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Abstract

In this paper, we analyze optimal control problems governed by an elliptic partial differen-
tial equation, in which the control acts as the Dirichlet data. Box constraints for the controls
are imposed and the cost functional involves the state and possibly a sparsity-promoting
term, but not a Tikhonov regularization term. Two different discretizations are investigated:
the variational approach and a full discrete approach. For the latter, we use continuous
piecewise linear elements to discretize the control space and numerical integration of the
sparsity-promoting term. It turns out that the best way to discretize the state equation is to
use the Carstensen quasi-interpolant of the boundary data, and a new discrete normal deriva-
tive of the adjoint state must be introduced to deal with this. Error estimates, optimization
procedures and examples are provided.
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1 Introduction

Let Ω ⊂ R2 be a convex polygonal domain with boundary Γ, −∞ < α < β < +∞, yd ∈ Lp(Ω)
for some p > 2, and µ ≥ 0. We will study the following control problem

min
u∈Uad

J(u) := F (u) + µj(u), (P)

where

F (u) =
1

2
∥yu − yd∥2L2(Ω), j(u) = ∥u∥L1(Γ),

and
Uad = {u ∈ L∞(Γ) : α ≤ u(x) ≤ β for a.e. x ∈ Γ}.

Above yu denotes the state associated to the control u related by the following state equation

Ayu = f in Ω, yu = u on Γ, (1)
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where f ∈ H−1(Ω). Here A denotes the operator

Ay = −
2∑

i,j=1

∂xj (ai,j∂xiy) + a0y,

where a0 ∈ Lp(Ω), p > 2, satisfies a0 ≥ 0, and the coefficients ai,j ∈ C0,1(Ω̄) satisfy the uniform
ellipticity condition

∃λA > 0 such that λA|ξ|2 ≤
2∑

i,j=1

ai,jξiξj ∀ξ ∈ R2 and a.a. x ∈ Ω.

The solution of equation (1) must be understood in the transposition sense; see Definition 2.2
below. This problem has two special distinguishing characteristics: the control acts as Dirichlet
boundary data and there is a non-differentiable sparsity promoting term, namely j(u). Moreover,
we do not introduce a regularizing Tikhonov term.

Since the so-called seminal papers for these topics, [13] for Dirichlet control problems in 2006
and [23] in 2009 for sparse optimal control problems, there has been an increasing interest in both
of them in the last years. Just to give a measure of this interest, the first one has 85 citations
and the second one 100 citations, according to Web of Science, at the moment of writing these
lines. Nevertheless, the author is not aware any work dealing with sparse Dirichlet optimal control
problems.

The main difficulty in the study of boundary Dirichlet optimal control problems lies in the
lack of regularity of the solution. Even for Tikhonov regularized problems the optimal control is
usually not even in H1(Γ); see [1]. This leads to serious difficulties in both the analysis and the
numerical approximation of this kind of problems. In the case at hand, one cannot improve the
regularity of the optimal control via the adjoint state equation and the optimality system, so the
situation is even worse than the one described in [1].

The plan of the paper is as follows. In Section 2 we provide first order optimality conditions
and state the sparsity properties of the optimal control. One of the objectives of this work is
to introduce a discretization that preserves these sparsity properties. In Section 3 we first recall
two different ways to discretize the state equation: using the L2(Γ)-projection or the Cartensen
interpolant of the boundary data. Unlike the L2(Γ)-projection, the Carstenen interpolant of a
continuous piecewise linear function need not coincide with itself. This has been seen in the
literature as a disadvantage for application in optimal control; see [2, Remark 2.13]. We show
how to circumvent these difficulties: the computation of the derivative of the resulting discrete
functional requires the definition of a new approximation of the normal derivative of the adjoint
state, different from the discrete normal derivative defined in [13]. We devote the second part of
Section 3 to discuss the properties of this new concept.

In Section 4 we discuss the variational discretization of the control problem. The control is not
discretized. This approach is quite effective to solve problems with bang-bang or bang-off-bang
solutions; see [14] for a discussion about bang-bang solutions in the distributed case. In Section
5 we discretize completely the problem. To preserve sparsity we use a numerical integration
formula to compute the non-differentiable sparsity-promoting term as is done in [9] or [18]. Error
estimates are obtained for the two kinds of approximation for both the control and the state
variable. In Section 6 we explain how to solve the problems and in Section 7 we show with
some examples the properties discussed along the paper. The orders of convergence obtained in
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sections 4 and 5 are by no means optimal. The experimental orders of convergence obtained for
the examples in Section 7 are higher than the theoretical ones in all the studied cases.

In this work we deal with convex polygonal domains to simplify the exposition. Similar
results can be achieved for nonconvex polygonal domains, taking into account the decomposition
of the adjoint state into a singular part plus a regular part carried out in [1]. On the other
hand, we deal with the general elliptic operator with Lipschitz coefficients A. Up to our best
knowledge, all the references to the study of Dirichlet control problems have been written for the
Laplace operator −∆. All of the necessary results about regularity and approximations of partial
differential equations involving −∆ are valid in our context, and we have included justifications
and even some detailed proofs where we thought that the “translation” was not immediate.

The other choice we do is that the equation is linear, and this is because it is not clear to us how
to treat the problem in the case of a semilinear equation. To deal with a semilinear equation we
should obtain a second order sufficient optimality condition for a strong local minimum involving
some norm of the state, and then prove somehow convergence of the discrete optimal states to
the optimal state in that norm. This technique is used for distributed control problems using the
norm of L∞(Ω) in [10] and [11]. A simple inspection of a 3D graph of a solution should be enough
to convince us that uniform convergence of the states is impossible in our case; see e.g. Figure
1 in Section 7. Some stronger concept of local minimum should be used, involving, for instance,
the L2(Ω) norm of the states.

Through all the work, (·, ·) denotes the inner product in L2(Ω) and (·, ·)Γ the inner product
in L2(Γ).

2 The continuous problem

Before introducing the definition of transposition solution, we recall a classical regularity result.

Lemma 2.1. For all g ∈ L2(Ω) there exists a unique ϕg ∈ H1
0 (Ω) ∩H2(Ω), variational solution

of

A∗ϕ = g in Ω, ϕ = 0 on Γ. (2)

Further

∥∂νA∗ϕg∥H1/2(Γ) ≤ C∥g∥L2(Ω), (3)

where ∂νA∗ϕg is the co-normal derivative of ϕg associated to A∗, the adjoint operator of A, given
by

A∗y = −
2∑

i,j=1

∂xj (aj,i∂xiy) + a0y,

Proof. Existence and uniqueness of ϕg ∈ H1
0 (Ω) follows from Lax-Milgram theorem. H2(Ω)-

regularity follows from the convexity of Ω; see [15, Theorem 3.1.3.2].

A proof of the regularity of ∂νA∗ϕg in H1/2(Γ) for the case A = −∆ can be found in [12,
Lemma A.2]. In Appendix A we adapt that proof for the general operator considered here.

Thanks to Lemma 2.1, the next definition is meaningful.
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Definition 2.2. For every u ∈ H−1/2(Γ) and f ∈ H−1(Ω), we say that yu ∈ L2(Ω) is the
transposition solution of (1) if

(y, g) = ⟨f, ϕg⟩H−1(Ω),H1(Ω) − ⟨u, ∂νA∗ϕg⟩H−1/2(Γ),H1/2(Γ) ∀g ∈ L2(Ω),

where ϕg ∈ H1
0 (Ω) ∩H2(Ω) is the unique variational solution of (2).

Notice that, if we denote y0 the solution of (1) for u = 0, which is a variational solution and
belongs to H1(Ω) ⊂ Lr(Ω) if r < +∞, and redefine yd := yd − y0, our problem is equivalent to

min
u∈Uad

J(u) :=
1

2
∥yu − yd∥2L2(Ω) + µj(u), (P)

where

Ayu = 0 in Ω, yu = u on Γ. (4)

Therefore, in the rest of the work, we assume without loss of generality that f = 0.
We will denote Y = H1/2(Ω) ∩ L∞(Ω). This is a Banach space endowed with the norm

∥y∥Y = ∥y∥H1/2(Ω) + ∥y∥L∞(Ω).

Theorem 2.3. Set 0 ≤ s ≤ 1/2. For every u ∈ H−s(Γ) there exists a unique yu ∈ H1/2−s(Ω)
solution of (4), and

∥yu∥H1/2−s(Ω) ≤ C∥u∥H−s(Γ)

If, further, u ∈ L∞(Γ), then yu ∈ Y and

∥yu∥Y ≤ ∥u∥L∞(Γ). (5)

Proof. The first result can be found in the proof of [1, Theorem 2.5] and the second one in [1,
Theorem 2.8]. They are proved A = −∆, but the proofs only makes use of the definition in the
transposition sense and the maximum principle for variational solutions, so the results also apply
to the general operator A considered in this work.

Remark 2.4. Since Ω is convex polygonal, we know that there exists p∗ > 2 such that, for
g ∈ Lr(Ω) with r < p∗, ϕg ∈ W 2,r(Ω), see [15], and ∂νA∗ϕg = W 1−1/r,r(Γ), see [12, Lemma
A.2]; the proof can be adapted as we have done for Lemma 2.1. Taking also into account that
H1/2(Ω) ↪→ L4(Ω), regarding the regularity of the target state yd and of a0, we assume for
simplicity that p ≤ 4 and 2 < p < p∗, since a greater p would not lead to better regularity of the
adjoint state; see Lemma 2.5 below.

In the next lemma we collect some basic facts for later reference.

Lemma 2.5. The control-to-state operator G(u) = yu, where yu is the transposition solution of
equation (4), is linear continuous from L2(Γ) to H1/2(Ω) and its restriction to L∞(Γ) is linear
continuous into Y .

The functional F is of class C∞ in L2(Γ), for all u, v ∈ L2(Γ)

F ′(u)v = (−∂νA
φu, v)Γ and F ′′(u)v2 = ∥yv∥2L2(Ω), (6)
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where φu ∈ H1
0 (Ω) ∩W 2,p(Ω) is the unique variational solution of

A∗φ = yu − yd in Ω, φ = 0 on Γ, (7)

and

F (u+ v) = F (u) + F ′(u)v +
1

2
∥yv∥2L2(Ω). (8)

Proof. The statements about G follow straightforward from Theorem 2.3. The regularity of the
adjoint state follows from the assumption done in Lemma 2.1.

Since G is linear, its derivative can be computed as G′(u)v = yv and the expression for
the derivatives of F follow using the chain rule and integration by parts in a standard way.
Equation (8) is simply the Taylor expansion of F and follows just taking into account that F is
quadratic.

The function j is not differentiable, but it is convex and Lipschitz. We denote j′(u; v) its
directional derivative in the direction v. The convexity of j implies that

j′(u1;u2 − u1) ≤ j(u2)− j(u1) ∀u1, u2 ∈ L1(Γ).

We denote ∂j(u) the convex subdifferential of j at u.
Existence of a solution ū ∈ Uad of (P) follows in a standard way. From (5), we have that

the control-to-state mapping is injective, and therefore the functional is strictly convex, so the
solution is unique. First order optimality conditions read as follows.

Theorem 2.6. Let ū ∈ Uad be the solution of (P). Then, there exists a unique triplet ȳ ∈ Y ,
φ̄ ∈ H1

0 (Ω) ∩W 2,p(Ω) and λ̄ ∈ ∂j(ū) such that

Aȳ = 0 in Ω, ȳ = ū on Γ, (9a)

A∗φ̄ = ȳ − yd in Ω, φ̄ = 0 on Γ, (9b)

(−∂νA∗ φ̄+ µλ̄, u− ū)Γ ≥ 0 ∀u ∈ Uad. (9c)

Further,
(−∂νA∗ φ̄, u−ū)Γ + µj(u)− µj(ū) ≥ 0 ∀u ∈ Uad. (10)

This theorem is proved in the same way as [7, Theorem 3] with the obvious changes. From
(9c) the following corollary can be deduced in a straightforward way using the technique of [6,
Theorem 3.1].

Corollary 2.7. Suppose that the assumptions of Theorem 2.6 hold.
If ∂νA∗ φ̄(x) < −µ then ū(x) = α. If ∂νA∗ φ̄(x) > µ then ū(x) = β.
If µ > 0 then λ̄ ∈ W 1−1/p,p(Γ) and

λ̄(x) = Proj[−1,+1]

(
1

µ
∂νA∗ φ̄(x)

)
.

If, further, α < 0 < β and |∂νA∗ φ̄(x)| < µ, then ū(x) = 0.

The regularity of λ̄ follows from the regularity of ∂νA∗ φ̄; see Remark 2.4. In particular, since
p > 2, λ̄ is a continuous function.

Under a structure assumption, we can deduce further properties of the control and enhanced
first order optimality conditions; see [19, Lemma 6.3].
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Lemma 2.8. Suppose that

there exists K > 0 such that meas
{
x ∈ Γ :

∣∣∣|∂νA∗ φ̄(x)| − µ
∣∣∣ < ε

}
≤ Kε ∀ε > 0. (H)

Then ū(x) ∈ {α, β} if µ = 0, ū(x) ∈ {α, 0, β} if µ > 0 and

(−∂νA∗ φ̄, u− ū)Γ + µj(u)− µj(ū) ≥ 1

4(β − α)
∥u− ū∥2L1(Γ) ∀u ∈ Uad. (11)

Remark 2.9. 1. In [20] it is shown by an example that the assumption of Lemma 2.8 may not
be reasonable for 2D controls, and they replace the bound Kε by the more realistic Kεγ for
some 0 < γ < 1. In our case, since the controls are 1D, the assumption is fulfilled in normal
situations, although it is possible to build academic 1D examples where it is nor fulfilled;
see [11, Section 7].

2. If the assumptions of Lemma 2.8 do not hold, then the optimal control may have singular
arcs and the adjoint state does not provide any information about them; see Example 7.2.

3. For Dirichlet optimal control problems posed over convex polygonal domains, it is known,
see [1], that ∂νA∗ φ̄ is a continuous function that vanishes at the corners of the domain.
This means that, if µ > 0, then the optimal control will be zero in a neighbourhood of the
corners. This can be clearly seen in all the examples in Section 7.

We finish this section with a property of the optimal state.

Lemma 2.10. Let ū be the solution of (P). For any u ∈ Uad we have

1

2
∥yu − ȳ∥2L2(Ω) ≤ J(u)− J(ū).

Proof. Using (8), (6) and (10), we have that

J(u) =F (u) + µj(u)

=F (ū) + µj(ū) + F ′(ū)(u− ū) + µj(u)− µj(ū) +
1

2
∥yu − ȳ∥2L2(Ω)

=J(ū) + (−∂νA∗ φ̄, u− ū)Γ + µj(u)− µj(ū) +
1

2
∥yu − ȳ∥2L2(Ω)

≥J(ū) +
1

2
∥yu − ȳ∥2L2(Ω).

Therefore, we have that

1

2
∥yu − ȳ∥2L2(Ω) ≤ J(u)− J(ū).

3 Discretizations of the state and adjoint state

For all y, z ∈ H1(Ω), we define

a(y, z) =

2∑
i,j=1

(ai,j∂xi
y, ∂xj

z) + (a0y, z).
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Let {Th}h be a quasi-uniform family of triangulations of Ω̄. For the discretization of the state
and the adjoint state we use the space of linear finite elements Yh ⊂ H1(Ω),

Yh = {yh ∈ C(Ω̄) : yh ∈ P 1(T ) ∀T ∈ Th}.

We abbreviate Yh0 = Yh∩H1
0 (Ω) and Y Γ

h the space of functions that are the trace of some element
of Yh.

In Section 4, we will not discretize the control (variational discretization), but in Section
5 we will use functions in Y Γ

h (continuous piecewise linear approximations). We will denote
Uh,ad = Y Γ

h ∩ Uad.
Following [2], we define two different approximations of the state equation. For every u ∈

L2(Γ), yh(u) ∈ Yh is the unique solution of

a(yh, ηh) = 0 for all ηh ∈ Yh0, yh(u) = πhu on Γ, (12)

where either πhu = Phu is the projection in the L2(Γ) sense onto Y Γ
h , as proposed by Berggren

in [3], or πhu = Ihu is Carstensen quasi-interpolant. In case we need to distinguish them, we
denote yPh

h (u) and yIh

h (u), otherwise, we simply write yh(u). We also introduce

FPh

h (u) =
1

2
∥yPh

h (u)− yd∥2L2(Ω) and F Ih

h (u) =
1

2
∥yIh

h (u)− yd∥2L2(Ω),

and do the same convention for Fh(u).
Let us briefly recall the properties of both approximations. Regarding the L2(Γ) projection,

we have that Phu is the unique element of Y Γ
h that satisfies

(Phu, vh)Γ = (u, vh)Γ ∀u ∈ L2(Γ) and vh ∈ Y Γ
h .

Notice that if uh ∈ Y Γ
h , then uh = Phuh and yPh

h (uh) ≡ uh on Γ. It is also remarkable that it is
possible that u ∈ Uad, but Phu ̸∈ Uad; see Figure 1a.

To define Carstensen interpolation, denote NΓ = dimY Γ
h and {xj}NΓ

j=1 the boundary nodes of

the triangulation. For 1 ≤ i ≤ NΓ, define ei as the unique function in Y Γ
h such that ei(xj) = δi,j .

We define

Ihu =

NΓ∑
j=1

(u, ej)Γ
(1, ej)Γ

ej .

For the scalar product in Y Γ
h

(uh, vh)h =

NΓ∑
j=1

ujvj(1, ej)Γ, (13)

it is straightforward to deduce the identity

(Ihu, vh)h = (u, vh)Γ ∀u ∈ L2(Γ) and vh ∈ Y Γ
h . (14)

The Carstenen interpolant of a function uh ∈ Y Γ
h need not coincide with itself, so in general

yIh

h (uh) ̸= uh on Γ. On the other hand, u ∈ Uad implies Ihu ∈ Uad.
In the following result, we recall the concept of variational discrete normal derivative intro-

duced in [13], which we denote ∂Ph
νA∗ϕh because it will match the state equation when we use Ph

and introduce a new one, which we denote ∂Ih
νA∗ϕh because it will match the state equation when

we use Ih. We follow the same convention as for yh(u) and Fh(u) and write ∂h
νA∗ϕh to refer to

common properties of both ∂Ph
νA∗ϕh and ∂Ih

νA∗ϕh.
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Theorem 3.1. Consider g ∈ L2(Ω), and let ϕh ∈ Yh0 be the solution of

a(ηh, ϕh) = (g, ηh) ∀ηh ∈ Yh0.

Then, there exists a unique ∂Ph
νA∗ϕh ∈ Y Γ

h solution of

(∂Ph
νA∗ϕh, ζh)Γ = a(ζh, ϕh)− (g, ζh) ∀ζh ∈ Yh,

and a unique ∂Ih
νA∗ϕh ∈ Y Γ

h solution of

(∂Ih
νA∗ϕh, ζh)h = a(ζh, ϕh)− (g, ζh) ∀ζh ∈ Yh.

Proof. Existence and uniqueness of ∂Ph
νA∗ϕh is proved in [13, Proposition 4.2].

For the second part, we decompose Yh = Yh0⊕Y ∂
h , where Y ∂

h is isomorphic to Y Γ
h . If ζh ∈ Yh0,

then the equation is trivially 0 = 0, so we are left with the functions in Y ∂
h .

Abusing notation, we denote for j = 1, . . . , NΓ, ej ∈ Y ∂
h the function that coincides with

ej ∈ Y Γ
h and is zero in the interior nodes of the triangulation. The system defining the coefficients

of ∂Ih
νA∗ϕh in this basis is a diagonal system, that trivially has a unique solution.

The utility of the new discrete normal derivative is shown in the following Lemma. It tells us
how to compute exactly the derivative of the discrete functional Fh when we use the Carstensen
interpolant to approximate the boundary data of the state equation.

Lemma 3.2. For every u, v ∈ L2(Γ)

F ′
h(u)v = (−∂h

νA∗φh(u), v)Γ,

where φh(u) is the solution of

a(ηh, φh) = (yh(u)− yd, ηh) ∀ηh ∈ Yh0. (15)

Further, for every u, v ∈ L2(Γ) and vh ∈ Y Γ
h

F Ih

h

′
(u)v = (−∂Ih

νA∗φh(u), Ihv)h, F Ih

h

′
(u)vh = (−Ih∂Ih

νA∗φ
Ih

h (u), vh)h.

Proof. The property for FPh

h is well known; see [13, eq. (4.6)].
Let us prove the expressions related to the Carstensen interpolant approach. First we apply

the chain rule; next, we use the definition of discrete normal derivative related to the Carstensen
interpolant of the Dirichlet data given in Theorem 3.1 together with the fact that yIh

h (v) ≡ Ihv
on Γ; in a third step, we use the fact that φIh

h (u) ∈ Yh0 together with the discrete state equation
(12); and, finally, we apply (14) to obtain:

F Ih

h

′
(u)v =(yIh

h (u)− yd, y
Ih

h (v)) = (−∂Ih
νA∗φ

Ih

h (u), Ihv)h + a(yIh

h (v), φIh

h (u))

=(−∂Ih
νA∗φ

Ih

h (u), Ihv)h = (−∂Ih
νA∗φ

Ih

h (u), v)Γ.

If, further vh ∈ Y Γ
h , applying again (14),

F Ih

h

′
(u)vh = (−∂Ih

νA∗φ
Ih

h (u), vh)Γ = (−Ih∂Ih
νA∗φ

Ih

h (u), vh)h.
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We collect in the following results the approximation properties of Carstensen interpolant, the
finite element approximation of the state equation and the discrete variational normal derivative.
Other error estimates for the Carstensen quasi interpolation in negative Sobolev norms can be
found in [21]

Lemma 3.3. There exists C > 0 such that

∥u− Ihu∥L2(Γ) ≤ Ch1/2∥u∥H1/2(Γ) ∀u ∈ H1/2(Γ), (16)

∥u− Ihu∥H−1/2(Γ) ≤ Ch1/2∥u∥L2(Γ) ∀u ∈ L2(Γ). (17)

Proof. Using the convexity of s2 together with 0 ≤ ej ≤ 1 and
∑NΓ

j=1 ej = 1, we have that for

every uh =
∑NΓ

j=1 ujej ∈ Y Γ
h ,

∥uh∥2L2(Γ) =

∫
Γ

NΓ∑
j=1

ujej(x)

2

dx ≤
∫
Γ

NΓ∑
j=1

u2
jej(x)dx = (uh, uh)h.

Using this, (14), and Cauchy-Schwarz inequality, we deduce that for all u ∈ L2(Γ),

∥Ihu∥2L2(Γ) ≤ (Ihu, Ihu)h = (u, Ihu)Γ ≤ ∥Ihu∥L2(Γ)∥u∥L2(Γ),

and hence
∥Ihu∥L2(Γ) ≤ ∥u∥L2(Γ). (18)

So we also have trivially that

∥u− Ihu∥L2(Γ) ≤ 2∥u∥L2(Γ) ∀u ∈ L2(Γ).

In [5, Theorem 3.1.2] it is proved that

∥u− Ihu∥L2(Γ) ≤ Ch∥u∥H1(Γ) ∀u ∈ H1(Γ).

Estimate (16) follows, therefore, by interpolation.
Estimate (17) can now be obtained by duality. Since we do not have orthogonality with

respect to the inner product in L2(Γ), we write the argument in detail. Let V = {v ∈ H1/2(Γ) :
∥v∥H1/2(Γ) = 1.}. Using that u ∈ L2(Γ), (14) and (16), we have

∥u− Ihu∥H−1/2(Γ) = sup
v∈V

⟨u− Ihu, v⟩H−1/2(Γ),H1/2(Γ) = sup
v∈V

(u− Ihu, v)Γ

= sup
v∈V

(u− Ihu, v − Ihv)Γ + (u, Ihv)Γ − (Ihu, Ihv)Γ

= sup
v∈V

(u− Ihu, v − Ihv)Γ + (Ihu, Ihv)h − (Ihu, Ihv)Γ

= sup
v∈V

(u, v − Ihv)Γ − (Ihu, v − Ihv)Γ + (Ihu, Ihv)h − (Ihu, Ihv)Γ

= sup
v∈V

(u, v − Ihv)Γ ≤ sup
v∈V

∥u∥L2(Γ)∥v − Ihv∥L2(Γ)

≤ sup
v∈V

∥u∥L2(Γ)h
1/2∥v∥H1/2(Γ) = Ch1/2∥u∥L2(Γ).
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Lemma 3.4. Consider u ∈ L2(Γ) and let yu and yh(u) be respectively the transposition solution
of (4) and the solution of (12). Then, there exists C > 0 independent of u such that

∥yu − yh(u)∥L2(Ω) ≤ Ch1/2∥u∥L2(Γ). (19)

Proof. This estimate is proved in [2, Corollary 3.3] for both choices of πhu. The proof in that
reference relies on duality techniques, the regularity of the solution and an estimate in [17, Lemma
3.2] of the discrete harmonic operator. All the steps can be repeated successfully for a general
operator A using the discrete operator Ahπhu = yh(u) instead of the discrete harmonic operator.
The estimate for this operator follows in the same way as in [17] because yu satisfies the same
regularity requirements as the harmonic extension of u.

Theorem 3.5. Let g be an element of L2(Ω). Consider ϕ ∈ H2(Ω) ∩H1
0 (Ω) the unique solution

of

A∗ϕ = g in Ω, ϕ = 0 on Γ

and ϕh ∈ Yh0 its finite element approximation satisfying

a(ηh, ϕh) = (g, ηh) ∀ηh ∈ Yh0.

Then, there exists C > 0 independent of g such that

∥∂νA∗ϕ− ∂h
νA∗ϕh∥L2(Γ) ≤ Ch1/2∥g∥L2(Ω), (20)

∥∂h
νA∗ϕh∥H1/2(Γ) ≤ C∥g∥L2(Ω). (21)

Proof. Estimates (20) and (21) for ∂Ph
νA∗ϕh are obtained in [13, Theorem 5.7 and Corollary 5.8].

Let us prove both estimates for ∂Ih
νA∗ϕh. By the triangle inequality

∥∂νA∗ϕ− ∂Ih
νA∗ϕh∥L2(Γ) ≤ ∥∂νA∗ϕ− Ih∂νA∗ϕ∥L2(Γ) + ∥Ih∂νA∗ϕ− ∂Ih

νA∗ϕh∥L2(Γ). (22)

From (16) and Lemma 2.1, we have that

∥∂νA∗ϕ− Ih∂νA∗ϕ∥L2(Γ) ≤ Ch1/2∥∂νA∗ϕ∥H1/2(Γ) ≤ Ch1/2∥g∥L2(Ω). (23)

Let us estimate the L2(Γ)-norm of eh = Ih∂νA∗ϕ− ∂Ih
νA∗ϕh ∈ Y Γ

h . First we notice that

∥eh∥2L2(Γ) =(eh, eh)Γ = (eh, Iheh)h = (Ih∂νA∗ϕ, Iheh)h − (∂Ih
νA∗ϕh, Iheh)h

=(∂νA∗ϕ, Iheh)Γ − (∂Ih
νA∗ϕh, Iheh)h.

Now we are going to compute the two terms in the right hand side of this equality. For the first
one, we multiply both terms of the equation Aϕ = g by yIh

h (eh) ∈ Yh ⊂ H1(Ω) and apply Green’s
formula, to obtain

(g, yIh

h (eh)) = a(yIh

h (eh), ϕ)− (∂νA∗ϕ, Iheh)Γ.

For the second one, we use the definition of the discrete normal derivative ∂Ih
νA∗ϕh given in Theorem

3.1:

(g, yIh

h (eh)) = a(yIh

h (eh), ϕh)− (∂Ih
νA∗ϕh, Iheh)h.
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Gathering the last three equalities, we obtain that

∥eh∥2L2(Γ) =a(yIh

h (eh), ϕ− ϕh) ≤ ∥ϕ− ϕh∥H1(Ω)∥yIh

h (eh)∥H1(Ω)

≤Ch∥g∥L2(Ω)∥eh∥H1/2(Γ) ≤ Ch∥g∥L2(Ω)h
−1/2∥eh∥L2(Γ).

where we have used the H2(Ω) regularity of ϕ (see Lemma 2.1), the classical finite element error
estimate, that

∥yIh

h (eh)∥H1(Ω) ≤ C∥Iheh∥H1/2(Γ) ≤ C∥eh∥H1/2(Γ)

(see [4, Lemma 3.2] for the first estimate and apply [5, Theorem 3.1] and interpolation for the
second estimate), and an inverse inequality. So we have that

∥eh∥L2(Γ) ≤ Ch1/2∥g∥L2(Ω). (24)

Estimate (20) follows from (22), (23) and (24).

To prove (21) we write introduce the term Ih∂νA∗ϕ, which belongs to H1/2(Γ), and apply an
inverse inequality, the continuity of Ih in H1/2(Γ), and (24) to obtain

∥∂Ih
νA∗ϕh∥H1/2(Γ) ≤ ∥Ih∂νA∗ϕ∥H1/2(Γ) + ∥∂Ih

νA∗ϕh − Ih∂νA∗ϕ∥H1/2(Γ)

≤C∥∂νA∗ϕ∥H1/2(Γ) + Ch−1/2∥∂Ih
νA∗ϕh − Ih∂νA∗ϕ∥L2(Γ) ≤ C∥g∥L2(Ω).

Here, the continuity of Ih in H1/2(Γ) follows by interpolation between the estimate for the
continuity in L2(Γ) proved in (18) and the continuity in H1(Γ) proved in [5, Theorem 3.13].

To obtain error estimates for the control variable, we will use the following result.

Corollary 3.6. Consider u ∈ Uad, and let φu ∈ H1
0 (Ω)∩H2(Ω) and φh(u) ∈ Yh0 be the solutions

respectively of (7) and (15). Then, there exists C > 0 independent of u such that

∥∂νA∗φu − ∂h
νA∗φh(u)∥L2(Γ) ≤ Ch1/2, (25)

∥∂h
νA∗φh(u)∥H1/2(Γ) ≤ C. (26)

Proof. Define ϕ ∈ H2(Ω) ∩H1
0 (Ω) the solution of

A∗ϕ = yh(u)− yd in Ω, ϕ = 0 on Γ.

We have that φh(u) is the finite element approximation of ϕ. Estimate (25) follows from the
triangle inequality, Lemma 2.1, estimate (19), (20) and the fact that Uad is bounded.

∥∂νA∗φu−∂h
νA∗φh(u)∥L2(Γ) ≤ ∥∂νA∗φu − ∂νA∗ϕ∥L2(Γ) + ∥∂νA∗ϕ− ∂h

νA∗φh(u)∥L2(Γ)

≤C∥yu − yh(u)∥L2(Ω) + Ch1/2∥yh(u)− yd∥L2(Ω) ≤ Ch1/2.

Estimate (26) is deduced directly from (21) and the fact that, taking into account that Uad is
bounded, we have ∥yh(u)− yd∥L2(Ω) ≤ ∥yh(u)∥L2(Ω) + ∥yd∥L2(Ω) ≤ C∥u∥L2(Ω) + ∥yd∥L2(Ω).
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4 Variational approach

For the variational approach, we consider both techniques to impose the boundary data. We will
label with a subscript v the quantities related to this approach.

Taking into account that Fh may stand both for F Ih

h or FPh

h , we select πh ∈ {Ih,Ph} and
consider the semi-discretized problem

min
u∈Uad

Jv(u) := Fh(u) + µj(u). (Pv)

It it standard to check that (Pv) has a solution ūv ∈ Uad. First order necessary conditions
read as follows.

Theorem 4.1. Let ūv ∈ Uad be a solution of (Pv). Then, there exists a unique triplet ȳh,v ∈ Yh,
φ̄h,v ∈ Yh0 and λ̄v ∈ ∂j(ūv) such that

a(ȳh,v, ηh) = 0 for all ηh ∈ Yh0, ȳh,v = πhūv on Γ. (27a)

a(ηh, φ̄h,v) = (ȳh,v − yd, ηh) for all ηh ∈ Yh0. (27b)

(−∂h
νA∗ φ̄h,v + µλ̄v, u− ūv)Γ ≥ 0 ∀u ∈ Uad, (27c)

Further,
(−∂h

νA∗ φ̄h,v, u− ūv)Γ + µj(u)− µj(ūv) ≥ 0 ∀u ∈ Uad. (28)

The discrete version of Corollary 2.7 follows in the same pointwise way, just replacing ū and
∂νA∗ φ̄ by ūv and ∂h

νA∗ φ̄h,v.

Remark 4.2. Notice that the solution need not be unique. Neither the projection operator Ph

nor the quasi-interpolation operator Ih are injective. Therefore, if ūv is a solution, any other
admissible uv such that πhūv = πhuv will satisfy the discrete state equation. If µ = 0, then it is
immediate that uv is also a solution of (Pv). For µ > 0, this will be the case if uv also satisfies
j(uv) = j(ūv).

Unlike other problems discretized variationally, e.g., [8, Theorem 3.2], here the discrete control
πhūv may not be a solution of (Pv). If we choose the L

2(Γ)-projection, then Phūv may overshoot
the control constraints and hence it would not be in Uad. On the other hand IhIhūv may be
different from Ihūv, so yIh

h (Ihūv) would be different from ȳh,v.

We have the following error estimate for the state variable.

Theorem 4.3. Let ū ∈ Uad be the solution of (P), ūv ∈ Uad be a solution of (Pv), and ȳ ∈
H1/2(Ω), ȳh,v ∈ Yh be respectively the solutions of the state equations (9a) and (27a). Then there
exists C > 0 such that

∥ȳ − ȳh,v∥L2(Ω) ≤ Ch1/4 ∀h > 0.

Proof. By the triangle inequality

∥ȳ − ȳh,v∥L2(Ω) ≤ ∥ȳ − yūv
∥L2(Ω) + ∥yūv

− ȳh,v∥L2(Ω).

Using that ∥ūv∥L2(Γ) ≤ (β −α)|Γ|1/2, we deduce from estimate (19) that the second summand is

of order h1/2. To estimate the first one, using Lemma 2.10 we obtain

1

2
∥yūv − ȳ∥2L2(Ω) ≤ J(ūv)− J(ū)

=
(
J(ūv)− Jv(ūv)

)
+
(
Jv(ūv)− Jv(ū)

)
+
(
Jv(ū)− J(ū)

)
= I + II + III.
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The second term is negative due to the optimality of ūv. Estimates for the first and third terms
follow in the same way. Let us do III. Using (19), we obtain

|Jv(ū)− J(ū)| =|Fh(ū) + µj(ū)− F (ū) + µj(ū)|

≤
∫
Ω

∣∣(yh(ū)− yd)
2 − (ȳ − yd)

2
∣∣ dx

=

∫
Ω

|(yh(ū)− ȳ)(yh(ū) + ȳ − 2yd)| dx

≤∥yh(ū)− ȳ∥L2(Ω)∥yh(ū) + ȳ − 2yd∥L2(Ω) ≤ Ch1/2, (29)

and the estimate follows.

For bang-bang or bang-off-bang solutions satisfying the structure assumption, we have also
information on the behaviour of the control.

Theorem 4.4. Let ū ∈ Uad be the solution of (P) and ūv ∈ Uad be a solution of (Pv). Suppose
that the structure assumption (H) in Lemma 2.8 is satisfied. Then, there exists C > 0 such that

∥ū− ūv∥L1(Γ) ≤ Ch1/3.

Proof. Taking u = ū in (28), u = ūv in (11), and adding up both inequalities, we have

1

4(β − α)
∥ūv − ū∥2L1(Γ) ≤ (∂h

νA∗ φ̄h,v − ∂νA∗ φ̄, ūv − ū)Γ

=(∂h
νA∗ φ̄h,v − ∂νA∗φ(ūv), ūv − ū)Γ + (∂νA∗φ(ūv)− ∂νA∗ φ̄, ūv − ū)Γ

≤(∂h
νA∗ φ̄h,v − ∂νA∗φ(ūv), ūv − ū)Γ

≤∥∂h
νA∗ φ̄h,v − ∂νA∗φ(ūv)∥L2(Γ)∥ūv − ū∥L2(Γ)

≤Ch1/2(β − α)1/2∥ūv − ū∥1/2L1(Γ), (30)

where we have used estimate (25), that ∥ūv − ū∥L∞(Γ) ≤ β − α and

(∂νA∗φ(ūv)− ∂νA∗ φ̄, ūv − ū) =(F ′(ū)− F ′(ūv))(ū− ūv) = −∥ȳ − yūv∥2L2(Ω) ≤ 0. (31)

This inequality follows from the mean value theorem, the fact that F is quadratic, and (6).
From (30) we have that

∥ūv − ū∥3/2L1(Γ) ≤ Ch1/2,

which concludes the proof.

5 Full discretization

For the full discretization, we only consider the Carstensen interpolant of the boundary data. For
uh =

∑NΓ

j=1 ujej ∈ Y Γ
h , we define

jh(uh) =

NΓ∑
j=1

|uj |(1, ej)Γ.

We will make use of the following properties:
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Lemma 5.1. For all uh ∈ Y Γ
h and all u ∈ L1(Γ),

j(uh) ≤ jh(uh), (32)

jh(Ihu) ≤ j(u). (33)

Proof. Take uh =
∑NΓ

j=1 ujej . Using the triangle inequality, that ej(x) ≥ 0 and the linearity of
the integral we have:

j(uh) =

∫
Γ

∣∣∣∣∣∣
NΓ∑
j=1

ujej(x)

∣∣∣∣∣∣ dx ≤
NΓ∑
j=1

∫
Γ

|uj |ej(x)dx =

NΓ∑
j=1

|uj |(ej , 1)Γ = jh(uh).

Take u ∈ L1(Γ). Using the definition of Ihu, that ej(x) ≥ 0, the triangle inequality for integrals

and that
∑NΓ

j=1 ej(x) = 1 we obtain:

jh(Ihu) =
NΓ∑
j=1

∣∣∣∣ (u, ej)Γ(1, ej)Γ

∣∣∣∣ (1, ej)Γ =

NΓ∑
j=1

∣∣∣∣∫
Γ

u(x)ej(x)dx

∣∣∣∣ ≤ NΓ∑
j=1

∫
Γ

|u(x)|ej(x)dx

=

NΓ∑
j=1

∫
Γ

|u(x)|
NΓ∑
j=1

ej(x)dx = j(u)

Given a discrete control uh ∈ Y Γ
h , we denote ∂hjh(uh) the subdifferential of jh(uh) with respect

to the scalar product (·, ·)h defined in (13). This means that

λh ∈ ∂hjh(uh) ⊂ Y Γ
h if and only if (λh, vh − uh)h + j(uh)− j(vh) ≤ 0 ∀vh ∈ Y Γ

h . (34)

Lemma 5.2. Consider uh =
∑NΓ

j=1 ujej ∈ Y Γ
h . Every λh ∈ ∂hjh(uh) satisfies

|λj | ≤ 1 for all j and λj = sign(uj) if uj ̸= 0. (35)

Conversely, every λh ∈ Y Γ
h satisfying (35) belongs to ∂hjh(uh).

The proof is straightforward taking into account the diagonal structure of the scalar product
(·, ·)h.

Consider the discrete problem

min
uh∈Uh,ad

Jh(uh) := F Ih

h (uh) + µjh(uh). (Ph)

It it standard to check that (Ph) has a unique solution ūh ∈ Uh,ad. First order necessary conditions
read as follows.

Theorem 5.3. Let ūh ∈ Uh,ad be the solution of (Ph). Then, there exists a unique triplet
ȳh ∈ Yh, φ̄h ∈ Yh0 and λ̄h ∈ ∂hjh(ūh) such that

a(ȳh, ηh) = 0 for all ηh ∈ Yh0, ȳh = Ihūh on Γ. (36a)

a(ηh, φ̄h) = (ȳh − yd, ηh) for all ηh ∈ Yh0. (36b)

(−Ih∂Ih
νA∗ φ̄h + µλ̄h, uh − ūh)h ≥ 0 ∀u ∈ Uh,ad. (36c)

Further,
(−∂Ih

νA∗ φ̄h, uh − ūh)Γ + µjh(uh)− µjh(ūh) ≥ 0 ∀uh ∈ Uh,ad. (37)
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Proof. The proof follows the same lines as that of [7, Theorem 3]. Equation (36c) follows from
the last expression for the derivative of F Ih

h obtained in Lemma 3.2 and (34).

Denote now ūh =
∑NΓ

j=1 ūjej , ϕ̄h = Ih∂Ih
νA∗ φ̄h =

∑NΓ

j=1 ϕ̄jej , and λ̄h =
∑NΓ

j=1 λ̄jej . The
sparsity properties of the components of the optimal control follow from (36c) and the “diagonal”
structure of the scalar product (·, ·)h that allows us to write (36c) as

(ϕ̄j + µλ̄j)(t− ūj) ≥ 0 ∀t ∈ [α, β]

for every j ∈ {1, . . . , NΓ}. This is not possible using Ph.

Corollary 5.4. If ϕ̄j < −µ, then ūj = α. If ϕ̄j > µ, then ūj = β.
If µ > 0, then

λ̄j = Proj[−1,1]

(
ϕ̄j

µ

)
.

If, further, α < 0 < β and |ϕ̄j | < µ, then ūj = 0.

The above result does not only show how the sparsity properties of the optimal control are
inherited by its discrete approximation, but is also the key to build an efficient optimization
algorithm.

Next we prove convergence of the solutions of the discrete problems to the solution of (P) and
error estimates. We start with the optimal states.

Theorem 5.5. Let ū ∈ Uad be the solution of (P), ūh ∈ Uh,ad be the solution of (Ph) and let
ȳ ∈ H1/2(Ω) and ȳh ∈ Yh be respectively the solutions of the state equations (9a) and (36a). Then
there exists C > 0 such that

∥ȳ − ȳh∥L2(Ω) ≤ Ch1/4 ∀h > 0.

Proof. By the triangle inequality

∥ȳ − ȳh∥L2(Ω) ≤ ∥ȳ − yūh
∥L2(Ω) + ∥yūh

− ȳh∥L2(Ω).

Using that ∥ūh∥L2(Γ) ≤ (β − α)|Γ|1/2, we deduce from estimate (19) that the second summand

is of order h1/2. To estimate the first one, using Lemma 2.10, the optimality of ūh, the fact that
Ihū ∈ Uh,ad, (32) and (33) we have that

1

2
∥yūh

− ȳ∥2L2(Ω) ≤ J(ūh)− J(ū)

=
(
J(ūh)− Jh(ūh)

)
+
(
Jh(ūh)− Jh(Ihū)

)
+
(
Jh(Ihū)− F (Ihū) + F (Ihū)− J(ū)

)
≤
(
F (ūh) + µj(ūh)− F Ih

h (ūh)− µjh(ūh)
)

+
(
F Ih

h (Ihū) + µjh(Ihū)− F (Ihū) + F (Ihū)− F (ū)− µj(ū))
)

≤
(
F (ūh)− F Ih

h (ūh)
)
+

(
F Ih

h (Ihū)− F (Ihū)
)
+
(
F (Ihū)− F (ū))

)
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Estimates for the first and second terms of order h1/2 follow as in (29). To estimate the third
term, we use Theorem 2.3 and estimate (17)

F (Ihū)− F (ū) =

∫
Ω

(
(yIhū − yd)

2 − (ȳ − yd)
2
)
dx

=

∫
Ω

(
(yIhū − ȳ)(yIhū + ȳ − 2yd)Big)dx

≤∥yIhū − ȳ∥L2(Ω)∥yIhū + ȳ − 2yd∥L2(Ω)

≤C∥Ihū− ū∥H−1/2(Γ) ≤ Ch1/2.

Theorem 5.6. Let ū ∈ Uad be the solution of (P) and let ūh ∈ Uh,ad be the solution of (Ph).
Suppose that the structure assumption (H) is satisfied. Then, there exists C > 0 such that

∥ū− ūh∥L1(Γ) ≤ Ch1/4.

Proof. Testing the enhanced first order optimality condition (11) of (P) for u = ūh and the first
order optimality condition (37) of the discrete problem (Ph) for uh = Ihū ∈ Uh,ad, we have

(−∂νA∗ φ̄, ūh − ū)Γ + µj(ūh)− µj(ū) ≥ 1

4(β − α)2
∥ūh − ū∥2L1(Γ),

(−∂Ih
νA∗ φ̄h, Ihū− ūh)Γ + µjh(Ihū)− µjh(ūh) ≥0.

Adding up both inequalities and taking into account (32) and (33) we have

1

4(β − α)
∥ūh − ū∥2L1(Γ) ≤(−∂νA∗ φ̄, ūh − ū)Γ + (−∂Ih

νA∗ φ̄h, Ihū− ūh)Γ (38)

=(−∂νA∗ φ̄+ ∂Ih
νA∗ φ̄h, ūh − Ihū)Γ + (−∂νA∗ φ̄, Ihū− ū)Γ.

For the second term, we have from Lemma 2.1 and estimate (17) that

(−∂νA∗ φ̄, Ihū− ū)Γ ≤ ∥∂νA∗ φ̄∥H1/2(Γ)∥Ihū− ū∥H−1/2(Γ) ≤ Ch1/2.

Next we insert ∂νA∗φūh
and ū into the first term to obtain

(−∂νA∗ φ̄+ ∂Ih
νA∗ φ̄h, ūh − Ihū)Γ = (−∂νA∗ φ̄+ ∂νA∗φūh

, ūh − Ihū)Γ
+ (−∂νA∗φūh

+ ∂Ih
νA∗ φ̄h, ūh − Ihū)Γ

=(−∂νA∗ φ̄+ ∂νA∗φūh
, ūh − ū)Γ

+ (−∂νA∗ φ̄+ ∂νA∗φūh
, ū− Ihū)Γ

+ (−∂νA∗φūh
+ ∂Ih

νA∗ φ̄h, ūh − ū)Γ

+ (−∂νA∗φūh
+ ∂Ih

νA∗ φ̄h, ū− Ihū)Γ = I + II + III + IV.

As in (31), using (8) the first term is negative:

I = −∥yūh
− ȳ∥2L2(Ω) ≤ 0.
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An estimate for the second term follows from Lemma 2.1 and (17):

II ≤ ∥ − ∂νA∗ φ̄+ ∂νA∗φūh
∥H1/2(Γ)∥Ihū− ū∥H−1/2(Γ) ≤ Ch1/2.

To estimate the third term, we first use (25) and that ∥ūh − ū∥L∞(Γ) ≤ β − α and in a second

step Young’s inequality for p = 4/3, q = 4, to deduce the existence of C̃ > 0, that may depend
on α and β but is independent of h, such that

III ≤∥ − ∂νA∗φūh
+ ∂Ih

νA∗ φ̄h∥L2(Γ)∥ūh − ū∥L2(Γ)

≤Ch1/2(β − α)1/2∥ūh − ū∥1/2L1(Γ) ≤ C̃h2/3 +
1

8(β − α)
∥ūh − ū∥2L1(Γ).

For the fourth term we use Lemma 2.1, (26) and (19)

IV ≤
(
∥ − ∂νA∗φūh

∥H1/2(Γ) + ∥∂Ih
νA∗ φ̄h∥H1/2(Γ)

)
∥Ihū− ū∥H−1/2(Γ) ≤ Ch1/2.

The result follows gathering all the estimates and taking the term 1
8(β−α)∥ūh− ū∥2L1(Γ) to the left

hand side of (38).

6 Optimization algorithms

Let us consider a Tikhonov regularization of (P). For ε > 0, consider

min
u∈Uad

Jε(u) := J(u) +
ε

2
(u, u)Γ, (Pε)

For every ε > 0, problem (Pε) has a unique solution uε ∈ Uad. We compute (an approximation
of) uεn , for a sequence {εn} ↘ 0. Finally, we approach ū ≈ uεN for some εN small; see [19]. At
each step, we use an adaptation of the active set algorithm described in [23, Algorithm 2] taking
the solution of the previous step as initial guess. For n = 1 we take 0 as starting point. Let us
briefly describe the algorithm to solve (Pε).

For every ε > 0, there exists λε ∈ ∂j(uε) such that

(−∂νA∗φuε + µλε + εuε, u− uε)Γ ≥ 0 ∀u ∈ Uad.

For u ∈ L2(Γ), denote ϕ = ∂νA∗φu ∈ W 1−1/p,p(Γ) ↪→ C(Γ) and define the active sets as

Aα ={x ∈ Γ : ϕ(x) + µ ≤ εα},
J− ={x ∈ Γ : εα < ϕ(x) + µ < 0},
A0 ={x ∈ Γ : |ϕ(x)| ≤ µ}, (39)

J+ ={x ∈ Γ : 0 < ϕ(x)− µ < εβ},
Aβ ={x ∈ Γ : εβ ≤ ϕ(x)− µ}.

Noticing that on J± we have that λε = ±1, that the active sets cover all Γ, and that they are
pairwise disjoint, we can write the active set algorithm described in Algorithm 1. Notice that
(40) can be written as an unconstrained differentiable linear-quadratic optimal control problem.
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Algorithm 1: Active set algorithm for problem (Pε).

1 Initialize k = 0, choose initial point uk, and compute yk = yuk and φk = φuk

2 repeat
3 Compute ϕk = ∂νA∗φ

k

4 Compute the active sets using (39)

5 Solve for uk+1, yk+1, φk+1,

yk+1 =yuk+1 εuk+1 =∂νA∗φ
k+1 − µ on J+

φk+1 =φuk+1 εuk+1 =∂νA∗φ
k+1 + µ on J− (40)

uk+1 =α on Aα

uk+1 =0 on A0

uk+1 =β on Aβ

6 Set k = k + 1

7 until convergence

Algorithm 2: Fixed point iteration to solve (40). Variational discretization.

Data: πh ∈ {Ph, Ih}
1 Define uA = α in Aα, uA = β in Aβ , uA = 0 elsewhere
2 Initialize i = 0, ui = uA
3 repeat
4 Compute ϕi = ∂h

νA∗φh(u
i)

5 ui+1 = 1
ε (ϕ

i + µ) on J−, ui+1 = 1
ε (ϕ

i − µ) on J+, ui+1 = uA on A
6 i = i+ 1

7 until convergence

To this, denote A = Aα ∪ A0 ∪ Aβ , define uA = α in Aα, uA = β in Aβ , uA = 0 elsewhere and
consider the linear space V = {u ∈ L2(Γ) : u = 0 on A}. Then (40) is equivalent to

Find uJ = argmin
u∈V

1

2
∥yu − (yd − yuA)∥2L2(Ω) + µ

∫
J+

udx− µ

∫
J−

udx+
ε

2
(u, u)2Γ;

uk+1 = uA + uJ.

The reader is referred to [16] for optimization algorithms for differentiable linear-quadratic Dirich-
let control problems.

Adaptation of Algorithm 1 to the variational discretization described in Section 4 is straight-
forward. One just has to select the discretization method πh ∈ {Ph, Ih} and replace ∂νA∗ by the
corresponding discrete normal derivative ∂h

νA∗ . To solve the system in (40), a fixed point iteration
can be used. See Algorithm 2. It is worth noticing that if we know that the solution is bang-bang
or bang-off-bang it is possible to adapt the algorithm described in [14] to solve directly (Pv); see
Algorithm 3.
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Algorithm 3: Variational discretization. Problem with bang-bang or bang-off-bang
solution.
Data: πh ∈ {Ph, Ih}

1 Initialize k = 0, choose initial point uk

2 repeat
3 Compute uh = πhu

k

4 Use uh to compute yk+1 = yh(u
k)

5 Use yk+1 to compute φk+1 = φh(u
k)

6 Compute ϕk+1 = ∂h
νA∗φ

k+1

7 Set uk+1(x) =


α if ϕk+1(x) < −µ

0 if |ϕk+1(x)| < µ

β if ϕk+1(x) > µ

8 Set k = k + 1

9 until convergence

To solve the full discrete problem, the proper Tikhonov regularization makes use of the inner
product introduced in (13). For ε > 0, we consider

min
uh∈Uh,ad

Jh,ε(uh) = Jh(uh) +
ε

2
(uh, uh)h. (Ph,ε)

This approach is known as the mass lumping. It has been used, in the framework of distributed
controls, in [9] or [18, eq. (4.32)] for problems with sparsity promoting terms. A thorough study
for problems without sparsity promoting terms can be found in [22].

For uh =
∑NΓ

j=1 ujej , denote ϕh = Ih∂Ih
νA∗φ

Ih

h (uh) =
∑NΓ

j=1 ϕjej . We define the active sets
related to uh as

Aα ={j : ϕj + µ ≤ εα},
J− ={j : εα < ϕj + µ < 0},
A0 ={j : |ϕj | ≤ µ},
J+ ={j : 0 < ϕj − µ < εβ},
Aβ ={j : εβ ≤ ϕj − µ}.

Adaptation of Algorithm 1 is now straightforward. In this case, it is possible to solve the discrete
version of system (40) directly. Denote I and B the sets of interior and boundary nodes, K, M,
and B the stiffness (related to the operator A), mass and boundary mass matrices for the finite
element method and let D be the diagonal matrix of size NΓ such that Djj = (ej , 1)Γ for j ∈ B.
We also use I for the identity matrix. For different sets of indexes L, K, we denote XL,K the
submatrix of X formed by the rows indexed by L and the columns indexed by K. As in Matlab,
we use the colon notation “:” for all the indexes. Vectors representing the discrete functions
are denoted in boldface, u, y, φ, yd, 1, and 0. We denote C = D−1B so that the Cartesen
interpolant of uh can be computed by means of Cu. Using the vector ξ to represent the discrete
normal derivative introduced in Theorem 3.1, the discrete version of system in (40) can be written
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KI,IyI =−KI,BCu
KI,IφI =MI,IyI +MI,BCu−MI,:yd

Dξ =KB,IφI −MB,IyI −MB,BCu+MB,:yd

εIJ−,Bu =IJ−,BCξ + 1µ

εIJ+,Bu =IJ+,BCξ − 1µ

IAα,Bu =1α IA0,Bu = 0 IAβ ,Bu = 1β

Finally, we can do ϕ = Cξ to compute the active sets of the next step.

7 Examples

Let Ω be (0, 1)2, A = −∆, f = 0. All the examples are solved using a uniform mesh with 256
edges per side.

Example 7.1. Bang-off-bang optimal control

Consider yd(x) = 2sign(x1 − x2), −α = β = 0.5 and µ = 0.218. All three approaches
are tested: variational with L2-projection, variational with Carstensen interpolant and full dis-
cretization approach (ε = 1.7× 10−15). We obtain the following optimal values for the different
approximations.

JPh
v (ūPh

v ) ≈ 1.817457 JIh
v (ūIh

v ) ≈ 1.817462 Jh(ūh) ≈ 1.817463

Graphs with the optimal control and states, as well as the discrete normal derivatives used, can
be found in Figure 1. We clearly observe a bang-off-bang optimal control. You may notice how
the jump points appear naturally for the variational approach, (figures 1d and 1e), and also how
the use of Carstensen interpolant (Figure 1b) prevents the optimal state from overshooting the
control constraints on the boundary, a phenomenon which occurs for the L2(Γ) projection (Figure
1a).

Example 7.2. Optimal control with singular arcs

We consider the example presented for the first time in [13, Section 8]. Consider yd(x) =
|x|−2/3, α = −1 and β = 2. In that reference, (Pε) is solved for ε = 1 (and of course µ = 0).
The bounds are not attained by the solution and the value of the optimum for that problem is
Jε=1(uε=1) ≈ 0.97383.

We solve problem (P) for µ = 0.218 using the full discrete approach (ε = 4.1 × 10−13). We
obtain Jh(ūh) = 0.87889. Graphical representation of the solution, where the singular arcs can
be clearly seen, is presented in Figure 2.

Example 7.3. A doubtful case

We take the same data as in Example 7.2 but with the bounds −α = β = 0.5. For the full
discretization approach (ε = 6.5× 10−15) we obtain the solution shown in Figure 3c with

Jh(ūh) ≈ 0.99842.
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(a) Variational approach with
L2(Γ)-projection. Optimal state.

(b) Variational approach with
Carstensen interpolation. Opti-
mal state.

(c) Full discretization. Optimal
state.

(d) Variational approach with
L2(Γ)-projection. Optimal con-
trol and negative discrete normal
derivative of the adjoint state.

(e) Variational approach with
Carstensen quasi-interpolation.
Optimal control and negative new
discrete normal derivative of the
adjoint state.

(f) Full discretization. Optimal
control. Optimal control and
Carstensen interpolant of the nega-
tive new discrete normal derivative
of the adjoint state.

Figure 1: Results for Example 7.1. Solutions of bang-off-bang type.

We seemingly observe a bang-off-bang optimal control, but ūh has a few components ūj ̸∈
{α, 0, β}, marked with black dots in Figure 3c.

Then we try to use Algorithm 3 to look for a bang-off-bang solution of the variational dis-
cretization, but it loops forever between two admissible controls u1

v and u2
v, changing the switching

points back and forth; see figures 3a and 3b. This does not seem an effect of the mesh size, because
the switching points of both functions are not near one another. To fix ideas, we set πh = Ih.
We obtain the following values.

Jv(u
1
v) ≈ 1.00852 Jv(u

2
v) ≈ 1.00323

One may notice that the value of Jh(ūh) is smaller than Jv(u
i
v), for i = 1, 2. But, for any ūv

solution of (Pv), using (32), we have

Jv(ūv) ≤Jv(ūh) = F Ih

h (ūh) + µj(ūh) ≤ F Ih

h (ūh) + µjh(ūh) = Jh(ūh).

This fact, together with the non-convergence of Algorithm 3, may be an indication that the
optimal control is not of the bang-off-bang type.

Experimental orders of convergence. As we said in the introduction, the obtained orders
of convergence are far from being optimal. Just to give a sense of this, we have measured some
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Figure 2: Results for Example 7.2. Solution with singular arcs. Full discretization.

(a) Variational discretization. Con-
trol u1

v.
(b) Variational discretization. Con-
trol u2

v.
(c) Full discretization. Optimal
control.

Figure 3: Results for Example 7.3. A doubtful case.

errors and orders of convergence in the previous examples. We define

eyk = ∥ȳhk
− ȳhk+1

∥L2(Ω), euk = ∥ūhk
− ūhk+1

∥L1(Γ),

for the full discretization and analogously for the variational discretization and we report on the
experimental order of convergence (EOC) obtained as the slope of the regression line of log hk vs.
log ek.

For Example 7.1, the state EOC for the variational approach with Carstensen interpolation
is 1.04, while the control EOC is 1.01; for the full discretization, we obtain 0.91 and 0.99. In
Example 7.2, the control has singular arcs, so we only report on the state EOC, which is 0.78. It
is clear that these numbers are far from the expected 1/3 or 1/4 given by the theoretical results.

A On the regulairty of the conormal derivative

Let ϕg ∈ H2(Ω) ∩H1
0 (Ω) be the solution of (2). Let us prove in detail that ∂νA∗ϕg ∈ H1/2(Γ).

Let us denote (Sj)0≤j≤NS
the vertices of Ω, numbered counterclockwise and with the conven-

tion that S0 = SNS
. Each side of Γ is denoted Γj = [Sj−1, Sj ], where 1 ≤ j ≤ NS . The trace of

∇ϕg on Γ belongs to (H1/2(Γ))2. Thus the trace of ∇ϕg on Γj belongs to (H1/2(Γj))
2 and the
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Lipschitz regularity of the coefficients aij implies that ∂νA∗ϕg ∈ H1/2(Γj). Moreover we have the
estimate

∥∂νA∗ϕg∥H1/2(Γj) ≤ C∥g∥L2(Ω).

To show that ∂νA∗ϕg belongs to H1/2(Γ) we have to analyze the behaviour at the corners Sj =
Γj ∩ Γj+1. Following [15], we parametrize Γj+1 by setting xj(σ) = Sj +

σ
|Γj+1| (Sj+1 − Sj) with

0 ≤ σ ≤ |Γj+1|, and Γj by xj(−σ) = Sj − σ
|Γj | (Sj − Sj−1) with 0 ≤ σ ≤ |Γj |. For 0 ≤ σ ≤ δj =

min{|Γj |, |Γj+1|}, xj(σ) ∈ Γj+1, xj(−σ) ∈ Γj and |xj(σ) − Sj | = |xj(−σ) − Sj | = σ. According
to Theorem 1.5.2.3.c in [15], to prove that ∂νA∗ϕg ∈ H1/2(Γj ∪ Γj+1), we have to show that∫ δj

0

|∂νA∗ϕg(xj(σ))− ∂νA∗ϕg(xj(−σ))|2

σ
dσ < +∞. (41)

First notice that ∥ϕg∥H2(Ω) ≤ C∥g∥L2(Ω). Since ϕg ∈ H2(Ω), then ∇ϕg ∈ (H1(Ω))2, and the

usual trace theorem says that ∂iϕg ∈ H1/2(Γ) for i = 1, 2. As is shown in the first part of the
proof of Theorem 1.5.2.3.c) in [15], this implies that∫ δj

0

|∂iϕg(xj(σ))− ∂iϕg(xj(−σ))|2

σ
dσ < +∞, (42)

for i = 1, 2. We are going to transform the integral in (41) into a combinations of integrals
involving the partial derivatives. To do that, without loss of generality, we can suppose that Γj

is on the negative part of the x axis, Sj is at the origin and Γj+1 ⊂ {(−σ n2, σ n1) | 0 ≤ σ}, so
that the normal and tangent vectors to Γj and Γj+1 respectively are νj = (0,−1)T , τj = (1, 0)T

and νj+1 = (n1, n2)
T , τj+1 = (−n2, n1)

T where n1 > 0 and n2
1 + n2

2 = 1. The functions
r, s, γ1, γ2 ∈ C0,1(Γj ∪ Γj+1) defined as

γ2 =− a22, s =a12 +
n2 + 1

n1
a22,

γ1 =n1a11 + n2a21+n2s, r =− γ1 − a21,

satisfy that

AT νj = rτj + γ1e1 + γ2e2 on Γj

AT νj+1 = sτj+1 + γ1e1 + γ2e2 on Γj+1,

where AT is the transpose matrix of

A(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)
, e1 =

(
1
0

)
, and e2 =

(
0
1

)
.

Therefore, we have

∂νA∗ϕg(xj(σ))− ∂νA∗ϕg(xj(−σ)) = s(xj(σ))∂τϕg(xj(σ))− r(xj(−σ))∂τϕg(xj(−σ))

+ γ1(xj(σ))∂1ϕg(xj(σ))− γ1(xj(−σ))∂1ϕg(xj(−σ))

+ γ2(xj(σ))∂2ϕg(xj(σ))− γ2(xj(−σ))∂2ϕg(xj(−σ))).
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Since ϕg = 0 on Γ, the tangential derivatives in that expression are zero. Therefore, we only have
to prove for i = 1, 2 that∫ δj

0

|γi(xj(σ))∂iϕg(xj(σ))− γi(xj(−σ))∂iϕg(xj(−σ))|2

σ
dσ < +∞.

To prove this, we first insert the term γi(xj(σ))∂iϕg(xj(−σ)) and apply Young’s inequality. Next
we apply the fundamental theorem of Calculus and take advantage of the Lipschitz regularity of
γi to obtain ∫ δj

0

|γi(xj(σ))∂iϕg(xj(σ))− γi(xj(−σ))∂iϕg(xj(−σ))|2

σ
dσ

≤2

∫ δj

0

|γi(xj(σ))∂iϕg(xj(σ))− γi(xj(σ))∂iϕg(xj(−σ))|2

σ
dσ

+ 2

∫ δj

0

|γi(xj(σ))∂iϕg(xj(−σ))− γi(xj(−σ))∂iϕg(xj(−σ))|2

σ
dσ

≤2

∫ δj

0

γi(xj(σ))
2 |∂iϕg(xj(σ))− ∂iϕg(xj(−σ))|2

σ
dσ

+ 2

∫ δj

0

|γi(xj(σ))− γi(xj(−σ))|2

σ
|∂iϕg(xj(−σ))|2dσ

≤2∥γi∥2L∞(Γj+1)

∫ δj

0

|∂iϕg(xj(σ))− ∂iϕg(xj(−σ))|2

σ
dσ

+ 2

∫ δj

0

|
∫ σ

−σ
γ′(xj(s))ds|2

σ
|∂iϕg(xj(−σ))|2dσ

≤2∥γi∥2L∞(Γj+1)

∫ δj

0

|∂iϕg(xj(σ))− ∂iϕg(xj(−σ))|2

σ
dσ

+ 8∥γi∥2C0,1(Γj∪Γj+1)
δj∥∂iϕg∥2L2(Γj)

which is finite thanks to (42) and the fact that the trace of ∂iϕg is in H1/2(Γ) ↪→ L2(Γ).
Making the same analysis for each corner, we have proved the claimed regularity.
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