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Abstract: The title compound was synthesized by electrophilic cyanation of commercially avail-
able (R)-4-chloro-α-methylbenzylamine with cyanogen bromide in diethyl ether, and isolated as
a yellow oil in 84% yield. It was characterized by 1H and 13C{1H] NMR, IR, HRMS, and specific
rotation measurements.
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1. Introduction

Cyanamides are attractive 1C-2N building blocks for the construction of nitrogen-rich
molecules such as amidines, guanidines, or ureas [1–3]. Moreover, the cyanamide moiety
is present in a number of biologically active molecules, such as the cathepsin K protease
and the type 4 phosphodiesterase inhibitors A [4] and B [5], respectively, or the insecticides
thiacloprid (C) [6] and sulfoxaflor (D) [7] (see Figure 1).
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Figure 1. Structure of the biologically active cyanamides (A–D). 

According to their significance in synthetic organic chemistry, a large variety of 
methods for the preparation of cyanamides have been developed [1–3,8]. Among them, 
the electrophilic cyanation of amines (primary or secondary) is nowadays the most prev-
alent and effective one, with cyanogen bromide (BrCN) being commonly employed as the 
electrophilic cyanide source [1–3,8]. Following this route, we report herein the synthesis 
and characterization of N-[(1R)-1-(4-chlorophenyl)ethyl]-cyanamide, a novel chiral cyan-
amide that could have potential application as an advanced intermediate in asymmetric 
synthesis. 
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Figure 1. Structure of the biologically active cyanamides (A–D).

According to their significance in synthetic organic chemistry, a large variety of
methods for the preparation of cyanamides have been developed [1–3,8]. Among them, the
electrophilic cyanation of amines (primary or secondary) is nowadays the most prevalent
and effective one, with cyanogen bromide (BrCN) being commonly employed as the
electrophilic cyanide source [1–3,8]. Following this route, we report herein the synthesis and
characterization of N-[(1R)-1-(4-chlorophenyl)ethyl]-cyanamide, a novel chiral cyanamide
that could have potential application as an advanced intermediate in asymmetric synthesis.

2. Results and Discussion

Synthesis of N-[(1R)-1-(4-chlorophenyl)ethyl]-cyanamide 2 was successfully achieved
by following the procedure described by Kaushik and co-workers for the preparation of
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related N-monosubstituted cyanamides [9]. Thus, as shown in Scheme 1, the addition of
2 equivalents of (R)-4-chloro-α-methylbenzylamine 1 to a diethyl ether solution of BrCN
led to the clean formation of cyanamide 2, which was isolated as a yellow oil in 84% yield.
The HBr released during the cyanation reaction is neutralized by the excess of the amine,
generating the corresponding ammonium salt 3, which precipitates from the ethereal
solution, thus allowing its separation from 2 by simple filtration. Alternatively, compound
2 could be synthesized in 77% yield by reacting equimolar amounts of BrCN and amine 1
in diethyl ether containing anhydrous sodium carbonate (2 equivalents) at −20 ◦C for 4 h,
as described by Harrison and co-workers for related systems [10].
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The IR spectrum of compound 2 showed characteristic N-H and C≡N vibrations ap-
pearing as strong absorption bands at 3193 and 2218 cm−1, respectively. The recorded 1H 
and 13C{1H} NMR spectra were also fully consistent with the proposed formulation (copies 
of the NMR spectra are provided as Supplementary Materials). Thus, the 1H NMR spec-
trum showed, in addition of the aromatic resonances for the 4-chlorophenyl unit, a broad 
signal at 4.14 ppm assigned to the NH proton, a doublet (3JHH = 6.9 Hz) at 1.56 ppm asso-
ciated with the methyl group, and a quartet of doublets at 4.41 ppm for the methinic pro-
ton, which couples both the CH3 (3JHH = 6.9 Hz) and NH (3JHH = 4.2 Hz) groups. Regarding 
the 13C{1H} NMR spectrum, the appearance of a singlet signal at 114.7 ppm, not present in 
the starting amine 1, is probably the most relevant feature, as it confirms that a C≡N unit 
has been incorporated in the product. Typical resonances for the methinic and methyl 
carbons at δC 55.0 and 22.0 ppm, respectively, are also present in the spectrum, along with 
those of the 4-chlorophenyl unit (δC 134.2 and 139.8 ppm for the quaternary carbons, and 
δC 127.6 and 129.1 ppm for the CH ones). The specific optical rotation of compound 2 was 
measured in CHCl3 solution, giving a value of [α]D20 = +288.4°, a dextrorotary behavior 
also observed for the starting amine 1 ([α]D20 = +31.0° in CHCl3) [11]. In order to complete 
its characterization, the HRMS of 2 was also recorded (see Figure 2). Contrary to our ex-
pectations, the molecular ion peak ([M]+ = 180.0454) was not present in the mass spectrum. 
Instead, a mass corresponding to the protonated trimer E (m/z 541.1401) was observed, a 
fact not entirely surprising, since N-monosubstituted cyanamides are known to cyclotri-
merize easily into isomelamines under thermal conditions [12]. The rest of the ion peaks 
found in the spectrum seem to result from the fragmentation of this trimer and were as-
signed to the species F–I, depicted in Figure 2. In view of the mass spectrum obtained, 
doubts could arise about the real nature of the compound obtained in the reaction of (R)-
4-chloro-α-methylbenzylamine 1 with BrCN. However, the direct formation of trimer E 
can be ruled out based on the recorded NMR spectra, since for E characteristic signals for 
the C=NH units should appear at δH 6-7 ppm and δC 140–150 ppm [12]. Finally, it should 
also be noted that HPLC measurements on compounds 1 and 2 indicated no erosion of 
optical purity (97%) during the cyanation process (details are given in the Supplementary 
Materials). 
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Scheme 1. Synthesis of N-[(1R)-1-(4-chlorophenyl)ethyl]-cyanamide 2.

The IR spectrum of compound 2 showed characteristic N-H and C≡N vibrations
appearing as strong absorption bands at 3193 and 2218 cm−1, respectively. The recorded
1H and 13C{1H} NMR spectra were also fully consistent with the proposed formulation
(copies of the NMR spectra are provided as Supplementary Materials). Thus, the 1H-NMR
spectrum showed, in addition of the aromatic resonances for the 4-chlorophenyl unit, a
broad signal at 4.14 ppm assigned to the NH proton, a doublet (3JHH = 6.9 Hz) at 1.56 ppm
associated with the methyl group, and a quartet of doublets at 4.41 ppm for the methinic
proton, which couples both the CH3 (3JHH = 6.9 Hz) and NH (3JHH = 4.2 Hz) groups.
Regarding the 13C{1H} NMR spectrum, the appearance of a singlet signal at 114.7 ppm, not
present in the starting amine 1, is probably the most relevant feature, as it confirms that a
C≡N unit has been incorporated in the product. Typical resonances for the methinic and
methyl carbons at δC 55.0 and 22.0 ppm, respectively, are also present in the spectrum, along
with those of the 4-chlorophenyl unit (δC 134.2 and 139.8 ppm for the quaternary carbons,
and δC 127.6 and 129.1 ppm for the CH ones). The specific optical rotation of compound
2 was measured in CHCl3 solution, giving a value of [α]D

20 = +288.4◦, a dextrorotary
behavior also observed for the starting amine 1 ([α]D

20 = +31.0◦ in CHCl3) [11]. In order to
complete its characterization, the HRMS of 2 was also recorded (see Figure 2). Contrary to
our expectations, the molecular ion peak ([M]+ = 180.0454) was not present in the mass
spectrum. Instead, a mass corresponding to the protonated trimer E (m/z 541.1401) was
observed, a fact not entirely surprising, since N-monosubstituted cyanamides are known to
cyclotrimerize easily into isomelamines under thermal conditions [12]. The rest of the ion
peaks found in the spectrum seem to result from the fragmentation of this trimer and were
assigned to the species F–I, depicted in Figure 2. In view of the mass spectrum obtained,
doubts could arise about the real nature of the compound obtained in the reaction of
(R)-4-chloro-α-methylbenzylamine 1 with BrCN. However, the direct formation of trimer
E can be ruled out based on the recorded NMR spectra, since for E characteristic signals
for the C=NH units should appear at δH 6–7 ppm and δC 140–150 ppm [12]. Finally,
it should also be noted that HPLC measurements on compounds 1 and 2 indicated no
erosion of optical purity (97%) during the cyanation process (details are given in the
Supplementary Materials).
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3. Materials and Methods

Cyanogen bromide and (R)-4-chloro-α-methylbenzylamine were obtained from Merck
KGaA (Darmstadt, Germany) and used as received. Organic solvents were dried by
standard methods and distilled under argon before use [13]. NMR spectra were recorded at
room temperature on a Bruker DPX-300 instrument (Billerica, MA, USA), with the residual
signal of the deuterated solvent employed (CDCl3) as reference for the chemical shifts.
The IR spectrum of compound 2 was recorded on a PerkinElmer 1720-XFT spectrometer
(Waltham, MA, USA). HRMS data were provided by the General Services of the University
of Oviedo employing a QTOF Bruker Impact II mass spectrometer. The optical rotation of
2 was measured using a Perkin-Elmer 241 polarimeter.

N-[(1R)-1-(4-Chlorophenyl)ethyl]-Cyanamide (2)

A solution of (R)-4-chloro-α-methylbenzylamine 1 (1.40 mL, 10 mmol) in 20 mL of
diethyl ether was added dropwise to a solution of cyanogen bromide (0.530 g, 5 mmol)
in 30 mL of diethyl ether at 0 ◦C (CAUTION: Cyanogen bromide is extremely toxic and
should only be used in a fume hood with the appropriate personal protective gear [14]).
The reaction mixture was then stirred at room temperature for 3 h. A white precipitate of
the ammonium salt 3 appeared and was removed by filtration. The filtrate was washed
with water (2 × 10 mL), dried with anhydrous MgSO4, and filtered and concentrated
under reduced pressure to give cyanamide 2 as a yellow oil, which was washed twice with
hexane (2 × 5 mL). Yield: 0.759 g (84%). The characterization data for 2 are as follows:
1H-NMR (300 MHz, CDCl3): δ = 7.38–7.35 (m, 2H, CHarom), 7.30–7.28 (m, 2H, CHarom),
4.41 (qd, 1H, 3JHH = 6.9 and 4.2 Hz, CHMe), 4.14 (br s, 1H, NH), 1.56 (d, 3H, 3JHH = 6.9
Hz, Me) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 139.8 (s, Carom), 134.2 (s, Carom),129.1
(s, CHarom), 127.6 (s, CHarom), 114.7 (s, C≡N), 55.0 (s, CHMe), 22.0 (s, Me) ppm. IR (neat):
ν = 3193 (s), 2978 (m), 2902 (m), 2218 (s), 1902 (w), 1653 (w), 1597 (w), 1578 (w), 1494 (s),
1451 (m), 1412 (m), 1379 (m), 1337 (w), 1318 (w), 1295 (w), 1271 (w), 1209 (m), 1162 (m),
1123 (w), 1099 (s), 1014 (s), 885 (w), 829 (s), 778 (w), 722 (w) cm−1. HRMS (ESI): m/z
541.1401 [C27H27N6Cl3 + H+] (calcd. for C27H28N6Cl3: 541.1441), 403.1178 [C19H20N6Cl2 +
H+] (calcd. for C19H21N6Cl2: 403.1204), 223.0735 [C10H12N4Cl]+ (calcd. for C10H12N4Cl:
223.0745), 139.0303 [C8H8Cl]+ (calcd. for C8H8Cl: 139.0309), 85.0508 [C2H5N4]+ (calcd. for
C2H5N4: 85.0509). [α]D

20 = +288.4◦ (c 1.0, CHCl3).

4. Conclusions

In summary, N-[(1R)-1-(4-chlorophenyl)ethyl]-cyanamide has been synthesized in
high yield by electrophilic cyanation of (R)-4-chloro-α-methylbenzylamine and spectro-
scopically characterized.
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Supplementary Materials: The following are available online, Figures S1–S4: 1H-NMR, 13C{1H}
NMR, IR, and HRMS spectrum of compound 2. Details on the determination of the optical purity of
compounds 1 and 2.
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