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A Genetic Solution based on Lexicographical Goal
Programming for a Multiobjective Job Shop with
Uncertainty

Inés González-Rodŕıguez · Camino R. Vela · Jorge Puente

Abstract In this work we consider a multiobjective

job shop problem with uncertain durations and crisp

due dates. Ill-known durations are modelled as fuzzy

numbers. We take a fuzzy goal programming approach

to propose a generic multiobjective model based on lex-

icographical minimisation of expected values. To solve

the resulting problem, we propose a genetic algorithm

searching in the space of possibly active schedules. Ex-

perimental results are presented for several problem in-

stances, solved by the GA according to the proposed

model, considering three objectives: makespan, tardi-

ness and idleness. The results illustrate the potential

of the proposed multiobjective model and genetic algo-

rithm.

Keywords Job shop scheduling, Uncertain duration,

Multiobjective optimisation

1 Introduction

Scheduling problems form an important body of re-

search since the late fifties, with multiple applications

in industry, finance and science (Brucker and Knust,

2006). Part of this research is devoted to fuzzy schedul-

ing, in an attempt to model the uncertainty and vague-
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ness pervading real-world situations. The approaches

are diverse, ranging from representing incomplete or

vague states of information to using fuzzy priority rules

with linguistic qualifiers or preference modelling (Dubois

et al., 2003a), (S lowiński and Hapke, 2000).

The complexity of scheduling problems such as job

shop means that practical approaches to solving them

usually involve heuristic strategies (Brucker and Knust,

2006). In the literature, we find some extensions of

these strategies to job shop problems with uncertain

durations represented as fuzzy numbers. For instance,

genetic algorithms are used in (Sakawa and Kubota,

2000), (Fayad and Petrovic, 2005) and (González Rodŕıguez

et al., 2008) for multiobjective problems while single-

objective job shop is approached using simulated an-

nealing in (Fortemps, 1997) and a memetic algorithm,

combining a genetic algorithm with local search, in (González

Rodŕıguez et al., 2007b). Far from being trivial, extend-

ing heuristic strategies usually requires a significant re-

formulation of both the problem and solving methods.

For example, defining and computing critical paths re-

mains an open question, only partially solved for simple

problems (Dubois et al., 2003b).

In the sequel, we describe a job shop problem with

uncertain durations and crisp due dates. We propose a

generic multiobjective model where the objective func-

tion is defined in order to lexicographically minimise the

expected values of several fuzzy goals (makespan, tardi-

ness and idleness). In addition to the priority structure

for the lexicographical minimisation, target levels for

each objective are introduced, in order to balance possi-

bly incompatible goals. The resulting problem is solved

by means of a genetic algorithm (GA) based on permu-

tations with repetitions that searches in the space of

possibly active schedules. We analyse the performance

of the multiobjective GA on a set of problem instances,

both based on the expected values of each objective
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and on the quality measures obtained from a semantics

for fuzzy schedules presented in (González Rodŕıguez

et al., 2008).

2 Uncertain Processing Times

In real-life applications, it is often the case that the

exact duration of a task is not known in advance. How-

ever, based on previous experience, an expert may have

some knowledge about the duration, thus being able

to estimate, for instance, an interval for the possible

processing time or its most typical value. In the liter-

ature, it is common to use fuzzy intervals to represent

such processing times, as an alternative to probability

distributions, which require a deeper knowledge of the

problem and usually yield a complex calculus.

When there is little knowledge available, the crud-

est representation for uncertain processing times would

be a human-originated confidence interval. If some val-

ues appear to be more plausible than others, a natu-

ral extension is a fuzzy interval or fuzzy number. The

simplest model is a triangular fuzzy number or TFN,

using only an interval [a1, a3] of possible values and a

single plausible value a2 in it. For a TFN A, denoted

A = (a1, a2, a3), the membership function takes the fol-

lowing triangular shape:

µA(x) =


x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

2.1 Operations on Fuzzy Processing Times

Triangular fuzzy numbers and more generally fuzzy in-

tervals have been extensively studied in the literature

(cf. (Dubois and Prade, 1988)). A fuzzy interval Q is a

fuzzy quantity (a fuzzy set on the reals) whose α-cuts

Qα = {u ∈ R : µQ(u) ≥ α}, α ∈ (0, 1], are convex,

i.e., they are intervals (bounded or not). The core of Q

contains the elements with full membership µQ(u) = 1,

and any of its elements is called modal value. The sup-

port of Q is Q0 = {u ∈ R : µQ(u) > 0}. A fuzzy number

is a fuzzy quantity whose α-cuts are closed intervals,

with compact (i.e. closed and bounded) support and

unique modal value.

In order to work with fuzzy numbers, it is neces-

sary to extend the usual arithmetic operations on real

numbers. In general, if f is a function f : R2 → R
and Q1, Q2 are two fuzzy quantities, the fuzzy quan-

tity f(Q1, Q2) is calculated according to the Extension

Principle as follows:

∀u ∈ R, µf(Q1,Q2)(u) =

sup{min(µQ1
(w1), µQ2

(w2)) : f(w1, w2) = u} (2)

if f−1(u) 6= ∅, being equal to 0 otherwise. Computing

the above equation is cumbersome, if not intractable. It

can be somewhat simplified if M and N are two fuzzy

numbers, so the α-cuts Mα and Nα are closed bounded

intervals of the form [mα,mα] and [nα, nα], and if f is a

continuous isotonic mapping from R2 into R, that is, if

u ≥ u′ and v ≥ v′, then f(u, v) ≥ f(u′, v′). In this case,

the α-cuts of the fuzzy quantity f(M,N), obtained by

applying the Extension Principle, are the images under

f of the α-cuts of M and N :

∀α > 0, [f(M,N)]α = [f(mα, nα), f(mα, nα)] (3)

which is a closed interval. Any fuzzy set can be ex-

pressed as the union of its α-cuts according to the First

Decomposition Theorem, so the above property pro-

vides us with an alternative formula for f(M,N):

f(M,N) = ∪α∈(0,1][f(mα, nα), f(mα, nα)] (4)

In the job shop, we essentially need two operations

on fuzzy durations: the sum and maximum. Addition-

ally, we may need the substraction.

In the case of TFNs, both the addition and substrac-

tion are fairly easy to compute, as they are reduced to

operating on the three defining points, so for any pair

of TFNs M and N , we have the following:

M +N = (m1 + n1,m2 + n2,m3 + n3) (5)

M −N = (m1 − n3,m2 − n2,m3 − n1). (6)

Unfortunately, for the maximum of TFNs there is

no such simplified expresion. Being an isotonic func-

tion, we can use equation (4) above to compute the

maximum of two fuzzy numbers. However, in general

this still requires an infinite number of computations,

because we have to evaluate two maxima for each value

α ∈ (0, 1]. For the sake of simplicity and tractability of

numerical calculations, we follow Fortemps (Fortemps,

1997) and approximate all results of isotonic algebraic

operations on TFNs by a TFN. Instead of evaluating

the intervals corresponding to all α-cuts, we evaluate

only those intervals corresponding to the support and

α = 1, which is equivalent to working only with the

three defining points of each TFN.

Notice that if we approximate the sum (an isotonic

function), the approximation coincides with the sum of

TFNs given in (5). The same is not always true for the

maximum ∨, which would be approximated as follows:

M ∨N ∼M tN = (m1 ∨ n1,m2 ∨ n2,m3 ∨ n3). (7)
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However, it is possible to prove the following relation-

ship between the maximum and its approximation: let

M,N be two TFNs and let F = N ∨M their maximum

and G = N tM its approximated value; it holds that:

∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. (8)

In particular, F andG have identical support and modal

value: F0 = G0 and F1 = G1. The approximated maxi-

mum can be trivially extended to n > 2 TFNs.

2.2 Expected Value of Fuzzy Processing Times

Possibility theory provides a framework to mathemati-

cally model scheduling problems with uncertainty (Dubois

et al., 1996). For a fuzzy quantity Q, its membership

function µQ can be interpreted as a possibility distribu-

tion on the real numbers, so the possibility and necessity

measure that Q ≤ r, where r is a real number, are given

by:

Π(ξ ≤ r) = sup
x≤r

µ(x) N(ξ ≤ r) = 1− sup
x>r

µ(x) (9)

Related to the dual measures of possibility and neces-

sity is the credibility measure that Q ≤ r (Liu, 2006):

Cr(Q ≤ r) =
1

2
(Π(Q ≤ r) + N(Q ≤ r)) (10)

In this case, we have a self-dual measure, i.e. Cr(Q ≤
r) = 1− Cr(Q > r).

The expected value of a fuzzy quantity Q is defined

on the basis of the credibility measure in (Liu and Liu,

2002):

E[Q] =

∫ ∞
0

Cr(Q ≥ r)dr −
∫ 0

−∞
Cr(Q ≤ r)dr (11)

provided that at least one of the above two integrals is

finite. It is easy to prove that the expected value of a

TFN A is given by E[A] = 1
4 (a1 + 2a2 + a3).

The expected value induces a total ordering ≤E
in the set of fuzzy intervals (Fortemps and Roubens,

1996), where for any two fuzzy intervals M,N M ≤E N

if and only if E[M ] ≤ E[N ]. Indeed, ranking fuzzy in-

tervals is usually done via defuzzification methods, ob-

taining a scalar value from a given fuzzy quantity, so

ranking fuzzy intervals becomes a matter of ranking

their scalar substitutes. The expected value E[M ] co-

incides with the the neutral scalar substitute s(M) of a

fuzzy interval M (Yager, 1981):

s(M) =
1

2

∫ 1

0

(mα +mα)dα. (12)

The neutral scalar substitute is cited in (Dubois et al.,

2003a) as the most natural defuzzification procedure

among those proposed in the literature. This defini-

tion can also be obtained using the area compensation

method proposed in (Fortemps and Roubens, 1996).

Considering the set of all probability functions domi-

nated by the possibility function induced by the mem-

bership function µM , E[M ] is also the expectation of

the probability distribution which lies at the centre of

gravity of that set. An interesting property is its lin-

earity. Trivially, for any two TFNs A = (a1, a2, a3) and

B = (b1, b2, b3), if ∀i, ai ≤ bi, then A ≤E B, but the

reverse does not hold.

The expected value of a fuzzy interval will allow us

to give an interpretation or model for the fuzzy job shop

and it will provide a means of ranking objective values

represented by fuzzy intervals, something necessary to

select the best solution to the job shop with ill-known

durations.

3 The Job Shop Scheduling Problem

The job shop scheduling problem, also denoted JSP,

consists in scheduling a set of jobs {J1, . . . , Jn} on a

set of physical resources or machines {M1, . . . ,Mm},
subject to a set of constraints. There are precedence

constraints, so each job Ji, i = 1, . . . , n, consists of m

tasks {θi1, . . . , θim} to be sequentially scheduled. Also,

there are capacity constraints, whereby each task θij
requires the uninterrupted and exclusive use of one of

the machines for its whole processing time. In addi-

tion, there may be due-date constraints, where each job

Ji, i = 1, . . . , n, has a maximum completion time Di

and all its tasks must be scheduled to finish before this

time. A solution to this problem is a schedule (an al-

location of starting times for all tasks) which, besides

being feasible, in the sense that precedence and capacity

constraints hold, is optimal according to some criteria,

for instance, that the makespan or the non-fulfillment

of due dates are minimal.

3.1 Fuzzy Schedules from Crisp Task Orderings

A schedule s for a job shop problem of size n ×m (n

jobs and m machines) may be determined by a decision

variable x = (x1, . . . , xnm) representing a task process-

ing order, where 1 ≤ xl ≤ n for l = 1, . . . , nm and

|{xl : xl = i}| = m for i = 1, . . . , n. This is a permu-

tation with repetition as proposed by Bierwirth (Bier-

wirth, 1995); a permutation of the set of tasks, where

each task is represented by the number of its job. A job

number appears in such decision variable as many times
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as different tasks it has and the order of precedence

among tasks requiring the same machine is given by

the order in which they appear in the decision variable

x. Thus, the decision variable represents a task process-

ing order that uniquely determines a feasible schedule.

This permutation should be understood as expressing

partial orderings for every set of tasks requiring the

same machine.

Let us assume that the processing time pij of each

task θij , i = 1, . . . , n, j = 1, . . . ,m is a fuzzy variable (a

particular case of which are TFNs). The problem may

be represented by a matrix of fuzzy processing times ξ

such that ξij = pij and a machine matrix ν such that νij
is the machine required by task θij . For a given task pro-

cessing order x, let Ci(x, ξ,ν) denote the completion

time of job Ji and let Cij(x, ξ,ν) denote the completion

time of task θij , i = 1, . . . , n j = 1, . . . ,m. The com-

pletion time of a job is the completion time of its last

task, that is, Ci(x, ξ,ν) = Cim(x, ξ,ν), i = 1, . . . , n.

The starting time Sij(x, ξ,ν) for task θij , i = 1, . . . , n,

j = 1, . . . ,m will be the maximum between the com-

pletion times of the tasks preceding θij in its job and

its machine. Hence, the starting and completion times

of task θij are given by:

Sij(x, ξ,ν) = Ci(j−1)(x, ξ,ν) t Crs(x, ξ,ν) (13)

Cij(x, ξ,ν) = Sij(x, ξ,ν) + pij (14)

where θrs is the task preceding θij in the machine ac-

cording to the processing order given by x. Ci0(x, ξ,ν)

is assumed to be zero and, analogously, Crs(x, ξ,ν) is

taken to be zero if θij is the first task to be processed

in the corresponding machine.

For this fuzzy schedule, we may define the fuzzy

makespan Cmax(x, ξ,ν), the fuzzy maximum tardiness

(fuzzy tardiness for short) Tmax(x, ξ,ν) and the fuzzy

maximum idleness (fuzzy idleness for short) Imax(x, ξ,ν)

as follows:

Cmax(x, ξ,ν) = t1≤i≤n (Ci(x, ξ,ν)) (15)

Tmax(x, ξ,ν) = t1≤i≤n (Ci(x, ξ,ν)−Di) ∨ 0 (16)

Imax(x, ξ,ν) = t1≤i≤n (Cmax(x, ξ,ν)− Cikjk(x, ξ,ν))

(17)

where Cikjk(x, ξ,ν) is the completion time of the last

task to be processed on machine Mk, k = 1, . . . ,m, ac-

cording to the ordering provided by the decision vari-

able x.

Let us illustrate the previous definitions with an ex-

ample. Consider a problem of 3 jobs and 2 machines

with the following matrices for fuzzy processing times

and machine allocation:

ξ =

(3, 4, 7) (1, 2, 3)

(4, 5, 6) (2, 3, 4)

(1, 2, 6) (1, 2, 4)

ν =

1 2

2 1

2 1



For instance, ξ22 = (2, 3, 4) is the processing time of

task 2 of job 2 θ22 and, given that ν22 = 1, this task

must be processed on machine 1. Figure 1 shows the

Gantt chart (adapted to TFNs) of the schedule given

by the decision variable x=(1 2 3 2 3 1). It represents

the partial schedules obtained from the decision vari-

able for each machine. For machine 1, tasks are pro-

cessed in the following order: θ11, θ22, θ32, and for ma-

chine 2, tasks are processed in the order θ21, θ31, θ12.

Given these orderings and precedence constraints, the

starting time for task θ22 will be the maximum of the

completion times of θ21 and θ11, the preceding tasks in

the job and in the machine: S22 = C21tC11 = (4, 5, 6)t
(3, 4, 7) = (4, 5, 7). Consequently, its completion time

will be C22 = S22 + ξ22 = (4, 5, 7) + (2, 3, 4) = (6, 8, 11).

5 10 15 200

5 10 15 200

5 10 15 200

Makespan

M1

M2

Fig. 1 Gantt chart of the schedule represented by the deci-
sion variable (1 2 3 2 3 1)

Notice that if uncertain durations are given as fuzzy

intervals the schedule s will be a fuzzy schedule, in the

sense that the starting and completion times of all tasks

and the makespan are fuzzy intervals. These fuzzy in-

tervals may be seen as possibility distributions on the

values that these times may take. However, the task

processing ordering represented by x that determines

such schedule is crisp; there is no uncertainty regarding

the order in which tasks are to be processed. In other

words, we obtain a fuzzy schedule from a crisp task

ordering. These ideas are essential for the semantics of

fuzzy schedules proposed in (González Rodŕıguez et al.,

2008) and described in Section 3.3.

3.2 Multiobjective Models

It is not trivial to optimise a schedule in terms of a

fuzzy quantity, since neither the maximum ∨ nor its

approximation t define a total ordering. In the litera-

ture, this problem is tackled using some ranking method

for fuzzy numbers, comparisons based on λ-cuts or de-

fuzzification methods. Here the modelling philosophy is

similar to that of stochastic scheduling and is inspired
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in the work on expected value models from (Liu and

Liu, 2002).

If we only consider the makespan, the expected value

E[Cmax(x, ξ,ν)] should be minimised, thus providing

an expected makespan model for fuzzy job shop (González

Rodŕıguez et al., 2007b). Similarly, we may define the

expected tardiness and the expected idleness models or,

in general, an expected model for any single fuzzy goal.

Alternatively, we may consider several objectives

and formulate a multiobjective problem. Now, with mul-

tiple goals it is often the case that some are achievable

only at the expense of others, hence the need of a hier-

archy of importance among these possibly incompatible

goals so as to satisfy as many as possible in the speci-

fied order. In general, for k objectives f1, . . . , fk such

priority structure should be established by the deci-

sion maker (DM) and may be represented by a one-

to-one mapping ρ from {f1, . . . , fk} onto {1, . . . , k},
such that ρ(fi) is the priority level of fi, i = 1, . . . , k,

where 1 represents the highest priority. For instance, if

f1 = Cmax, f2 = Tmax and f3 = Imax and the DM con-

siders that the most prioritary objective is minimising

the expected tardiness, then ρ(f2) = 1. Without loss

of generality, let us assume that the objective functions

fi i = 1, . . . , k are ordered according to their priority,

that is, ρ(fi) = i. Then, we may formulate the follow-

ing expected multiobjective model for the fuzzy job shop

problem (FJSP):


lexmin (E[f1(x, ξ,ν)], . . . , E[fk(x, ξ,ν)])

subject to: 1 ≤ xl ≤ n, l = 1, . . . , nm,

|{xl : xl = i}| = m, i = 1, . . . , n,

xl ∈ Z+, l = 1, . . . , nm.

(18)

where lexmin denotes lexicographically minimising the

objective vector.

Additionally, a goal programming model may be

used to balance the multiple conflicting objectives, con-

sidering target levels established by the DM, so E[fi(x, ξ,ν)]

should not exceed a given target value bi, i = 1, . . . , k.

This translates into the following goal constraints:

E[fi(x, ξ,ν)] + d−i − d
+
i = bi, i = 1, . . . , k (19)

where d+i , the positive deviation from the target, should

be minimised. We thus obtain the following expected

fuzzy goal multiobjective model for the FJSP:



lexmin (d+1 , . . . , d
+
k )

subject to: E[fi(x, ξ,ν)] + d−i − d
+
i = bi, i = 1, . . . , k,

bi, d
−
i , d

+
i ≥ 0, i = 1, . . . , k,

1 ≤ xl ≤ n, l = 1, . . . , nm,

|{xl : xl = i}| = m, i = 1, . . . , n,

xl ∈ Z+, l = 1, . . . , nm.

(20)

Notice that (18) is a particular case of (20). Indeed, this

last formulation is general enough to comprise all pos-

sible fuzzy goals, priority structures and target levels

established by the DM. Similar ideas for the fuzzy par-

allel machine scheduling problem with a fixed priority

structure and three objectives can be found in (Peng

and Liu, 2004).

3.3 A-Posteriori Semantics of Fuzzy Schedules

In (González Rodŕıguez et al., 2008), a semantics for

the fuzzy schedules was proposed and used to measure

the performance of such schedules. According to this

semantics, solutions to the FJSP are interpreted as a-

priori solutions, found when the duration of tasks is

not exactly known. In this setting, it is impossible to

predict what the exact time-schedule will be, because

it depends on the realisation of the task’s durations,

which is not known yet. Each schedule corresponds to

a crisp ordering of tasks and, it is not until tasks are

executed according to this ordering that we know their

real duration and, hence, obtain a real schedule, the a-

posteriori solution with crisp job completion times and

makespan.

Given this, the main interest of a solution to the

FJSP lies in the ordering of tasks that it provides a pri-

ori, when information about the problem is incomplete.

Ideally, this ordering should yield good schedules in the

moment of its practical use, when tasks do have real

durations. Hence, its behaviour should be evaluated on

a family of N crisp job shop problems, generated from

the fuzzy problem so that they can be interpreted as

its realisations. Such possible realisations are simulated

by generating exact durations for each task at random

according to a probability distribution which is coher-

ent with the possibility distribution given by the fuzzy

duration.

Given a solution to the FJSP, we consider the or-

dering of tasks it provides, represented by the deci-
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sion variable x. For a crisp version of the FJSP, let

η be the matrix of crisp durations, such that ηij , the

a-posteriori duration of task θij is coherent with the

possibility distribution defined by the fuzzy duration

ξij . Then, the ordering x can be used by an algorithm

of semiactive schedule building to obtain a crisp time-

schedule, as presented in Section 3.1 but using real du-

rations instead of fuzzy ones. For such crisp schedule,

the Relative Makespan Error, ME, is defined as the

relative difference in time units between the obtained

crisp makespan Cmax(x,η,ν) and a given lower bound

for the makespan LB(η,ν), that is:

ME(x,η,ν) =
Cmax(x,η,ν)− LB(η,ν)

LB(η,ν)
(21)

This lower bound may be obtained with some of the

existing methods from the literature. We also define the

Feasibility Error, F (x,η,ν), as the proportion of due-

date constraints that do not hold for a given ordering x

for a given a-posteriori realisation η of task durations.

If instead of a single crisp instance we consider the

whole family of N crisp problems, each with a dura-

tion matrix ηl, we obtain N values of ME, denoted

MEl = ME(x,ηl,ν), and N values of F , denoted

Fl = F (x,ηl,ν), l = 1, . . . , N . The overall performance

of the fuzzy solution across the family of N crisp prob-

lems is then measured by the following average values:

ME(x) =

∑N
l=1MEl
N

, F (x) =

∑N
l=1 Fl
N

(22)

We may now compare different solutions to the FJSP

based on due-date satisfaction (using F (x)), based on

makespan (using ME(x)) or even based on the over-
all achievement of both objectives (using some combi-

nation of F (x) and ME(x)). In any case, we should

bear in mind the quality of a given ordering x is mea-

sured on a family of problems which may be quite di-

verse. In fact, the greater the uncertainty in the FJSP,

the greater the variety of possible crisp realisations and

hence, the diversity within the family of associated crisp

JSSPs.

4 Using Genetic Algorithms to Solve FJSP

The crisp job shop problem is a paradigm of constraint

satisfaction problem and has been approached using

many heuristic techniques. In particular, genetic algo-

rithms (GAs) have proved to be a promising solving

method (Bierwirth, 1995), (Mattfeld, 1995), (Varela et al.,

2003).

The structure of a GA for the FJSP is described in

Algorithm 2. First, the initial population is generated

and evaluated. Then the GA iterates for a number of

generations. In each iteration, a new population is built

from the previous one by applying the genetic operators

of selection, recombination and acceptation.

Require: an instance of fuzzy JSP, P
Ensure: a schedule s for P

1. Generate the initial population;
2. Evaluate the population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply recombination to the selected chromosomes to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the acceptance criterion to the set of chromo-
somes selected at step 3 together with the chromosomes
generated at step 4;

return the schedule from the best chromosome evaluated
so far;

Fig. 2 Genetic Algorithm

To codify chromosomes we use the decision vari-

able x, a permutation with repetition, which presents

a number of interesting characteristics (Varela et al.,

2005). The quality of a chromosome is evaluated by

the fitness function, which is taken to be the objective

function lexmin(d+1 , . . . , d
+
k ) as defined in (20).

In the selection phase, chromosomes are grouped

into pairs at random. Each of these pairs is mated to

obtain two offsprings and acceptance consists in select-

ing the best individuals from the set formed by the pair

of parents and their offsprings. For chromosome mating

we consider the Job Order Crossover (JOX) (Bierwirth,

1995). Given two parents, JOX selects a random sub-
set of jobs, copies their genes to the offspring in the

same positions as they appear in the first parent, and

the remaining genes are taken from the second parent

so as to maintain their relative ordering. This operator

has an implicit mutation effect. Therefore, no explicit

mutation operator is actually necessary and parameter

setting is considerably simplified, as crossover probabil-

ity is 1 and mutation probability need not be specified.

From a given decision variable x as explained in Sec-

tion 3 we may obtain a semi-active schedule, meaning

that for any operation to start earlier, the relative or-

dering of at least two tasks must be swapped. However,

other possibilities may be considered. For the crisp job

shop, it is common to use the G&T algorithm (Gif-

fler and Thomson, 1960), which is an active schedule

builder. A schedule is active if one task must be delayed

for any other one to start earlier. Active schedules are

good in average and, most importantly, the space of ac-

tive schedules contains at least an optimal one, that is,

the set of active schedules is dominant (cf. (Brucker and
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Require: a chromosome x and a fuzzy JSP P
Ensure: the schedule s given by chromosome x for problem

P

1: A = {θi1, i = 1, . . . , n}; /*set of first tasks of all jobs*/
2: while A 6= ∅ do

3: Determine the task θ′ ∈ A with minimum earliest com-
pletion time C1

θ′ if scheduled in the current state;
4: Let M ′ be the machine required by θ′ and B ⊆ A the

subset of tasks requiring machine M ′;
5: Remove from B any task θ that starts later than Cθ′ :

Ci
θ′ ≤ S

i
θ, i = 1, 2, 3;

6: Select θ? ∈ B such that it is the leftmost operation in
the sequence x;

7: Schedule θ∗ as early as possible to build a partial sched-
ule;

8: Remove θ? from A and insert in A the task following
θ? in the job if θ? is not the last task of its job;

9: return the built schedule;

Fig. 3 Extended G&T for triangular fuzzy times

Knust, 2006)). For these reasons it is worth to restrict

the search to this space. Moreover, the G&T algorithm

is complete for the job shop problem.

In Algorithm 1 we propose an extension of G&T to

the case of fuzzy processing times. It should be noted

nonetheless that with uncertain durations we cannot

guarantee that the produced schedule will indeed be

active when it is actually performed (and tasks have

exact durations). We may only say that the obtained

fuzzy schedule is possibly active.

It often happens that a sequence of tasks is not com-

patible in order to obtain an active schedule, so the de-

coding algorithm in Algorithm 1 has to exchange the

order of some tasks. This new order is translated to

the chromosome, for it to be passed onto subsequent

offsprings, thus GA exploiting the so-called lamarck-

ian evolution. Again, an implicit mutation effect is ob-

tained.

The GA described above has been successfully used

in (González Rodŕıguez et al., 2007b) for a single objec-

tive job shop to minimise the expected makespan using

semi-active schedules, comparing favourably to a simu-

lated annealing algorithm from the literature (Fortemps,

1997). Also the GA combined with the extended G&T

improves the expected makespan results obtained by

a niche-based GA that follows the scheme proposed

in (Sakawa and Kubota, 2000) with matrices of com-

pletion times as chromosomes and recombination oper-

ators based on fuzzy G&T.

5 Experimental Results

For the experimental results, we follow (Fortemps, 1997)

and generate a set of fuzzy problem instances from well-

known benchmark problems: FT06 of size 6 × 6 and

LA11, LA12, LA13 and LA14 of size 20×5. This will al-

low for comparisons with the simulated annealing (SA)

algorithm proposed in that paper. From a given crisp

processing time x, a symmetric fuzzy processing time

p(x) is generated as follows: the modal value is p2 = x

and p1, p3 are random values, symmetric w.r.t. p2 and

generated so the TFN’s maximum range of fuzziness

is 30% of p2. To generate due dates, we use a method

proposed in (González Rodŕıguez et al., 2006). For job

Ji, let ιi =
∑m
j=1 p

2
ij be the sum of most typical du-

rations across all its tasks, for a given task θij , let

ρij =
∑
r 6=i,s6=j:νrs=νij p

2
r,s be the sum of most typical

durations of all other tasks requiring the same machine

as θij , and let ρi = maxj=1,...,m ρij be the maximum

of such values across all tasks in job Ji. Then, the due

date Di is a random value from [ιi + 0.5ρi, ιi + ρi]. In

total, 10 instances of fuzzy job shop are generated from

each original benchmark problem.

Given the three fuzzy goals f1 = Cmax, f2 = Tmax
and f3 = Imax, we consider five objective functions:

three single-objective functions given by the expected

values E[f1], E[f2] and E[f3] and two multiobjective

functions that result from incorporating two different

priority structures in expression (20). The first multi-

objective function l123 corresponds to the priority struc-

ture defined by ρ(i) = i, that is, the most prioritary goal

is the makespan f1, then the tardiness f2 and, finally,

the idleness f3. The second objective function l213 cor-

responds to ρ(f1) = 2, ρ(f2) = 1, ρ(f3) = 3, i.e. the

most prioritary goal is to minimise tardiness, and the

makespan becomes the second goal. These hierarchies

correspond to probably the most common objectives in

the job shop literature, namely minimise makespan or

maximise due-date satisfaction.

For each problem instance and objective function,

the GA is run 30 times with population size 100 for 200

generations. To fix the target value b1 for the expected

makespan, we use the experience gained using E[f1] as

single objective and set b1 equal to the average value

of E[f1] across 30 runs of the GA. Target values for

expected tardiness and idleness are in all cases b2 =

b3 = 0. Table 1 shows a summary of the results: for each

fitness function we measure E[f1], E[f2] and E[f3] for

the obtained schedule and compute the best, average

and worst of these values across the 30 executions of

the GA and the 10 problem instances generated from

the same original problem. The optimal makespan value

for the original crisp problem is also shown between

brackets, as it provides a lower bound for the expected

makespan of the fuzzified version (Fortemps, 1997).

From the results in Table 1, it is clear that the

multiobjective versions with l123 and l213 behave sim-

ilarly to the corresponding single-objective ones, E[f1]
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Table 1 Results obtained by the GA

ProblemFitness
E[f1] E[f2] E[f3]

Best Avg Worst Best Avg Worst Best Avg Worst

E[f1] 55.05 55.05 55.05 3.60 4.02 4.33 24.60 25.51 25.85

FT06 E[f2] 58.73 62.40 67.55 0 0 0 17.08 27.52 35.33

(55) E[f3] 63.18 64.80 70.55 5.83 9.48 15.68 7.05 7.30 10.70

l123 55.05 55.39 56.28 0.55 1.69 3 22.78 24.66 25.43
l213 56.90 58.03 58.90 0 0 0 18.10 20.30 27.15

E[f1] 1222 1222 1222 165.05 261.10 342.18 62.83 111.74 148.08

LA11 E[f2] 1257.08 1314.69 1366.08 3.95 5.23 12 109.68 177.53 248.38

(1222) E[f3] 1223.30 1244.71 1294.98 208.78 308.99 408.85 3.98 7.95 13.85

l123 1222 1222 1222 66.73 72.15 92.78 23.13 50.02 79.33

l213 1260.40 1300.45 1344.80 5.60 7.94 16.55 82.15 119.22 172.80

E[f1] 1040.13 1040.13 1040.13 140.55 240.54 316.23 41.95 82.80 129.95

LA12 E[f2] 1080.08 1140.30 1192.80 1.98 6.97 17.43 79.85 155.52 216.88

(1039) E[f3] 1041.23 1068.73 1149.08 141.23 286.85 441.30 3.10 7.09 10.70

l123 1040.13 1040.13 1040.13 31.38 41.51 56.73 16.95 31.94 61

l213 1081.55 1117.50 1183.80 4.80 12.89 28.40 55.35 98.80 176.35

E[f1] 1150 1150 1150 183.15 252.10 325.50 40.70 84.05 119.45

LA13 E[f2] 1189.55 1240.74 1303.83 0 1.35 2.58 101.40 179.02 253.48

(1150) E[f3] 1153.55 1181.28 1225.05 236.15 321.04 400.65 3.50 5.75 7.40

l123 1150 1150 1150 57.78 83.48 137.18 28.05 50.12 92.35

l213 1183 1191.63 1204.65 0 2.42 5.20 73.70 96.03 143.65

E[f1] 1292 1292 1292 230.95 328.89 404.20 81.55 150.73 235.90

LA14 E[f2] 1295.80 1339.04 1402.30 7.25 17.67 31.95 95.60 194.73 273

(1292) E[f3] 1292.65 1310.67 1350.75 249.35 365.62 446.15 4.30 8.35 14.55

l123 1292 1292 1292 39.4 49.55 78.35 45.96 77.09 126.75

l213 1297.80 1308.28 1360.20 3.65 10.17 29.2 51.05 86.51 170.10

and E[f2], regarding their most prioritary goal. Besides,

they improve considerably on the remaining goals. In-

deed, l123 and E[f1] obtain identical makespan values

in all problem instances except those stemming from

FT06, where the relative difference with respect to the

expected makespan lower bound (55) is less than 1%

in average. The expected tardiness values with l123 are

better than with E[f1] in all cases. Clearly, minimising

the makespan does not always imply minimising tar-

diness. If we consider the relative values of E[f2] with

respect to the lower bound of the expected makespan

(as a means of comparing tardiness values across dif-

ferent problem instances) we see that l123 obtains an

average reduction of 4.24% in FT06 instances and of

17.73% in LA problem instances. Regarding expected

idleness, l123 improves in average 1.55% for FT06 in-

stances and 4.65% for LA instances (again, relative to

the lower bound for the expected makespan). If we com-

pare l213 to E[f2], expected tardiness is equal for FT06

instances and only 0.8% worse in average for LA in-

stances, while expected makespan improves in average

7.94% and 2.5% for FT06 and LA instances respec-

tively. Expected idleness also improves in both fami-

lies, with values 13.13% and 6.46% better in average.

This illustrates that, despite being the last goal, Imax
is indeed taken into consideration in the optimisation

process when l123 and l213 are used. Of course, being

the last prioritary goal in both cases, it is natural that

the expected idleness values for l123 and l213 are not as

good as those obtained with E[f3].

Notice that the expected tardiness improvement for

l123 is greater in LA problems than in FT06 instances.

This is not surprising since tardiness values obtained

with E[f1] for FT06 are already close to target values.

This is not the case for LA instances, where there is

greater room for improvement. The same explanation

holds for makespan improvement when using l213 in-

stead of E[f2], which is greater for FT06 instances than

for LA ones. Notice as well that comparisons between

different multiobjective functions do not make sense, as

they model different priority requirements.

Let us now compare the GA using l123 with the

single-objective SA algorithm from (Fortemps, 1997).

In that work, 10 problem instances were also gener-
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Table 2 Comparison of results for E[Cmax]

Problem
E[f1] and SA l123 and GA

Best Avg Worst Best Avg Worst

FT06 55.02 55.2 56.01 55 55.05 55.25

LA11 1222 1222 1222 1222 1222 1222

LA12 1041 1046.81 1056.35 1039 1040.13 1043.25

LA13 1150 1155.07 1181.76 1150 1150 1150

LA14 1292 1292 1292 1292 1292 1292

ated from the same original benchmark problems with

the same method but using 6-point fuzzy intervals, a

particular case of which are TFNs. Table 2 contains

expected makespan results for both methods. It shows

the best, average and worst solutions obtained by the

GA with l123 across the 10 instances generated from

the same crisp problem, together with the results re-

ported in (Fortemps, 1997). In Section 4 we already

mentioned that the GA optimising only E[Cmax] com-

pared favourably with the SA algorithm. Table 2 shows

that this is also the case for the multiobjective function

l123 with makespan as its most prioritary goal.

Table 3 Results for the a-posteriori semantics

Problem E[f1] l123 E[f2] l213
FT06 ME% 0.95 1.53 15.29 5.68

F% 0.00 0.00 0.00 0.00

LA11 ME% 0.03 0.12 6.28 5.16

F% 4.62 0.00 0.41 0.00

LA12 ME% 0.07 0.23 9.72 6.18

F% 3.48 0.00 0.78 0.00

LA13 ME% 0.07 0.15 7.40 3.61

F% 2.68 0.30 0.85 0.00

LA14 ME% 0.02 0.10 3.14 1.97

F% 3.40 0.00 1.37 0.00

Finally, Table 3 presents the obtained values of the

performance measuresME and F based on the a-posteriori

semantics presented in Section 3.3. They are average

values across the 10 problems of a same family, rescaled

as percentage values, obtained with different objective

functions: two single-objective functions corresponding

to makespan and tardiness and the two multiobjective

functions l123 and l213 where the most prioritary goal is,

respectively, the makespan and the tardiness. The re-

sults for the a-posteriori semantics, i.e., the behaviour

of the task processing order on possible realisations of

task durations, coincide with the results for the ex-

pected objective values in Table 1 and further support

the corresponding analysis: the multiobjective versions

with l123 and l213 behave similarly to the corresponding

single-objective ones, E[f1] and E[f2], regarding their

most prioritary goal, whilst improving on the secondary

goal. If we compare the multiobjective function l123 to

E[f1], we see that the ME increases in average less than

0.2%, whilst F is considerably reduced. In fact, F be-

comes null in all cases except LA13, where it goes from

2.68% al 0.3%. Comparing l213 to E[f2], the multiob-

jective version clearly outperforms the single objective

one: not only do relative makespan errors ME improve

considerably (up to 10%), but due-date fulfilment is also

better or equal in all cases. In fact, in all cases but one

the a-posteriori schedules obtained with multiobjective

optimisation fully satisfy the due dates. There seems to

be a clear synergy effect among different goals in the

multiobjective approach.

6 Conclusions and Future Work

We have considered a job shop problem with uncertain

durations. Such uncertainty is modelled using TFNs

and the goal is to find a task processing order that yields

a feasible schedule optimising several objectives, for in-

stance, fuzzy makespan, fuzzy tardiness and fuzzy idle-

ness. We have proposed to formulate the multiobjective

problem as a fuzzy goal programming model according

to a generic priority structure and target levels estab-

lished by the decision maker, using the expected value

of the fuzzy quantities. As solving method, a GA with

codification based on permutations with repetitions has

been described. Experimental results on fuzzy versions

of well-known crisp problem instances illustrate the po-

tential of both the proposed multiobjective formulation

and the GA. This is further illustrated with experi-

mental results that incorporate the semantics of fuzzy

schedules proposed in (González Rodŕıguez et al., 2008)

In the future, the multiobjective approach will be

further analysed using a more varied set of problem in-

stances. This wider set of problems should also enable a

thorough parametric analysis of the target values estab-

lished by the decision maker. Finally, the GA may be

hybridised with other heuristic techniques, such as local
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search, to increase its potential. This leads to further

studying task criticality for fuzzy durations.

Acknowledgements

All authors are supported by MEC-FEDER Grant TIN2007-

67466-C02-01. A preliminary version of this work was

presented at the Workshop on Planning, Scheduling

and Constraint Satisfaction held in conjunction with
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