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Abstract: Here we report a gold(I)-catalyzed and
atom-economical ortho-N-indolyl-N-pyrazolylben-
zene synthesis from 1,2,3-triazapentalenes and
ynamides. The reaction occurs through the cleavage
of the triazole ring and formation of a α-imino gold
carbene intermediate. An aza-Nazarov-type cycliza-
tion with participation of an arene ring is involved.
The reaction consists in a formal [4+1] hetero-
cycloaddition where the four-carbon synthon is
provided by the ynamide. Finally, indole synthesis
could also be performed in a one-pot procedure
from their 1-propargyl-1H-benzotrizaole precursors.

Keywords: Gold; Ynamides; Carbenes; Nazarov;
Indoles

Gold carbene complexes[1] have played a key role as
intermediates in a large number of reactions in the field
of homogeneous gold catalysis.[2] Among them, α-oxo
gold carbene complexes[3] have been extensively
studied. Related to their nitrogenated analogues, such
as α-imino gold carbene complexes, they have emerged
in recent years, as important N-heterocyclic
precursors,[4] since seminal work described by Toste
and co-workers in 2005.[5] These intermediates can be
generated from a nitrene transfer to gold activated
alkynes. For that purpose several nitrenoid precursors[4]
as azides, 2H-azirines, isoxazoles, 1,2,4-oxadiazoles,
1,4,2-dioxazoles, 4,5-dihydro-1,2,4-oxadiazoles, 2,1-
benzoisoxazoles, 1,2-benzisoxazoles, aza-ylides, sul-
phur-ylides, pyrido[1,2-b]indazoles, have been em-
ployed. In this field, our research group has recently
reported the use of 1,2,3-triazapentalenes-easily acces-
sible from 1H-propargylbenzotriazoles- as nitrenoid
precursors.[6]

For the vast majority of the examples, the α-imino
gold carbene formation resulted from an intramolecular
procedure. Focussing on the limited cases of intermo-
lecular methodologies, only a few examples by Lu and
Ye et al.,[7] and Hashmi and coworkers[8] have been
reported to date of carbene reaction by a position
originally belonging to the alkyne derivative instead of
the nitrene transferor. Moreover, a single example by
Lu and Ye and coworkers[9] involves a group directly
attached to the triple bond.

On the other hand, participation of gold carbene
complexes in Nazarov-type cyclizations has been
scarcely documented.[10] Moreover, related to the
participation of these complexes in Nazarov-type
heterocyclizations,[11] two examples of oxa-Nazarov[12]
have been reported, by Liu and co-workers (Scheme 1;
top). Additionally, Zhang[13] and Lu and Ye[9] groups
described the only reported to date reactions involving
α-imino gold carbene complexes, generated from
azides, in respective intra- and intermolecular aza-
Nazarov-type reactions (Scheme 1; middle and bot-
tom). However, in all cases, heterocyclizations in-
volved participation of alkenes and no examples
implicating arene rings in the 4π-electrons cyclization
step, have been reported to date.

In the course of our investigations in the field of
gold catalysis using 1,2,3-triazapentalenes as nitrene
transfers, we previously described an efficient and
atom-economical indole synthesis through intramolec-
ular closure of a α-imino gold carbene complex. 1,2,3-
Triazapentalenes could be readily synthesized from the
corresponding 1H-propargylbenzotriazole precursors
or directly utilized in situ, in a one-pot procedure
(Scheme 2: top). At this point, in order to explore new
reactive possibilities, we decided to block C4-position
at the benzotriazole skeleton. In fact, this modification
allowed us to achieve a new gold-catalyzed formal
[4+1] heterocycloaddition of ynamides with incorpo-
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ration of the nucleophilic nitrogen atom of the
triazapentalene.

Here we report a new indole synthesis[14] that
represents the first example of a gold-catalyzed
heterocyclization through an aza-Nazarov-type reaction
with participation of α-imino gold carbene complexes
and arene rings (Scheme 2; bottom).

We initiated our study from benzo-fused 1,2,3-
triazapentalene 1a, bearing a methyl group to block a
potential reaction of the carbene intermediate at the
arene ring of the tiazapentalene. Thus, gold-catalyzed
reaction of this dipolar compound 1a, with ynamide
2a, derived from 2-oxazolidinone, resulted in the
formation of N-arylindole 3a. For this initial reaction,
5 mol% of IPrAuNTf2 (IPr=1,3-bis(2,6-diisopropyl-
phenyl)-2,3-dihydro-1H-imidazol-2-ylidene) was used
as the gold catalyst and the reaction performed in 1,2-
dichloroethane at 80 °C, for 6 hours. Under these
conditions, ortho-N-indolyl-N-pyrazolylbenzene 3a
was obtained in 87% yield, after chromatographic
purification (Scheme 3).

The structure of compound 3a could be determined
by mono and bidimensional NMR experiments and
unambiguously confirmed by a X-ray diffraction
analysis[15] performed on a single crystal obtained from
a methylene chloride-hexane solution (Figure 1).

At this point, we decided to explore the capability
of different gold catalysts to accomplish the reported
indole 3 formation. From Scheme 4 it can be inferred
that formation of indole 3a is only performed, in a
satisfactory way, using IPrAuNTf2 as the gold catalyst.

Next, we focussed our efforts on exploring the
scope of the reaction in terms of triazapentalene 1 and
ynamide 2 substitution patterns. As it is shown in
Scheme 5, N-arylindoles with different combination of
substituents at the reagents could be accomplished.
Thus, aliphatic groups, aromatic substituents with
electron donating (3 j,k) or electron-withdrawing

Scheme 1. Gold-catalyzed hetero-Nazarov-type reactions.

Scheme 2. Previous work and working hypothesis for gold-
catalyzed indole synthesis.

Scheme 3. Reaction of triazapentalene 1a with ynamide 2.

Figure 1. X-ray crystal structure for compound 3a. Hydrogen
atoms were removed for clarity.
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groups (3 l) and even halogens (3m–o) can be placed
at the benzo-fused ring of the triazapentalene 1. On the
other hand, pyrazolyl group could also be obtained
with an aliphatic substituent in its skeleton. In addition,
as a representative example, indole 3s, with an
imidazolidin-2-one moiety, could also be synthesized.
Finally, related to the electronic nature of the arene
ring of the ynamides, the presence of electron-donating
groups, seems to be very relevant for the indole
formation.

Going one step further, formation of indoles 3 could
also be accomplished starting from 1-propargyl-1H-
benzotriazole precursors 4 in a one-pot procedure,
involving two catalytic cycles (Table 1). However,
incorporation of a substituent at the position 4 of
propargylbenzotriazoles 4 seems to slow down its
gold-catalyzed transformation into corresponding of
triazapentalenes 1. On the other hand, probably due to
interferences between both gold-catalyzed reactions –
triazapentalene formation and consecutive transforma-
tion – we observed a dramatical decline in the reaction
yield. Taking this into account, previously to the
addition of the ynamide 2 to the reaction mixture,
benzotriazole 4 was stirred in 1,2-dichloroethane at
50 °C for two hours in the presence of the gold catalyst
(IPrAuNTf2). After that period, ynamide 2 was added
to the reaction vessel and the mixture stirred for 6 h,
under the previously mentioned standard reaction
conditions. Following this methodology, ortho-N-in-
dolyl-N-pyrazolylbenzenes 3 were obtained without
significant differences, further than a slightly lowering
in the overall yield of the reaction.

Finally, also as an indicative of the robustness of
the described methodology, the one-pot synthesis of N-
arylindoles 3 could be performed at a gram scale.
Thus, starting from 2.5 mmol of the corresponding
benzotriazole and ynamide 2a and following the
standard one-pot reaction conditions, 1.31 g of com-
pound 3h (Figure 2) were obtained without any
significant variation in the overall yield of the reaction
(83%).

Once the versatility of the reaction, in terms of the
substitution pattern, has been proven, a mechanistic
proposal for the formation of N-indolyl-N-pyrazolyl-

Scheme 4. Ligand screening for indole 3a formation.
[a] Yields and conversions were determined by NMR spectro-
scopy using dibromomethane, as internal standard.

Table 1. One-pot synthesis of indoles 3.

3 R1 R2 R3 R4 Ar Yield[a] [%]

3a pTol Ph Me H 81

3b pTol Ph Me H 65

3d pTol Ph Me H 50

3e pTol Ph Me H 89

3g pTol Ph Me H 62

3h pTol Ph Ph Me 84

3n pTol Ph Br Me 90

3 l pTol Ph pFC6H4 Me 86

3q Ph pTol Ph Me 93

3r pTol Pr Me H 69

[a] Isolated yields.
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benzenes 3 could be stablished and it is outlined in
Scheme 6. Initially, formation of dipolar benzo-fused
1,2,3-triazapentalene 1 occurs through a previously
described intramolecular 5-endo-dig gold(I)-catalyzed
cyclization.[6] Next, a new catalytic cycle could be
initiated by a nucleophilic attack from triazapentale 1
to the gold(I) activated ynamide III,[16] giving rise to
the formation of intermediate IV. This new intermedia-
te IV could evolve to the formation of α-imino gold

carbene intermediate Va triggered by the formation of
the pyrazole ring. At this point, it is worth to mention
that in consonance with the experimental results of
higher yields for the indole formation using ynamides
with electron-donating groups at the aromatic ring, the
mesomeric cationic form Vb could be favoured.
Taking this into account, intermediate V could evolve
through a formal aza-Nazarov-type reaction to the
formation of the pyrrolidinium ring of intermediate VI.

Scheme 5. o-N-Indolyl-N-pyrazolylbenzenes 3 synthesized from triazapentalenes 1 and ynamides 2 and isolated yields.
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Finally, N-indolyl-N-pyrazolylbenzenes 3 could be
accessed by consecutive rearomatization and proto-
deauration steps.

In summary, in this work an atom-economical and
one-pot gold-catalyzed formal [4+1] heterocyclization
from benzotriazole derivatives and ynamides is de-
scribed. The reaction takes place involving the partic-
ipation of a α-imino gold carbene complex – with a
1,2,3-triazapentalene acting a nitrene transferor – and
its evolution occurs through an aza-Nazarov-type
reaction. Relevantly, this result represents an example
of a Nazarov-type heterocyclization with the participa-

tion of gold carbene intermediates and arene rings. On
the other hand, this result, together with the example
reported by Lu and Ye et al.,[9] are the only two
examples, reported to date, of capture of α-imino gold
carbene complexes at a position next to the alkyne
moiety. Finally, as the result of this methodology,
ortho-N-indolyl-N-pyrazolylbenzenes are obtained, as
the triazole ring is broken up into two new hetero-
cycles. From the synthetic point of view, the use of
easily accessible propargyl benzotriazoles,[17] allows
the access to an interesting unit as the 2-aminoindole
skeleton in present in a number of alkaloids[18] and
other pharmacologically active compounds.[19] In this
sense, the synthesis of 2-aminoindoles is been a
pursued target and diverse methodologies have been
employed focused on this objective.[20,21]

Experimental Section
Synthesis of N-Indolyl-N-Pyrazolylbenzenes 3
From triazapentalenes 1: To a solution of 0.2 mmol of 1,2,3-
triazapentalene 1 in 1 mL of 1,2-dichloroethane, 0.21 mmol
(1.05 eq) of the corresponding ynamide 2 and 8.7 mg
(0.01 mmol, 5 mol%) of IPrAuNTf2 were added. The mixture
was heated at 80 °C for 6 hours. After that time, the reaction
was allowed to cool down and the solvent removed under

Figure 2. N-indolyl-N-pyrazolylbenzene 3h synthesized at
gram-scale.

Scheme 6.Mechanistic proposal.
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vacuum. The residue was purificated by chromatographic
column, obtaining the corresponding N-indolyl-N-pyrazolylben-
zene 3 as pure compound.

From 1-propargyl-1H-benzotriazoles 4: To a solution of
0.2 mmol of propargyl-1H-benzotriazole 4 in 1 mL of 1,2-
dichloroethane, 0.01 mmol (5 mol%) of the gold catalyst
(IPrAuNTf2) was added. The mixture was stirred for 2 hours at
50 °C. After that period, the heating bath was removed and
0.21 mmol (1.05 eq) of the corresponding ynamide 2 was added
to the mixture. From this point, same reaction conditions
(80 °C) described in the procedure starting from 1,2,3-triazape-
nalenes were followed to obtain N-indolyl-N-pyrazolylbenzene
3 as pure compounds.

3-(6-Methoxy-1-(2-methyl-6-(3-phenyl-5-(p-tolyl)-1H-pyra-
zol-1-yl)phenyl)-1H-indol-2-yl)oxazolidin-2-one (3a): Yield:
87%; 97 mg (From triazapentalene 1a); 81%; 91 mg (From
benzotriazole 4a). Yellow solid; m.p.: 128 °C (dec.). Rf: 0.38
(Hexanes/Dichloromethane/Ethyl acetate (3:1:1)); 1H NMR
(300 MHz, CDCl3) δ(ppm)=7.69 (d, J(H,H)=7.4 Hz, 2H),
7.62-7.58 (m, 1H), 7.57-7.48 (m, 2H), 7.45-7.28 (m, 4H), 6.84
(d, J(H,H)=7.8 Hz, 2H), 6.76-6.67 (m, 3H), 6.52 (s, 1H), 6.19
(s, 1H), 5.69 (s, 1H), 4.24-3.99 (m, 2H), 3.75-3.64 (m, 1H),
3.64 (s, 3H), 3.15 (dt, J(H,H)=8.1 and 3.9 Hz, 1H), 2.30 (s,
3H), 2.20 (s, 3H). 13C NMR (75 MHz, CDCl3) δ(ppm)=156.4
(C), 155.8 (C), 151.7 (C), 145.7 (C), 140.7 (C), 138.3 (C),
138.2 (C), 135.6 (C), 132.9 (C), 132.3 (C), 131.7 (CH), 131.7
(C), 129.0 (CH), 128.9 (2 x CH), 128.7 (2 x CH), 128.0 (CH),
127.4 (2 x CH), 127.0 (CH), 126.5 (C), 125.5 (2 x CH), 120.5
(CH), 120.4 (C), 109.5 (CH), 103.6 (CH), 94.5 (CH), 93.8
(CH), 62.4 (CH2), 55.0 (CH3), 47.8 (CH2), 21.1 (CH3), 18.8
(CH3). HRMS (EI) for C35H31N4O3 [M+1]: Calc: 555.2391;
found: 555.2393.
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