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1 Introduction

The arrangement of sets has always been an intensively researched topic within
the scientific community because of its well-known practical application: assign-
ing a global evaluation to a certain object according to varying properties. The
following examples illustrate situations where this global classification would be
genuinely useful:

• On an e-commerce website, displaying recommended products based on spe-
cific properties such as price, launch date, number of reviews, ratings, etc.

• Students organizing their tasks according to the deadline, level of difficulty,
completion time, etc.

As it can be observed, the examples above show a series of objects (products, tasks)
and each object possesses a series of properties (price, launch date, deadline, level
of difficulty, etc).

We need to go into more detail in the second illustration in order to have a
deeper understanding of our project. The student has six tasks to perform (tasks t0
to t5) and wants to organize them to know which tasks to work in first. To do so,
he would take into account three properties: p0, deadline, being of higher priority
the tasks whose deadline is closer; p1, level of difficulty, being of higher priority
the tasks with the highest level of difficulty; p2, real time, being of higher priority
the tasks whose time of accomplishment is longer.

In order to establish the preference, the student establishes priority orders (1st, 2
nd,

3
rd, 4

th, 4
th, 5

th, 6
th) for each property, where 1

st means the first to be done, while
6

th means the last to be done. After analyzing the tasks, the student could reflect
the analysis in the table 1.1.

Just by having a look at table 1.1 we may assume that t0 task seems to be the first
one being done (priorities 1

st, 1
st, 2

nd). Besides, task t4 seem to be the last one to
be carried out (priorities 6

th, 5
th, 5

th). However, when tackling the rest of the tasks
it might not be so easy to determine the order in which they will be performed, at
least at first sight. Apart from this, we must take into account that it may be the
case that a global condition infringes some partial comparison of the properties
under consideration, we will call this phenomenon "cost".
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Table 1.1: Tasks ordered according to their properties

Task/Property p0 p1 p2

t0 1ª 1ª 2ª
t1 2ª 4ª 3ª
t2 3ª 3ª 4ª
t3 5ª 6ª 1ª
t4 6ª 5ª 5ª
t5 4ª 2ª 6ª

In theory there are 6!, or 720, possible orderings of the different tasks. At this
point we begin to observe the complexity of the problem, O(n!). For this reason,
solving this problem has a great computational cost. The following are the possible
combinations of objects depending on the number of objects:

Table 1.2: Number of arrangements according to the number of objects

Number of objects Possible combinations

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

We can observe how as the number of objects increases, the possible combinations
increase in a factorial way, finally having almost five hundred thousand million
possible arrangement for just 12 objects.

In fact, it can be shown that this problem is NP-hard. As a consequence, it is very
unlikely that an efficient algorithm for it exists [Bac+15]. Therefore, an approximate
algorithm must be found.

For this reason, the focus of this project will be on the arrangement of partially
ordered sets, i.e. series of objects ordered among themselves but that do not nec-
essarily need to be compared with each other. That is, we can have an object A,
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smaller than another object B, and another one C, smaller than B, but objects A and
C are not compared to among themselves.

More specifically, the aim of this dissertation will be to apply different algorithms
for the aggregation of these partially ordered sets, posets, by studying their costs
and execution times in order to finally figure out the best one according to some
conditions or costs.
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2 Basic Concepts

In this section we will provide a more formal description of posets. We will work
with the mathematical definitions and the properties on which we have based this
project.

2.1 Posets and their representations

Definition 2.1.1 A partially ordered set or poset is a set P with a binary relation ≤,
also (P, ≤), such that for all x, y, z ∈ P the following properties are met:

• Reflexivity: x ≤ x

• Antisymmetry: x ≤ y, y ≤ x =⇒ x = y

• Transitivity: x ≤ y, y ≤ z =⇒ x ≤ z

[Dep15, p. 2]

Definition 2.1.2 A pair of elements x, y are comparable if either x ≤ y or y ≤ x.

Definition 2.1.3 A pair of elements x, y are incomparable if neither x ≤ y nor
y ≤ x.

Property 2.1.4 A possible way of graphically representing a poset is by means of
a Hasse diagram.

Definition 2.1.5 A Hasse diagram [CDM13, p. 66] is a graph where a ≤ b if and
only if there is a sequence of connected lines upwards from a to b .
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Example 2.1.4.1 Graphical representation of a poset using a Hasse diagram.

Figure 2.1: Hasse diagram of a poset

Example 2.1.2.1 In figure 2.1, object w0 and w1 are comparable and w0 and w2
are also comparable.

Example 2.1.3.1 In figure 2.1, objects w1 and w2 are incomparable.

Definition 2.1.6 Given a set P, a linear extension ≤ is a total order relationship, that
is, an order such that all elements are comparable to each other.

Example 2.1.6.1 Representation of a linear extension using a Hasse diagram.

Figure 2.2: Hasse diagram of a linear extension

Property 2.1.7 Another possible way of representing a poset is by means of a
matrix.

5



Definition 2.1.8 A boolean matrix M shows the relations of a poset (P, ≤) if it
satisfies:

• x ≤ y ⇐⇒ M[x, y] = 1

• As a consequence, if x and y are incomparable =⇒ M[x, y] = 0

Note 2.1.8.1 A matrix M representing a poset (P,≤) also meets its properties:

• Reflexivity: ∀i ∈ P M[i, i] = 1

• Antisymmetry: ∀i, j ∈ P M[i, j] = 1 =⇒ M[j, i] = 0

• Transitivity: ∀i, j, k ∈ P M[i, j] = 1 & M[j, k] = 1 =⇒ M[i, k] = 1

Example 2.1.7.1 Representation of the poset in figure 2.3 by means of a matrix M.

(a) Hasse diagram

≡

1 1 1
0 1 0
0 0 1


(b) Matrix M

Figure 2.3: Equivalent representations of a poset

Remark 2.1.7.2 The typical representation of a poset is a matrix, as mentioned
before. However, the data structure we will use throughout the investigation to
represent posets is a list.
The equivalent i, j position of the matrix will be the position i + j ∗ n of the list,
being n the total number of objects, as shown in figure 2.4.

2.2 Aggregation of posets

For our particular problem, an aggregation of partially ordered sets is a unique
linear extension generated from many posets with the same elements.
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M0,0 M0,1 M0,2
M1,0 M1,1 M1,2
M2,0 M2,1 M2,2


(a) Matrix[

M0,0 M1,0 M2,0 M0,1 M1,1 M2,1 M0,2 M1,2 M2,2
]

(b) List

Figure 2.4: Equivalent data structures

Example 2.2.1 The example in figure 2.5 shows a possible aggregation of two
posets.

(a) Poset p0 (b) Poset p1

→

(c) Linear extension

Figure 2.5: Possible aggregation of two posets

2.3 Aggregation Matrix

Definition 2.3.1 When aggregating posets, matrix A is the result of adding up all
of them, so each position A[i, j] will be the sum of each position [i, j] of all the
posets.

Property 2.3.2 Position A[i, j] stores the total number of times that i < j.

Example 2.3.1.1 The computation of the matrix A can be observed in figure 2.6.
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(a) Poset p0 (b) Poset p1

=⇒

2 1 2
0 2 1
0 0 2


(c) Matrix A

Figure 2.6: Computation of matrix A

Pseudocode The pseudocode for obtaining the matrix A is shown in Algorithm 1.

Algorithm 1 SumPosets

Input: posets: list with all the posets
Input: n: number of objects
Output: A: A matrix

1: A← initMatrix(n, n)
2: for poset in posets do
3: for i; i ++; n do
4: for j← i + 1; j ++; n do
5: A[i, j]← A[i, j] + poset[i, j]
6: return A

2.4 Cost of an aggregation

Once an aggregation is calculated, it may be the case that is not optimal, i.e. it has
a cost. By not optimal it is understood that some partial comparison is violated.

Definition 2.4.1 The cost of an aggregation of posets is the number of partial
restrictions violated by the linear extension.

Example 2.4.1.1 Let´s focus in the aggregation computed in figure 2.7. To com-
pute the cost of the aggregation we need to check for each element if the upper
elements were actually greater than it.
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1. We need to check w2 and w1. To know whether w1 was lower than w2 we just
simply have to check the value A[1, 2]. So cost=1.

2. Next, we need to check w2 and w0. Therefore, cost=2.

3. Finally, we need to check w1 and w0. So cost=1.

So the total cost of the computed aggregation is 4.2 1 2
0 2 1
0 0 2


(a) Matrix A

(b) Aggregation generated

Figure 2.7: Computation of the cost of an aggregation

Pseudocode To facilitate understanding of the algorithm, the pseudocode is shown
in Algorithm 2.

Algorithm 2 Cost

Input: order: linear extension
Input: A: matrix containing partial orders added
Input: n: number of objects
Output: cost: cost of the linear extension computed

1: cost← 0
2: for i; i ++; n do
3: for j← i + 1; j ++; n do
4: elementX ← order[i]
5: elementY ← order[j]
6: cost← cost + A[elementY, elementX]

7: return cost

9



2.5 Random poset generation

Before aggregating posets, we have to take into account that we must be able to
generate a large number of posets to ensure that they will be different enough for
the results obtained in the project to be valid. Besides being generated in a random
way, they must fulfill a series of properties apart from those mentioned in section
2.1.

The quality of the results of our work will depend on the quality of the algorithm to
randomly generate posets. That is why we will use an existing algorithm developed
by Jaroslav Jezek and Vaclak Slavik [JS00, p. 129-133].
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3 Methodologies and algorithms

In this section, we will introduce all the algorithms used in this project. Moreover,
in order to illustrate the algorithms mentioned below, a sample case will be used
throughout their explanations. This example will be a basic one, with only 3 objects
(n = 3) and 3 posets (pp = 3) and it is shown below.

(a) Poset p0 (b) Poset p1

(c) Poset p23 1 2
1 3 1
1 1 3


(d) Matrix A

Figure 3.1: Base case with n = 3 and pp = 3

3.1 MinCost

The first and simple way to aggregate posets that comes to our mind is computing
all the possible linear extensions and keeping the one with the lowest cost.

To do so, MinCost sequentially calculates the cost, with the algorithm mentioned in
section 2.4, of all possible permutations. We need to bear in mind the problem of the
permutations mentioned in section 1.2. The calculation of all possible permutations
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of n objects implies a very high computational cost translated in time due to its
complexity: O(n!).

The application of this algorithm in our base case (see figure 3.1) would consist
of two parts:

1. Firstly, all the possible linear extensions would be calculated, as it is shown in
figure 3.2.

2. Secondly, the costs of the linear extensions are computed. They are shown in
table 3.1.

3. Finally, the aggregation with the best cost is chosen. In our case it would be
s0 or s1 or s3. Notice that the solution is not unique in general.

(a) s0 (b) s1 (c) s2 (d) s3 (e) s4 (f) s5

Figure 3.2: Possible solutions

Table 3.1: Possible solutions and their costs

Possible solution Cost

s0 3
s1 3

s2 4

s3 3

s4 4

s5 4

So this algorithm guarantees to obtain an optimal solution, the aggregation
with the lowest possible cost, in exchange of the considerable time that takes to
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calculate it when the number of object increases. This is the starting point of the
development of the algorithms that we will see below, the search for an algorithm
that obtains good costs or even the optimal one, but improving the complexity of
the algorithm.

Pseudocode We can see the pseudocode in Algorithm 3.

Algorithm 3 MinCost

Input: A: matrix with the partial costs added
Input: n: number of objects
Output: minPerm: generated aggregations of the posets

1: permInit← initVector(n)
2: costInit← coste(permInit, A, n)
3: minPerm← permInit
4: while perm = next_permutation(permInit) do
5: c← coste(perm, A, n)
6: if c < min then
7: min← c
8: minPerm← perm
9: return minPerm

3.2 Minimals

The initial algorithm studied in order to generate a linear extension is the algo-
rithm Minimals, based on previous work by Combarro, Díaz and others [FHD19, p.
53].

The first concept we need to know in order to understand this algorithm is that
of minimal element. An element a ∈ P is a minimal element if there is no b ∈ P such
that a > b [FHD19, p. 51].

To identify minimal elements, in the first part of the algorithm we will calculate for
each element, the number of elements it has above and below. We must remember
the meaning of each position i,j in the matrix A: the position A[i, j] means the
number of times that element i is lower than element j.

13



Vector up Taking this into account, in order to calculate the number of elements
that each element i has above itself, we will need to go through the row i of matrix
A, being the sum of the cells of row i the number of elements that element i has
above itself. The vector up could be calculated in the following way:

up[i] =
n

∑
j

A[i, j]

Vector down Similarly, to calculate the number of elements that each element has
below itself in this case we must go through the cells of the same column. The
vector down would be calculated in the following way:

down[i] =
n

∑
j

A[j, i]

Bound constant Besides, we calculate a constant called bound, which we then use
to initialize the value of the variable min.

bound =
n

∑
i

up[i]

Used vector In addition, we initialize a used boolean vector to note which element
has been used.

We can observe in table 3.2 the values of the previous variables for our base
case.

Table 3.2: Values of the variables after the Minimals initialization

w0 w1 w2

Up 6 5 5

Down 5 5 6

Used False False False

Bound = 16
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Search of the minimals Once this four initial parameters have been calculated, we
proceed to the search of the minimals. To do so, we execute the following sequence
of actions:

1. We compute the lowest number of elements below as long as the element in
that position has not already been used.
In our base case, the lowest number of elements below is 5, so min=5.

2. We select the possible minimals.

down[i] == min & !used[i] =⇒ i is a minimal

According to the previous condition, both w0 and w1 are possible minimals.

3. We choose one element from the possible minimals, having more probability
the one that has more elements above it. The probability of a possible minimal
mi of being chosen is:

P(i) =
up[i]

∑j minimal up[j]

In our example, the probabilities of w0 and w1 of being chosen are 6
11 and 5

11
respectively. Let´s suppose that w1 is chosen.

4. We mark the chosen element as used and we update the values of the up and
down vectors. To update the vector down and up we will subtract from each
i position of the vector the i position of the chosen minimal element row or
column respectively.
In our example, the values of the variables after the update are shown in table
3.3.

Table 3.3: Values of the variables after iteration 0 of Minimals

w0 w1 w2

Up 5 2 4

Down 4 2 5

Used False True False

Bound = 16

5. We finally add the chosen element to the vector that represents the aggrega-
tion.
In our example, order = [w1].

These 5 steps must be done n times and the aggregation would be computed.
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Pseudocode The pseudocode of Minimals is that of Algorithm 4.

3.3 Minimals Random

Minimals Random, a variation done by Combarro, Díaz and others, is almost equal
to the Minimals algorithm, differing from the first in a small way.

As it name indicates, the difference in the name is in the word random. In this
algorithm, when choosing the minimal we do not take into account their relative
position in the poset and we do not give more importance to the elements that have
more elements above them. In this way, all the possible minimals have the same
probability of being chosen, they are chosen randomly.

Because of this, when implementing the algorithm some variables are not needed.
We need to remember that in Minimals algorithm, one of the necessary parameters
that we calculated at the beginning was the vector up. This vector allowed us to
know how many elements each element had above it, and it was the one we used
to know the probability of each possible minimal of being chosen. However, we do
not need this vector anymore since we do not assign different probabilities to each
candidate.

As it has been explained, Minimals Random differs from the previous one in the
way the minimals are chosen. So, the only difference would be in step 3: now the
probability of a minimal candidate i of being chosen is

P(i) =
1
k

being k the total number of possible minimals.
Therefore, in the iteration 0 of Minimals Random of our base case, both wo and w1
would have the same probability of being chosen, that is 1

2 .

Pseudocode The pseudocode of Minimals Random can be observed in Algorithm
5.

3.4 MinCost Multi-Thread

This algorithm is based on the original MinCost algorithm, described in section
3.1, with a small but very important modification.
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Algorithm 4 Minimals

Input: A: matrix with all the partial costs added
Input: n: number of objects
Output: order: generated aggregation for the partially ordered sets

1: order ← initVector(n)
2: used← initVector(n)
3: up← initVector(n)
4: down← initVector(n)
5: bound← 0
6:
7: for i; i ++; n do . Here, we initialize the variables
8: for j; j ++; n do
9: up[i]← up[i] + A[i, j]

10: down[i]← down[i] + A[j, i]
11: bound← bound + A[i, j]
12:
13: for i; i ++; n do . Here, we start the search of the minimals
14: min← bound
15: for j; j ++; n do
16: if !used[j] & down[j] < min then
17: min← down[j]
18:
19: posibilities← initVector(n)
20: for j; j ++; n do
21: if !used[j] & down[j] == min then
22: for k; k ++; up[j] do
23: add(posibilities, j)
24:
25: chosen← random(posibilities)
26: used[chosen]← true
27: for j; j ++; n do
28: up[j]← up[j]− A[j, chosen]
29: down[j]← down[j]− A[chosen, j]
30:
31: order.add(chosen)
32:
33: return order
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Algorithm 5 Minimals Random

Input: A: matrix with all the partial costs added
Input: n: number of objects
Output: order: generated aggregation of the posets

1: order ← initVector(n)
2: used← initVector(n)
3: down← initVector(n)
4: bound← 0
5: for i; i ++; n do . Here, we initialize the variables
6: for j; j ++; n do
7: down[i]← down[i] + A[j, i]
8: bound← bound + A[i, j]
9: for i; i ++; n do . Here, we start the search of the minimals

10: min← bound
11: for j; j ++; n do
12: if !used[j] & down[j] < min then
13: min← down[j]
14: posibilities← initVector(n)
15: for j; j ++; n do
16: if !used[j] & down[j] == min then
17: add(posibilities, j)
18: chosen← random(posibilities)
19: used[chosen]← true
20: for j; j ++; n do
21: down[j]← down[j]− A[chosen, j]
22: return order
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The MinCost algorithm is the first one that always manages to obtain the aggrega-
tion with the optimal cost. In exchange for this optimal solution, we will obtain an
O(n!) complexity, the worst of all.

If we look at the MinCost algorithm again, we can see that what produces O(n!)
complexity, and therefore where the algorithm takes the longest, is the calculation
of all the possible permutations of n objects.

This calculation is carried out sequentially to check one by one which permutation
is the one that has the lowest cost, i.e. what permutation is the optimal solution.
However, we could do the same thing parallelly. We may calculate the permutations
in different threads and, at the same time, calculate if the cost of the permutations
is the lowest one.

Following this idea, we looked for different solutions to calculate the permuta-
tions in a parallel way and finally we selected the algorithms PermutationMixOul-
letSaniSinghHuttunen and ExecuteForEachPermutationMT [OS18]. These algorithms
calculate the number of possible threads according to the processor and assign a
number of permutations to each thread, thus being executed in a parallel way. They
also receive as a parameter an action to be carried out in each permutation, which
in our case will be the same as in the MinCost algorithm: to calculate the cost and
if it is lower that the current one, update the current cost value.

Therefore, the application of this algorithm to our base case would be exactly the
same as the one of MinCost but done in parallel.

Pseudocode The pseudocode of this algorithm is shown in the next page.

3.5 Sorting Algorithms

A posets aggregation is still a total sort of n objects. That is why a possible solution
to our problem is to use sorting algorithms, after all what they do is to sort objects
based on x criteria.
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Algorithm 6 MinCost MT

Input: A: matrix with the partial costs added
Input: n: number of objects
Output: minPerm: generated aggregation of the posets

1: permInit← initVector(n)
2: costInit← coste(permInit, A, n)
3: minPerm← permInit
4: for all PermutationMixOulletSaniSinghHuttunen(permInit) do in parallel
5: c← coste(perm, A, n)
6: if c < min then
7: min← c
8: minPerm← perm
9:

10: return minPerm

We are going to try Bubble, Insertion, Selection, Quicksort and MergeSort algorithms.
The implementations of these five sorting algorithms are not going to be explained
in this dissertation because they are already well-known.

The difficulty is, therefore, defining when one object is lower than another, that
is, it lies in defining a method of comparison for the objects. In section 2.3, it was
explained what the A matrix was and what it meant. Each position i, j of the matrix
represented the number of times object i was lower than object j, therefore, position
i, j represents the number of times object i is lower than object j. At this point, we
need to remember a very important property of the posets, and that is that two
objects i, j may no be compared to each other. This last property is the one that
makes us define two possible ways of comparing objects.

When it comes to deal with experiments, we will execute the two comparisons,
presented in the following explanations, with the different sorting algorithms men-
tioned before.

Comparison A In this comparison we will only take into account the times that an
i element is lower or larger than a j element.

To calculate the number of times that i < j, we will calculate it directly from the i, j
position of the matrix A.
Similarly, to calculate the number of times that i > j, we will obtain it directly from
the position i, j of the matrix A.
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As it can be observed, we cannot state with certainty that an object i is lower than j.
To decide this comparison we will refer to a probability

P(i < j) =


lower

lower+greater i f lower + greater 6= 0

0.5 else

being lower the amount of times that i is lower than j, and greater the amount of
times that i is greater than j.

Let´s compute these probabilities for our base case. We just need to look at the
values of the matrix A and compute the probabilities one by one. We can observe

Table 3.4: ComparisonA: How to compute P(i < j)

w0 w1 w2

w0 1 A[0,1]
A[0,1]+A[1,0]

A[0,2]
A[0,2]+A[2,0]

w1 A[1,0]
A[1,0]+A[0,1] 1 A[1,2]

A[1,2]+A[2,1]

w2 A[2,0]
A[2,0]+A[0,2]

A[2,1]
A[2,1]+A[1,2] 1

in table 3.4 the values of the matrix A that we need to compute each probability.
Finally, in table 3.5 we can see the actual values of these probabilities for our base
case.

Table 3.5: ComparisonA: Actual values of P(i < j)

w0 w1 w2

w0 1 1
2

2
3

w1 1
2 1 1

2
w2 1

3
1
2 1

Comparison B In this case we will take into account both the times that an object
i is smaller or larger than another object j, and the times that the two objects are
not compared to each other.

The times that i is lower or larger than j would be calculated in the same way as in
the previous comparison method.
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In order to calculate the number of times these objects are not compared, we first
need to know the total number of previous comparisons, i.e. how many posets form
the set. To do this, we must remember that the posets are reflexive, so in the elements
of the diagonal of A we will have this value. In our base case, total = 3.

Once we know this value, knowing how many times two objects are not comparable
is as simple as computing

notCompared = total − (lower + greater)

We can see in table 3.6 the number of times each element is not comparable to other
for our base case.

Table 3.6: ComparisonB: Number of times that objects are not comparable to each
other

w0 w1 w2

w0 0 1 0
w1 1 0 1
w2 0 1 0

In this case, the probability that determines if an object is lower than another one
is:

P(i < j) =
lower + 0.5× notCompared

total

by weighting the number of times they are not compared to each other by 0.5.

How to compute these probabilities is shown in table 3.7 and we can observe
there that now we are taking into account the number of times two objects are not
compared. Finallly, we can see in table 3.8 the actual values of these probabilities.

Table 3.7: ComparisonB: How to compute P(i < j)

w0 w1 w2

w0 1 A[0,1]+0.5×1
3

A[0,2]+0.5×0
3

w1 A[1,0]+0.5×0
3 1 A[1,2]+0.5×1

3
w2 A[2,0]+0.5×0

3
A[2,1]+0.5×1

3 1
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Table 3.8: ComparisonB: Actual values of P(i < j)

w0 w1 w2

w0 1 1
2

2
3

w1 1
2 1 1

2
w2 1

3
1
2 1

For our base case, we can observe in tables 3.5 and 3.8 that both probabilities of
ComparisonA and ComparisonB are the same. However, we can perfectly notice in
tables 3.4 and 3.7 the difference in the way of computing those probabilities. In a
more general case, the probabilities will be different.

3.6 Simulated Annealing

Simulated annealing is an algorithm based on the analogy between the annealing of
solids and the problem of solving combinatory optimization problems. We need to
clarify that this algorithm does not calculate a base linear extension, instead, an initial
linear extension is passed to its input and, as it is being iterated, the aggregation is
finally optimized.

Annealing is the process of heating a solid body and then cooling it very slowly until
it crystallizes. Atoms have more energy at higher temperatures. As the temperature
decreases, the energy of the atoms is gradually reduced [PK00, p. 11].

The probability of distribution of the body´s energy, P(E) for a given temperature
T is determined by the Boltzmann probability:

P(E) = e−E/(kT)

where E is the energy of the system and k is Boltzmann´s constant [Dré+06, p.25].

But, how can this physical process be applied to an optimization problem? To
do so, we must establish an analogy between the main elements of annealing and
an optimization problem:

• In our algorithm, possible solutions would resemble solid body states.

• The values of the costs would be the energies of the body states.

• Our optimal solution would be the state with the least energy.
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• And the new solution would be accepted in accordance to this probability

P(accepted) =


1 i f newCost ≤ currentCost

e(currentCost−newCost)/T i f newCost > currentCost

In this way, better solutions are always accepted and worse solutions are
accepted depending on this probability.

The algorithm would then receive an initial ordering and would be an iterative
process of the following actions:

1. Calculate the new solution

2. Calculate the cost of the solution

3. Decide whether to accept and update the current solution

4. Update the best solution

5. Lower the temperature

Calculate the new solution In order to calculate a new solution, we will randomly
calculate a number i between 0 and n− 1, where n is the number of objects in the
aggregation. That number i represents the position of the aggregation that will be
exchanged with its position on the right j. In case of changing the last position, it
will be changed with the first one.

Let´s imagine that for our base case an initial solution [w0, w2, w1] is passed as
input and its cost = 3. Then, a random index is computed and we suppose that this
number is 2, so we would change positions 2 and 0. So the new solution would be
[w1, w2, w0]. This process is shown in figure 3.4.

Figure 3.4: Simulated Annealing: computing new solution

Calculate the cost of the solution To calculate the cost of the solution we use the
algorithm described in section 2.4. We can check in table 3.1 the value of the cost
of our new solution, so newCost = 4.
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Figure 3.3: Flowchart of the Simulated Annealing algorithm
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Decide whether to accept and update the current solution At this point, we know
the cost of the new solution (newCost = 4) and the cost of the current solution (cost
= 3).

• If the new cost is lower than the previous one, we update the value of the
current cost and the aggregation calculated becomes the current solution.

• If the new cost is higher or equal to the previous one, the update is more
complex. At this point the Boltzmann probability formula already mentioned
comes into play, since the new solution will be accepted based on that proba-
bility. At high temperatures, it is easier to accept new solutions with a worse
cost; but as the temperature drops, that probability becomes lower and it is
more difficult to accept a worse solution.

Therefore, we must take into account that using this algorithm there is a strong
likelihood that, at some point of the iteration, a worse cost aggregation will be
chosen, being this fact one of the advantages of this algorithm.

We would use the Boltzmann´s probability formula since the new cost is worse
than the current cost. The probability of being accepted would be

P(accepted) = e
currentCost−newCost

T = e
3−4

T = e
−1
T

As we can see, the probability of being accepted depends only on the temperature,
the greater the temperature is the greater the probability is for the same cost
variation.

Update the best solution Once the cost and the current solution have been updated,
we have to keep the best solution iteration by iteration, so that once the iterations
are over, be able to return it. In the same way we did before, we check if the cost of
the current solution is better than the best solution we have saved and if it is better
we update both the cost and the best solution value.

Cooling system One of the important parts of this algorithm is the initial temper-
ature, its cooling system and the limit temperature to stop iterating. The higher
the initial temperature, the more iterations will be performed and, therefore, the
higher probability of obtaining the optimal solution. The same applies to the cool-
ing system. A very common option and the one we will use in this dissertation is
a geometric cooling rule:

Ti+1 = β Ti

where β is a constant temperature factor less than 1 but very close to 1.
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Pseudocode The pseudocode of Simulated Annealing is shown in Algorithm 7, that
together with the flowchart of figure 3.3 facilitates its comprehension.

Algorithm 7 Simulated Annealing

Input: initialSolution: aggregation passed as the initial solution
Input: A: matrix A
Input: n: number of objects
Input: T: initial temperature
Input: β: cooling constant
Output: bestSolution: aggregation computed as the final solution
Output: bestCost: best cost computed

1: currentSolution← initialSolution
2: currentCost← coste(currentSolution)
3: newSolution← currentSolution
4: bestSolution← initialSolution
5: bestCost← currentCost
6: while T > 1 do
7: newCost← coste(newSolution)
8: if booltzman(currentCost, newCost, T) then
9: currentSolution← newSolution

10: currentCost← newCost
11: if currentCost < bestCost then
12: bestSolution← currentSolution
13: bestCost← currentCost
14: T ← β× T
15: positionA← random(n)
16: swap(newSolution, positionA, (positionA + 1)%n)
17: return bestSolution, bestCost

3.6.1 Initializations

As it has already been explained, an initial solution is needed to be passed as
input to the simulated annealing algorithm. Therefore, the following algorithms will
be tested as initializations in section 4: Minimals, Minimals Random, Random, Bubble,
Selection, Insertion, QuickSort, MergeSort.
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3.7 Linear Programming

Linear Programming is a mathematical optimization technique used to maximize
or minimize a linear function. It is widely used in many fields such as Economics
or Business.

3.7.1 General form of Linear Programming

Every linear programming problem consists of four concepts [Vid20] that must
be known to understand this algorithm:

1. Decision variables: are the variables that will decide the output. In a general
context, they are represented by the vector x.

2. Domain: it is the set of values that decisions variables can take. They must
always take non-negative values. So this last limitation can be expressed as
x≥0, being x the vector of variables.

3. Constraints: are the restrictions or limitations on the decision variables. They
limit the possible values of the decision variables. They are represented as
Ax≤b, where A stands for the matrix of coefficients, x is the vector of variables
and b is a vector of coefficients.

4. Objective function: is the linear function to be optimised, either to maximise
or minimise. It can be represented as cTx, being x the vector of variables, c a
vector of coefficients and T stands for transpose.

Therefore, the standard form [Cam18, p. 8-12] of writing a linear programming
problem is

max{cT|Ax ≤ b∧ x ≥ 0} or min{cT|Ax ≤ b∧ x ≥ 0}

Moreover, other definitions [cited in Ste04, p. 3] should be known:

1. A solution to a linear program is a setting of the variables.

2. A feasible solution to a linear program is a solution that satisfies all con-
straints.

3. The feasible region in a linear program is the set of all possible feasible
solutions.

4. An optimal solution to a linear program is the feasible solution with the
greatest or lowest objective function value.
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3.7.2 Linear Programming application

The adaptation of Linear Programming to our particular problem would be the
following:

Variables Suppose that in our problem we have a number of n objects. This would
result in a V matrix of n×n size, so we would have n×n variables, each of them
representing a position of the V matrix.

V = {V0,0, V0,1, ..., Vn−1,n−1}

Domain These variables are binary, taking only the values 0 or 1. More precisely,
we are working with zero-one linear programming since our variables are binary.

D = {0, 1}

Constraints The restrictions in our case are imposed by the properties of the posets
mentioned in section 2.1, on page 6.

• Diagonal: The first type of constraint is a result of every element being less
than or equal itself. Therefore, the elements in the diagonal of the matrix will
have to be equal to 1.

V[i, i] = 1 ∀i

• No cycles: The second type of constraint is a result of the fact that in a linear
extension if an x element is smaller than another y element, the y element is
larger than the x element.

V[i, j] = 1 =⇒ V[j, i] = 0 ∀i 6= j

• Transitivity: The last constraint results from the property that if an element
x is smaller that an element y, and y is smaller than another element z, x is
smaller than z.

V[i, j] = 1 & V[j, k] = 1 =⇒ V[i, k] = 1 ∀i 6= j 6= k

In the table 3.9, we can see the detailed constraints for our base case.
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Table 3.9: Linear Programming: Constraints for our base case

Constraint Type

V[0, 0] = 1 Diagonal
V[1, 1] = 1 Diagonal
V[2, 2] = 1 Diagonal

V[0, 1] + V[1, 0] = 1 No cycles
V[0, 2] + V[2, 0] = 1 No cycles
V[1, 2] + V[2, 1] = 1 No cycles

V[0, 1] + V[1, 2] - V[0, 2] ≤ 1 Transitivity
V[0, 2] + V[2, 1] - V[0, 1] ≤ 1 Transitivity
V[1, 0] + V[0, 2] - V[1, 2] ≤ 1 Transitivity
V[1, 2] + V[2, 0] - V[1, 0] ≤ 1 Transitivity
V[2, 0] + V[0, 1] - V[2, 1] ≤ 1 Transitivity
V[2, 1] + V[1, 0] - V[2, 0] ≤ 1 Transitivity

Objective Function Our function to optimize will be the cost of the aggregation
of the posets, with the aim of having this function with the minimum value. This
function will be the sum of the multiplication of each variable by its respective
partial cost.
We need to remember that in the A matrix each position i, j represents the number
of time that object i is smaller than object j. Therefore, we can obtain the cost by
multiplying the value of each variable Vi,j by the value of its transposed position
of matrix A.

objectiveFunction(V, A) =
n

∑
i,j

V[i, j]× A[j, i] ∀i 6= j

Therefore, the objective function would look like this for our base case:

objectiveFunction(V, A) = V[0, 1]× A[1, 0] + V[0, 2]× A[2, 0] + ...+
V[2, 1]× A[1, 2]
= V[0, 1]× 1 + V[0, 2]× 1 + ... + V[2, 1]× 1

Libray used For the implementation of this algorithm we consider two libraries:
Microsoft Solver Foundation [Kri17] and lpsolve [EN18].

Finally, we have opted for the second one, since it is a more powerful library and
the model created has no size limitations as happens in the first library. However,
a disadvantage is that it is more difficult to implement and to understand the code
once it is written.
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Pseudocode The pseudocode of this algorithm is shown below.

Algorithm 8 LinearProgramming

Input: A: matrix with all the partial costs added
Input: n: number of objects
Output: solution: linear extension generated
Output: cost: cost of the aggregation

1: model ← createModel()
2: for i; i ++; n do
3: for j; j ++; n do
4: addVariable(model, V[i, j])
5: setVariableDomain(V[i, j], ”binary”)

6: for i; i ++; n do
7: addDiagonalConstraint(model, V[i, i])
8: for i; i ++; n do
9: for j; j ++; n do

10: if i 6= j then
11: addAntiSymmetryConstraint(model, V[i, j], V[j, i])
12: for i; i ++; n do
13: for j; j ++; n do
14: if i 6= j then
15: for k; k ++; n do
16: if i 6= j 6= k then
17: addTransitivityConstraint(model, V[i, j], V[j, k], V[i, k])
18: for i; i ++; n do
19: for j; j ++; n do
20: if i 6= j then
21: addTermObjectiveFunction(model, V[i, j], A[j, i])
22: setObjectiveFunction(model, ”minimize”)
23: solution← solve(mode)
24: return solution, cost(solution)

31



4 Experiments

This is the part where we will use the algorithm mentioned in section 2.5 to
randomly generate posets in order to apply all the algorithms mentioned in section
3.

The structure that we will follow in this section will be that of analyzing the
algorithms by families to make a collective analysis of the best algorithm of each
family. Finally, all the best family algorithms will be analyzed altogether.

We will execute each algorithm, except two of them, 50 times for each number of
objects n such that 3 ≤ n ≤ 12, and for each number of objects we will try with
sets formed by pp posets such that 2 ≤ pp ≤ 50. Therefore, the cost and time values
will be the mean of the 50 executions.

The algorithms mentioned in section 3 will be grouped in the following fami-
lies:

• MinCost Single-Thread vs MinCost Multi-Thread

• Minimals vs MinimalsRandom

• Sorting algorithm

• Simulated Annealing

• Linear Programming

The different methods will be evaluated in terms of the costs and execution times
of the algorithms. For the costs, we will represent the percentage error with respect
to the minimum cost, that is

((cost−minCost)/minCost)× 100

One example for our base case would be computing the cost error of s2 (cost=4)
when the optimal cost is 3. The cost error of s2 would be

costErrors2 =
4− 3

3
× 100

= 33.33%
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From now onwards, when we refer to lower costs, we will understand that it is so
because the percentage errors are lower.

The values of the costs will represent the average cost for each n, that is, it will be
the average cost of all pp for the same n. As for the times, the values will represent
the total time in milliseconds for each number of objects n, that is, the sum of the
times of all pp for the same n.

As indicated above, some algorithms will not be executed 50 times. These algo-
rithms are MinCost ST and MinCost MT due to their very long execution times and
Linear Programming since it always computes the best solution.

4.1 Technology used

The implementation of Minimals, Minimals Random and MinCost was originally
done in C ++. However, I tried to improve the performance of the last one since
the beginning of this project.

That made me change the programming language of the implementations to C#
because of the facilities it has to parallelize code.

4.2 Hardware

All the experiments have been run in a computer with an Intel Core i5 6600K
overclocked at 4.2GHz, excluding the one in section 4.3, that has been run in an
Azure virtual machine with an Intel Xeon Platinium 8168.

4.3 MinCost ST vs MinCost MT

This family of algorithms is made up of the two algorithms that we know ensure
the optimal aggregation, that is the one with the lowest cost. So in this section
we are interested in analyzing the difference in time, in order to determine with
algorithm is better.
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In this particular case, the table of costs does not reflect the errors, since it is
known that they always obtain the best solution, but represents the real costs
obtained in the executions.

You can see how the costs (table 4.1) of both algorithms are the same and increase
as the number of object n increases. In addition, you can clearly see in graph 7.1
this positive trend.

In table 4.2, the execution times of these two algorithms can be seen. The single-
thread version takes a total of 469484772,59850 milliseconds (a little more than 130

hours) for the 6046229,96280 milliseconds (a little more than one hour and a half)
of the multi-thread version.

Considering the execution times, it is very clear that the best algorithm of this
family is MinCost MT.

Table 4.1: Costs: MinCost ST vs MinCost MT

N MinCost ST MinCost MT

3 7.143 7.143

4 14.286 14.286

5 23.061 23.061

6 32.898 32.898

7 46.796 46.796

8 61.551 61.551

9 79.102 79.102

10 87.592 87.592

11 107.000 107.000

12 133.245 133.245

Average cost 59.267 59.267

4.4 Minimals vs MinimalsRandom

As we can see in table 7.1 and graph 4.1, the cost errors of the Minimals algorithm
are lower than those of MinimalsRandom for all n, therefore, the average total cost
is lower: 10.55% vs 11.80%.

In addition, we see in table 4.3 that both algorithms are very fast, being Minimals
the one that takes more time with 2.49 ms compared to 0.81 ms that its brother
MinimalsRandom takes. In graph 7.2, we can also see that the trend of the times is
better in MinimalsRandom, increasing much more slowly than in Minimals.
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Table 4.2: Times: MinCost ST vs MinCost MT

N MinCost ST (ms) MinCost MT (ms)

3 15.62600 0.00000

4 0.00000 0.00000

5 15.62580 15.86260

6 124.76500 0.00000

7 1248.70730 16.92470

8 12241.75300 382.08370

9 148657.78950 3532.31900

10 1894837.47120 33778.26790

11 27693420.91140 384026.80100

12 439734209.94930 5624477.70390

Total time (ms) 469484772.59850 6046229.96280

Figure 4.1: Cost errors: Minimals vs MinimalsRandom
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However, since both execution times are so low, we do not consider the difference
in time to be important, we therefore prioritize the cost. Therefore, for this research,
Minimals is the best of this family, despite the fact that the cost/time ratio of
MinimalsRandom is better.

Table 4.3: Times: Minimals vs MinimalsRandom

N Minimals (ms) MinimalsRandom (ms)

3 0.21945 0.03991

4 0.09973 0.05983

5 0.11969 0.07976

6 0.19945 0.05984

7 0.15957 0.03990

8 0.29928 0.07985

9 0.31924 0.11970

10 0.31931 0.11971

11 0.39789 0.09975

12 0.35854 0.11931

Total time (ms) 2.49215 0.81756

4.5 Sorting Algorithms

In this section what we will be doing is the following:

1. Check algorithm by algorithm which comparison method (section 4.5) is bet-
ter.

2. Check which sorting algorithm is the best.

4.5.1 Bubble

For the Bubble algorithm we can see in table 7.2 and graph 4.2 that the comparison
method A generates aggregations with a lower cost.

In addition, we see that the execution times are very similar for both comparison
methods (table 4.4).

Because of this, we consider BubbleA to be the best of this family.

36



Figure 4.2: Cost errors: BubbleA vs BubbleB

Table 4.4: Times: BubbleA vs BubbleB

N BubbleA (ms) BubbleB (ms)

3 0.09973 0.01995

4 0.00000 0.01997

5 0.03989 0.00000

6 0.03991 0.07977

7 0.00000 0.01995

8 0.01994 0.09951

9 0.03989 0.00000

10 0.15964 0.07985

11 0.11869 0.17753

12 0.07919 0.09814

Total time (ms) 0.59689 0.59466
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4.5.2 Selection

Again, we see in table 7.3 and graph 4.3 that the A comparison method generates
aggregations with lower costs than the B method.

Figure 4.3: Cost errors: SelectionA vs SelectionB

We also see that the execution time is 2 times less than that of method B (table
4.5).

Because of this, we can conclude that the best one is SelectionA.

4.5.3 Insertion

Looking at table 7.4 and graph 4.4, we see how the comparison method A gener-
ates better costs than B.

In this case, the times of the comparison method B are better than those of compar-
ison method A (see table 4.6). However, as mentioned before, in these cases where
the execution times are so small we prioritize the costs.

For this reason, the best algorithm is InsertionA.
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Table 4.5: Times: SelectionA vs SelectionB

N SelectionA (ms) SelectionB (ms)

3 0.01995 0.01995

4 0.00000 0.07979

5 0.00000 0.03987

6 0.00000 0.07979

7 0.01994 0.07976

8 0.07981 0.05987

9 0.01996 0.03991

10 0.01996 0.09929

11 0.03990 0.11859

12 0.13809 0.17900

Total time (ms) 0.33762 0.79582

Figure 4.4: Cost errors: InsertionA vs InsertionB
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Table 4.6: Times: InsertionA vs InsertionB

N InsertionA (ms) InsertionB (ms)

3 0.09974 0.00000

4 0.01995 0.00000

5 0.09972 0.03988

6 0.11968 0.03989

7 0.19944 0.05984

8 0.17953 0.00000

9 0.15961 0.05985

10 0.07982 0.11972

11 0.13872 0.05981

12 0.13906 0.11972

Total time (ms) 1.23528 0.49870

4.5.4 QuickSort

In the QuickSort algorithm we can see in table 7.5 and graph 4.5 again a big
difference, in terms of cost, of the comparison method A over B.

However, in terms of time, as we have seen in other cases, the comparison method
B is faster than A (table 4.7). But speaking of such small execution times, for this
research we are more interested in the cost obtained.

Table 4.7: Times: QuickSortA vs QuickSortB

N QuickSortA (ms) QuickSortB (ms)

3 0.03991 0.00000

4 0.01995 0.00000

5 0.01996 0.03990

6 0.01993 0.00000

7 0.00000 0.00000

8 0.05986 0.01995

9 0.09972 0.01996

10 0.07981 0.03991

11 0.07983 0.06038

12 0.06058 0.00000

Total time (ms) 0.47955 0.18009

Therefore, again the algorithm with the comparison method A, QuickSortA, is the
best.
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Figure 4.5: Cost errors: QuickSortA vs QuickSortB

4.5.5 Mergesort

Again we see in table 7.6 and graph 4.6 that the costs of the aggregations gener-
ated by the A-comparison method are better than those of the B-method.

We can also see in table 4.8 that the execution time is less than that of comparison
method B.

So the best algorithm is MergeSortA.

4.5.6 General

After analyzing each sorting algorithm individually, we can see that that com-
parison method A is the one that generates the best costs. Once we know which
comparison method is the best, we have to know which sorting algorithm is the
best.

Looking at table 7.7 and graph 4.7 we see that two sorting algorithms that the
two algorithms that generate aggregations with lower costs are QuickSortA and
BubbleA.
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Figure 4.6: Cost errors: MergeSortA vs MergeSortB

Table 4.8: Times: MergeSortA vs MergeSortB

N MergeSortA (ms) MergeSortB (ms)

3 0.00000 0.01994

4 0.03991 0.03987

5 0.01996 0.05986

6 0.01995 0.11969

7 0.03989 0.15961

8 0.07983 0.07981

9 0.07981 0.13966

10 0.15957 0.12018

11 0.04050 0.25975

12 0.12090 0.22100

Total time (ms) 0.60032 1.21937
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Figure 4.7: Cost errors: Sorting algorithms

The execution times of both algorithms are very low, with only tenths of a difference
between them. We can observe in table 4.9 that the algorithm that has the shortest
time of both is QuickSortA. In addition, in figure 4.8, we can see not only the times,
but also the trends in execution times. In it, we can see that although QuickSortA is
not the fastest of the five algorithms, its trends seems to indicate that if we increase
the number of objects, the execution time would be the lowest of the five.

Table 4.9: Times: Sorting algorithms
N BubbleA (ms) SelectionA (ms) InsertionA (ms) QuickSortA (ms) MergeSortA (ms)

3 0.09973 0.01995 0.09974 0.03991 0.00000

4 0.00000 0.00000 0.01995 0.01995 0.03991

5 0.03989 0.00000 0.09972 0.01996 0.01996

6 0.03991 0.00000 0.11968 0.01993 0.01995

7 0.00000 0.01994 0.19944 0.00000 0.03989

8 0.01994 0.07981 0.17953 0.05986 0.07983

9 0.03989 0.01996 0.15961 0.09972 0.07981

10 0.15964 0.01996 0.07982 0.07981 0.15957

11 0.11869 0.03990 0.13872 0.07983 0.04050

12 0.07919 0.13809 0.13906 0.06058 0.12090

Total time (ms) 0.59689 0.33762 1.23528 0.47955 0.60032

Therefore, the best algorithm of the sorting family is QuickSortA.
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Figure 4.8: Times: Sorting algorithms

4.6 Simulated Annealing: Initial algorithm

We have combined Simulated Annealing with Minimals Random, Bubble, Insertion,
Selection, MergeSort, Random, Minimals and QuickSort. However, only the results of
the last three combinations are shown since they are the most significant.

Firstly, we need to bear in mind that the focus of this section is to demonstrate
that the quality of the initial solution, and therefore the initial algorithm, influences
the quality of the final solution obtained by this optimization process.

What we will do is to test this algorithm in combination with the best algorithm
of the 4.4 and 4.5 families. Therefore, the simulated annealing will be tested by
passing as initial solution a linear extension randomly computed, an aggregation
computed with Minimals and another one computed with QuickSort, with a low
initial temperature and a slow cooling constant:

T = 4 β = 0.97

Looking at table 7.8 and figure 4.9, the difference in the costs incurred depending
on the initial algorithm can be observed. It is clearly seen that our hypothesis is
confirmed, since both executions with Minimals and QuickSort have lower costs
than the one with an initial random solution. When comparing passing Minimals
or QuickSort as initial solution, it is also clear that the first one obtains better costs.
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Figure 4.9: Cost errors: Simulated Annealing (T=4,β=0.97)

It can also be seen in table 4.10 and figure 7.3 that the difference in the times of the
two executions with Minimals and QuickSort are slightly greater than the one with
a random initial solution. Moreover, the difference between the execution times of
Minimals+SA is only 2ms slower than the one with QuickSort, so it is not significant
for this project.

Therefore, we can confirm that the initial algorithm clearly affects the quality of
the final solution, and therefore Minimals+SA is the best of this family.

4.7 Linear Programming

As we can see in table 4.11, this algorithm always computes the optimum aggre-
gation, so the costs obtained are always the minimum.

The execution times are greater than those of the previous families, as we can
observe in table 7.9. But the truly interesting fact is the tendency of the execution
times, shown in graph 4.10, maybe being in this case exponential or polynomial, so
in case of continuing increasing the number of objects, these times would increase
considerably.
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Table 4.10: Times: Simulated Annealing (T=4,β=0.97)

N Random+SA (ms) Minimals+SA (ms) QuickSort+SA (ms)

3 0.53877 1.01377 0.45889

4 0.59933 0.61558 0.44168

5 0.65964 0.81349 0.60191

6 0.71753 0.89735 0.81871

7 0.91793 1.03734 0.87776

8 0.97734 1.03757 0.99731

9 1.15690 1.33654 1.15665

10 1.25664 1.51616 1.27633

11 1.31703 1.61399 1.43779

12 1.47622 1.81819 1.55686

Total time (ms) 9.61733 11.69999 9.62389

Table 4.11: Costs: Linear Programming

N LinearProgramming MinCost MT

3 6.857 6.857

4 13.592 13.592

5 23.184 23.184

6 33.449 33.449

7 47.796 47.796

8 60.082 60.082

9 75.490 75.490

10 91.265 91.265

11 110.898 110.898

12 131.184 131.184

Average cost 59.380 59.380
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Figure 4.10: Times: Linear Programming

4.8 Best aggregation method

Once we have analyzed all the families of algorithms and decided which is the
best algorithm of each one, we must analyze these as a whole to have a global
vision of all.

The algorithms that are going to be analyzed in this section are the following:
Minimals, QuickSortA, Minimals+Simulated Annealing and Linear Programming. In the
case of Simulated Annealing, we will execute it with

T = 4 β = 0.97

and it will be called Minimals+SA LT, and another execution with

T = 100 β = 0.999

that will be called Minimals+SA HT in order to prove that, increasing both the
temperature and cooling constant, apart from increasing the number of iterations,
generates aggregations with better costs.

The first thing we want to confirm is that, the higher the temperature and the
cooling constant, the better the cost of the aggregations generated by the Simulated
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Annealing algorithm. This fact can be confirmed in table 4.12 and figure 4.11, show-
ing that the costs obtained by Minimals+SA HT are lower than the ones obtained
by Minimals+SA LT.

It can also be observed how, when the parameters are increased and consequently,
the iterations, the execution times are greater (see table 4.13).

Table 4.12: Cost errors: Best aggregation method
N Minimals QuickSort Minimals+SA LT Minimals+SA HT Linear Programming

3 4.19% 23.47% 0.00% 0.00% 0.00%
4 5.22% 21.63% 0.27% 0.00% 0.00%
5 5.90% 19.73% 1.11% 0.00% 0.00%
6 9.36% 20.81% 2.87% 0.00% 0.00%
7 11.82% 22.74% 5.61% 0.01% 0.00%
8 15.61% 27.60% 8.59% 0.16% 0.00%
9 13.90% 24.69% 7.40% 0.27% 0.00%
10 14.15% 22.17% 8.67% 0.46% 0.00%
11 12.72% 23.03% 8.49% 1.03% 0.00%
12 15.87% 26.12% 11.32% 1.22% 0.00%

Average cost error 10.87% 23.20% 5.43% 0.31% 0.00%

Figure 4.11: Cost errors: Best aggregation method

Once our initial assumption is verified. we can see how the Minimals algorithm
obtains better costs than the QuickSortA algorithm. Moreover, when combining
Minimals with the Simulated Annealing optimization algorithm, the cost errors are
lower than using only the first one. Therefore, we can ensure the effectiveness of
using the optimization algorithm (see table 4.12 and figure 4.11).
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Table 4.13: Times: Best aggregation method
N Minimals (ms) QuickSort(ms) Minimals+SA LT (ms) Minimals+SA HT (ms) Linear Programming (ms) MinCost MT (ms)

3 0.19894 0.03990 0.63184 55.24363 6963.14810 32.82010

4 0.09810 0.01943 0.52893 61.15640 6234.57310 0.97050

5 0.19574 0.01995 0.60648 79.48764 6438.74210 1.99220

6 0.19478 0.05738 0.69495 89.79747 7002.72700 12.14280

7 0.25991 0.04095 0.96700 97.62566 7868.88970 41.58960

8 0.19948 0.05933 1.00327 106.92099 9126.45090 264.87810

9 0.27718 0.05987 1.24245 134.00389 11065.30240 2569.49330

10 0.35919 0.05987 1.39723 148.50157 13921.74060 27600.38580

11 0.35117 0.09916 1.60339 158.93650 18212.21800 275991.06630

12 0.47300 0.06042 1.74745 172.52270 23393.36860 3147048.23830

Total time (ms) 2.60750 0.51625 10.42301 1104.19646 110227.16050 3453563.57700

Furthermore, if you look at table 4.13, you can see that the runtimes of combining
Simulated Anneling with another algorithm are greater, but much more lower than
the times of MinCost.

In general terms, when we are to compare any algorithm with Linear Programming
we can see that all, except Minimals+SA HT, are far from obtaining similar costs.
When executing Minimals+SA with

T = 100 β = 0.999

we can noticed that the costs obtained are practically the same as with Linear
Programming (see table 4.12 and figure 4.11).

On the other hand, if we look at table 4.13 we can see that the difference in the
execution times of these two algorithms is quite vast, Linear programming takes 100

times longer than Minimals+SA HT at the cost of ensuring that the minimum cost
is always obtained.

Moreover, if we look closely at the trend of the execution times, we can see that the
trend of Minimals+SA HT (see figure 4.12) is more or less linear while the trend of
Linear Programming (see figure 4.10) may seem exponential or polynomial.
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Figure 4.12: Time trend: Minimals + SA HT
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5 Conclusions

After having analyzed the best algorithm of each family in section 4, it can be
observed how difficult it is to determine which algorithm, based on costs and times,
is better. Not only do we need to look at the data obtained, but also at how the
algorithm is supposed to behave if the number of objects is increased. In regards
of the latter, it has been verified that observing the tendency is of the foremost
importance.

Besides, it is difficult to determine which of the following is more relevant: the
costs or the times. Therefore, it is the user who would need to prioritise on one of
these two parameters. In our case, we are interested in obtaining aggregations at
the best possible cost, as long as it is within a reasonable time.

Therefore, when analysing the different families, we have always chosen the algo-
rithms that generate aggregations with the lowest costs or that take less time for
the same cost: Minimals, QuickSort, Minimals+SA, Linear Programming and MinCost
MT.

After conducting the experiments, the algorithms could be classified into two
main categories:

1. Optimal algorithms: those that ensure that the best aggregation is always ob-
tained, i.e. aggregation with the minimum cost. This category would include
MinCost MT and Linear Programming.

2. Non-optimal algorithms: those that do not always ensure an optimal solution.
The rest of the algorithms we have studied would fall under this category.

Having said that, we may draw the following conclusions from this project:

• The MinCost MT algorithm is a trivial algorithm, that is, it is known that it
will always obtain the aggregation with the lowest cost by calculating the cost
of all the possible aggregations and keeping the aggregations with the best
cost. The gain in execution time with respect to its single-threaded brother is
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particularly striking. Besides, we could still test this algorithm for n = 13 and
the execution times would still be reasonable

T13 ≈ T12 × 13

since the result would be about 21 hours.

• Despite the above-mentioned, with Linear Programming algorithm we would
always get the aggregation with the optimal cost but with much lower exe-
cution times than with the previous algorithm. Therefore, should we want to
further increase the number of objects, Linear Programming would be a more
suitable option than MinCost MT.

• The quality of the initial solution passed as input in the Simulated Annealing
algorithm influences the quality of the final solution. The better the initial
solution, the better the final solution.

• The execution times of Minimals, QuickSort and Minimals+SA HT are very low
and would allow to continue aggregating larger posets. Considering these three
agorithms, the one that aggregates posets with the lower costs is Minimals+SA
HT, being these costs remarkably close to the optimal ones. Consequently,
Minimals+SA HT is the best algorithm of the "non-optimal" ones.

• It has also been proven that increasing the temperature and cooling constant
in the Simulated Annealing algorithm means generating more cost-effective
aggregations.

At this point the following question may arise: If we continue increasing the
temperature and the cooling constant, i.e. the iterations of the algorithm, would it be
possible to generate aggregations with the minimum cost also with this algorithm?
Everything seems to indicate that this is likely the case, but it has not been
demonstrated in this dissertation.

Finally, should we have to choose just one algorithm to aggregate posets, we
would opt for Simulated Annealing with high temperature and cooling constant,
passing an aggregation generated with Minimals as the initial solution. Despite the
fact that the costs obtained are not the optimum ones, they are very close to them
and the executions times and the trend of the times are better than the ones of the
optimal algorithms.
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6 Research limitations

The experiments of this project had started to be executed in a Mac server of the
University of Oviedo, but we needed to search for an alternative due to a compati-
bility problem with the library used for the linear programming part [EN18].

Because of this, the experiments had to be executed on the personal computer of a
colleague. The experiments were executed at night, trying to make the processor
carry exclusively the load of the experiments. Nevertheless, it is possible that the
fact of using a personal computer has impacted the investigation because it is likely
that at some times the processor was affected by other separate processes, which
could add some alterations in the times obtained.

As it was a personal computer, it was not feasible to run the experiment of section
4.3 due to its execution times. Therefore, this experiment was the only one executed
in a virtual machine of Azure. Since we simply counted with the available credits
granted by the University of Oviedo, we were only able to configure a slower
machine than the personal computer.

The fact of having executed the experiments in two different machines does not
affect the conclusions, since the time and cost comparisons have always been carried
out between algorithms executed in the same machine.

Finally, it would also have been interesting to have been able to run all the
experiments on the University server, this way testing up to n = 13.
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7 Annexes

Figure 7.1: Costs: MinCost

54



Figure 7.2: Times: Minimals vs MinimalsRandom

Figure 7.3: Times: Simulated Annealing (T=4,β=0.97)
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Table 7.1: Costs: Minimals vs MinimalsRandom

N Minimals MinimalsRandom

3 4.32% 4.96%
4 5.24% 6.19%
5 8.87% 9.37%
6 8.18% 8.89%
7 10.28% 11.37%
8 10.54% 11.77%
9 15.15% 15.90%
10 12.75% 14.43%
11 15.80% 17.88%
12 14.33% 17.27%

Average cost error 10.55% 11.80%

Table 7.2: Cost errors: BubbleA vs BubbleB

N BubbleA BubbleB

3 22.77% 50.91%
4 20.30% 50.46%
5 19.51% 56.29%
6 23.28% 57.18%
7 22.45% 55.46%
8 26.48% 62.93%
9 24.22% 49.97%
10 25.54% 60.49%
11 22.88% 49.85%
12 28.63% 64.21%

Average cost error 23.61% 55.77%
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Table 7.3: Cost errors: SelectionA vs SelectionB

N SelectionA SelectionB

3 30.09% 47.41%
4 37.17% 53.09%
5 40.51% 73.17%
6 44.37% 63.93%
7 46.14% 61.44%
8 54.92% 78.90%
9 44.38% 64.06%
10 58.46% 91.38%
11 45.42% 64.12%
12 54.24% 64.39%

Average cost error 45.57% 66.19%

Table 7.4: Cost errors: InsertionA vs InsertionB

N InsertionA InsertionB

3 23.40% 51.34%
4 22.12% 52.78%
5 23.61% 53.69%
6 29.78% 61.11%
7 28.90% 62.28%
8 35.03% 68.60%
9 31.18% 55.01%
10 39.47% 74.02%
11 33.02% 54.54%
12 44.22% 75.80%

Average cost error 31.07% 60.92%
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Table 7.5: Cost errors: QuickSortA vs QuickSortB

N QuickSortA QuickSortB

3 19.79% 45.83%
4 20.13% 48.03%
5 20.87% 57.40%
6 20.66% 53.66%
7 19.90% 52.18%
8 23.13% 59.45%
9 23.81% 52.28%
10 29.27% 71.43%
11 24.04% 50.55%
12 23.66% 57.74%

Average cost error 22.52% 54.85%

Table 7.6: Cost errors: MergeSortA vs MergeSortB

N MergeSortA MergeSortB

3 23.74% 50.68%
4 23.28% 49.06%
5 22.31% 57.27%
6 24.49% 58.95%
7 23.34% 56.64%
8 29.27% 65.87%
9 24.77% 56.17%
10 31.20% 77.91%
11 27.83% 56.75%
12 28.91% 61.32%

Average cost error 25.91% 59.06%
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Table 7.7: Cost errors: Sorting algorithms

N BubbleA SelectionA InsertionA QuickSortA MergeSortA

3 22.77% 30.09% 23.40% 19.79% 23.74%
4 20.30% 37.17% 22.12% 20.13% 23.28%
5 19.51% 40.51% 23.61% 20.87% 22.31%
6 23.28% 44.37% 29.78% 20.66% 24.49%
7 22.45% 46.14% 28.90% 19.90% 23.34%
8 26.48% 54.92% 35.03% 23.13% 29.27%
9 24.22% 44.38% 31.18% 23.81% 24.77%
10 25.54% 58.46% 39.47% 29.27% 31.20%
11 22.88% 45.42% 33.02% 24.04% 27.83%
12 28.63% 54.24% 44.22% 23.66% 28.91%

Average cost error 23.61% 45.57% 31.07% 22.52% 25.91%

Table 7.8: Cost errors: Simulated Annealing (T=4,β=0.97)

N Random+SA Minimals+SA QuickSort+SA

3 0.02% 0.00% 0.00%
4 0.79% 0.21% 0.31%
5 3.97% 1.94% 2.77%
6 10.58% 1.92% 5.26%
7 13.28% 4.30% 6.79%
8 16.74% 4.73% 8.75%
9 32.86% 7.17% 12.65%
10 37.01% 7.74% 14.16%
11 33.81% 8.77% 13.14%
12 61.61% 13.79% 22.24%

Average cost error 21.07% 5.06% 8.61%
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Table 7.9: Times: Linear Programming

N LinearProgramming (ms)

3 19.67886

4 23.43813

5 29.37552

6 45.00179

7 66.26160

8 101.08387

9 151.47112

10 218.42127

11 321.49887

12 469.38988

Total time (ms) 1445.62090
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