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Abstract: Scaled-Resolving Simulations, like LES modelling, are recent CFD techniques to 

analyse numerically unsteady flows and turbulence in turbomachinery. Despite their high 

computational costs, they provide an unsteady, time-resolved solution of the flow with embedded 

turbulent scales. From an engineering point-of-view, a statistical description of such solutions is 

mandatory. Thus, phase-averaged values of velocity fields and turbulent scales must be 

postprocessed in order to provide a representative description of the unsteadiness, using a minimum 

number of averages that it is a priori unknown. This required number depends on the flow 

complexity, the type of turbomachine and its operating condition. 

In order to save computational costs, the present paper provides the mathematical formulation 

required to compute and assure that periodic convergence has been met. The framework has been 

developed to update the phase-averaged values and the residual on the run, so the amount of data 

to be stored is extremely reduced. Following, the formulation is applied over a previous numerical 

database concerning a Wall-Modelled LES simulation of the Rotor-Stator Interaction in a low-

speed axial fan using a 3D linear cascade model. The results obtained confirm that convergence of 

turbulent structures is more compromised than primary flow variables due to inherent instabilities 

of the coherent flow vortices. 

This work forms part of the concept of co-processing, in which some operations related to post-

processing routines are moved towards the iterative resolutions processes of numerical CFD 

simulations in order to save computational costs. 
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1 Introduction 

Unsteady Reynolds-Averaged Navier-Stokes (URANS) 

modelling is the standard approach for the CFD simulation of 

incompressible flows in turbomachinery applications. With 

this level of fidelity, in which all turbulent phenomena are 

modelled, global parameters like the pressure rise or the 

mean-time efficiency can be reasonably obtained, especially 

at nominal or close-to-nominal conditions. However, the 

existence of a spectral gap between the turbulent time scales 

(integral time scale) and the large-scale fluctuations 

associated with the blade passing frequency (BPF) is 

required; a critical aspect which is not usually guaranteed 

(Tucker, 2011). 

To overcome this problem, Scale-Resolving Simulations 

(SRS), (Menter, 2015), also known as Eddy-Resolving 
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Simulations, ERS (Tucker and Tyacke, 2016) have 

progressively emerged as an enhanced option to simulate 

unsteady flows and turbulence in multistage turbomachinery 

with higher accuracy. These methods resolve all or just a part 

of the turbulence spectrum in at least a portion of the 

numerical domain. Large Eddy Simulation (LES) is the most 

popular technique but other formulations including hybrid 

RANS/LES schemes have been recently developed to 

simulate both global and local unstable flows (Lehnhauser et 

al., 2004); (Benim et al., 2011). The Scale Adaptive 

Simulation (SAS), that precludes the formation of broadband 

turbulence, the Detached Eddy Simulation (DES) or Wall-

Modelling LES (WMLES), especially developed for wall-

bounded flows and the Embedded LES (ELES) for zonal, 

massive separations are examples of such hybrid schemes. 

All these scale-resolving methodologies, using the LES 

technique as cornerstone, provide a highly accurate 

description of time-dependent physics of the turbulent 

motion. Unfortunately, the computational costs and CPU 

times required are still a limiting factor that prevents classic 

RANS modelling from being abandoned. 

In turbomachinery environments, non-linear and viscous 

phenomena related to wake-blade and wake-wake 

interactions arise within the passages, resulting in extremely 

complex flow patterns with multiple length scales. RANS 

turbulence models can predict turbulence generation, wake 

flow and even mild separation but fails in the description of 

turbulent mixing in high-swirl vortical structures (Javadi and 

Nilsson, 2015). This is especially critical in the case of 

turbomachinery flows with heat transfer, involving non-

uniform density distributions and time-dependent hot-spots 

(Adamczyk, 1999); (Chow et al., 2002). Under such 

conditions, the assumption of a spectral gap between 

turbulent structures and large-scale fluctuations is no longer 

valid, so the use of URANS modelling, supported by this 

separation of scales, should be avoided. 

In the case of incompressible flow turbomachinery 

(typically, centrifugal pumps and low-pressure fans or 

blowers) these constraints are relaxed with less intense 

interactions and reduced turbulent mechanisms, specially at 

design conditions. Deterministic oscillations (Meneveau and  

Katz, 2002) are predominant, so URANS modelling can still 

provide reliable estimations (Huang et al., 2010); (Ziegler, 

2017). However, at off-design conditions (especially near 

stall/surge margins), scale-resolving techniques are desirable 

and should be employed to simulate accurately the 

convective transport of vortical structures (eddies), despite 

the computational costs (Tucker, 2011b and Gourdain et al., 

2014). A correct description of these eddies is essential to 

simulate accurately the response of blades and vanes 

boundary layers in multistage environments, which allows a 

precise prediction of their time-averaged performance. 

Extremely fine meshes and low time steps are severe 

constraints in LES-based simulations, with temporal and 

spatial discretizations that should be 103 to 104 times denser 

than URANS simulations (Michelassi, 2013). Fortunately, 

for the simulation of blade-to-blade passages at midspan 

locations in turbomachinery (i.e., decoupling endwall 

casings), the computational requirements can be notably 

relaxed using hybrid methods (WMLES for shear layer flows 

in the blade surfaces and/or ELES for highly-detached flow 

regions). It is known that coherent turbulent structures are 

mainly confined to streamwise planes, so 3D spanwise-

restricted models with only a portion of the blade span (5-

10% of the blade chord) are a reasonable approach for the 

economic analysis of these flows. These simulations, 

typically with a few millions cells (in the order of 1 million 

elements per passage for Reynolds numbers in the range of 

105 – 106) (Tucker, 2011c) are currently affordable and allow 

the use of scale-resolving methods even for industrial 

manufacturers and designers. 

In addition, the solution of LES-based simulations 

provides an inherent, time-dependent description of the flow 

fields which complicates the classic idea of numerical 

convergence. Superimposed on the (partially) resolved 

turbulence, the periodic variation of the flow due to the 

unsteady blade rotation involves the necessity for statistical 

post-processing of the results. Hence, not only a spatial-

filtering average must be introduced in the pre-processing of 

the numerical solution (to provide the LES set of equations 

to be resolved), but also a phase-averaging is required in the 

post-processing for an accurate and practical statistical 

description of the turbulent motions. Obviously, this leads to 

the generation of large amounts of data to be post-processed, 

which is an additional problem of CPU time and high 

computational costs for CFD users. 

To handle this data, co-processing (Duan, 2014), is 

emerging as the most cost-effective way to process relevant 

data, where runtime in-memory processing of the flow is 

occurring concurrently to the simulation itself. In the case of 

LES-based simulation of turbomachinery flows, it is 

necessary to decide in an aprioristic basis which is the region 

of interest, update statistics on the fly and store only this co-

processed statistical data. Convergence is judged upon this 

data and finally written for definitive post-processing. 

In this paper, the mathematical expressions required to 

perform these co-processed statistics on the run are derived 

and discussed in detail. A mathematical framework, based on 

the phase-averaging operator clocked with the blade passing 

frequency, is firstly exploited to provide first-order and 

second-order statistics that assures the deterministic 

convergence of turbomachinery flows. Additionally, a 

numerical database from a low-speed axial fan (Fernández 

Oro et al, 2019) using a LES-based model is presented and 

employed to use these expressions during the convergence 

procedure. This mathematical framework allows a notable 

reduction of the number of transient computations for SRS 

modelling and helps advanced users of CFD codes to save 

CPU time and guarantee reliable periodic convergence. 

 

 

2 Time scales and spectral gap 

From an engineering point of view, the description of the 

time-resolved turbulent flow is essential for an accurate 

simulation of the energy transfer within the passages of any 

turbomachine. The vortical dynamics of the wake fluid, being 
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convected by the streamwise velocity, in combination with 

the large gradients arising due to the blade motion and with 

complex rotor-stator interactions between adjacent 

blade/vane rows, provokes a wide range of temporal scales in 

the unsteady flow patterns. 

Typically, the instantaneous value of any variable can be 

decomposed into a time-averaged value, a deterministic 

fluctuation related to the blade passing period (tBPF) and 

turbulent instabilities with highest time scales (tILS) in the 

order of those of the integral eddies. These random 

fluctuations range from the integral eddy size (or length 

scales, ILS) down to the Kolmogorov dissipation scales 

(tKOL). The existence of a spectral gap requires that tBPF≫tILS, 

or equivalent to fILS/fBPF ≫1. However, this condition is not 

commonly satisfied, especially for the turbomachines with 

significant rotating speeds (above 1500-2000 rpm) and a 

large number of blades per rotor row (above 5-7). 

In a rotor-stator configuration, additional important time 

scales introduce more complexity into the flow description. 

Vortex shedding mechanisms of the wake flow coming from 

upstream rows (tSHED) as well as the vortical dynamics 

evolving in the boundary layer of the row of interest (tBL) are 

also convected, contributing to enhance the turbulent mixing. 

Tucker (2011b, 2011c) provides an in-depth review of these 

time scales for engine gas turbines. 

Figure 1 shows a sketch of all these turbulent scales from 

the representation of the unsteady vorticity maps at a given 

instant in the interrow region of a one stage, low-speed axial 

fan. These maps have been taken from the results of a LES-

based simulation of an axial fan (Fernández Oro et al, 2019) 

designed to resolve roughly 70% of the turbulent energy 

budget in the vicinity of the rotor blades (More details of the 

simulation are presented later in section 4). Both nominal 

(top) and off-design (bottom) conditions are shown in Figure 

1. The different turbulent motions and interaction 

mechanisms are illustrated and conceptually identified in the 

figure. The periodic impingement of upstream wakes (related 

to the time required for a fluid particle to pass through the 

blade passage, fFLOW/fBPF) is evident at nominal conditions, 

being mixed with the turbulent structures shed from the vane 

trailing edge (fBL/fBPF). At off-design conditions, the vortex 

shedding from the upstream blades (fSHED/fBPF) and the 

interaction triggering large-scale vortices in the suction 

surface of the vanes (fILS/fBPF) reveals the higher complexity 

of the turbulence picture at partial conditions. 

 

 

Figure 1    Identification of turbulent structures at nominal 

(top) and off-design (bottom) conditions. 

 

 

Furthermore, table 1 shows a rough estimation of the 

relevant time scales in terms of frequency ratios with respect 

to the blade passing frequency (as labelled in the figure). For 

this database, the BPF is equal to 360 Hz (9 rotor blades and 

a rotational speed of 2400 rpm). Note that all mechanisms 

present a similar frequency range, except for the Kolmogorov 

scales that it is roughly two orders of magnitude higher than 

the rest. It is also noticeable that the eddy scales from the 

boundary layer of the vane at nominal conditions is 

significantly higher than the unsteadiness of the incoming 

wakes (fSHED/fBPF=4.83). Additionally, the condition for the 

spectral gap is marginally fulfilled (fILS/fBPF>1) in that case, 

thus suggesting that a URANS simulation of the nominal 

condition can be considered. Conversely, at off-design 

conditions, the generation of large-scale turbulence occurs 

more rapidly than the periodic fluctuation of the non-uniform 

incoming flow, thus invalidating the assumption of a spectral 

gap. 

 

 

Table 1    Time scales of relevant turbulent and unsteady 

mechanisms. 

 

R-S config. Nominal (QN) Off-design (70%QN) 

fFLOW/fBPF 0.73 0.51 

fILS/fBPF 1.21 0.67 

fSHED/fBPF 4.83 1.51 

fBL/fBPF 2.41 1.69 

fKOL/fBPF 25.8 62.7 

 

More insight regarding the spectral gap is provided in 

table 2, showing typical values of turbulence intensity, length 

scales and the corresponding frequency of the integral time 

scale. Previous investigations (both numerical and 

experimentally) have determined typical integral scales in the 

order of 1/15 of the blade chord for the nominal conditions 

and around 1/3 of the chord for near-stall conditions 

(Fernández Oro et al., 2019; and Galdo-Vega et al., 2013). 

From the turbulent kinetic energy, a characteristic velocity 

fluctuation U for the turbulent motion is derived and thus the 

large eddy “turnover” time (tILS) is estimated. This integral 

time scale is the specific value compared to the blade passing 

period in the previous table. 

This is perfectly illustrated with the representation of the 

velocity trace and its corresponding frequency spectrum in a 

point close to the leading edge of the vane. Numerical results 

for both flow rate conditions are compared in figure 2. As 

expected, the temporal evolution of the velocity trace at 

nominal conditions (black line) reveals the scale disparity 

between the deterministic oscillations clocked with the BPF 

and the small turbulent mechanisms (the flow is very 

repeatable), whereas at off-design conditions, the turbulent 

instabilities makes it impossible to separate the scales (red 

line). The spectrum shows clearly how the BPF scales are 

completely immersed in the inertial subrange of the turbulent 

energy cascade when the axial fan is working at partial load 

(red spectrum), which makes the assumption of a spectral gap 

clearly controversial. 

 

Table 2     Estimation of the integral time scale as a function 

of the flow rate. 

 

R-S config. Nominal (QN) Off-design (70%QN) 

Tu (%) ~ 10% ~ 40% 

ILS ~ c/15 ~ c/3 



4 Author  

U (m/s) ~ 4 ~ 12 

tILS (s) 2.3·10-3 4.1·10-3 

fILS (Hz) 434 244 

 

 

Figure 2   Velocity traces for 10 blade events (left) in a point 

P close to the vane LE: nominal (top) and off-

design (bottom) conditions. Comparison of 

fluctuating spectra (right). See the point location 

in the small figure. 

 

 

3 Mathematical framework for periodic 

convergence in a LES context 

Although URANS modelling is a problematic option when 

turbulence and deterministic unsteadiness are similar in 

magnitude and frequency range, an explicit decomposition 

between stochastic and periodic components (like URANS 

precludes) is still a useful scheme for the analysis of 

turbomachinery flows. From an engineering point of view, 

the introduction of statistical averaging allows one to identify 

the origin and nature of the different fluctuating mechanisms. 

This is typically accomplished using the triple decomposition 

(Leschziner, 2016) for every velocity component: 

 

𝑢 = 𝑢̅⏟
𝑚𝑒𝑎𝑛

+ 𝑢"⏟
𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐⏟        

𝑝ℎ𝑎𝑠𝑒−𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑, 𝑢̃

+ 𝑢′⏟
𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐

    (1) 

 

The phase-averaged technique samples, at every point in 

space, a time series of data obtained for many rotor blade 

events. Following, the corresponding values for the identical 

phase (or angular position) of a rotor blade are averaged. The 

sampling frequency controls the number of phases, or blade 

positions, (N), being typically in the order of 1 degree per 

time step. In LES simulations, this selection must be checked 

with respect to the minimum time step required to capture the 

turn-out time of the large turbulent eddies (usually limited by 

the Courant number associated with the grid size). 

Additionally, the total length of any signal sets the number of 

blade events stored (M). Note that, in order to obtain a 

statistically representative averaged signal, the temporal 

length of the velocity traces has to be extended until the 

phase-averaged value of the signal is periodic (in other 

words, M must be sufficiently large). 

 

Figure 3      Schematic for the phase-averaging procedure. 

 

 

Figure 3 illustrates this methodology to calculate the 

ensemble-averaged data of the velocity trace (in red), 

provided in previous figure 2. From the definition of the 

phase-averaging operator, the phase-averaged value at every 

angular position (or blade phase in a blade-passing period) is 

obtained as: 

𝑢̃𝑛
(𝑀)

=
1

𝑀
∑ 𝑢𝑛

(𝑚)𝑀
𝑚=1    (2) 

 

Where u represents the velocity value for every blade event 

m of the total number (M) of realizations tracked at every 

point in space. The subindex n indicates every sampled point 

during the blade passing period. To obtain the turbulence 

(only the stochastic, random variables), a second-order 

momentum is thus introduced: 

 

𝑢′𝑛
2 ̃ (𝑀)

=
1

𝑀
∑ [𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀)]

2
𝑀
𝑚=1    (3) 

 

The number of ensemble averages needed to ensure a 

fully-converged, phase-averaged trace at every point in space 

is a priori unknown. Consequently, an indicator has to be 

defined to judge convergence within a predefined confidence 

level in that unsteady scenario. Inspired by usual CFD 

practices for stationary turbulent problems, a residual 

comparing the phase-averaged traces with (M-1) and M 

ensembles is employed: 

 

𝑅(𝑀) =
√𝑁∑ [𝑢𝑛

(𝑀)
−𝑢𝑛

(𝑀−1)
]
2

𝑁
𝑛=1

∑ 𝑢𝑛
(𝑀)𝑁

𝑛=1

   (4) 

 

Note that a summation over all the sampled points is 

defined in order to obtain a compact value for every angular 

position. Previous investigations by the authors (Fernández 

Oro et al., 2015) have shown that there is a correlation 

between the number of blade events required to ensure a 

particular convergence criterion and the local, mean-time, 

turbulence level according to 𝑀 ≈ 𝑇𝑢̅̅̅̅ 𝑅⁄  where 𝑇𝑢̅̅̅̅ =

√𝑁∑ 𝑢′𝑛
2 ̃ (𝑀)

𝑁
𝑛=1

∑ 𝑢𝑛
(𝑀)𝑁

𝑛=1

 

 
Note that the residual definition requires the computation 

of the phase-averaged values as defined in eq. (1), which is 

calculated using all the previous values (i.e., all the 

instantaneous solutions for every time step had to be stored). 

In other words, the problem here is the presence of the 

summation for all the m realizations in the definition of the 

formulas. Obviously, this is not realizable because of the 

extremely large amount of data involved, especially for a 

LES-based simulation with grids up to several million cells 

and simulation times extended up to several thousand time 

steps. 

Consequently, if the periodic convergence has to be 

judged on the fly, in the context of practical co-processing, it 

is necessary to rewrite these expressions to perform just an 

update on the run. Doing so, the current phase-averaged value 

has to be recalculated using the present realization 

(corresponding to the running time step) and the previous 

ensembled value (which will be replaced with the update). 

Following, the derivation of these expressions is formally 

presented. 

 

3.1 Update of the ensemble-averaged value (first moment) 

The expansion of eq. (2) for M and (M+1) realizations can be 

expressed as: 
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𝑢̃𝑛
(𝑀) =

1

𝑀
(𝑢𝑛

(1) + 𝑢𝑛
(2) +⋯+ 𝑢𝑛

(𝑀))  (5) 

𝑢̃𝑛
(𝑀+1) =

1

(𝑀+1)
(𝑢𝑛

(1) + 𝑢𝑛
(2) +⋯+ 𝑢𝑛

(𝑀) + 𝑢𝑛
(𝑀+1))  (6) 

 
Subtracting eq. (5) from eq. (6), the difference of the phase-

averaged value calculated with M and (M+1) can be easily 

obtained after some algebra, yielding: 

 

𝑢̃𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀) =
1

𝑀
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1))  (7) 

 

Now, reordering eq. (7), it is possible to update the phase-

averaged value for (M+1) realizations using the previous 

averaged value for M realizations and the new value coming 

from the current time step: 

 

𝑢̃𝑛
(𝑀+1) =

1

(𝑀+1)
(𝑢𝑛

(𝑀+1) +𝑀𝑢̃𝑛
(𝑀))   (8) 

 

As expected, eq. (8) states that the new average is the 

weighted contribution of the previous averaged value, with a 

coefficient M/(M+1), and the new value, with a coefficient 

1/(M+1). Obviously, as the number of realizations M tends to 

infinity, the contribution of the new realization becomes 

irrelevant (i.e., the process has converged). 

Additionally, once the phase-averaged value has been 

updated, it is also interesting to derive the formula for the 

update of the residual. In this case, due to the RMS value 

involved in the expression, it is better to reformulate the 

definition in eq. (4) using eq. (8) to rewrite the quadratic 

difference, thus resulting: 

 

𝑅(𝑀+1) =
√𝑁∑ [𝑢𝑛

(𝑀+1)
−𝑢𝑛

(𝑀+1)
]
2

𝑁
𝑛=1

𝑀∑ 𝑢𝑛
(𝑀+1)𝑁

𝑛=1

   (9) 

 

 

3.2 Update of the RMS value for turbulence (second moment) 

In many situations, not only the convergence of the phase-

averaged velocities has to be checked. Turbulent motions can 

be very intense and significant interaction between the 

turbulent scales and the periodic unsteadiness can occur. The 

turbulent scales transported unsteadily by the potential effect 

of the velocity gradients associated with the blades’ 

displacement, can be reinforced by viscous phenomena, even 

transferring energy between large scales and turbulent 

mixing. This is particularly evident at off-design conditions, 

where turbulent scales exhibit the influence of the blade event 

after phase-averaging (see the bottom plot in figure 3). 

Consequently, it is also necessary to derive a formula for 

the update of the phase-averaged turbulent kinetic energy 

given by eq. (3), with its corresponding residual criterion. 

The convergence of the phase-averaged turbulence (or 

second-order momentum in the context of the phase-

averaging) is thus analyzed in detail. Note that due to the 

quadratic definition, the mathematical complexity is 

increased considerably. 

Again, the basic idea is to eliminate the summation of all 

the M realizations in the equations and replace it by the on-

going averages modified with the new value. The starting 

point for the redefinition of eq. (3) is to rewrite the quadratic 

difference using the relationship shown in eq. (8). It is 

straightforward to obtain that: 

 

𝑢′𝑛
2 ̃ (𝑀)

= 
1

𝑀
∑ [(𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)) +

1

𝑀
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1)) ]

2
𝑀
𝑚=1   (10) 

 

The quadratic sum can be expanded to obtain: 

 

𝑢′𝑛
2 ̃ (𝑀)

=
1

𝑀
∑ [(𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1))

2
+

2

𝑀
(𝑢𝑛

(𝑀+1) −𝑀
𝑚=1

𝑢̃𝑛
(𝑀+1))(𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)) +

1

𝑀2
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1))

2
]   

 (11) 

 

Note that the last term in the summation is not depending 

on the subindex m. The next step is to write the definition in 

eq. (3) for (M+1) realizations, splitting in two parts: 

𝑢′𝑛
2 ̃ (𝑀+1)

=
1

(𝑀 + 1)
∑[𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)]

2
𝑀+1

𝑚=1

= 

=
1

(𝑀+1)
[∑ [𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)]

2
+ (𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1))

2
𝑀
𝑚=1 ] 

  (12) 

 

Following, subtracting eq. (11) from eq. (12), and after 

some easy algebra, the difference results in: 

 

𝑢′𝑛
2 ̃ (𝑀+1)

− 𝑢′𝑛
2 ̃ (𝑀)

=
𝑀2 −𝑀 − 1

𝑀2(𝑀 + 1)
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1))

2
 

−
2

𝑀2
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1)) ∑ [𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)]𝑀

𝑚=1⏟              
(𝐴)

−

1

𝑀(𝑀+1)
∑ [𝑢𝑛

(𝑚) − 𝑢̃𝑛
(𝑀+1)]

2
𝑀
𝑚=1⏟              

(𝐵)

   (13) 

 

Some extra work is needed to remove the remaining 

summations (A) and (B) from eq. (13). Considering that those 

summations extended to M realizations can be expressed as a 

function of (M+1) but subtracting the final term, it is quite 

evident that: 

 

∑ [𝑢𝑛
(𝑚) − 𝑢̃𝑛

(𝑀+1)]𝑀
𝑚=1⏟              

(𝐴)

= ∑ [𝑢𝑛
(𝑚) − 𝑢̃𝑛

(𝑀+1)]𝑀+1
𝑚=1 −

(𝑢𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀+1))  (14) 

And taking advantage one more time of the definition of 

the phase-averaging operator, the summation for (M+1) can 

be easily replaced resulting: 

 

∑ [𝑢𝑛
(𝑚) − 𝑢̃𝑛

(𝑀+1)]𝑀
𝑚=1⏟              

(𝐴)

= ∑ 𝑢𝑛
(𝑚)𝑀+1

𝑚=1 − (𝑀 + 1)𝑢̃𝑛
(𝑀+1) −

(𝑢𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀+1)) = (𝑀 + 1)𝑢̃𝑛
(𝑀+1) − (𝑀 + 1)𝑢̃𝑛

(𝑀+1) −

(𝑢𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀+1)) = 𝑢̃𝑛
(𝑀+1) − 𝑢𝑛

(𝑀+1)
  (15) 

 

Similarly, for (B) we use the extension for (M+1) 

realizations in the case of phase-averaged turbulent kinetic 

energy, yielding: 
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∑[𝑢𝑛
(𝑚) − 𝑢̃𝑛

(𝑀+1)]
2

𝑀

𝑚=1⏟            
(𝐵)

= ∑[𝑢𝑛
(𝑚) − 𝑢̃𝑛

(𝑀+1)]
2

𝑀+1

𝑚=1

 

−[𝑢𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀+1)]
2
= 

(𝑀 + 1) 𝑢′𝑛
2 ̃ (𝑀+1)

− [𝑢𝑛
(𝑀+1) − 𝑢̃𝑛

(𝑀+1)]
2
   

  (16) 

 
Finally, introducing eqs. (15) and (16) in eq. (13) and 

reordering, a definitive expression for the update of the 

phase-averaged turbulence is finally obtained: 

 

𝑢′𝑛
2 ̃ (𝑀+1)

=
𝑀

𝑀+1
𝑢′𝑛
2 ̃ (𝑀)

+
𝑀2+2𝑀−1

𝑀(𝑀+1)2
(𝑢𝑛

(𝑀+1) − 𝑢̃𝑛
(𝑀+1))

2

   (17) 

 

In this case, eq. (17) states that the new average is the 

weighted contribution of the previous averaged value, with a 

coefficient M/(M+1), and the new value, with a coefficient 

(M2+2M-1)/M(M+1)2. Once again, as the number of 

realizations M tends to infinity, the contribution of the new 

realization becomes irrelevant. 

Finally, once the phase-averaged value has been updated, 

it is also interesting to derive the formula for the update of 

the residual. Substituting in the redefinition of eq. (4) for 

𝑢′𝑛
2 ̃  replacing the M-realization for the new update given by 

eq. (17), this final expression is obtained: 

 

𝑅′(𝑀+1) =

√𝑁∑ [
𝑀2+2𝑀−1

𝑀(𝑀+1)2
(𝑢𝑛
(𝑀+1)

−𝑢𝑛
(𝑀+1)

)
2

−
1

𝑀
𝑢′𝑛
2 ̃
(𝑀+1)

]𝑁
𝑛=1

∑ 𝑢′𝑛
2 ̃
(𝑀+1)

𝑁
𝑛=1

 

   (18) 

 

4 Numerical database 

4.1 Rotor-Stator Model 

The mathematical formulation presented here for the analysis 

of the statistical convergence during co-processing routines 

in scale-resolving simulations for turbomachinery has been 

tested using a previous numerical database of the authors. 

In particular, a Wall-Modelled LES simulation of the 

midspan Rotor-Stator (R-S) interaction in a single-stage, low-

speed axial fan has been used to check the convergence 

criterion developed for both phase-averaged velocity and 

turbulent flow fields. 

Results concerning only the midspan section (where both 

hub and tip end-walls have no significant effect on the bulk 

flow and the radial velocity is negligible in this free-vortex 

axial rotor) have been considered in order to exclusively 

focus on the R-S interaction. With these premises, a 3D 

extruded linear cascade (with relative motion between rotor 

blades and stator vanes) was finally modelled with a 

spanwise extrusion equivalent to one tenth of the blade chord. 

This allows the preservation of the 3D vortical nature of the 

vortex shedding throughout the stage. 

The airfoil blades are based on the NACA-65-012 class, 

while the stator vanes are British circular arc profiles C1, with 

characteristic chord lengths of 150 mm. The axial gap 

between the rows is 50 mm. The rotating speed of the fan, 

2400 rpm, is equivalent to a tangential blade velocity of 75.4 

m/s, with a blade passing frequency of 360 Hz. Both nominal 

(QN, corresponding to 43.4 m/s of mean bulk flow velocity) 

and off-design conditions (70% QN, with 30.4 m/s of bulk 

velocity) were chosen for the analysis. More details can be 

found in Galdo-Vega et al., 2014. 

 

4.2 Numerical scheme and LES computations 

The commercial CFD software FLUENT® was used to solve 

the full-3D, viscous, filtered Navier-Stokes equations in an 

unsteady fashion. The basic characteristics of the simulations 

are summarized in table 3, regarding the geometrical model 

and boundary conditions, the turbulence closure, the 

numerical scheme and the computational mesh. Concise 

details are also given in Fernández-Oro et al., 2019. 

Additionally, figure 4 shows a sketch of the modelled 3D 

cascade (top right), with a general view of the computational 

mesh. In the bottom part of the figure, several points 

(P,Q,R,S) and two interrow and outlet rakes (identified as 

“Upstream” and “Downstream” locations with respect to the 

stator row) have been selected for the following processing. 

These lines present a transversal length equal to the vane 

pitch and are located at one tenth and one fourth of the vane 

chord from the leading and trailing edges of the vanes 

respectively. 

 

Table 3       Summary of the CFD simulations. 

 
Numerical model 

1. Basic characteristics 

• Full-unsteady 3D viscous incompressible flow (sliding 

mesh technique) 

• 3D extruded linear cascade (no hub/shroud endwalls). 

Up to 3.4 Million cells 

• Reduced 3:2 vane-to-blade count ratio (3% pitch 

modification) 

• Time-step: 9.26·10-5 s, corresponding 30 phases per 

blade event 

• Inlet turbulence: ILS=0.13 m and 1.5% intensity 

2. Turbulence closure 

• Wall-modelled LES scheme with Smagorinsky Subgrid 

Scale Modelling 

• Mesh requirements in vanes’ BLs (Δx+~200; Δy+~5; 

Δx+~150); i.e. [100x60] O-grid 

• Time step for a CFL~2 in the vicinity of vanes; Δxcell ~ 

1.5 mm (Rec = 440,000) 

• Roughly 70% of the TKE is resolved in the LES 

simulation 

3. Numerical scheme 

• Second-order accurate for the temporal term 

• Third-order MUSCL formulation for convection terms 

• Second-order accurate, with central difference for 

diffusive terms 

• SIMPLE algorithm for pressure-velocity coupling 

 

 

Figure 4     Numerical grid and post-processing positions. 

 

To analyze the convergence routines, a total simulation 

time of 6000 time steps has been considered, thus involving 
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more than 7.2 Gb of numerical information per working 

condition. The huge computational requirements needed and 

the total CPU time required to simulate the unsteady periodic 

response of the model (up to 450 hours of computation per 

case) during 200 blade events, illustrates perfectly the need 

for on-the-run formulations to judge convergence 

simultaneously and save CPU time and computational 

resources. 

 

5 Convergence results 

5.1 Convergence for first-order moment 

Contour maps in figure 5 reveal the phase-averaged 

temporal evolution (in the x-axis, repeated for convenience) 

of the velocity distribution (the level contour) at the 

transversal lines corresponding to the normalized vane pitch 

(represented between 0 and 1 in the y-axis as y/w, being w the 

vane pitch). The velocity maps have been made non-

dimensional with respect to the mean bulk velocity of every 

working condition. In the upstream maps (left side of the 

figure), for both nominal (top left) and off-design (bottom 

left) conditions, the periodic arrival of impinging rotor wakes 

is revealed (marked with black dashed lines). Because of the 

blade motion, these wakes are oblique as generated by the 

tangential velocity of the blades in the y-direction.  

 

Figure 5     Phase-averaged velocities upstream and 

downstream of the vanes. Comparison of 

nominal and off-design conditions. 

 

Significant intense hot spots are also observed in the 

upstream maps corresponding to the effect of the stagnation 

point in the vane leading edge at y/w ~ 0.4. It is also 

interesting to observe the higher disorder in the case of 70% 

QN (the blade wake is more tilted and thicker). Additionally, 

at downstream locations, the effect of the vane wake is the 

dominant feature, being clearly evident in the maps. The 

unmixed rotor wakes, travelling downstream, are still visible 

but the relevant mechanism is the severe thickening of the 

vane wake at 70% QN as a consequence of the underturned 

guidance of the flow and the large massive separation on the 

vane suction side. All these phenomena were already 

discussed in section 2 to justify the employment of an SRS 

method. 

 

Figure 6     Convergence histories at different points P,Q,R 

and S throughout the stage for the velocity 

field. Comparison of nominal and off-design 

conditions. 

 

Phase-averaged values shown in figure 5 have been 

obtained after ensemble-averaging all the available numerical 

data (200 blade events previously stored) in those lines of 

interest. To judge the convergence, the histories of the 

residual at points P, Q, R and S identified in figure 4 are 

shown in figure 6. As usual, the comparison for both 

operating conditions is provided. For the analysis, a typical 

convergence criterion of 10-3 has been selected as an accurate 

threshold that guarantees statistical periodicity (changes 

below 0.1%). These different points are intentionally placed 

in those locations where major flow disorder and turbulence 

generation are expected. Note that at nominal conditions, the 

convergence criterion is met with a quite reduced number of 

averages (M<25) for all the points (expect for the point S, 

within the vane wake). At off-design conditions, the 

convergence requires a greater number of ensembles due to 

the higher levels of unsteadiness and turbulent mixing. The 

typical convergence criterion of 10-3 is hardly met for all the 

points, even using the whole number of blade events 

recorded. To obtain these figures, eqs. (8) and (9) derived in 

the mathematical formulation presented in section 3 of the 

paper have been employed. The evaluation of the residuals 

has been smoothed using a moving average filter with a span 

of 10 points to avoid excessive scatter. 

In addition, these on-the-run calculations have allowed a 

significant computational saving of the large amount of data 

to be post-processed. Precisely, table 4 summarizes the CPU 

times required to compute the residual histories shown 

previously (the mean value of the eight traces in figure 6). 

The evaluation has been calculated in a single PC, intelcore 

i7-5280K, 3.33GHz with 64 Gb RAM using a postprocessing 

routine in MATLAB 2019b. The two columns represent the 

results with the online updating -using eq. (9)-, in comparison 

to the offline definition -using eq. (4)-, whereas the ratio is 

shown in the final column. For further insight, the influence 

of the number of ensembles involved has been also 

considered, repeating the tests for M=25, 50, 100 and 200 

ensembles. In the case of a low number of ensembles (M=25), 

the post-processing speed is increased by a factor of 4, while 

for large number of ensembles (M=200), the computational 

benefit is increased up to 38 times higher. Moreover, it is 

observed that the computational saving is linearly increased 

as the required number of ensembles are more demanding.  

 

Table 4       Comparison of CPU times between online 

updating and offline processing. 

 

Ensembles 

(M) 

Updating CPU 

time (ms) 

Offline CPU 

time (ms) 

Speed 

ratio 

25 0.0111 0.0444 4.0 

50 0.0146 0.1242 8.5 

100 0.0242 0.4431 18.3 

200 0.0431 1.6447 38.2 

 

This CPU times correspond to the convergence history of 

one single point. The reader can easily understand the 

importance of this on-the-fly statistics if the region of interest 

to be ensemble-averaged comprises some million cells. 

Furthermore, this analysis is not considering the time for I/O 

read/write operations (or equivalent storing resources in 

memory) which could dramatically increase the 

computational cost for offline post-processing. 

A complementary representation for the analysis of the 

convergence is shown in figure 7. In this case, the plots 

represent, for the whole vane pitch upstream (left) and 

downstream (right) the number of ensembles required to 
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attain a particular convergence threshold for the velocity 

field. 

 

Figure 7      Minimum number of ensemble-averages 

required to satisfy a given convergence 

threshold for the velocity field. Comparison of 

nominal and off-design conditions, upstream 

(left) and downstream (right) of the vanes. 

 

Upstream, convergence thresholds of 5·10-4 and 2·10-3 are 

employed to represent the transversal distribution of 

ensembles required at nominal and off-design conditions. 

Obviously, off-design results are conditioned by higher levels 

of unsteadiness. Note that the distributions present a certain 

degree of blur as a consequence of the inherent instabilities 

and randomness of the instantaneous velocity values. 

Whatever the case, coherent structures are predominant, so 

overall trends are perfectly identified in the distributions. In 

the right plot, the position of the vane wakes (y/w ~ 0.5-0.6) 

and their corresponding intensities and widths are clearly 

evident in the distributions. Central positions of the wakes in 

the case of partial flow rate (70% QN, in red) require an 

extremely large number of ensembles (>200) to reach the 

prescribed convergence. 

 

5.2 Convergence for second-order moment 

Although convergence for CFD practitioners is generally 

judged over first-order statistics (i.e., checking that velocity 

values have reached a sufficiently periodic response), there 

are situations (especially in case of highly turbulent flows, 

with massive separations and large-scale fluctuations) in 

which the convergence of second-order statistics has to be 

also evaluated. 

The flow features for the 70% QN of the present numerical 

database corresponds to one of those situations where overall 

convergence of the turbulent picture can be compromised 

using the criterion employed for the velocity fields. 

To illustrate the importance of this possibility, the 

analysis presented in subsection 5.1 is now repeated for the 

phase-averaged maps of turbulence using previous metrics in 

a similar way. In figure 8, the phase-averaged values of 

quadratic velocity fluctuations reveal the incoming wakes 

upstream and the vane wakes downstream as the main 

contributors to the turbulent mixing. For the representation, 

the quadratic periodic fluctuations are expressed in terms of 

turbulence intensity, according to √𝑢′2̅̅ ̅̅ 𝑢̿⁄   where 𝑢̿ stands for 

the mean bulk flow velocity for every working condition. 

These metrics illustrate the unsteady (periodic) transport of 

the coherent turbulent scales of the flow. 

 

Figure 8    Phase-averaged turbulence intensity (%) upstream 

and downstream of the vanes. Comparison of 

nominal and off-design conditions. 

 

Concerning the residual histories –computed with eqs. 

(17) and (18)–, the convergence is significantly retarded due 

to the inherent instabilities of the coherent turbulent 

structures. For both nominal and off-design conditions, figure 

9 indicates that the typical criterion of 10-3 is not reached 

using the previous value of 200 blade events. An uncertainty 

of 0.5-1% is characteristic for all the points after using the 

whole number of realizations available in the database, with 

minimum residuals in the order of 10-2, especially at off-

design conditions. 

 

Figure 9    Convergence histories at different points P,Q,R 

and S throughout the stage for the turbulence 

intensity. Comparison of nominal and off-design 

conditions. 

 

Figure 10   Minimum number of ensemble-averages required 

to satisfy a given convergence threshold for the 

turbulence intensity. Comparison of nominal and 

off-design conditions, upstream (left) and 

downstream (right) of the vanes. 

 

This section is concluded showing the number of 

ensemble-averages required for the turbulence to fulfil a 

convergence threshold of roughly 10-2 in all the upstream and 

downstream locations (figure 10). As expected, the 

convergence criterion has to be relaxed in order to get a 

moderate number of blade events, between 100 and 150. 

Only a significant instability is observed in the distribution at 

nominal conditions downstream of the vane (black line in the 

right plot). This effect can be associated with oscillations in 

the shear layers of the vane wakes. In the other cases, the 

distributions are quite uniform through the whole vane pitch, 

thus indicating that phase-averaged large-scale turbulence is 

not correlated to primary flow variables (wake fluid). 

 

 

6 Conclusions 

Scaled-Resolving Simulations are becoming a feasible option 

to simulate unsteady flow and turbulence with high accuracy 

in turbomachinery. Unlike URANS modelling, they do not 

require a spectral gap between deterministic blade 

periodicities and large-scale turbulent structures, so they can 

be applied for all those situations when coupling between 

both phenomena arise (i.e. multistage environments with R-

S interactions). Moreover, these techniques are especially 

convenient for the analysis of turbomachinery working at off-

design conditions, due to their increased ability to describe 

efficiently the generation of turbulence in case of high swirl 

motion and massive separation. For LES-based simulations, 

the most important SRS method so far, requires extremely 

fine meshes and very reduced time steps, leading to very high 

computational costs. 

In addition, LES resolving provides an inherently 

unsteady (partly random) solution that must be extended for 

a wide number of blade events to be statistically 

representative. Phase-averaging the unsteady turbulent and 

velocity fields, for at least hundreds of blade passing periods, 

it is possible to identify the coherent turbulent structures and 

remove all the randomness embedded in the instantaneous 

solutions of the flow. 
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Therefore, a convergence criterion must be defined to 

satisfy that a certain level of periodic convergence is finally 

met. When a prescribed threshold is reached, the simulation 

has been executed for a sufficiently large period of time, so 

the phase-averaging of all the available data reports an 

accurate statistical description of the flow fields. However, in 

most situations, this implies an extremely large amount of 

data to be stored, which is unrealistic and non-operative in a 

forward post-processing. 

Co-processing has recently emerged as an interesting 

option for CFD practitioners, where some operations related 

to the post-processing routines are advanced and introduced 

during the iterative resolution process of the numerical 

solver. Deciding in aprioristic basis which is the relevant data 

for later post-processing, it is more realistic to store only the 

selected data for a long run until the convergence criterion is 

fulfilled. Due to the exponential rise of the number of cells in 

current cutting-edge simulations (up to hundred million cells 

in most advanced researches), these co-processing techniques 

are mandatory. 

Convergence routines is a basic co-processing technique 

that allows to stop a long run simulation when the periodic 

situation has been finally attained. It is necessary to define a 

number of monitors for convergence to analyze the evolution 

of the phase-averaging flow as a function of the total number 

of blade events passed. 

In this paper, in order to save computational costs, the 

mathematical expressions needed to perform the phase-

averaging operator on the fly have been formally obtained. 

The updating of both phase-averaged velocity fields (first 

momentum) and phase-averaged turbulent intensities (second 

momentum) have been derived, also defining the expressions 

for the residual calculation. Moreover, a numerical database 

of a low-speed, single stage axial fan has been used to apply 

the mathematical framework presented in the paper. 

Modelled as a 3D linear cascade (to be focused on the R-S 

interaction only), the numerical routines for statistical 

convergence have been presented both downstream and in the 

inter-row region of the stage. 

The need for this co-processing routines and the 

convenience of using on the fly computations to judge 

convergence and save computational costs has been 

demonstrated. The required number of ensembles to ensure 

convergence was found to be significantly larger at off-

design conditions due to the major disorder of the flow 

patterns. In that situations, the convergence evaluation can be 

speeded up by a factor of 38 with the updating formulation. 

In addition, second-order statistics for the turbulent structures 

have required a larger number of blade events than primary 

flow variables due to the inherent instabilities of the coherent 

turbulent structures (hot spots, wake-blade or wake-wake 

interactions). 
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Figures 

 

Figure 1    Identification of turbulent structures at nominal 

(top) and off-design (bottom) conditions. 

 

 

Figure 2   Velocity traces for 10 blade events (left) in a point 

P close to the vane LE: nominal (top) and off-

design (bottom) conditions. Comparison of 

fluctuating spectra (right). See the point location 

in the small figure. 

 

 

Figure 3      Schematic for the phase-averaging procedure. 

 

 

 

 

Figure 4     Numerical grid and post-processing positions. 

 

 

Figure 5     Phase-averaged velocities upstream and 

downstream of the vanes. Comparison of 

nominal and off-design conditions. 

 

 

Figure 6     Convergence histories at different points P,Q,R 

and S throughout the stage for the velocity 

field. Comparison of nominal and off-design 

conditions. 
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Figure 7      Minimum number of ensemble-averages 

required to satisfy a given convergence 

threshold for the velocity field. Comparison of 

nominal and off-design conditions, upstream 

(left) and downstream (right) of the vanes. 

 

 

Figure 8    Phase-averaged turbulence intensity (%) upstream 

and downstream of the vanes. Comparison of 

nominal and off-design conditions. 

 

 

Figure 9    Convergence histories at different points P,Q,R 

and S throughout the stage for the turbulence 

intensity. Comparison of nominal and off-design 

conditions. 

 

 

Figure 10   Minimum number of ensemble-averages required 

to satisfy a given convergence threshold for the 

turbulence intensity. Comparison of nominal and 

off-design conditions, upstream (left) and 

downstream (right) of the vanes. 

 

 

 

 

 

 

 


