the variational
inference is needed via the lower bound of the log likelihood, Lvae,

Lvae = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pθ(z)). (1)

The first term is the reconstruction of x that tends to make the coding-
decoding scheme as efficient as possible by maximizing the log-likelihood log pθ(x|z)
with sampling from qφ(z|x), modeled by a neural network (the encoder) whose
output is the parameters of a multivariate Gaussian: a mean and a diagonal co-
variance matrix (the latent space). That is to say, the main goal of the encoder
is to map the input data into a lower-dimensional space, acting as a feature ex-
tractor. The second term tends to regularise the organization of the latent space
by causing the distributions returned by the encoder to approach a standard
normal. It regularises the latent variables (represented by z) by minimizing the
KL divergence between the variational approximation and the prior distribution
of z.

Based on the representation learned by the encoder, the data, x, is sampled
from the conditional probability distribution p(x—z). For generative purposes,
this regularization in the latent space is very effective in facilitating random
sampling and interpolation for the creation of new data. This is why VAEs are
understood to be generative models and precisely it is the most widespread appli-
cation in the literature. Nevertheless, we place our efforts not on generating new
aircraft data but on diagnosing it instead, therefore after training the decoder is
not used anymore.

As stated in the introduction, most recent studies make use of recurrent
networks to model the time complexity of historical aircraft data. Among the
different types of RNNs that can be found, LSTM networks are the most promi-
nent. These networks process data from backward to forward preserving the
information of the past through hidden states. However, Bidirectional LSTM
networks are in high demand because they provide not only information about
the past but also about the future: data is first processed from past to future and
then from the future to the past, thus preserving the information from both pe-
riods. This is very valuable because the network knows what the data may look
like in its future stages, which helps it to understand what kind of information
to predict (different stages of engine degradation).

All things considered, we decide to implement the VAE with Bidirectional
LSTM networks. In this way, the encoder approximates the Gaussian distribution
pθ(z) by feeding the output into two linear modules to estimate its mean and
covariance. The compression of the input data results in a two-dimensional latent
space dominated by the axis represented by the mean and the variance of the
approximated distribution. Figure 1 shows the pipeline followed for applying
this framework for RUL estimation: the input and output are the same and in
the middle it is expected that engines are grouped in different clusters in the
latent space according to their features, depicting a simpler representation of
their nature. Furthermore, we add a classifier on top of the learned features in
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order to explicitly report which RUL is the one that best represents each engine
that is fed to the model.

Diagnostic map The diagnostic tool introduced in this study is a color-coded
map that displays the actual state of the engine and the speed of change from
healthy to deteriorated. Once the VAE is trained with the engine´s data, every
input can be compressed into the latent space in terms of the mean and variance
of the learned approximated distribution. This information can be projected
onto a map as shown in Figure 2. Every projected point is a sample from the
dataset and is colored according to their corresponding RUL: aircraft with low
RUL values are painted in red while aircraft with high RUL values are painted
in green. It can be seen there is a clear progression in the colors between points
since units with no signs of deterioration are located in the upper part of the
map (greater values of RUL) while the most deteriorated ones are located in
the lower part (lower values of RUL). This representation can be leveraged later
on: when new unseen units are used as inputs, the encoder will place them
according to their features, giving information about their RUL depending on
the proximity to other nearby points that are labeled. That is why it is considered
explainable, because the method itself explains the status of each engine. The
following section provides further details on the interpretation of this map.
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Fig. 2: Latent representation learned by the encoder.
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4 Experimental Study

RUL estimation is an actual engineering problem posed by Rolls-Royce therefore,
in this paper, the proposed method is evaluated on EHM data from Rolls-Royce
Turbofan engines. This data contains multi-variate temporal information ob-
tained from several built-in sensors. Each time step represents the values of the
variables collected for a single flight. Each engine unit may start with differ-
ent starting conditions all of which, albeit, are considered to be healthy. The
expected behavior of an aero-engine is to degrade as time progresses, however,
the fact that this degradation is not linear hampers the estimation of the health
state, that is the RUL. Anticipating the breakpoint before failure is key to pre-
vent potential problems in the future, thus expanding the lifetime of the engines.
Particularly, information is available on the state of the turbine and compressor
of the aircraft at the end of the measurement, which allows us to create a dataset
that reflects the states through which an aircraft may go through. Based on this,
we aim is to generate valuable knowledge that will allow us to estimate the RUL
of a new aircraft given its flight history.

4.1 Data Pre-Processing

As usual, data capture has its limitations, as a result, in order to prepare a
consistent dataset it has to be subjected to a purging and pre-processing process.
To begin with, there are quite a few time steps where data is missing, therefore
as long as these rows can be dealt with, an imputation is applied based on the
column average, i.e. the average of the values captured by the sensor.

Natural factors such as wind, number of passengers or a change of trajec-
tory may cause noticeable peaks in each signal which ultimately leads to noise.
As a consequence, it is necessary to apply a smoothing that minimizes the ef-
fects of this noise and prioritizes the trend of each signal. For this purpose, an
exponential smoothing with an alpha value of 0.4 is applied.

Anomalies, mainly points with spurious values, must be carefully removed
because as a final step before passing the data to the network, a normalization is
applied to the whole dataset to ease the network to deal with reasonable values
and these anomalies can significantly affect the range of the data.

Series length: the useful life of a new aircraft is expected to be at least
five thousand cycles. Nonetheless, among the aircraft for which information is
available, there are varying lengths due to the fact that there are measurements
for different life stages, therefore there are units that may end in eighty cycles,
while others may end in seven thousand. It is known that aircraft with less than
one thousand cycles had failures linked to different problems other than turbine
and compressor, and so it is decided to get rid of them because they are random
failures that would add nothing but noise to the dataset. Each aero-engine goes
to the workshop every one thousand flights (cycles) and the condition of the
turbine and compressor are recorded independently by the mechanics. Precisely,
this time window is used to determine the length of the series to be received
by the network as input. For this purpose, as one thousand cycles are almost
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intractable for a neural net, each sequence is transformed by taking each point
as the average of the next ten, thus reducing the size of the sequence ten times
while maintaining the morphology of the signal.

Finally, it is not so much the values that each signal takes that matter, but
rather the increases or decreases that they undergo. As an example, even if two
units have different pressures in the turbine, if the pressure has been increasing
over the cycles in both units, it means that both have suffered wear in this
component, therefore it is more informative to take the derivative of the signal
instead of the signal itself. Figure 3 reflects the transformation carried out by
this pre-processing for a random aircraft.

Fig. 3: Every aircraft in the dataset undergoes a transformation that mainly in-
volves the reduction of the number of time steps, noise reduction and calculation
of the derivatives of the signals.

4.2 Illustrative Example

To illustrate how the proposed model works, an example that can be understood
as a visual fleet diagnosis is presented below. During training, the network learns
different degradation patterns which leads the encoder to project the units into
the latent space according to their degradation, maintaining coherence in the
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distances between healthy and compromised engines as described in Figure 2.
This projection is reused as a basis to find out, given undiagnosed units, how
their deterioration evolves as the number of trips (cycles) increases. Figure 4
pictures this idea: 8 airplanes have been chosen to project their state into the
latent space in four different time steps: t=0 would correspond to feeding the
network with the data corresponding to the cycles from 0...1000, t=1000 from
1000 to 2000 and so on until t=3000. Leaving the latent projection obtained
in train gives us some insight into the progression of the health status of these
units: The latent projection of samples s2, s3, s5 and s8 during all the time
steps shown remain over the upper left quadrant, next to other aircraft with
similar characteristics, RUL around five thousand and so with no signs of near
degradation. On the contrary, there is a clear progression in samples s1, s3, s6
and s7, which move slightly downward and to the right at t=1000 and t=2000
to finally at t=3000 be placed together with units close to their end of life (low
values of RUL), thus obtaining an accurate and explainable diagnosis beyond a
possible label indicating the predicted health.

In the presented figure only four time steps have been selected to show the
update of the engine status according to the data input, however, it is remarkable
that once passed the barrier of the first thousand cycles in every posterior trip
this update can be done thanks to the fact that we are using recurrent networks
and this is where the interest really lies because in the end this can be used as a
diagnostic tool: As long as the engine projection remains in the healthy range,
its state will be considered positive; on the contrary, if the projection moves
towards the red zone, this can be a clear sign of deterioration, information that
will be used by the mechanics to make a decision regarding its monitoring,
either to make it more exhaustive or to take the aircraft to the workshop for a
more complete check-up, just to name a few alternatives. This translates into an
extension of the life of these engines by being able to anticipate the break-point
where severe deterioration may occur.

4.3 Numerical Results

In this section, we demonstrate that our framework can compete with other
modern approaches for time series for the case at hand. It is important to note
that RUL estimation is typically a prediction problem but the RUL information
available to us are labels that determine the health status of the engine. These
labels can be classified into 5 groups from best to worst condition: ”Good”,
”Good To Normal”, ”Normal”, ”Normal To High” and ”High”. It is also un-
derstood that each tag corresponds to an approximate number of RUL, being
Good≈5000 cycles, Good to Normal≈3000 cycles, Normal≈1000 cycles Normal
To High≈250 cycles and High≈10 cycles. For this reason, we chose to compare
our method with models widely used in the literature: MLP, CNN, LSTM and
Bidirectional LSTM, but changing their last layer so that instead of predicting
a number they predict a class and thus become a classification problem like the
one we have.
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Fig. 4: RUL evolution in a few selected aircraft. As the cycles progress, the
fastest degrading aircraft are placed in the zone occupied by aircraft with similar
deteriorations.
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Table 1 shows the performance of the different models for each class in terms
of accuracy. Each entry in the table is the number of times an engine in a class
was recognized by each model for the appropriate class. In addition, to illustrate
the performance of each method, the ranking calculated by the Friedman method
(ranking by range) for each sub-dataset and the resulting averaged ranking are
included.

It can be seen that the best classifier in terms of accuracy is ours, labeled as
RVAE. To extend the comparison between the different methods, post-hoc tests
were carried out to detect significant differences in pairs between all the classifiers
as recommended in [2]. If the significance test yields a p-value lower than a
predefined threshold (usually 0.05), then the difference is considered significant,
therefore one model is declared superior to another. As a result, our method is
the only one that yields a p-value of less than 0.05 (0.0357) for the comparison
with MLP. This means that the other methods are not statistically superior
to MLP, which makes us value the performance of our method. Additionally,
it should be noted that the baseline methods we present do not include any
representation of the data, but simply predict the class to which each sample
belongs, while interpretability of black-box models, like the one we provide, can
present predicted information in a more illustrative way than just a numerical
or categorical result.

Table 1: Accuracy of the different classifiers, 5 types of RUL.
Accuracy

MLP CNN LSTM BiLSTM RVAE

High(50) 0.166(5) 0.330(4) 0.500(2.5) 0.500(2.5) 0.666(1)
NormalToHigh(250) 0.500(4.5) 0.666(1.5) 0.666(1.5) 0.500(4.5) 0.666(1.5)

Normal(1000) 0.833(3) 0.100(1) 0.750(4) 0.916(2) 0.666(5)
GoodToNormal(3000) 0.692(3.5) 0.615(5) 0.692(3.5) 0.846(1.5) 0.846(1.5)

Good(5000) 0.692(5) 0.846(4) 1.000(1.5) 0.923(3) 1.000(1.5)

Summary Results

Accuracy 0.64 0.74 0.76 0.78 0.80
Average rank 4.2 3.1 2.6 2.7 2.1

5 Concluding Remarks

We have introduced a recurrent VAE architecture based on Bidirectional LSTMs
to create a graphical map that describes the condition of engine fleets. The diag-
nostic tool learns a 2D representation of engine data with different degradation
stages to, given a new engine, project its representation near engines with sim-
ilar deterioration patterns. This allows providing an efficient diagnostic tool on
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the state of health of the engines without prior knowledge of its physical nature.
In addition, the lightness of the model and its recurrent nature would allow
incorporating the model as a diagnostic system on any hardware with limited
computational capabilities and at the same time updating the learned patterns
as more data becomes available, thus coping with the non-stationarity of the
data distribution.
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4. Jouin, M., Gouriveau, R., Hissel, D., Péra, M.C., Zerhouni, N.: Degradations anal-
ysis and aging modeling for health assessment and prognostics of pemfc. Reliability
Engineering & System Safety 148, 78–95 (2016)

5. Khawaja, T., Vachtsevanos, G., Wu, B.: Reasoning about uncertainty in prognosis:
a confidence prediction neural network approach. In: NAFIPS 2005-2005 Annual
Meeting of the North American Fuzzy Information Processing Society. pp. 7–12.
IEEE (2005)

6. Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E., Fnaiech, F., Zerhouni,
N.: Direct remaining useful life estimation based on support vector regression.
IEEE Transactions on industrial electronics 64(3), 2276–2285 (2016)

7. Li, L., Yan, J., Wang, H., Jin, Y.: Anomaly detection of time series with
smoothness-inducing sequential variational auto-encoder. IEEE transactions on
neural networks and learning systems (2020)

8. Li, X., Ding, Q., Sun, J.Q.: Remaining useful life estimation in prognostics using
deep convolution neural networks. Reliability Engineering & System Safety 172,
1–11 (2018)

9. Mart́ınez, A., Sánchez, L., Couso, I.: Engine health monitoring for engine fleets
using fuzzy radviz. In: 2013 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). pp. 1–8. IEEE (2013)

10. Miao, H., Li, B., Sun, C., Liu, J.: Joint learning of degradation assessment and rul
prediction for aeroengines via dual-task deep lstm networks. IEEE Transactions
on Industrial Informatics 15(9), 5023–5032 (2019)

11. Singh, S.K., Kumar, S., Dwivedi, J.: A novel soft computing method for engine rul
prediction. Multimedia Tools and Applications 78(4), 4065–4087 (2019)

12. Tian, Z.: An artificial neural network method for remaining useful life prediction of
equipment subject to condition monitoring. Journal of Intelligent Manufacturing
23(2), 227–237 (2012)

13. Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., Hu, J.: Transfer learning
with deep recurrent neural networks for remaining useful life estimation. Applied
Sciences 8(12), 2416 (2018)

14. Zhao, Z., Liang, B., Wang, X., Lu, W.: Remaining useful life prediction of aircraft
engine based on degradation pattern learning. Reliability Engineering & System
Safety 164, 74–83 (2017)


