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1 Introduction

Ever since the first formulation of the AdS/CFT correspondence [1], the construction of AdS
vacua and their field theory duals has become the most concrete approach to understand
the physics of extended objects in string theory. Among the extremely varied research
lines opened in holography in the last twenty years the study of AdS3 and AdS2 vacua
and their dual realisations has deserved special attention. This is highly relevant given the
role played by these geometries as horizons of black objects in (super)gravity [2]. However,
despite the enormous progress made on lower-dimensional AdS holography, a completely
consistent and well-understood string theory description is still missing.

On the gravity side a great effort in classifying AdS3 and AdS2 vacua has been done in
old and recent literature (see [3]–[37] for a non-exhaustive list of references). The underlying
brane description of these solutions, key to the study of their CFT interpretation, becomes
more complicated as the dimensionality of the internal space increases, due to the richer
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structure of the possible geometries and fluxes. In this paper we will focus our study on
AdS2 spaces. We will present new classes of N = 4 solutions with a clear underlying brane
interpretation. Taking these fully-backreacted backgrounds as starting points, we will then
turn to the study of their dual field theory interpretation.

It is well-known that the AdS2/CFT1 correspondence has important technical and
conceptual problems. The fact that the boundary of AdS2 is not-connected poses the
problem of where the dual super conformal quantum mechanics (SCQM) lives, and the
associated non-factorisability of the quantum partition function (see for example [38]). In
this paper we will consider AdS2/CFT1 as an effective lower dimensional description of a
given brane intersection, described in the UV in higher dimensions. This was, for example,
the approach followed in [30].

A very powerful tool in this context is given by defect conformal field theories and
their brane engineering (for a non-exhaustive list of references see [39]–[62]). These the-
ories resolve the dynamical degrees of freedom of a holographic CFT associated with an
intersection of defect branes with a bound state of background branes, in which a higher
dimensional CFT lives. Holographically this situation is well-described by AdS solutions
with non-compact internal manifolds, reproducing a locally higher-dimensional AdS geom-
etry asymptotically. In such cases the divergence of the holographic free energy (or central
charge) is interpreted as the need of a UV completion into higher-dimensions, rather than
as a pathology of the theory. From the gravity side this divergent behaviour is resolved
within the geometry of the higher-dimensional AdS vacuum, while from the gauge the-
ory side the defect CFT is realised in terms of a position-dependent coupling within a
higher-dimensional CFT whose conformal isometries (and supersymmetries) are explicitly
broken.

We start our investigations in section 2, where we consider a F1-D2-D4′-NS5′ brane
intersection in Type IIA string theory [63, 64] ending on a bound state of D4-NS5 branes.
We construct the general brane solution associated to this brane system, from where we
extract the near horizon geometry, consisting on a fully-backreacted AdS2×S2 spacetime.
In this way we derive a new class of N = 4 AdS2×S2×S2×R2×S1 geometries foliated over
a line in Type IIA supergravity. The main property of this class of solutions is that they
are completely determined by the dynamics of the D4-NS5 branes wrapping the curved
AdS2 × S2 geometry. We then concentrate on the situation in which the D4-NS5 branes
are described by the semi-localised solution of [65]–[69]. We show that in this case the
AdS2 solution is resolved in the UV within the AdS5 geometry arising in the near horizon
of the semi-localised D4-NS5 branes. This is a Gaiotto-Maldacena geometry related to the
Type IIB AdS5× S5/Zn background upon T-duality, and is therefore holographically dual
to a Zn orbifold of 4d N = 4 SYM. Based on this we propose an interpretation to the AdS2
solution as describing backreacted line defects within a Zn orbifold of 4d N = 4 SYM.

In section 3 we T-dualise the brane set-up studied in Type IIA along the circular
direction on which the semi-localised D4 branes are stretched. The brane picture in Type
IIB becomes an F1-D1-NS5-D5 brane intersection ending on D3 branes probing an A-type
singularity. Close to the horizon a new class of N = 4 AdS2×S2×S2×R2×S1 geometries
foliated over a line arises. These solutions describe the near horizon regime of D3 branes
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intersecting with KK monopoles, wrapping the fully-backreacted geometry associated to
the F1-D1-NS5-D5 branes. We show that the defect interpretation found in Type IIA
is maintained, with the AdS2 geometry now resolved within the AdS5 × S5/Zn vacuum
associated to the D3 branes on the A-type singularity. The case n = 1, corresponding to
the absence of KK monopoles, arises when the AdS2 solution is resolved in the UV within
the AdS5×S5 Freund-Rubin solution. In this case the AdS2 solution finds an interpretation
as describing backreacted line defects within 4d N = 4 SYM.

In section 4 we include D6 branes in the Type IIA brane set-up studied in section 2.
By doing this we extend the class of N = 4 AdS2×S2×S2×R2×S1 geometries constructed
therein to describe the near horizon of D4-NS5-D6 branes wrapping the fully-backreacted
geometry associated to the F1-D2-D4′-NS5′ branes. In this case we have not been able to
construct explicit solutions that asymptote to the Gaiotto-Maldacena geometry associated
to the D4-NS5-D6 intersection. However, by suitably compactifying the internal manifold
we construct explicit quiver quantum mechanics that flow to SCQM in the IR, dual to
our solutions. We compute the “central charge” of these SCQMs, that we interpret as the
degeneracy of their ground states, and show that it agrees with the holographic result. We
propose an interpretation for the quiver quantum mechanics as describing D4′-D2 baryon
vertices within the 4d N = 2 CFT living in the D4-NS5-D6 brane intersection.

Finally, section 5 contains our conclusions and future directions. Appendix A includes
the strong coupling, M-theory realisation of the brane intersection and near horizon ge-
ometries discussed in section 2.

2 AdS2 solutions in Type IIA as defects within AdS5

In this section we present a new class of AdS2 solutions to Type IIA string theory that
arise in the near horizon limit of a brane set-up consisting of F1-D2-D4′-NS5′ branes ending
on a D4-NS5 bound state. These brane configurations are described close to the horizon
by N = 4 AdS2 × S2 × S2 × R2 × S1 geometries foliated over a line. We show that a
suitable prescription for the distributions of charges of the D4-NS5 branes produces a non-
compact solution within this class that asymptotes locally to a AdS5 vacuum in Type IIA,
associated to the D4-NS5 brane intersection. This allows one to resolve the divergences
associated to the non-compactness of the internal space within the AdS5 geometry, and to
interpret the solution as describing a line defect CFT within the N = 2 4d CFT dual to
the aforementioned AdS5 vacuum.

2.1 F1-D2-D4′-NS5′-D4-NS5 intersecting branes

Our starting point is the brane set-up depicted in table 1. This is a BPS/8 brane intersec-
tion that can be interpreted in terms of a F1-D2-D4′-NS5′ brane intersection ending on a
BPS/4 bound state of D4-NS5 branes.

We take the F1-D2-D4′-NS5′ branes completely localised within the four dimensional
worldvolume of the orthogonal D4-NS5 branes. As shown in [60, 61], this requirement is
crucial1 in order to decouple the field equations of the F1-D2-D4′-NS5′ defect branes from

1At least for AdS2 and AdS3 vacua.

– 3 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
7

branes t ρ ϕ1 ϕ2 y z ψ r θ1 θ2

D4 × × × × — — × — — —
NS5 × × × × × × — — — —
F1 × — — — — × — — — —
D2 × — — — × — × — — —
D4′ × — — — × — — × × ×
NS5′ × — — — — × × × × ×

Table 1. BPS/8 intersection describing F1-D2-D4′-NS5′ branes ending on a D4-NS5 bound state.
This system defines a N = 4 line defect SCQM within the N = 2 4d CFT living in the D4-NS5
branes.

those of the D4-NS5 background branes. Besides this we take the D4 branes completely lo-
calised in their transverse space and stretched within the NS5-branes in a circular direction,
along which the NS5-branes are smeared.

The metric and dilaton for such a system enjoy the following form,

ds2
10 = H

−1/2
D4

[
−H−1

F1 H
−1/2
D2 H

−1/2
D4′ dt2 +H

1/2
D2 H

1/2
D4′HNS5′

(
dρ2 + ρ2ds2

S2
)]

+H
1/2
D4

[
H
−1/2
D2 H

−1/2
D4′ HNS5′ dy2 +H−1

F1 H
1/2
D2 H

1/2
D4′ dz

2
]

+HNS5H
−1/2
D4 H

−1/2
D2 H

1/2
D4′ dψ

2 +HNS5H
1/2
D4 H

1/2
D2 H

−1/2
D4′

(
dr2 + r2ds2

S̃2
)
,

eΦ = H
1/2
NS5H

−1/4
D4 H

−1/2
F1 H

1/4
D2 H

−1/4
D4′ H

1/2
NS5′ .

(2.1)

Here S2 is the 2-sphere spanned by the coordinates (ϕ1, ϕ2) in table 1, and S̃2 the 2-
sphere spanned by (θ1, θ2). The condition that the F1-D2-D4′-NS5′ branes are completely
localised within the worldvolume of the orthogonal D4-NS5 branes implies that HF1, HD2,
HD4′ and HNS5′ depend only on ρ. Besides, as we mentioned above, we ask that HD4 =
HD4(y, z, r) and HNS5 = HNS5(r). Namely, we take the D4 branes completely localised
in their transverse space and the NS5 branes smeared along the ψ direction. With these
prescriptions the fluxes take the form

H(3) = −∂ρH−1
F1 dt∧ dρ∧ dz+ ∂ρHNS5′ ρ2 volS2 ∧ dy+ ∂rHNS5 r

2 dψ ∧ volS̃2 ,

F(4) = ∂ρH
−1
D2dt∧ dρ∧ dy ∧ dψ+ ∂ρHD4′ ρ2 volS2 ∧ dz ∧ dψ+ ∂rHD4 r

2 dy ∧ dz ∧ volS̃2

+HD2H
−1
NS5′HNS5∂yHD4 r

2 dz ∧ dr∧ volS̃2 −HF1H
−1
D4′HNS5∂zHD4 r

2 dy ∧ dr∧ volS̃2 .
(2.2)

It can be seen that the equations of motion and Bianchi identities for (2.1) and (2.2)
decouple into two groups. The equations for F1-D2-D4′-NS5′ branes are equivalent to

∇2
R3
ρ
HD2 = 0 with HNS5′ = HD2 ,

∇2
R3
ρ
HF1 = 0 with HD4′ = HF1 ,

(2.3)

while the D4-NS5 system satisfies the equations

∇2
R3
r
HD4 +HNS5∇2

R2
(y,z)

HD4 = 0 and ∇2
R3
r
HNS5 = 0 . (2.4)
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Note that the conditions (2.3) do not impose any warping within the 2d subspace R2
(y,z)

parametrised by y and z. This happens because the defect branes are completely smeared
within this subspace.

In order to extract the AdS2 geometry we choose the particular solutions

HD2 = 1 + qD2
ρ

and HF1 = 1 + qF1
ρ
, (2.5)

where qD2 and qF1 are integration constants related to the quantised charges of the defect
branes. Taking the limit ρ→ 0 we obtain,2

ds2
10 = q

3/2
D2 q

1/2
F1 H

−1/2
D4

(
ds2

AdS2 + ds2
S2

)
+ q

1/2
D2 q

−1/2
F1 H

1/2
D4

(
dy2 + dz2

)
+ q
−1/2
D2 q

1/2
F1 HNS5H

−1/2
D4 dψ2 +HNS5H

1/2
D4 q

1/2
D2 q

−1/2
F1

(
dr2 + r2ds2

S̃2
)
,

eΦ = q
3/4
D2 q

−3/4
F1 H

1/2
NS5H

−1/4
D4 ,

H(3) = −qD2volAdS2 ∧ dz − qD2volS2 ∧ dy + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(4) = qF1volAdS2 ∧ dy ∧ dψ − qF1 volS2 ∧ dz ∧ dψ + ∂rHD4 r
2 dy ∧ dz ∧ volS̃2

+HNS5∂yHD4 r
2 dz ∧ dr ∧ volS̃2 −HNS5∂zHD4 r

2 dy ∧ dr ∧ volS̃2 .

(2.6)

These geometries represent a new class of backgrounds of the form AdS2×S2×S̃2×R2
(y,z)×

S1
ψ, foliated over an interval, parametrised by r. The functions HD4(y, z, r) and HNS5(r)

are solutions to the equations (2.4), and describe a D4-NS5 bound state localised in the
subspace R2

(y,z)×R
3
r , with R3

r spanned by r and S̃2. The backgrounds (2.6) constitute a vast
class of N = 4 solutions to Type IIA string theory, determined by the charge distribution
of the D4-NS5 system. In the next section we will analyse a remarkable example in which
a particular solution for HD4 and HNS5 gives rise to a AdS2 × S2 background reproducing
asymptotically locally an AdS5 vacuum related by T-duality to AdS5 × S5/Zn.

2.2 D4-NS5 branes and warped AdS5

As we have just mentioned, a key property of the brane system depicted in table 1 is the
possibility of decoupling the dynamics of the F1-D2-D4′-NS5′ defect branes from that of
the D4-NS5 system. This is manifest at the level of the equations of motion, with the
equations in (2.3) describing the F1-D2-D4′-NS5′ subsystem and those in (2.4) the D4-
NS5 background branes. The simplest situation in which one can exploit this property
is when the F1-D2-D4′-NS5′ defect branes of table 1 are “zoomed out”, namely, just the
D4-NS5 bound state is considered. This is done at the level of the brane solution (2.1)
by taking the limit ρ → +∞ in (2.5), and looking at the resulting backreacted solution.
In this subsection we will be interested in this limit. We will produce an explicit AdS5
solution associated to the D4-NS5 subsystem, on which F1-D2-D4′-NS5′ branes will later
be embedded to produce a backreacted AdS2 solution in the class given by (2.6).

The D4-NS5 system has been extensively studied in the literature. Field theoretically
it was first studied in [70]. The set-up contains NS5 branes extended in the directions
(R1,3, x4, x5) at different positions x6,n in the x6-direction, and D4 branes extended in

2In order to reproduce unitary AdS2 at the horizon we rescaled the time as t→ qD2qF1t.

– 5 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
7

branes t x1 x2 x3 y z ψ r θ1 θ2

D4 × × × × — — × — — —
NS5 × × × × × × — — — —

Table 2. BPS/4 intersection describing the D4-NS5 bound state considered in section 2.1. The
D4-branes extend along the ψ circular direction, along which the NS5-branes are located. The
system supports a 4d N = 2 CFT [70].

(R1,3, x6) in between the NS5 branes. This brane set-up preserves 1/4 of the supersym-
metries. The field theory living in the (colour) D4 branes is effectively four dimensional
at low energies compared to the inverse of the separation between the NS5 branes, with
the effective gauge coupling behaving as 1

g2
4
∼ x6,n+1−x6,n

gs
√
α′ . The number of supersymme-

tries preserved is maintained if additional orthogonal (flavour) D6 branes extended in the
(R1,3, x7, x8, x9) directions are added to the system, as we will do in section 4. The theory
is conformal if the number of flavours at each [x6,n, x6,n+1] interval is equal to twice the
number of colours at the same interval. This theory is described holographically in Type
IIA string theory by the class of Gaiotto-Maldacena geometries [71].

In the particular D4-NS5 system included in the intersection in table 1 the D4-branes
are stretched periodically between NS5-branes, that are positioned along the circular ψ-
direction. This subsystem is depicted in table 2. As shown in [66, 68, 70], the N = 2 CFT
living in this brane system is a Zn orbifold of N = 4 SYM, and it is holographically dual to
a specific Abelian T-dual of AdS5×S5/Zn. Following [69], we show next that this solution
arises as the near horizon geometry of the intersecting D4-NS5 system depicted in table 2,
where the NS5-branes are taken to be smeared along the ψ-direction.

We start by writing down the brane background,

ds2
10 = H

−1/2
D4 ds2

R1,3 +H
1/2
D4

(
dy2 + dz2

)
+HNS5H

−1/2
D4 dψ2 +HNS5H

1/2
D4
(
dr2 + r2ds2

S̃2
)
,

H(3) = ∂rHNS5 r
2 dψ ∧ volS̃2 , eΦ = H

1/2
NS5H

−1/4
D4 ,

F(4) = ∂rHD4 r
2 dy ∧ dz ∧ volS̃2 +HNS5∂yHD4 r

2 dz ∧ dr∧ volS̃2 −HNS5∂zHD4 r
2 dy ∧ dr∧ volS̃2 ,

(2.7)
where R1,3 is the common worldvolume to the D4-NS5 branes. The D4-branes are com-
pletely localised in their transverse space, such that HD4 = HD4(y, z, r), while the NS5-
branes are smeared in ψ, and HNS5 = HNS5(r). As already mentioned, the equations
of motion and Bianchi identities for this brane background are the same already given
by (2.4), namely

∇2
R3
r
HD4 +HNS5∇2

R2
(y,z)

HD4 = 0 and ∇2
R3
r
HNS5 = 0 . (2.8)

We can now consider the semi-localised solution with harmonic functions [65–67],

HD4 = 1 + 4πqD4qNS5
(y2 + z2 + 2qNS5r)2 and HNS5 = qNS5

2r , (2.9)

and introduce the following new coordinates (µ, α, φ) [69],

y = µ sinα cosφ , z = µ sinα sinφ and r = 2−1 q−1
NS5 µ

2 cos2 α , (2.10)

– 6 –
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with µ > 0, α ∈
[
0, π2

]
and φ the angular polar coordinate within the R2

(y,z) plane. In these
new coordinates one can easily extract a near horizon limit by taking µ→ 0, obtaining [69]

ds2
10 = R2

(
ds2

AdS5 + dα2 + s2dφ2 + 4−1π−1qNS5q
−1
D4c
−2dψ2 + 4−1c2ds2

S̃2

)
,

H(3) = −2−1qNS5 dψ ∧ volS̃2 , eΦ = q
3/4
NS5 (4πqD4)−1/4 c−1 ,

F(4) = 4π qD4 c
3s dφ ∧ dα ∧ volS̃2 ,

(2.11)

where R = (4πqD4qNS5)1/4, ds2
AdS5

= (4πqD4qNS5)−1µ2ds2
R1,3 + dµ2

µ2 and, for simplicity of
notation, s = sinα, c = cosα. This background is a Gaiotto-Maldacena geometry, with
the SU(2)× U(1) R-symmetry realised as rotations of the S̃2 and the S1

φ, respectively. In
turn, S1

ψ is an extra circle that lives in the 2d Riemann surface contained in the transverse
space. This has been discussed in [72]. This background is T-dual to the AdS5 × S5/Zn
solution of Type IIB supergravity, and it is therefore holographically dual to a Zn orbifold
of 4d N = 4 SYM. Indeed, applying Buscher’s rules in the parametrisation

ds2
S5/Zn = dα2 + sin2 αdφ2 + cos2 αds2

S3/Zn , (2.12)

and
ds2
S3/Zn =

(
dψ

n
+ 1

2 cos ξdη
)2

+ 1
4
(
dξ2 + sin2 ξdη2

)
, (2.13)

with ψ the T-duality direction, with periodicity 2π, the solution (2.11) is reproduced, with
n = qNS5. It will be useful to recall in the following sections that this near horizon limit
is not manifest in the coordinates of the brane background, but requires the non-linear
change of coordinates given by (2.10).

2.3 F1-D2-D4′-NS5′ line defects within AdS5

Let us now come back to the more general situation in which we have F1-D2-D4′-NS5′
defect branes ending on the D4-NS5 system, and apply the same logic above. In this case
we are interested in the ρ → 0 limit of (2.5), and therefore in the N = 4 AdS2 × S2 ×
S̃2 × R2 × S1 backgrounds fibered over an interval defined by (2.6). These solutions have
the crucial property that the backreaction of the F1-D2-D4′-NS5′ branes on the D4-NS5
system modifies only the 4d worldvolume space of the D4-NS5 solution, keeping intact
its R2

(y,z) × R3
r transverse space. This follows from the fact that the equations of motion

associated to the F1-D2-D4′-NS5′ branes, given by (2.3), and those of the D4-NS5 system,
given by (2.4), are completely independent.

This implies, among other things, that the semi-localised solution specified by (2.9)
for the D4-NS5 bound state is still a solution. The presence of the defect branes breaks
however the isometries of the 4d worldvolume of the D4-NS5 intersection, turning it into an
AdS2 × S2 backreacted geometry. In this case the change of coordinates defined in (2.10)
allows one to extract an asymptotically locally AdS5 geometry in the µ→ 0 limit, given by

ds2
10 = q

1/2
D2 q

−1/2
F1 (4πqNS5qD4)1/2

locally AdS5 geometry︷ ︸︸ ︷[
(4πqNS5qD4)−1 qD2 qF1µ

2
(
ds2

AdS2 + ds2
S2

)
+ dµ2

µ2

]

+q1/2
D2 q

−1/2
F1 (4πqNS5qD4)1/2

[
dα2 + s2dφ2 + q−1

D2qF1qNS5(4πqD4)−1c−2dψ2 + 4−1c2ds2
S2

]
,

(2.14)

– 7 –
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with s = sinα and c = cosα. One can see in (2.14) that the internal manifold is the same
one of the AdS5 vacuum written in (2.11). In this new system of coordinates the fluxes
and the dilaton take the form,

eΦ = q
3/4
D2 q

−3/4
F1 q

3/4
NS5(4πqD4)−1/4 c−1 ,

H(3) = −qD2 (s̃ volAdS2 + c̃ volS2) ∧ (s dµ+ µc dα)− qD2µs (c̃ volAdS2 − s̃ volS2) ∧ dφ
− 2−1qNS5dψ ∧ volS̃2 ,

F(4) = qF1 (c̃ volAdS2 − s̃ volS2) ∧ (s dµ+ µc dα) ∧ dψ
− qF1µs (s̃ volAdS2 + c̃ volS2) ∧ dφ ∧ dψ + 4πqD4 c

3s dφ ∧ dα ∧ volS̃2 ,

(2.15)
with s̃ = sinφ and c̃ = cosφ.

This analysis shows that starting with the general brane intersection specified by the
solutions (2.1) and taking the particular profiles (2.5) for the F1-D2-D4′-NS5′ branes and
the semi-localised profile (2.9) for the D4-NS5 system, two interesting regimes emerge.
The first regime is when ρ → 0. In this case the defect branes are resolved into a fully
backreacted AdS2 × S2 geometry within the 4d worldvolume of the D4-NS5 bound state,
making manifest the breaking of its isometries. The second regime becomes manifest in
the system of coordinates introduced in (2.10), where besides the ρ→ 0 limit one takes the
limit µ→ 0, which allows one to approach the origin of the R2

(y,z) plane. In this regime the
metric is split into a 5d “external” part, reproducing locally an AdS5 geometry, and a 5d
internal part, which, as we have mentioned, is shared with the internal part of the AdS5
vacuum geometry found in (2.11). The isometries of the AdS5 vacuum are however broken
by the background fluxes, as shown by their expressions in (2.15). The extra terms show
that a 5d observer placed at µ → 0 feels the global charges of the defect branes, which
backreact into a geometry described by a 5d curved domain wall with AdS2 × S2 slicings,
that is only locally AdS5. Note that the presence of the extra terms in the fluxes forbids as
well for any supersymmetric enhancement to the (four dimensional) N = 2 supersymmetry
of the AdS5 solution (2.11).

Our construction thus realises in Type IIA supergravity a conformal line defect in
the 4d N = 2 SCFT that results by orbifolding the 4d N = 4 SYM CFT by Zn (that
is, the field theory dual to the AdS5 solution in (2.11)). The defect is described by a
superconformal quantum mechanics that is holographically dual to an AdS2 geometry with
N = 4 supersymmetries (in one dimension). In the limit in which this solution asymptotes
to AdS5 the defect, as seen from a 5d observer, occurs as an angular wedge located at the
conformal boundary of AdS2. One can see this explicitly rewriting the locally AdS5 part
of the background (2.14) as,

ds2
5 ∼ f−2

(
−dt2 + dρ̃2 + ρ̃2ds2

S2 + ρ̃2dλ2
)
, (2.16)

where f−2 = µ2ρ̃−2, dλ = µ−2dµ and ρ̃ parametrises the radial direction in AdS2 in
Poincaré coordinates. From the above expression one can see that the metric in the (ρ̃, λ)
plane develops a conical defect at ρ̃ = 0. This fixes the locus of the defect and allows one
to interpret the µ coordinate as an angular coordinate parametrising the wedge in which a
5d observer probes the defect geometry.
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Pure D4-NS5 system:
AdS5 ×M5

Defect within D4-NS5:
locally AdS5 ×M5

F1-D2-D4′-NS5′-D4-NS5
intersection ρ→0

//

ρ→+∞
OO

AdS2 × S2 × S̃2 × R2
(y,z) × I

µ→0

OO

Figure 1. The ρ → +∞ and ρ → 0 limits of the F1-D2-D4′-NS5′-D4-NS5 brane intersection of
table 1, with its defect structure. The ρ→ +∞ limit zooms out the F1-D2-D4′-NS5′ branes, leaving
behind an AdS5 ×M5 solution associated to the D4-NS5 branes. The ρ → 0 limit produces an
AdS2 near horizon geometry which, in turn, approaches asymptotically the AdS5×M5 geometry in
the µ→ 0 limit, allowing one to interpret the F1-D2-D4′-NS5′ branes as describing a defect within
the 4d SCFT associated to the D4-NS5 system.

Figure 1 contains a summary of the two limits of the solution (2.1) describing the
F1-D2-D4′-NS5′-D4-NS5 brane intersection of table 1, studied in this and the previous
subsections.

3 Line defects within D3 branes

In this section we turn to the Type IIB realisation of our previous constructions, where the
main features already discussed become more transparent.

In so doing we construct a new class of AdS2 solutions to Type IIB supergravity with
N = 4 supersymmetry, and show that a solution in this class finds an interesting line defect
interpretation within AdS5×S5/Zn. The key observation, already noted in subsection 2.2,
is that the AdS5 solution that arises far away from the Type IIA defects is the T-dual of
AdS5×S5/Zn. This solution was associated to a semi-localised intersection of D4 and NS5
branes. The T-duality takes place along the ψ circular direction on which the D4 branes
are stretched, giving D3 branes. In turn, the NS5 branes become KK-monopoles, giving
rise to a foliation of the circle and the emergence of the Lens space S3/Zn. When the KK
charge is one, we recover the round S5 and the isotropic D3 brane.

We start recalling the main features of the semi-localised D3-KK system that gives
rise to AdS5×S5/Zn close to the horizon. We then analyse in detail the T-dual realisation
of the F1-D2-D4′-NS5′-D4-NS5 intersection discussed in subsection 2.1. This becomes a
bound state of F1-D1-D5-NS5 branes ending on a D3-KK intersection. We provide the
full brane solution and the near horizon limit of this system. The latter gives rise to a
new class of N = 4 AdS2 × S2 × S2 × R2 × S1 geometries foliated over a line, solutions of
Type IIB supergravity. We show that a suitable prescription for the distribution of charges
of the D3-KK system produces a solution within this class that asymptotes locally to the
AdS5×S5/Zn vacuum, thus allowing us to interpret this solution as describing a line defect
CFT within N = 4 SYM modded by Zn. In the particular case in which no KK-monopoles
are present the solution describes a line defect CFT within 4d N = 4 SYM, that preserves
1/4 of the supersymmetries.
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branes t x1 x2 x3 y z ψ r θ1 θ2

D3 × × × × — — — — — —
KK × × × × × × ISO — — —

Table 3. Brane system corresponding to the D3-KK intersection. The S5 in the near horizon of
the D3 branes is broken into the Lens space S5/Zn. T-duality along the ψ direction reproduces
back the D4-NS5 system depicted in table 2.

3.1 AdS5 vacua from the D3-KK system

In this subsection we recall the brane solution that describes D3 branes intersected with
KK monopoles, as well as the emergence of AdS5 close to the horizon. We follow [73],
where the change of coordinates reproducing the AdS5 vacuum was obtained. T-dualising
the D4-NS5 brane system depicted in table 2 one obtains the D3-KK intersection shown
in table 3. The background associated to this system is given by

ds2
10 = H

−1/2
D3 ds2

R1,3 +H
1/2
D3

(
dy2 + dz2

)
+H

1/2
D3

(
H−1

KK

(
dψ+ 2−1qKKω

)2
+HKK

(
dr2 + r2ds2

S̃2

))
,

F(5) = ∂rH
−1
D3 volR1,3 ∧ dr+ ∂yH

−1
D3 volR1,3 ∧ dy+ ∂zH

−1
D3 volR1,3 ∧ dz

− r2∂rHD3dy ∧ dz ∧ dψ ∧ volS̃2 −HKKr
2∂zHD3dy ∧ dψ ∧ dr∧ volS̃2

+HKKr
2∂yHD3dz ∧ dψ ∧ dr∧ volS̃2 ,

(3.1)
where dω = volS̃2 and qKK is the KK monopole charge. The function HKK is defined over
the 3d space R3

r , while HD3 describes the geometry of the D3 branes and is fully localised
in the transverse manifold R2

(y,z) × R3
r , such that HD3 = HD3(y, z, r). Plugging in the

Ansatz (3.1) into the equations of motion and Bianchi identities of Type IIB supergravity
one obtains the equations

∇2
R3
r
HD3 +HKK∇2

R2
(y,z)

HD3 = 0 with HKK = qKK
2r . (3.2)

As for the D4-NS5 system, one can consider the semi-localised solution [65],

HD3 = 1 + 4πqD3qKK
(y2 + z2 + 2qKKr)2 and HKK = qKK

2r , (3.3)

and one can introduce the new coordinates (µ, α, φ) [69, 73],

y = µ sinα cosφ , z = µ sinα sinφ and r = 2−1 q−1
KK µ

2 cos2 α . (3.4)

In these coordinates the D3-KK background takes the form [73]

ds2
10 = H

−1/2
D3 ds2

R1,3 +H
1/2
D3

(
dµ2 + µ2ds2

M5

)
,

ds2
M5 = dα2 + s2dφ2 + c2ds2

S3/Zn ,

HD3 = 1 + 4πqD3qKK
µ4 ,

(3.5)
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branes t ρ ϕ1 ϕ2 y z ψ r θ1 θ2

D3 × × × × — — — — — —
KK × × × × × × ISO — — —
D1 × — — — × — — — — —
F1 × — — — — × — — — —
D5 × — — — × — × × × ×
NS5 × — — — — × × × × ×

Table 4. BPS/8 intersection describing D1-F1-D5-NS5 branes ending on the D3-KK system.

where s = sinα, c = cosα and the orbifolded 3-sphere is written as

ds2
S3/Zn =

(
dψ

n
+ 1

2ω
)2

+ 1
4ds

2
S̃2 . (3.6)

The internal manifoldM5 is thus a foliation of S1
φ×S3/Zn over an interval, parametrised by

the coordinate α, with n = qKK. This builds a S5/Zn space. Indeed, in these coordinates
the near horizon limit is realised by taking µ → 0, giving rise to the AdS5 × S5/Zn
geometry [73],

ds2
10 = R2

(
ds2

AdS5 + ds2
S5/Zn

)
,

F(5) = 4R4
(
1 + ?(10)

)
volAdS5 ,

(3.7)

with R = (4πqD3qKK)1/4 and ds2
AdS5

= (4πqD3qKK)−1µ2ds2
R1,3 + dµ2

µ2 . An obvious interesting
case is when n = 1, where the D3 branes become isotropic and the metric over the M5
describes a round S5. In this situation there is a supersymmetry enhancement of the brane
set-up to 16 real supercharges.

3.2 The D1-F1-D5-NS5-D3-KK brane set-up

We consider now the Type IIA brane set-up depicted in table 1, that we T-dualise along
the ψ circular direction. The F1-D2-D4′-NS5′ defect branes become a D1-F1-D5-NS5
brane system localised within the common worldvolume of the D3-KK branes. The metric
associated to this brane intersection has the general form

ds2
10 = H

−1/2
D3

[
−H−1/2

D1 H−1
F1 H

−1/2
D5 dt2 +H

1/2
D1 H

1/2
D5 HNS5

(
dρ2 + ρ2ds2

S2

)]
+H

1/2
D3

[
H
−1/2
D1 H

−1/2
D5 HNS5dy

2 +H
1/2
D1 H

−1
F1 H

1/2
D5 dz

2
]

+H
1/2
D3 H

1/2
D1 H

−1/2
D5

[
H−1

KK

(
dψ + 2−1qKKω

)2
+HKK

(
dr2 + r2ds2

S̃2

)]
,

eΦ = H
1/2
NS5H

−1/2
D5 H

−1/2
F1 H

1/2
D1 ,

(3.8)

where dω = volS̃2 and qKK is the KK monopole charge. As in the previous subsection, the
function HKK is defined over the 3d space R3

r and HD3 = HD3(y, z, r). For the defect branes
we take the charge distributions localised within the worldvolume of the D3 branes, namely
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HD1(ρ), HF1(ρ), HNS5(ρ), HD5(ρ). The fluxes corresponding to this charge distribution
take the form,

H(3) = −∂ρH−1
F1 dt∧ dρ∧ dz+ ∂ρHNS5 ρ

2 volS2 ∧ dy ,
F(3) = −∂ρH−1

D1dt∧ dρ∧ dy− ∂ρHD5 ρ
2 volS2 ∧ dz ,

F(5) = HD5HNS5ρ
2∂rH

−1
D3 dt∧ dρ∧ volS2 ∧ dr+HD5HNS5ρ

2∂yH
−1
D3 dt∧ dρ∧ volS2 ∧ dy

+HD5HNS5ρ
2∂zH

−1
D3 dt∧ dρ∧ volS2 ∧ dz− r2∂rHD3dy ∧ dz ∧ dψ ∧ volS̃2

−HF1H
−1
D5HKKr

2∂zHD3dy ∧ dψ ∧ dr∧ volS̃2 +HD1H
−1
NS5HKKr

2∂yHD3dz ∧ dψ ∧ dr∧ volS̃2 .

(3.9)
As usual, the equations of motion and Bianchi identities decouple into two groups, one for
the D1-F1-D5-NS5 defect branes

∇2
R3
ρ
HD1 = 0 with HNS5 = HD1 ,

∇2
R3
ρ
HF1 = 0 with HD5 = HF1 ,

(3.10)

and one for the D3-KK system

∇2
R3
r
HD3 +HKK∇2

R2
(y,z)

HD3 = 0 with HKK = qKK
2r . (3.11)

We consider now the particular solution for the defect branes,

HD1 = 1 + qD1
ρ

and HF1 = 1 + qF1
ρ
, (3.12)

where qD1 and qF1 are integration constants related to the quantised charges of the respec-
tive branes. The limit ρ → +∞ reproduces the situation in which the defect branes are
taken far away from the D3-KK branes. This is the brane solution studied in the previous
subsection. In turn, the ρ→ 0 limit gives rise to a new class of N = 4 AdS2 backgrounds3

of Type IIB string theory,

ds2
10 = q

3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2

AdS2 + ds2
S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
H−1

KK

(
dψ + 2−1qKKω

)2
+HKK

(
dr2 + r2ds2

S̃2

))
,

eΦ = qD1q
−1
F1 , H(3) = −qD1volAdS2 ∧ dz − qD1volS2 ∧ dy ,

F(3) = −qF1volAdS2 ∧ dy + qF1volS2 ∧ dz ,
F(5) = q2

D1q
2
F1∂rH

−1
D3 volAdS2 ∧ volS2 ∧ dr + q2

D1q
2
F1∂yH

−1
D3 volAdS2 ∧ volS2 ∧ dy

+ q2
D1q

2
F1∂zH

−1
D3 volAdS2 ∧ volS2 ∧ dz − r2∂rHD3dy ∧ dz ∧ dψ ∧ volS̃2

−HKKr
2∂zHD3dy ∧ dψ ∧ dr ∧ volS̃2 +HKKr

2∂yHD3dz ∧ dψ ∧ dr ∧ volS̃2 ,

(3.13)

where HD3 solves the master equation (3.11). These geometries represent a new class of
solutions to Type IIB supergravity, described by AdS2 × S2 × S̃2 × R2 × S1 foliations
over a line. One can easily check that these backgrounds are related by T-duality along
the ψ direction to the AdS2 solutions given by (2.6), describing the near horizon of the
F1-D2-D4′-NS5′-D4-NS5 brane intersections in Type IIA discussed in section 2.

3In order to reproduce unitary AdS2 at the horizon we rescaled the time as t→ qD1qF1t.
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3.3 Defects within 4d SCFTs in Type IIB

In this subsection we follow the same approach taken in subsection 2.3 to provide a defect
interpretation for the backgrounds given by (3.13). As in subsection 2.3 the crucial property
that allows to find such an interpretation is the decoupling between the dynamics of the
D1-F1-D5-NS5 defect branes and that of the D3-KK system (in the sense that the equations
of motion and Bianchi identities of the two groups of branes, given by (3.10) and (3.11),
are completely independent). Since we are searching for a possible completion within an
AdS5 vacuum, we choose the semi-localised solution for the D3-KK system considered in
subsection 3.1, given by equation (3.3). Using then the (µ, α, φ) coordinates introduced
in (3.4) the backgrounds (3.13) take the form of a stack of D3 branes wrapping the AdS2×S2

backreacted geometry. The D3 branes are intersected with n KK-monopoles that turn the
S5 transverse space into S5/Zn,

ds2
10 = q

3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2

AdS2 + ds2
S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dµ2 + µ2ds2

S5/Zn

)
,

ds2
S5/Zn = dα2 + s2dφ2 + c2ds2

S3/Zn ,

HD3 = 1 + 4πqKKqD3
µ4 .

(3.14)

As we already observed in the Type IIA case, the space transverse to the D3 branes is
left untouched by the intersection with the defect branes, whose presence is only manifest
through the fully-backreacted AdS2×S2 geometry, that curves the worldvolume of the D3
branes. Interestingly, in these coordinates the background admits a locally AdS5 × S5/Zn
geometry in the µ→ 0 limit,

ds2
10 = (4πqKKqD3)1/2q

1/2
D1 q

−1/2
F1

locally AdS5 geometry︷ ︸︸ ︷[
(4πqKKqD3)−1 qD1 qF1µ

2
(
ds2

AdS2 + ds2
S2

)
+ dµ2

µ2

]

+ (4πqKKqD3)1/2q
1/2
D1 q

−1/2
F1

[
dα2 + s2dφ2 + c2ds2

S3/Zk

]
,

eΦ = qD1q
−1
F1 ,

H(3) = −qD1 (s̃volAdS2 + c̃volS2) ∧ (sdµ+ µcdα)− qD1µs (c̃volAdS2 − s̃volS2) ∧ dφ ,

F(3) = qF1 (−c̃volAdS2 + s̃volS2) ∧ (sdµ+ µcdα) + qF1µs (s̃volAdS2 + c̃volS2) ∧ dφ ,

F(5) = 4q2
F1q

2
D1(4πqKKqD3)−1µ3volAdS2 ∧ volS2 ∧ dµ− 4πqD3c

3sdφ ∧ dα ∧ dψ ∧ volS2 ,

(3.15)

where s = sinα, c = cosα and s̃ = sinφ, c̃ = cosφ.
In complete analogy with the analysis performed in section 2, our analysis in this sec-

tion shows that starting with the general brane intersection specified by the solutions (3.8)
and taking the particular profiles (3.12) for the D1-F1-D5-NS5 branes and the semi-localised
profile (3.3) for the D3-KK system, two interesting regimes emerge. The first regime is when
ρ→ 0. In this case the defect branes are resolved into a fully backreacted AdS2×S2 geom-
etry within the 4d worldvolume of the D3-KK bound state, making manifest the breaking
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of its isometries. The second regime becomes manifest in the system of coordinates in-
troduced in (3.4), where besides the ρ → 0 limit one takes the limit µ → 0, which allows
one to approach the origin of the R2

(y,z) plane. In this regime the metric is split into a
5d “external” part, reproducing locally an AdS5 geometry, and a 5d internal part, shared
with the internal part of the AdS5 × S5/Zn vacuum. The isometries of the AdS5 vacuum
are however broken by the background fluxes, as shown by their expressions in (3.15).
The extra terms show that a 5d observer placed at µ → 0 feels the global charges of the
defect branes, which backreact into a geometry described by a 5d curved domain wall with
AdS2 × S2 slicings, that is only locally AdS5. Note that the presence of the extra terms
in the fluxes forbids as well any supersymmetric enhancement to the (four dimensional)
N = 2 supersymmetry of the AdS5 solution.

As in subsection 2.3, our construction realises a conformal line defect in 4d N = 4
SYM modded by Zn, this time in terms of D1-F1-D5-NS5 branes. The Type IIB realisation
allows one however to study the interesting case in which these defect branes are introduced
within 4d N = 4 SYM, breaking the supersymmetries to 1/4 BPS. In this case it should be
possible to interpret the D5 and the F1 branes as realising the baryon vertex of 4d N = 4
SYM, and the AdS2 solutions as describing the corresponding backreacted geometries.
In the IR the gauge symmetry on the D3 branes would become global, turning them
into flavour branes, with the D5 branes becoming the new colour branes. Note however
that in the backreacted geometry there are as well D1 colour branes. These should find
an interpretation in terms of instantons within the worldvolume of the D5 branes. The
possibility of such an interpretation will become clearer after our field theory analysis in
the next section.

4 Back to Type IIA: AdS2 solutions with D6 branes

In this section we generalise the F1-D2-D4′-NS5′-D4-NS5 brane intersection studied in
section 2 to include D6 branes localised within the R2

(y,z) plane. We will see that adding
D6 branes challenges the construction of a solution with AdS5 asymptotics. However,
we will see that taking a simplified ansatz it is possible to construct an explicit quiver
quantum mechanics that can be interpreted as describing D2-D4′ baryon vertices within
the 4d SCFT living in the D4-NS5-D6 brane intersection.

4.1 Adding D6 branes to the brane set-up

The brane set-up discussed in section 2.1 can be extended by including D6 branes localised
within the R2

(y,z) plane. The extended brane set-up is depicted in table 5. This general-
isation does not imply any further breaking of supersymmetries. However, as we already
mentioned, it complicates finding an eventual AdS5 completion.
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branes t ρ ϕ1 ϕ2 y z ψ r θ1 θ2

D6 × × × × — — — × × ×
D4 × × × × — — × — — —
NS5 × × × × × × — — — —
D2 × — — — × — × — — —
F1 × — — — — × — — — —
D4′ × — — — × — — × × ×
NS5′ × — — — — × × × × ×

Table 5. BPS/8 intersection describing F1-D2-D4′-NS5′ branes ending on a D4-NS5-D6 bound
state.

For simplicity, we consider adding D6 branes localised in the R2
(y,z) plane but smeared

along the circular direction ψ. The metric and dilaton take the form

ds2
10 = H

−1/2
D6 H

−1/2
D4

[
−H−1

F1 H
−1/2
D2 H

−1/2
D4′ dt2 +H

1/2
D2 H

1/2
D4′HNS5′

(
dρ2 + ρ2ds2

S2
)]

+H
1/2
D6 H

1/2
D4

[
H
−1/2
D2 H

−1/2
D4′ HNS5′ dy2 +H−1

F1 H
1/2
D2 H

1/2
D4′ dz

2
]

+H
1/2
D6 HNS5H

−1/2
D4 H

−1/2
D2 H

1/2
D4′ dψ

2 +H
−1/2
D6 HNS5H

1/2
D4 H

1/2
D2 H

−1/2
D4′

(
dr2 + r2ds2

S̃2
)
,

eΦ = H
−3/4
D6 H

1/2
NS5H

−1/4
D4 H

−1/2
F1 H

1/4
D2 H

−1/4
D4′ H

1/2
NS5′ ,

(4.1)

where HD6 = HD6(y, z). The fluxes are

H(3) = −∂ρH−1
F1 dt∧ dρ∧ dz+ ∂ρHNS5′ ρ2 volS2 ∧ dy+ ∂rHNS5 r

2 dψ ∧ volS̃2 ,

F(2) = −HF1H
−1
D2∂zHD6dy ∧ dψ+HD4′H−1

NS5′∂yHD6dz ∧ dψ ,
F(4) = HD6∂ρH

−1
D2dt∧ dρ∧ dy ∧ dψ+HD6∂ρHD4′ ρ2 volS2 ∧ dz ∧ dψ

+HD2H
−1
NS5′HNS5∂yHD4 r

2 dz ∧ dr∧ volS̃2 −HF1H
−1
D4′HNS5∂zHD4 r

2 dy ∧ dr∧ volS̃2

+HD6∂rHD4 r
2 dy ∧ dz ∧ volS̃2 ,

F(6) = HD4′HNS5′ρ2
(
∂yH

−1
D4dy+ ∂zH

−1
D4dz+ ∂rH

−1
D4dr

)
∧ dt∧ dρ∧ volS2 ∧ dψ

−HNS5HD4∂ρHD2r
2ρ2volS2 ∧ dz ∧ dr∧ volS̃2 −HD4HNS5r

2∂ρH
−1
D4′dt∧ dρ∧ dy ∧ dr∧ volS̃2 .

(4.2)
As in the case without D6 branes the equations of motion and Bianchi identities decouple
into two groups, one associated to the F1-D2-D4′-NS5′ defect branes,

∇2
R3
ρ
HD2 = 0 with HD4′ = HNS5′ = HF1 = HD2 , (4.3)

and a second one associated to the D4-NS5-D6 brane system,

HD6∇2
R3
r
HD4 +HNS5∇2

R2
(y,z)

HD4 = 0 , ∇2
R3
r
HNS5 = 0 and ∇2

R2
(y,z)

HD6 = 0 .
(4.4)

In order to extract the AdS2 near horizon geometry we make the choice

HD2 = 1 + qD2
ρ
, (4.5)
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where qD2 is an integration constant related to the quantised charges of the defect branes.
We then obtain upon taking the ρ→ 0 limit,4

ds2
10 = q2

D2H
−1/2
D6 H

−1/2
D4

(
ds2

AdS2 + ds2
S2

)
+H

1/2
D6 H

1/2
D4 (dy2 + dz2)

+H
1/2
D6 HNS5H

−1/2
D4 dψ2 +H

−1/2
D6 HNS5H

1/2
D4
(
dr2 + r2ds2

S̃2
)
,

eΦ = H
−3/4
D6 H

1/2
NS5H

−1/4
D4 ,

H(3) = −qD2volAdS2 ∧ dz − qD2volS2 ∧ dy + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(2) = −∂zHD6dy ∧ dψ + ∂yHD6dz ∧ dψ ,
F(4) = qD2HD6volAdS2 ∧ dy ∧ dψ − qD2HD6volS2 ∧ dz ∧ dψ +HD6∂rHD4 r

2 dy ∧ dz ∧ volS̃2

+HNS5∂yHD4 r
2 dz ∧ dr ∧ volS̃2 +HNS5∂zHD4 r

2 dy ∧ dr ∧ volS̃2 ,

F(6) = q4
D2

(
∂yH

−1
D4dy + ∂zH

−1
D4dz + ∂rH

−1
D4dr

)
∧ volAdS2 ∧ volS2 ∧ dψ

+ qD2HD4HNS5r
2
(
−volAdS2 ∧ dy + volS2 ∧ dz

)
∧ dr ∧ volS̃2 .

(4.6)
This defines a new class of N = 4 AdS2×S2× S̃2×R2×S1 geometries fibered over a line,
parametrised by r. The functions HD4(y, z, r), HNS5(r) and HD6(y, z) are solutions to the
equations given in (4.4), and describe a D4-NS5-D6 bound state localised in the subspace
R2

(y,z) × R3
r , with R3

r spanned by r and S̃2. A solution in the class given by (4.6) is thus
specified by the D4-NS5-D6 charge distributions that solve these equations. The explicit
study of the solutions becomes more involved than in section 2, due to the logarithmic
behaviour of HD6. Moreover, the defect interpretation found in that section in terms of
semi-localised D4-NS5 branes is lost in the presence of the D6-branes, making challenging
the construction of an explicit solution that asymptotes to an AdS5 vacuum.

In order to proceed further with an explicit analysis of the solutions we take the y
direction inside the R2

(y,z) plane as a circular direction, and the D6 and the D4 branes
smeared along it. With this assumption the background (4.6) turns out to be driven by
the functions HD4(z), HNS5(r) and HD6(z), and the equations of motion take a much
simpler form, collapsing to

∂2
zHD4 = 0 , ∂2

zHD6 = 0 with HNS5 = qNS5
r

. (4.7)

Even if in this case we have not succeeded in constructing a solution with AdS5 asymptotics,
we show in the next subsections that it is possible to give an interpretation to a wide
subclass of these solutions in terms of D2-D4′ baryon vertices within the 4d CFT living in
D4-NS5-D6 branes.

4.2 Quantised charges

The most general solution to the equations of motion defined by (4.7) is that HD4 and HD6
are piecewise linear functions of z. This allows one to introduce D4 and D6 source branes
in the geometry. This is compatible with the quantised charges obtained from the Page
fluxes, as we show below.

4In order to reproduce unitary AdS2 at the horizon we rescaled the time as t→ q2
D2t.
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We start computing the F1-strings charge. The F1-strings are electrically charged with
respect to the NS-NS 3-form. Their quantised charges are computed from

QeF1 = 1
(2π)2

∫
AdS2×Iz

H(3), (4.8)

in units of α′ = gs = 1. Regularising the volume of AdS2 as VolAdS2 = 4π we find that5

QeF1 = 1
π
qD2(zf − zi), (4.9)

where this must be computed at both ends of the Iz interval. Therefore, there are k qD2
F1-strings in the z ∈ [0, kπ] interval. We set qD2 = 1 for simplicity, such that one F1-string
is created as we move in z-intervals of length π. This is equivalent to imposing that B(2)
lies in the fundamental region when it is integrated over AdS2 (see [35]),

1
4π2

∣∣∣∣∫
AdS2

B(2)

∣∣∣∣ ∈ [0, 1], (4.10)

such that we must take
Be

(2) = −(z − kπ)volAdS2 , (4.11)

for z ∈ [kπ, (k+1)π], for the electric part of B(2). The large gauge transformation parameter
k affects the electric components of the RR Page fluxes, F̂ = F ∧ e−B(2) , as

F̂(p) → F̂(p) − kπF(p−2) ∧ volAdS2 , (4.12)

in the different [kπ, (k + 1)π] intervals. We get, in particular

F̂ e(4) =
(
HD6 − (z − kπ)∂zHD6

)
volAdS2 ∧ dy ∧ dψ

F̂ e(6) = −HNS5r
2
(
HD4 − (z − kπ)∂zHD4

)
volAdS2 ∧ dr ∧ volS̃2 , (4.13)

for z ∈ [kπ, (k + 1)π]. These electric fluxes give rise to D2 and D4′ electric charges,
respectively, that we compute through

QeDp = 1
(2π)p+1

∫
AdS2×Σp

F̂ e(p+2), (4.14)

in units of α′ = gs = 1.
For the D4 and D6 branes it will be more convenient to compute their magnetic charges,

associated to the magnetic components of F̂(4) and F̂(2) given by

F̂m(4) = −HNS5∂zHD4r
2dy ∧ dr ∧ volS̃2

F̂m(2) = −∂zHD6dy ∧ dψ . (4.15)

In the presence of sources the Bianchi identities in equation (4.7) are modified such that

dF̂(4) = ∂2
zHD4dz ∧ dy ∧ dr ∧ volS̃2 (4.16)

dF̂(2) = ∂2
zHD6dz ∧ dy ∧ dψ. (4.17)

5We use the superscript e to explicitly indicate that this is an electric charge.
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Therefore, the D4 and D6 branes provide sources localised in the z direction. They are
thus flavour branes. They span, respectively, the AdS2×S2×S1

ψ and AdS2×S2× Ir × S̃2

subspaces of the solution (see below).
We need to specify now the linear functions HD4 and HD6. We take both functions to

be piecewise linear in the different z ∈ [kπ, (k+ 1)π] intervals, with the space starting and
ending at z = 0 and z = π(P + 1), where both HD4 and HD6 are taken to vanish. This
parallels the analysis done in [34, 35] for the AdS2 solutions constructed therein, based, in
turn, in the field theory interpretation of the AdS3 solutions constructed in [26], carried
out in [74, 75].6 In this way the singularity structure at both ends of the space,

ds2 ∼ x−1(ds2
AdS2 + ds2

S2) + x(dy2 + dx2) + dψ2 + dr2 + r2ds2
S̃2 , eΦ ∼ x−1, (4.18)

where x = z close to z = 0 and x = π(P + 1) − z close to z = π(P + 1), corresponds to
a superposition of D4-branes wrapped on AdS2 × S2 × S1

ψ and smeared on (y, r, S̃2), and
D6 branes wrapped on AdS2 × S2 × Ir × S̃2 and smeared on (ψ, y).7 The HD4 and HD6
functions then read

HD4(z) =


β0
π z 0 ≤ z ≤ π

αk+ βk
π (z − πk) πk ≤ z ≤ π(k + 1), k = 1, . . . , P − 1

αP − αP
π (z − πP ) πP ≤ z ≤ π(P + 1),

(4.19)

HD6(z) =


ν0
π z 0 ≤ z ≤ π

µk + νk
π (z − πk) πk ≤ z ≤ π(k + 1), k = 1, . . . , P − 1

µP − µP
π (z − πP ) πP ≤ z ≤ π(P + 1),

(4.20)

where αk, βk, µk, νk are integration constants, which must satisfy (see [35])

αk =
k−1∑
j=0

βj , µk =
k−1∑
j=0

νj , (4.21)

for k = 1, . . . , P , for continuity of the metric and dilaton. In turn, the fluxes can have
discontinuities associated to the presence of branes.

Note that in order to find well defined quantised charges from the electric and magnetic
fluxes in (4.13) and (4.15) we need to globally define the r-direction as well. We do this
by taking the (r, S̃2) space to span a 3-torus T 3. We then find the quantised charges

Q
e(k)
D2 = µk, Q

e(k)
D4′ = αk, Q

e(k)
F1 = 1, (4.22)

Q
m(k)
D4 = βk, Q

m(k)
D6 = νk, (4.23)

in the different z ∈ [kπ, (k + 1)π] intervals. Here we have also used that y ∈ [0, π].8 The
equations (4.22), (4.23) show that the integration constants αk, βk, µk, νk must be integer

6Reference [76] is a recent review article which summarises these developments.
7Note that the same behaviour is obtained from a superposition of O4 and O6 orientifold fixed planes.
8The reason for this particular periodicity will become clear in the conclusions, when we discuss the

relation between these geometries and the double analytical continuation of the AdS3 × S2 geometries
studied in [61].
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numbers. Moreover, we see that the D2 and D4′ charges at each z ∈ [kπ, (k+ 1)π] interval
are equal to the sum of the D6 and D4 charges, respectively, in the previous [0, kπ] intervals.
We will find an explanation for this fact when we give the field theory interpretation to
these solutions in the next subsections. The number of D4 and D6 source branes present
at each interval is given by

Fk = βk−1 − βk, F̃k = νk−1 − νk, (4.24)

consistently with the derivatives

∂2
zHD4 = 1

π

P∑
k=1

(βk−1 − βk)δ(z − πk), ∂2
zHD6 = 1

π

P∑
k=1

(νk−1 − νk)δ(z − πk), (4.25)

that follow from (4.19) and (4.20).
Finally, we would like to briefly discuss the role played by the NS5 and NS5′ branes

in the brane set-up. As we have discussed, the D2 and D4′ branes play the role of colour
branes of the configuration. The D2 branes are wrapped on the two circular directions
(y, ψ). They are stretched in the y direction between NS5′ branes, that are located at
y = 0, π and are periodically identified, and between two NS5 branes9 in the ψ direction,
located at ψ = 0, 2π and periodically identified. The field theory that lives in them is
therefore one dimensional at low energies. In turn, there are D4′ branes wrapped on y

and on the T 3. They are stretched in the y direction between NS5′ branes. The field
theory that lives in them is therefore also one dimensional at low energies. Our conjecture
is that the N = 4 quantum mechanics that lives in the D2-D4′ branes flows to a super
conformal quantum mechanics in the IR that is dual to the backgrounds defined by the
functions (4.19), (4.20). We turn to this analysis in subsection 4.4, after discussing the
holographic central charge in the next subsection.

4.3 Holographic central charge

Defining a central charge for a one dimensional CFT is known to be a subtle issue, see for
instance [77–79]. There is however a notion of holographic “central charge” that can be
computed from the Brown-Henneaux formula,

cholo = 3Vint
4πGN

, (4.26)

where GN is the ten dimensional Newton’s constant, GN = 8π6, and Vint is the volume of
the internal space. In the presence of a dilaton term the internal volume must be modified,
following the usual procedure (see [80, 81]). For our class of backgrounds we find

cholo = 3
4πGN

∫
d~θ
√
e−4Φ det(gij) = 6

π

∫ π(P+1)

0
HD4HD6 dz, (4.27)

where gij is the metric of the inner space and ~θ are coordinates defined over it. Substituting
here the expressions for HD4 and HD6 given by (4.19) and (4.20) we arrive at the final

9We take qNS5 = 1 for simplicity.
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expression,

cholo = 6
P∑
k=0

(
αkµk + 1

3βkνk + 1
2(αkνk + βkµk)

)
, (4.28)

that we will compare with the “central charge” of the superconformal quantum mechanics
in subsection 4.5.

4.4 Dual quiver quantum mechanics

In this subsection we propose quiver quantum mechanics supported by our solutions. The
dynamics of the quivers is described in terms of the matter fields associated to the open
strings that connect the different branes. We will follow closely the detailed description of
the matter fields given in [35] (see appendix B therein), since our brane system is related by
two T-dualities (along the y and ψ directions) to the D0-D4-F1-D4′-D8 brane intersections
studied there. As in that reference we will use 2d N = (0, 4) notation for the 1d N = 4
matter fields.

As all D-branes are localised in the z-direction, strings stretched between branes in
adjacent [πk, π(k+ 1)] intervals are long, and describe massive states. Therefore, they will
not show in the quiver quantum mechanics. We will discuss their role in the field theory
in subsection 4.6. Therefore, the full Hilbert space of the system is given by the sum of
the individual Hilbert spaces of the D2-D4′-D4-D6 branes in each [πk, π(k + 1)] interval,
whose degrees of freedom we summarise next:

• D2-D2: given that the D2 branes are wrapped on the y and ψ directions they are
effectively point like. They contribute with a (4, 4) vector and a (4, 4) hypermultiplet
in the adjoint.

• D4′-D4′: given that the D4′ branes are wrapped on y and on the T 3 they are also
effectively point like. They contribute as well with a (4, 4) vector and a (4, 4) hyper-
multiplet in the adjoint.

• D2-D4′: the D2-D4′ subsystem is T-dual to the D0-D4 system in [35]. They contribute
with a (4, 4) hypermultiplet in the bifundamental representation of the two gauge
groups.

• D2-D4: this subsystem is T-dual to the D0-D4′ system in [35]. They contribute with
a (4, 4) bifundamental twisted hypermultiplet.

• D2-D6: this is T-dual to D0-D8. They contribute with a (0, 2) bifundamental Fermi
multiplet.

• D4′-D4: this is T-dual to D4-D4′. They contribute with a (0, 2) bifundamental Fermi
multiplet.

• D4′-D6: this is T-dual to D4-D8. They contribute with a (4, 4) bifundamental twisted
hypermultiplet.
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β0 − β1 β1 − β2

ν0 − ν1 ν1 − ν2

µ2

α2α1

µ1

βP−1 + αP

νP−1 + µP

µP

αP

Figure 2. Disconnected quivers describing the SCQMs dual to our solutions.

Putting all this together, and using that the ranks of the gauge and flavour groups asso-
ciated to the D2-D4′-D4-D6 branes in a given [πk, π(k + 1)] interval are given by µk, αk,
βk−1−βk and νk−1− νk, respectively (see equations (4.22), (4.23), (4.24)), we get the field
content depicted in figure 2. In this figure circles represent (4, 4) vector multiplets, black
lines (4, 4) twisted hypermultiplets, grey lines (4, 4) hypermultiplets and dashed lines (0, 2)
Fermi multiplets. Note that this is the same quiver quantum mechanics discussed in [35]
(see section 3.3 therein), now associated to a different brane system. As in that paper,
the quantum mechanics will find an interpretation as describing Wilson lines (more specif-
ically, baryon vertices) within a higher dimensional QFT, once we introduce the massive
F1-strings stretched between the branes in the z-direction. We turn to this description
in subsection 4.6. Before doing that we briefly address the computation of the quantum
mechanical central charge.

4.5 Quantum mechanical central charge

In this subsection we address the computation of the central charge, following closely [35].
The usual caveats involved in the definition of a superconformal quantum mechanical cen-
tral charge are present in our current set-up. The central charge should then be interpreted
as counting the degeneracy of ground states of the system.

We will follow the proposal in [34]. In that reference the central charge of a 1d CFT
arising as a chiral half of a 2d (0, 4) CFT was computed using the same expression that
allows to count the degrees of freedom of the original 2d CFT, given by [82],

c = 6 (nhyp − nvec). (4.29)

It was argued that since N = 4 multiplets arise upon reduction of 2d (0, 4) multiplets, this
expression can be used to account for the degrees of freedom of the 1d CFT through direct
counting of its N = 4 hypermultiplets and vector multiplets. More interestingly for our
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purposes, even if this formula is valid, by construction, for 1d CFTs with a 2d (0, 4) origin,
it was proposed in [35] that it could also be used to count the number of ground states of
purely 1d CFTs. In that reference it was noted that (4.29) extends to more general SCQM
the formula derived in [83–85] for the dimension of the Higgs branch of so-called Kronecker
quivers, built out of 1d gauge groups connected by bifundamentals, given by

M =
∑
v,w

NvNw −
∑
v

N2
v + 1. (4.30)

In this expression Nw stands for the ranks of the colour groups adjacent to a given colour
group of rank Nv. It is straightforward to check that for these quivers the dimension of the
Higgs branch computed from (4.30) agrees with the central charge computed using (4.29),
up to a factor of 1,10 and the global normalisation. The quantum mechanical central
charge computed from (4.29) was shown to agree to leading order with the corresponding
holographic expression in a number of examples [35].

We will thus use (4.29) to compute the central charge of our quiver quantum mechanics.
In this computation, as remarked in [86], nhyp counts the number of ordinary (as opposed
to twisted) N = 4 hypermultiplets, since the U(1)R-charge of the fermions in twisted
hypermultiplets vanishes. For the quivers depicted in figure 2 we find that

nhyp =
P∑
k=1

(αkµk + α2
k + µ2

k), nvec =
P∑
k=1

(α2
k + µ2

k), (4.31)

and therefore,

c = 6
P∑
k=1

αkµk, (4.32)

identically. Keeping in mind the definitions of αk, µk, given by (4.21), we find that this
expression agrees in the large number of nodes limit with the holographic expression, given
by (4.28). Moreover, the agreement is exact in the absence of any of the two types of
flavour branes. It would be interesting to have a more precise understanding of this exact
agreement.

4.6 Baryon vertex interpretation

In this subsection we turn our attention to the interpretation of the massive F1-strings.
The discussion will again follow very closely the field theory interpretation given to the
AdS2 solutions constructed in [35]. The key point is to realise that the orientation between
the D4 and the D4′ branes, and between the D6 and the D2 branes in the brane set-up is
the one that allows to create F1-strings stretched between the D4 and the D4′ branes and
between the D6 and the D2 branes. These strings have as their lowest energy excitation a
fermionic field, which upon integration leads to a Wilson loop.

In [87, 88] it was shown that a half-BPS Wilson loop in a U(N) antisymmetric repre-
sentation of 4d N = 4 SYM can be described by an array ofM D5-branes with fundamental

10This factor of 1 is irrelevant in the holographic limit, but we are lacking a precise understanding of the
origin of this discrepancy.
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branes t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × × — — — — — —
D5 × — — — — × × × × ×
F1 × — — — × — — — — —

Table 6. Brane set-up associated to the D3-D5-F1 brane configuration that describes Wilson loops
in antisymmetric representations of 4d U(N) N = 4 SYM.

α1 D4
′

⊗

ν0 D6

⊗

β0 D4

µ1 D2

α2 D4
′

⊗

⊗
µ2 D2

β1 D4

ν1 D6

· · ·

αP D4′

⊗

⊗
µP D2

βP−1 D4

νP−1 D6

z

Figure 3. Hanany-Witten brane set-up associated to the quantised charges of the solutions.

strings dissolved in their worldvolumes. This is the realisation in the near horizon limit of
a configuration of M stacks of D5-branes separated a distance L from N D3-branes, with
(m1,m2, . . .mM ) F1-strings stretched between the stacks. The brane set-up is depicted in
table 6. As one can easily check this is precisely the relative orientation between the D4,
the F1 and the D4′ branes in table 5 and the D6, the F1 and the D2 branes.

Indeed, the couplings that describe Wilson lines in the worldvolumes of the D4′ and
D2 colour branes are, respectively,

SD4′ = T4

∫
F̂(4) ∧At, SD2 = T2

∫
F̂(2) ∧At. (4.33)

In the first expression the D4′ branes are wrapped on y and the T 3, therefore they capture
the F̂m(4) magnetic flux given in (4.15). In turn, the D2 branes are wrapped on y and ψ, so
they capture the F̂m(2) magnetic flux. Substituting these fluxes in the [πk, π(k+1)] z-interval
we arrive at

SD4′ = βkTF1

∫
dtAt, SD2 = νkTF1

∫
dtAt. (4.34)

These expressions describe, respectively, βk and νk Wilson lines. If we add now the con-
tributions of the F1-strings stretched between the D4′ branes in the k interval and the
D4 branes in all previous intervals, and the same for the D2 branes and the D6 branes,
as depicted in figure 3, we find Wilson lines in the (β0, β1, . . . , βk−1) and (ν0, ν1, . . . , νk−1)
antisymmetric representations of the U(αk) and U(µk) gauge groups. This is precisely the
realisation of the baryon vertices associated to these gauge groups.
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α1 D4′

⊗

ν0 D6⊗

β0 D4

µ1 D2

α2 D4′

µ2 D2

β1 D4

ν0 F1

· · ·

αP D4′

µP D2
νP−1 D6

z

⊗⊗
...

· · ·
⊗
...⊗ βP−1 D4

β0 F1 β0 F1 β0 F1

β1 F1 β1 F1

βP−1 F1

Figure 4. Hanany-Witten brane set-up equivalent to the brane configuration in figure 3.

Indeed, the brane set-up depicted in figure 3, can be related after the combination
of a T-duality, an S-duality, successive Hanany-Witten moves and a further T-duality to
the brane set-up depicted in figure 4. This relation is carefully explained in [35]. For the
D4′-F1-D4 brane subsystem it follows directly from the analysis of the D4′-F1-D4 brane
system in [35],11 while for the D2-F1-D6 subsystem it follows from the analysis of the
D0-F1-D8 subsystem therein after two T-dualities. The reader can find more details about
this description in that reference.

Our previous description is consistent with an interpretation of the AdS2 solutions
given by (4.6), with the profiles specified in (4.19), (4.20), as describing backreacted baryon
vertices within the 4d N = 2 CFT living in the D4-NS5-D6 branes. In this interpretation
the SCQM arises in the very low energy limit of a system of D4-NS5-D6 branes in which
one dimensional defects are introduced. The one dimensional defects consist on D4′ baryon
vertices, connected to the D4-branes with F1-strings, and D2-brane baryon vertices, con-
nected to the D6 by F1-strings. In the IR the gauge symmetry on the D4 branes becomes
global, turning them from colour to flavour branes. In turn, the D4′ and the D2 defect
branes become the new colour branes of the backreacted geometry. This interpretation
goes in parallel with the proposed defect interpretation for the classes of AdS2 solutions
found in [35] and [37]. Interestingly, for the first class of geometries the AdS6 solution of
Brandhuber-Oz [89] was shown to arise locally far away from the defect [21]. In our case
we should be able to find the AdS5 geometry dual to the D4-NS5-D6 brane intersection far
away from the defect. This is currently under investigation.

5 Conclusions

In this paper we have constructed new families of AdS2×S2×S2×R2×S1×I solutions to
Type II supergravities preserving four Poincaré supersymmetries. Starting with Type IIA
supergravity we have constructed solutions corresponding to the intersection of D2-F1-D4′-
NS5′ branes ending on a bound state of D4-NS5 branes. Taking the near horizon limit a

11Note that the D4′ and the D4 branes are interchanged in that reference.

– 24 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
7

vast class of solutions of the type specified above has been shown to emerge, determined by
the charge distribution of the D4-NS5 system. Choosing a particular semi-localised profile
for the D4-NS5 branes we have then shown that two interesting regimes arise. The first
regime allows one to approach the D2-F1-D4′-NS5′ defect branes. In this limit the defect
branes are resolved into the fully backreacted AdS2×S2×S2×R2×S1× I geometry. The
second regime becomes manifest in a new system of coordinates, and allows one to move
away from the defect branes. In this regime an AdS5 geometry arises asymptotically, which
corresponds to the near horizon geometry of the D4-NS5 branes. We have shown that the
particular AdS5 vacuum that emerges in this limit is the T-dual of the AdS5 × S5/Zn
solution to Type IIB supergravity, holographically dual to 4d N = 4 SYM modded by Zn.
This has allowed us to interpret this class of solutions as dual to line defect CFTs within
4d N = 4 SYM modded by Zn.

Inspired by our findings in Type IIA we have performed a similar analysis in Type
IIB supergravity. In this case we have constructed new families of AdS2 × S2 × S2 ×
R2 × S1 × I solutions with the same supersymmetries, now emerging in the near horizon
limit of D1-F1-D5-NS5 branes ending on D3 branes probing an ALE singularity. In the
second limit described above the AdS5×S5/Zn solution of Type IIB supergravity emerges
asymptotically. The solutions thus admit as well a line defect interpretation, this time in
terms of D1-F1-D5-NS5 defect branes.

Returning to Type IIA, we have extended our class of solutions to include D6 branes.
In this case the defect interpretation in terms of semi-localised D4-NS5 branes is lost,
and we have not succeeded in constructing explicit solutions that asymptote to an AdS5
vacuum. Instead, we have turned into a thorough study of the 1d CFTs dual to these
general solutions, taking a simplified ansatz. These CFTs arise in the IR limit of explicit
quiver quantum mechanics that we have constructed. Remarkably, these are the same
quiver quantum mechanics that flow in the IR to the 1d CFTs studied in [35], dual to
the AdS2 × S3 × CY2 × I solutions to massive Type IIA with N = 4 supersymmetries
studied therein. This happens because when the branes are smeared on y (the simplified
assumption taken in our construction) our brane system is related by two T-dualities to
the brane system discussed in [35], consisting on a D0-F1-D4-D4′-D8 intersection. The 1d
dual CFT associated to this class of solutions was interpreted in terms of baryon vertices
within 5d fixed point theories living in D4-D8 intersections, and an asymptotically locally
AdS6 geometry was shown to arise for certain solutions. Our findings in this paper show
that the same quiver quantum mechanics describe in the UV line defect CFTs associated
to baryon vertices within 4d N = 2 SCFTs. In this last case we are lacking however a
defect completion within an AdS5 vacuum in Type IIA.

Still, the smearing in y allows to make connection with the class of AdS3 × S2 × S2 ×
S1 × Σ2 solutions to Type IIB supergravity studied in [61], for which an interpretation as
surface defects within AdS6×S2×Σ2 Type IIB vacua was found. Indeed, T-dualising our
solutions along the y direction a new class of AdS2×S3×S2×S1×Σ2 backgrounds in Type
IIB supergravity with the same number of supersymmetries is produced, associated to D1-
F1-D3-D5-NS5-D7 intersections. These backgrounds are related through a double analytic
continuation to the solutions studied in [61], and it is expected that the same AdS6×S2×Σ2
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vacua will arise asymptotically. This would allow us to interpret our solutions as dual to
line defect CFTs within the 5d fixed point theories living in D5-NS5-D7 intersections. This
is currently under investigation [90].
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A M-theory picture

In this appendix we provide the M-theory interpretation of the defect solution studied in
section 2. We start discussing the brane interpretation of warped N = 2 AdS5 vacua in
M-theory [65–69, 91–93]. The strong coupling limit of the D4-NS5 system discussed in
section 2.2 has a simple interpretation in 11d as the bound state of M5 branes depicted in
table 7. This system can be obtained geometrically by uplifting the D4-NS5 bound state
of table 2. The D4 branes become M51 branes localised within the space (R2

(y,z),R
3
r), and

the NS5 branes M52 branes completely delocalised on ψ and χ. Note that in M-theory ψ
can naturally parametrise an interval instead of a circle, such that an R2

(ψ,χ) plane emerges
in the strong coupling limit in which the M-theory circle decompactifies.12 The metric and
fluxes of such a bound state are given by

ds2
11 = H

−1/3
M51

H
−1/3
M52

ds2
R1,3 +H

2/3
M51

H
−1/3
M52

(dy2 + dz2)

+H
−1/3
M51

H
2/3
M52

(dψ2 + dχ2) +H
2/3
M51

H
2/3
M52

(
dr2 + r2ds2

S̃2
)
,

G(4) = ∂rHM51 r
2 dy ∧ dz ∧ volS̃2 +HM52∂yHM51 r

2 dz ∧ dr ∧ volS̃2

−HM52∂zHM51r
2 dy ∧ dr ∧ volS̃2 + ∂rHM52r

2dψ ∧ dχ ∧ volS̃2 ,

(A.1)

where the harmonic functions are such that HM51(y, z, r) = HD4(y, z, r) and HM52(r) =
HNS5(r). As for the D4-NS5 system one can construct a semi-localised solution with
harmonic functions [65, 67]

HM51 = 1 + 4πqM51qM52

(y2 + z2 + 2qM52r)2 and HM52 = qM52

2r . (A.2)

Making the change of coordinates (2.10), which in M-theory notation takes the form [69],

y = µ sinα cosφ , z = µ sinα sinφ and r = 2−1 q−1
M52

µ2 cos2 α , (A.3)

and taking the limit µ→ 0, one arrives at the AdS5 vacuum [69],

ds2
11 = (4πqM51)2/3 c2/3

[
ds2

AdS5 + ds2
M6

]
,

ds2
M6 = dα2 + s2dφ2 + 4−1π−1q−1

M51
qM52c

−2(dψ2 + dχ2) + 4−1c2ds2
S̃2 ,

G(4) = −4πqM51sc
3dα ∧ dφ ∧ volS̃2 − 2−1qM52dψ ∧ dχ ∧ volS̃2 ,

(A.4)

12In this case the circle where the M51 branes are wrapped appears by rewriting R2
(ψ,χ) in polar coordi-

nates.
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with ds2
AdS5

= µ2ds2
R1,3 + dµ2

µ2 and s = sinα, c = cosα. The parameters of the solution can
be related to those of the Type IIA vacuum (2.11) through the identifications qM51 = qD4
and qM52 = qNS5. This solution is the uplift to 11d of the AdS5 vacuum discussed in
subsection 2.2, and it is therefore holographically dual, in M-theory, to the Zn orbifold of
4d N = 4 SYM with n = qM52 .

Let us now introduce defects within the previous AdS5 vacuum. The F1-D2-D4′-
NS5′ defect branes considered in subsection 2.1 become a M2-M5-M2′-M5′ intersection13

completely localised within the worldvolume of the M51-M52 system. We consider the
following eleven-dimensional metric, associated to the brane set-up depicted in table 8:

ds2
11 = H

−1/3
M51

H
−1/3
M52

[
−H−2/3

M2 H
−2/3
M2′ H

−1/3
M5 H

−1/3
M5′ dt

2 +H
1/3
M2H

1/3
M2′H

2/3
M5H

2/3
M5′(dρ2 + ρ2ds2

S2)
]

+H
2/3
M51

H
−1/3
M52

[
H
−2/3
M2 H

1/3
M2′H

2/3
M5H

−1/3
M5′ dy

2 +H
1/3
M2H

−2/3
M2′ H

−1/3
M5 H

2/3
M5′dz

2
]

+H
−1/3
M51

H
2/3
M52

[
H
−2/3
M2 H

1/3
M2′H

−1/3
M5 H

2/3
M5′dψ

2 +H
1/3
M2H

−2/3
M2′ H

2/3
M5H

−1/3
M5′ dχ

2
]

+H
2/3
M51

H
2/3
M52

H
1/3
M2H

1/3
M2′H

−1/3
M5 H

−1/3
M5′

(
dr2 + r2ds2

S̃2
)
.

(A.5)

In order to write the fluxes we take the M2-M5-M2′-M5′ branes fully localised within the
worldvolume of the M51-M52 bound state. This implies that the warp functions HM2,
HM2′ , HM5 and HM5′ are only functions of ρ. We also take HM51 = HM51(y, z, r) and
HM52 = HM52(r), for the M51-M52 bound state. The 4-form flux then takes the form,

G(4) = ∂ρH
−1
M2dt∧ dρ∧ dy ∧ dψ+ ∂ρHM5′ ρ2 volS2 ∧ dz ∧ dψ− ∂ρH−1

M2′dt∧ dρ∧ dz ∧ dχ
+ ∂ρHM5 ρ

2 volS2 ∧ dy ∧ dχ+ ∂rHM52 r
2 dψ ∧ dχ∧ volS̃2 + ∂rHM51 r

2 dy ∧ dz ∧ volS̃2

+HM2H
−1
M5HM52∂yHM51 r

2 dz ∧ dr∧ volS̃2 −HM2′H−1
M5′HM52∂zHM51 r

2 dy ∧ dr∧ volS̃2 .

(A.6)
We can now derive the equations of motion and Bianchi identities, observing that they
split up into two groups. The harmonic functions associated to the M2-M5-M2′-M5′ defect
branes turn out to be harmonic on R2

ρ, and satisfying HM5 = HM2, HM5′ = HM2′ . If we
then consider the particular solution HM2 = 1 + qM2

ρ and HM2′ = 1 + qM2′
ρ and take the

ρ→ 0 limit, we obtain the following class of solutions

ds2
11 = qM2qM2′H

−1/3
M51

H
−1/3
M52

(
ds2

AdS2 + ds2
S2

)
+H

2/3
M51

H
−1/3
M52

(
dy2 + dz2

)
+ qM2q

−1
M2′H

−1/3
M51

H
2/3
M52

(
dψ2 + dχ2

)
+H

2/3
M51

H
2/3
M52

(
dr2 + r2ds2

S̃2
)
,

G(4) = qM2volAdS2 ∧ dy ∧ dψ− qM2volAdS2 ∧ dz ∧ dχ− qM2 volS2 ∧ dz ∧ dψ
− qM2 volS2 ∧ dy ∧ dχ+ qM2q

−1
M2′∂rHM52 r

2 dψ ∧ dχ∧ volS̃2 + ∂rHM51 r
2 dy ∧ dz ∧ volS̃2

+HM52∂yHM51 r
2 dz ∧ dr∧ volS̃2 −HM52∂zHM51 r

2 dy ∧ dr∧ volS̃2 ,

(A.7)
with HM51 , HM52 satisfying the equations

∇2
R3
r
HM51 +HM52∇2

R2
(y,z)

HM51 = 0 and ∇2
R3
r
HM52 = 0 . (A.8)

13The near horizon limit of the M2-M5-M2′-M5′ intersection was originally discussed in [63, 64] as an
example of a standard brane intersection in M-theory reproducing AdS2 × S2 × R7 close to the horizon.

– 27 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
7

branes t x1 x2 x3 y z ψ χ r θ1 θ2

M51 × × × × — — × × — — —
M52 × × × × × × — — — — —

Table 7. M-theory picture underlying warped N = 2 AdS5 vacua. This intersection preserves 8
real supercharges and supports a 4d N = 2 SCFT. χ parametrises the M-theory circle.

branes t x1 x2 x3 y z ψ χ r θ1 θ2

M51 × × × × — — × × — — —
M52 × × × × × × — — — — —
M2 × — — — × — × — — — —
M5 × — — — — × × — × × ×
M2′ × — — — — × — × — — —
M5′ × — — — × — — × × × ×

Table 8. BPS/8 intersection describing M2-M5-M2′-M5′ branes ending on a M51-M52 bound state.
This system defined a N = 4 line defect within the N = 2 4d CFT living in the M51-M52 branes.

Therefore, the ρ → 0 limit of the background defined by (A.5) gives rise to a new class
of N = 4 solutions described by AdS2 × S2 geometries curving the worldvolume of the
M51-M52 brane system.

In order to provide a defect interpretation to the solutions within this class we choose
the semi-localised solution for the M51-M52 branes given by (A.2), and make the change
of coordinates (A.3). Taking the limit µ→ 0 we obtain,

ds2
11 = 2−2/3 q

2/3
M51

q
−2/3
M52

c2/3
[ locally AdS5 geometry︷ ︸︸ ︷
q−1

M51
qM2 qM2′µ2

(
ds2

AdS2 + ds2
S2

)
+ dµ2

µ2 +ds2
M6

]
,

ds2
M6 = dα2 + s2dφ2 + 4q−1

M51
q2

M52qM2q
−1
M2′c

−2(dψ2 + dχ2) + 4−1c2ds2
S̃2 ,

G(4) = qM2 (c̃volAdS2 − s̃volS2) ∧ [(sdµ+ µcdα) ∧ dψ − µsdφ ∧ dχ]

− qM2 (s̃volAdS2 + c̃volS2) ∧ [(sdµ+ µcdα) ∧ dχ+ µsdφ ∧ dψ]

−
(
2−1qM51q

−1
M52

sc3dα ∧ dφ+ qM2q
−1
M2′qM52dψ ∧ dχ

)
∧ volS̃2 ,

(A.9)

where s = sinα, c = cosα and s̃ = sinφ, c̃ = cosφ. Our analysis in this appendix shows
that if we choose the semi-localised solution (A.2) and the system of coordinates (A.3),
it is possible to work out a limit in which the 11d background asymptotes locally to the
AdS5 geometry holographically dual, in M-theory, to a Zn orbifold of N = 4 SYM. The
M2-M5-M2′-M5′ branes find in this way a line defect interpretation within this 4d CFT.
This is no other but the strong coupling realisation of the Type IIA defect interpretation
discussed in section 2.
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