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Abstract
The security of a broad family of coding-based cryptographic techniques relies
on the hardness of the Syndrome Decoding Problem (SDP). In this problem, the
aim is to find a word with a given syndrome and of Hamming weight smaller
than a prefixed bound. If this last condition is replaced by “of minimum weight,”
then we have the Coset Leader Problem (CLP), being Finding Low Weight Code-
words (FLWC) a particular case (when the zero syndrome is considered). An
algorithm that has been proposed in order to obtain approximate solutions of
problems of these kind (NP-complete) is the Quantum Approximate Optimiza-
tion Algorithm (QAOA), a variational hybrid quantum-classical algorithm. In
this paper, we apply the QAOA to the CLP for binary linear codes. We model the
problem, make the theoretical analysis the case of the first level, and introduce
some experiments to test its performance. The experiments have been carried
out on quantum computer simulators with codes of different lengths and QAOA
of different depth.
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1 INTRODUCTION

The security of a broad family of coding based cryptographic techniques relies on the hardness of the Syndrome Decod-
ing Problem (SDP). In this problem, given natural numbers n, k, and w such that k,w ≤ n, and a parity-check matrix
H ∈ (n−k)×n (F2) of a binary linear code (F2 = {0, 1}), and a syndrome vector s ∈ F

n−k
2 , the aim is to find a word e ∈ F

n
2

with syndrome s = Het, of Hamming weight wt(e) smaller than w.1 In cryptography, for instance, the interest is on ran-
dom binary linear codes of code rate k

n
≈ 0.5, and w slightly higher than the Gilbert–Varshamov bound.2 Other case of

interest is when the code is a binary Goppa code of coding rate k
n
= 0.8, and the weight bound is taken as

⌈
n

5 log2 n

⌉
, as the

Classic McEliece cryptosystem, as submitted to the NIST Post-Quantum Cryptography standardization process relies on
Reference 3.

When the condition wt(e) ≤ w of the SDP is replaced by “e of minimum weight,” then we have the Coset Leader
Problem (CLP), that is, finding a word of minimum weight among those having the same syndrome s. A particular case
of this problem is Finding Low Weight Codewords (FLWC), when the zero syndrome is considered. The decision version
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of these problems is known to be NP-complete,4 hence their importance from the cryptographic point of view. Also,
the problem remains difficult when the binary code is randomly chosen and w is taken close to the Gilbert–Varshamov
bound.5 Other concrete instances such as the ones mentioned above based on binary Goppa codes, are apparently hard
too.

Because of this computational hardness, Quantum Computers (QC) are not believed to be able to solve these problems
in polynomial time.6 However, it might occur that the solution to some instances of these problems could be approximated
by a quantum computation technique. One of the proposals in this direction is the Quantum Approximate Optimiza-
tion Algorithm (QAOA), a variational hybrid quantum-classical algorithm introduced in 2014.7 Originally applied to
one particular NP-complete problem (MaxCut), this algorithm combines the power of classical minimization of certain
parameters and the power of discrete time evolution of QC based on such parameters. Because of its apparent quantum
error robustness, it has become a promising candidate to use in the NISQ (Noisy Intermediate-Scale Quantum) era, that
is, with a-few-hundred-qubit quantum-error-nonfree QC.

In this paper, we apply the QAOA to the CLP for binary linear codes. This is not the first time that QAOA has
been considered in the context of coding theory. In Reference 8, a maximum likelihood channel decoding method-
ology based on QAOA was proposed. In our paper, we follow some of the ideas introduced there but taking into
account the hamming weight of the solutions. This yields to a framework in which a new Hamiltonian models the
problem, in the sense that finding minimizing states corresponds to solutions of the posed instance. This is accom-
plished in the second section of the paper, which also contains background on the QAOA algorithm. Next, we introduce
some experiments to test the performance of the QAOA methodology, not only of the first level, but also of levels
p = 1–5. For the experiments we have selected the smallest instances of the SDP for random binary linear codes and
for the Goppa–McEliece setting contained in the site https://decodingchallenge.org, a webpage devoted to assess the
practical hardness of problems in coding theory. Conclusions and future work are given in the final section of the
paper.

2 QAOA FOR CLP

Adiabatic quantum computation is a polynomially equivalent model to the standard gate model of quantum
computation9,10 that has been applied to solving NP-complete problems.11 Its theoretical foundation is the Quantum
Adiabatic Theorem12 that states, roughly speaking, that if a quantum system is prepared in the ground state of an ini-
tial Hamiltonian HI , and that if the system is driven by a sequence of slightly changing Hamiltonians of the form{

H(t) =
(

1 − t
T

)
HI + t

T
HF

}
0≤t≤T

then, if T is sufficiently large, the final state will be also in the ground state of the

final Hamiltonian HF .13 In order to solve an NP−complete problem, a final Hamiltonian is introduced, so that its ground
states encode its solutions. These solutions are achieved from the evolution of an easy-to-prepare ground state of an initial
Hamiltonian, according to the time-dependent Hamiltonian mentioned above.

The evolution of an adiabatic computation can be approximated by the Suzuki–Trotter decomposition.14 In the par-
ticular case of a problem of minimization of a cost function C ∶ F2 → R, a Trotterization of the adiabatic process consists
in a alternating sequence of the operators

U(HC, 𝛾j) = exp
(
−i𝛾jHC

)
, U

(
B, 𝛽j

)
= exp

(
−i𝛽j

n∑
l=1

Xl

)
,

where HC is seen as the final Hamiltonian on a quantum space of n qubits with computational basis {|e⟩}e∈F
n
2
, Xi is the

X Pauli operator on the ith qubit, and 𝛾j, 𝛽j ∈ [0, 2𝜋] (1 ≤ j ≤ p) are arbitrary angles. The number p determines the depth
level of the approximation. This is, in essence, the QAOA, where the initial state is is chosen to be |𝜙⟩ = |+⟩⊗n, and the
final state is

|𝛾, 𝛽⟩ = U
(

B, 𝛽p
)

U
(

HC, 𝛾p
)
…U (B, 𝛽1)U (HC, 𝛾1) |𝜙⟩

It can be shown that, if Fp (𝛾, 𝛽) = ⟨𝛾, 𝛽|C|𝛾, 𝛽⟩ denotes the expected value of C in the final state |𝛾, 𝛽⟩, then

lim
p→∞

max𝛾,𝛽∈[0,2𝜋]
{

Fp
}
= max

e∈F
n
2

C(e).

https://decodingchallenge.org
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In the case of the CLP we want to minimize wt(e) among those e ∈ F
n
2 given syndrome s = Het (we are given natural

numbers n, k, and w such that k,w ≤ n, and a parity-check matrix H ∈ r×n (F2) of a binary linear code, and a syndrome
vector s ∈ F

r
2, where r = n − k). Consequently, we will introduce the cost function

C(e) = wtH(e) + ΠdH
(

s, eHt) ,
where dH is the Hamming distance between the vectors eHt and s (i.e., the number of positions in which they differ), wt
is the Hamming weight of the vector e (i.e., the Hamming distance between the vector e and the zero vector) and Π is a
penalty introduced to force that the minimal e satisfies the equality eHt = s (i.e., dH

(
s, eHt)). The choice of Π = n + 1 is

optimal, as the following result shows.

Proposition 1. Let n and k be natural numbers with k ≤ n, let H ∈ r×n (F2) be a parity-check matrix of a binary linear
code, and let s ∈ F

r
2 be a syndrome vector (r = n − k). Let us define C(e) = wtH(e) + ΠdH

(
s, eHt), for all e ∈ F

n
2 . If Π ≥ n + 1,

and e is any vector such that eHt = s, then C(f ) > C(e), for all f ∈ F
n
2 such that f Ht ≠ s. On the other hand, if Π ≤ n, then

there exists a parity-check matrix H ∈ r×n (F2), a syndrome s ∈ F
r
2, and two vectors e, f ∈ F

n
2 such that eHt = s, f Ht ≠ s,

but C(f ) ≤ C(e).

Proof. For the first part we have C(f ) = wtH(f ) + ΠdH
(

s, f Ht) ≥ 0 + (n + 1) ⋅ 1 > n + (n + 1) ⋅ 0 = wtH(e) +
ΠdH

(
s, eHt) = C(e) since f Ht ≠ s makes dH

(
f Ht, s

)
≠ 0, and f Ht = s gives dH

(
eHt, s

)
= 0.

On the other hand, if Π ≤ n, then take H = (1… 1) ∈ 1×n (F2) , s = (1) ∈ F2, e = (1… 1) , f = (0… 0) ∈ F
n
2 . Then,

C(f ) = wtH(f ) + ΠdH
(

s, f Ht) ≤ 0 + n ⋅ 1 = n + Π ⋅ 0 = wtH(e) + ΠdH
(

s, eHt) = C(e). ▪

Next, we introduce the Hamiltonian related to the cost function C, in the sense that any ground state |e⟩ of HC
corresponds to a vector minimizing the function C. The weight function wtH(e) can be written as

∑n
i=1ei, that can be

translated into the addition −
∑n

𝜈=1Z𝜈 , where Z𝜈 is the Z Pauli operator on the 𝜈th qubit. Observe that
(
−
∑n

𝜈=1Z𝜈

) |e⟩ =
2 (wtH(e) − n) |e⟩, and so minimizing the weight function corresponds to finding ground states of such a Hamiltonian.
On the other hand, following Reference 8, the Hamming distance dH

(
eHt, s

)
, which can be written as

∑r
𝜈=1(1 − 2s𝜈)

(1 − 2(eHt)𝜈), can be modeled as −
∑n

𝜈=1 (1 − 2s𝜈)⊗ks.t.H𝜈k=1 Zk.

Definition 1. Let n and k be natural numbers with k ≤ n, let H ∈ r×n(F2) be a parity-check matrix of a binary linear
code, and let s ∈ F

r
2 be a syndrome vector (r = n − k). Let us define the matrix H =

(
H
In

)
∈ (r+n)×n(F2), the cost coef-

ficients 𝛿𝜈 =
{
−(n + 1) (1 − 2s𝜈) , if 𝜈 = 1,… , r
−1, if 𝜈 = r + 1,… ,n + r , and the indices I𝜈 = {k ∈ {1,… ,n} | H𝜈k = 1} of cardinality

d𝜈 = #I𝜈 , for all 𝜈 = 1,… ,n + r. We define the cost Hamiltonian

CH =
n+r∑
𝜈=1

C𝜈 , where C𝜈 = 𝛿𝜈
⨂
k∈I𝜈

Zk.

Example 1. Consider the parity-check matrix of a repetition binary code of length 3, with parity-check matrix H =(
110
011

)
. Then, corresponding to a syndrome s = (100), we have CH = 4Z1Z2 − 4Z2Z3 − Z1 − Z2 − Z3.

Remark that the previous Hamiltonian corresponds to an Ising model. In general, CH is an Ising Hamiltonian if and
only if d𝜈 ≤ 2, for all 𝜈 = 1,… , r. Observe also that different parity-check matrices of the same code yield different cost
Hamiltonians, and that these may correspond or not to Ising models, since different values of d𝜈 may occur.

Example 2. Consider the [10, 5, 1]2−linear code K1 obtained by the instance generator of Reference 2, with length n = 10,
and seed equal to 3822. It is a code of dimension k = 5, minimum distance 1 with parity-check matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Again, the associated Hamiltonian that of an Ising model. Consider now the following set of 27 invertible matrices Ai,
i = 1,… , 27:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1
1 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1
1 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0
1 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 0 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1
1 0 1 1 1
1 1 0 1 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 0 1 1 1
1 1 0 1 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 0 1 1 1
1 1 0 1 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 0 1 0 1
1 0 1 1 1
0 0 1 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
0 0 1 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 0 1
1 1 1 1 1
0 0 1 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 1 0
1 1 1 1 1
1 1 1 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 1 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
For all 1 ≤ i ≤ 27, the matrix AiH is a parity-check matrix of the code K1. It can be checked that the average value of d𝜈 is
d𝜈 = 7+i

5
, for all 1 ≤ i ≤ 27. We will experimentally study in Section 3 how this average value affects the performance of

the QAOA algorithm when the different matrices AiH are considered.

3 EXPERIMENTAL RESULTS ON QAOA FOR CLP

In this section, we present some experimental results concerning the application of the QAOA methodology to several
codes. All of them were taken from the webpage2 (Table 1). The codes K1,K2,K3,K4 were generated as random instances
of the SDP with lengths n = 10, 11, 12, 20, where as the codes K5,K6,K7 are Goppa codes of length n = 20 related to the
Classic McEliece cryptosystem.

Experiments have been programmed in ProjectQ,15 and carried out on a simulator, using exact energy estimation
(through the wavefunction) and classical optimizer L-BFGS-B.16 In a first experiment, we have run 100 instances of level-1
QAOA for codes K1,K2,K3, computing the exact success probability of finding a vector e with prescribed syndrome, and
Hamming weight upper bounded by w, that is, of solving the SDP. Table 2 shows the average, maximum, minimum, and
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T A B L E 1 Different codes taken for experiments from Reference 2

Code Parameters s w Generation max d
𝝂

K1 [10, 5, 1]2 (10000) 4 seed 3822 2

K2 [11, 6, 1]2 (11010) 4 seed 3822 2

K3 [12, 6, 1]2 (01000) 4 seed 1020938 2

K4 [20, 10, 2]2 (1101110101) 5 seed 18768 4

K5 [20, 16, 1]2 (1111) 1 Inria Paris 9

K6 [20, 16, 2]2 (0001) 1 Univ. de Rennes 1 11

K7 [20, 16, 1]2 (0000) 1 Univ. de Limoges 11

T A B L E 2 Success probability of solving the syndrome decoding problem (100
experiments of level-1 quantum approximate optimization algorithm)

Code s w Average Max Min SD

K1 (10000) 4 0.186 0.349 0.015 0.120

K2 (11010) 4 0.068 0.168 0 0.060

K3 (01000) 4 0.031 0.106 0 0.035

F I G U R E 1 Boxplot of success probabilities for codes K1,K2,K3 with level-1 quantum approximate optimization algorithm (100
experiments)

SD of such probabilities. Also, a boxplot based on the experiments carried out for codes K1,K2,K3 (level-1 QAOA) can be
found on Figure 1.

We have used the outcome data to establish accumulated probabilities of success, based both on the average value,
and also on the concrete probabilities of the experiments #1 to #91, to simulate an increasing number (1, 2, 3,… , 13) of
independent experiments. Figure 2 contains the results. As we can see, the success probability decreases with the length
n of the code (the rest of the parameters is the same: k = ⌈ n

2
⌉, w = 4, max d𝜈 = 2). This is somehow expected, since the

number of qubits required by the QAOA is exactly such a length.
The same experiment was run with 10 instances of level-1 QAOA for codes K4,K5,K6,K7. Table 3 shows the average,

maximum, minimum, and SD of the accumulated success probabilities, whereas Figure 3 shows the accumulated success
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F I G U R E 2 Accumulated success probabilities for codes K1,K2,K3 with level-1 quantum approximate optimization algorithm

T A B L E 3 Success probability of solving the syndrome decoding problem (10 experiments of level-1
quantum approximate optimization algorithm). Probabilities are to be multiplied by a factor of 10−4

Code s w Average Max Min SD

K4 (1101110101) 5 1.513 5.052 0 1.972

K5 (1111) 1 24.767 84.115 0.002 37.818

K6 (0001) 1 124.551 351.927 0 128.060

K7 (0000) 1 543.092 2713.267 0.025 1085.087

probability based on the average probability obtained in the simulations. Again, we can observe the tendency to obtain
smaller success probability with random codes of higher length (here n = 20, for K4). On the other hand, it has to be
noticed that two out of the three Goppa codes (K6,K7) have significantly higher success probabilities than the random
code (K4). This might suggest that these two codes have an inner structure that favors the QAOA. It might be possible
that the higher dimension of the Goppa codes have also an effect in the algorithm. However, the success probability of
the third Goppa code (K5) apparently goes against this conclusion.

A third experiment was run with the 27 variants of code K1 introduced above. In all cases, 100 level-1 QAOA sim-
ulations where carried out. The average, maximum, minimum, and SD of the success probabilities are collected in
Table 4. Figure 4 shows how the success probability changes when increasing the average number of ones per row of the
parity-check matrix H. The data show a certain tendency toward higher success probabilities among those variants with
smaller number of ones. This might suggest the cryptographic use of codes presented through parity-check matrices with
as many ones as possible.
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F I G U R E 3 Accumulated success probabilites for codes K4,K5,K6,K7 with level-1 quantum approximate optimization algorithm

T A B L E 4 Success probability of solving the syndrome decoding problem for the 27 variants
of the code K1 (100 experiments of level-1 quantum approximate optimization algorithm)

Variant s d
𝝂

Average Max Min SD

1 (00001) 8
5

0.186 0.349 0.016 0.112

2 (00001) 9
5

0.074 0.242 0 0.087

3 (10001) 2 0.135 0.244 0.027 0.063

4 (00001) 11
5

0.036 0.219 0 0.057

5 (00001) 12
5

0.103 0.246 0.007 0.080

6 (00001) 13
5

0.318 0.958 0.008 0.333

7 (10001) 14
5

0.111 0.216 0.007 0.066

8 (11001) 3 0.015 0.094 0 0.018

9 (11001) 16
5

0.032 0.192 0 0.038

10 (01001) 17
5

0.040 0.168 0 0.045

11 (11001) 18
5

0.038 0.179 0 0.049

12 (10001) 19
5

0.076 0.215 0.010 0.070

13 (11001) 4 0.032 0.164 0 0.050

14 (11001) 21
5

0.029 0.149 0 0.033

15 (01001) 22
5

0.051 0.164 0.007 0.049

16 (11001) 23
5

0.314 0.960 0.004 0.365

17 (11101) 24
5

0.041 0.142 0 0.044

18 (11101) 5 0.055 0.133 0 0.044

19 (11101) 26
5

0.039 0.129 0.001 0.038

20 (11111) 27
5

0.029 0.151 0 0.033

21 (11111) 28
5

0.029 0.138 0.001 0.028

22 (10100) 29
5

0.033 0.131 0.005 0.024

23 (10110) 6 0.053 0.125 0.003 0.033

24 (01110) 31
5

0.030 0.101 0 0.0202

25 (11100) 32
5

0.064 0.125 0.024 0.030

26 (01110) 33
5

0.200 0.961 0.008 0.317

27 (01111) 34
5

0.049 0.153 0.002 0.036



8 of 10 EPELDE et al.

F I G U R E 4 Average success probability for the 27 variants of code K1,K2,K3 with level-1 quantum approximate optimization algorithm

T A B L E 5 Success probabilities for code K1 with quantum
approximate optimization algorithm of levels 1–5

p Average Maximum Minimum SD

1 0.161 0.349 0.015 0.137

2 0.410 0.560 0.310 0.075

3 0.793 0.959 0.573 0.105

4 0.976 0.999 0.925 0.025

5 0.999 0.999 0.995 0.001

T A B L E 6 Success probabilities for code K2 with quantum
approximate optimization algorithm of levels 1–5

p Average Maximum Minimum SD

1 0.060 0.168 0 0.062

2 0.198 0.470 0.037 0.103

3 0.446 0.871 0.0560 0.255

4 0.712 0.970 0.173 0.225

5 0.974 1 0.932 0.025

We have tested higher level QAOA for the codes K1,K2,K3 (10 independent experiments each). The average, maximum,
minimum, and SD of the success probabilities are collected in Tables 5–7. Figure 5 shows the success probability change
when the level p is increased from 1 to 5. As expected, the higher the depth, the better results that the QAOA yields.
Since the Hamiltonian cost of those codes is an Ising model (max d𝜈 = 2), we have tested 5000 experiments in the DWave
Quantum Annealer.17 The same figure plots the average success probability of these experiments. It should be noticed
that the QAOA is a remarkable alternative to the adiabatic computation performed by the quantum annealer (at least for
the codes studied, with lengths n = 10, 11, 12).
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T A B L E 7 Success probabilities for code K3 with quantum
approximate optimization algorithm of levels 1-5

p Average Maximum Minimum SD

1 0.059 0.094 0.002 0.038

2 0.131 0.441 0.001 0.123

3 0.253 0.776 0.001 0.200

4 0.459 0.683 0.222 0.160

5 0.759 0.999 0.337 0.188

F I G U R E 5 Average success probability for codes K1,K2,K3 with quantum approximate optimization algorithm of levels 1–5, and with
DWave Quantum Annealing

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have applied the QAOA to an NP-complete problem from Coding Theory upon which relies the secu-
rity of several postquantum cryptographic schemes. We have modeled the problem in suitable terms to apply the hybrid
classical-quantum algorithm and we have experimentally checked its correctness. We have made some experiments
from codes obtained from the site.2 Among them, the (accumulated) success probabilities for seven different codes
(including 3 binary Goppa codes), for 27 variants of the same random code for QAOA of depth level 1. We have also
experimented with higher level QAOA (p = 1–5) for the same code. The experiments suggests that random codes with
a higher length, and presented by parity-check matrices of high density, are more resistant to the QAOA algorithm,
at least for small depths and on simulations. Unfortunately, because of the current state of quantum technology, we
have been able to test any Quasi-Cyclic code of those contained in.2 Experimenting with codes of higher length, or the
modification of the Hamiltonian to cope with the challenge of the Large weight syndrome decoding problem2 is future
work.

ACKNOWLEDGMENTS
This work was supported in part by the MINECO under Grant MTM-2017-83506-C2-2-P and Grant
MINECO-16-TEC2015-67387-C4-3-R, and in part by the MICINN under Grant RTI2018-098085-B-C44, Grant
FC-GRUPIN-IDI/2018/000193, and under Grant FC-GRUPIN-IDI/2018/000226.



10 of 10 EPELDE et al.

REFERENCES
1. Huffman WC, Brualdi RA, Pless VS. Handbook of Coding Theory. Elsevier Science Inc.; 1998.
2. Decoding challenge; July 2021. https://decodingchallenge.org
3. Post-quantum cryptography standardization process; July 2021. https://csrc.nist.gov/Projects/post-quantum-cryptography
4. Berlekamp E, McEliece R, Van Tilborg H. On the inherent intractability of certain coding problems. IEEE Trans Inf Theory.

1978;24(3):384-386. doi:10.1109/TIT.1978.1055873
5. Stern J. A new paradigm for public key identification; 1996:13-21. doi: 10.1109/18.556672
6. Aaronson S. The limits of quantum computers. In: Diekert V, Volkov MV, Voronkov A, eds. Computer Science - Theory and Applications,

Second International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg, Russia, September 3-7, 2007, Proceedings, Lecture
Notes in Computer Science. Vol 4649. Springer; 2007:4.

7. Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm; 2014. arXiv:1412.6062.
8. Matsumine T, Koike-Akino T, Wang Y. Channel decoding with quantum approximate optimization algorithm; 2019.
9. Farhi E, Goldstone J, Gutmann S, Sipser M. Quantum computation by adiabatic evolution; 2000. arXiv:quant-ph/0001106v1.

10. Aharonov D., Dam W., Kempe J., Landau Z., Loyd S., Regev O.. Adiabatic quantum computation is equivalent to standard quantum
computation; Vol. 45, 2004:42-51.

11. Wang H, Wu L-A. Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem. Sci Rep. 2016;6:22307 EP.
12. Born M, Fock V. Beweis des Adiabatensatzes. Zeitschrift für Physik. 1928;51(3-4):165-180.
13. McGeoch CC. Adiabatic Quantum Computation and Quantum Annealing. Synthesis Lectures on Quantum Computing. Morgan&Claypool

Publishers; 2014.
14. Suzuki M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications

to many-body problems. Commun Math Phys. 1976;51(2):183-190. doi:10.1007/BF01609348
15. ProjectQ software; July 2021. http://projectq.ch/
16. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput.

1995;16(5):1190-1208. doi:10.1137/0916069
17. D-Wave leap; July 2021. https://www.dwavesys.com/take-leap

AUTHOR BIOGRAPHIES

Markel Epelde received the B.S. and M.S. degrees in mathematics from the University of the
Basque Country, Spain, in 2015, and 2016, respectively. Currently, he is a Ph.D. student in the
University of the Basque Country.

Elías F. Combarro received the B.S. degree in mathematics, the M.S. degree in computer science,
and the Ph.D. degree in mathematics from the University of Oviedo, Oviedo, Spain, in 1997, 2001,
and 2002, respectively, where he is currently an Associate Professor. He has authored more than
30 research papers in topics such as computability theory, the theory of fuzzy measures, and the
computational classification of semifields and text categorization. His current research interest
includes quantum computing.

Ignacio F. Rúa received the B.S., M.S., and Ph.D. degrees in mathematics from the University
of Oviedo, Oviedo, Spain, in 1999, 2001, and 2004, respectively, where he is currently an Asso-
ciate Professor. From 2004 to 2007, he was a Research Fellow of the Spanish Juan de la Cierva
Program with the Universidad de Cantabria. He has coauthored 30 research papers on nonasso-
ciative finite rings and their applications in coding theory and cryptography. His current research
interests include computer algebra and quantum computing.

How to cite this article: Epelde M, Combarro EF, Rúa IF. Quantum approximate optimization of the coset
leader problem for binary linear codes. Comp and Math Methods. 2021;3(6):e1196. doi: 10.1002/cmm4.1196

https://decodingchallenge.org
https://csrc.nist.gov/Projects/post-quantum-cryptography
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://projectq.ch/
http://dx.doi.org/0
https://www.dwavesys.com/take-leap

