
Efficient repairs of infeasible job shop problems by
evolutionary algorithms

Raúl Mencı́aa,∗, Carlos Mencı́aa, Ramiro Varelaa

a Department of Computer Science, University of Oviedo, Spain

Abstract

We address the task of repairing infeasibility in the context of infeasible job shop
scheduling problems with a hard constraint on the maximum makespan allowed. For
this purpose, we adopt a job-based view of repairs, that allows for dropping some of the
jobs and so gives rise to the problem of computing the largest subset of jobs that can be
scheduled under the makespan constraint. Recent work proposed a genetic algorithm
for solving this problem, which integrates an efficient solution builder for defining the
search space. In this paper, we build on this earlier work and make several contribu-
tions. We provide a formal analysis of both the search space and the solution builder.
Then, we propose two important enhancements to the genetic algorithm: first, we de-
velop a new solution builder aimed at reducing the number of feasibility tests, making
the search process more efficient. In addition, we propose a more effective procedure
for testing the feasibility of different subsets of jobs under the given makespan con-
straint based on the use of a light-weight genetic algorithm. Experimental results show
that the proposed methods are effective at solving the problem, and that the enhance-
ments bring significant improvements.

Keywords: Job Shop Scheduling, Infeasibility, Repairs, Evolutionary Algorithms,
Solution Builders

1. Introduction

Scheduling problems arise profusely in a wide range of areas, especially in man-
ufacturing and engineering, where a proper organization of limited resources is usu-
ally necessary. In addition, these problems are often computationally intractable, what
makes them a natural application domain for advanced artificial intelligence and opera-
tions research methods. As a consequence, scheduling problems have been thoroughly
studied in the literature over the last decades, giving rise to a large body of solving
approaches, both exact and approximate, e.g. (Brucker et al., 1994; Nowicki and Smut-
nicki, 2005; Beck, 2007; Zhang et al., 2008; Mencı́a et al., 2015; Peng et al., 2015;
Deng et al., 2020).

∗Corresponding author
Email address:

Preprint submitted to Engineering Applications of Artificial Intelligence June 26, 2021

Scheduling problems usually require computing schedules that optimize a given
objective function. However, in some settings there can be constraints that make the
problem infeasible, i.e., with no possible solution whatsoever. Such scenario may ap-
pear when, for instance, considering a hard constraint that imposes a limit on the max-
imum makespan allowed, enforcing all the jobs in the problem to be scheduled (and
completed) by a given time limit. This kind of constraint is natural in practice, and
infeasibility may easily arise under this constraint if the given scheduling horizon is
too tight. Furthermore, a number of scheduling problems with a constraint on the
makespan have been studied in the past, e.g. (Dawande et al., 2006; Allahverdi and
Aydilek, 2014; Guyon et al., 2014; Choi, 2015)). In this context, beyond detecting in-
feasibility, users may be interested in identifying its causes, or in finding possible ways
of repairing it, so that being able to solve the problem to some extent.

In this paper, we address the task of repairing infeasible job shop scheduling prob-
lems with a hard constraint on the makespan. For this purpose, we adopt a job-based
view of repairs, which enables dropping some of the jobs so that the remaining ones can
be scheduled within the makespan constraint. This view was recently taken in (Mencı́a
et al., 2019), giving rise to different notions of repairs, such as feasible subsets of jobs
(FSJs), set-wise maximal feasible subsets of jobs (MFSJs) and feasible subsets of jobs
of maximum cardinality (maxFSJs), i.e., feasible subsets of jobs with the greatest pos-
sible number of jobs. These concepts are inspired in analogous notions in the analysis
of inconsistency in logic, where repairing (or correcting) inconsistent formulas has
been widely investigated (Marques-Silva and Mencı́a, 2020). In addition, Mencı́a et al.
(2019) preliminarily addressed the problem of approximating maxFSJs, by means of a
genetic algorithm. This algorithm looks for solutions in the search space of (approx-
imations of) MFSJs, defined by a solution builder used in its decoding phase. The
genetic algorithm was recently adapted to a weighted version of the problem and com-
bined with a local search algorithm specifically tailored to the case that jobs have dif-
ferent weights (Mencı́a et al., 2020).

We focus on the problem of approximating maxFSJs, that is, computing the largest
subsets of jobs that can be scheduled under the hard makespan constraint. Building
on (Mencı́a et al., 2019), we make several contributions:

• We first provide a formal analysis of the search space of MFSJs and the solution
builder, proving relevant properties.

• The analysis gives rise to important enhancements to the genetic algorithm. In
this respect, we propose a new solution builder that defines the same search space
but in a more efficient way. By integrating a binary search phase, it aims at re-
ducing the number of feasibility tests needed to compute a solution, what allows
for saving time.

• Furthermore, we propose a new (incomplete) procedure for testing the feasibility
of different subsets of the jobs (i.e. deciding whether these can be scheduled
within the given makespan limit), which is iteratively invoked by the solution
builders. Whereas earlier work used a greedy algorithm for this purpose, the new
procedure integrates a light-weight genetic algorithm which is more effective,
leading to better results.

2

We conducted an extensive experimental study to evaluate the proposed algorithms
over a large set of instances with different sizes and characteristics. The experimental
results reveal that genetic algorithms are successful at solving the problem and confirm
that the new methods bring significant improvements in practice.

The remainder of the paper is structured as follows: Section 2 introduces the nec-
essary background and notation, including the definition of the problem. Section 3
reviews related work. Section 4 presents a formal analysis of the search space and the
solution builder from (Mencı́a et al., 2019), and describes the new solution builder that
exploits binary search. The main components of the genetic algorithm are presented
in Section 5. The new procedure for testing the feasibility of a given subset of jobs
is described in Section 6. Section 7 is devoted to the experimental study. Finally, we
summarize the main conclusions and outline ideas for future research in Section 8.

2. Preliminaries

In the classical job shop scheduling problem (JSP) we are given a set of n jobs
J = {J1, . . . , Jn} that must be scheduled on a set of m resources or machines
M = {M1, . . . ,Mm}. Job Ji ∈ J consists of a sequence of m tasks or op-
erations (θi1, . . . , θim), and each of its operations θij requires a particular machine
M(θij) ∈ M during a (positive integer) processing time pθij . Besides, without loss
of generality, it is commonly assumed that any two operations of the same job require
different machines.

A schedule S is an allocation of a starting time stθij to each operation satisfying
the following constraints:

i. Conjunctive constraints. Operations must be scheduled in the order they appear
in their job, i.e., stθij + pθij ≤ stθi(j+1)

for all i = 1, ..., n and j = 1, ...,m− 1.
ii. Disjunctive constraints. Machines cannot process more than one operation at a

time, that is, (stu + pu ≤ stv) ∨ (stv + pv ≤ stu) for all operations u, v with
u 6= v and M(u) =M(v).

iii. Non-preemption. The processing of operations cannot be interrupted, i.e.,Cu =
stu + pu for every operation u, where Cu denotes the completion time of u.

The quality of a schedule can be evaluated with respect to several different met-
rics (Brucker and Knust, 2006), such as the makespan, total flow time or tardiness and
lateness measures (when due dates are considered), to name a few. In this work, we
focus on the makespan: given schedule S, its makespan is defined as the maximum
completion time of the operations in S, and it is denoted Cmax(S).

This metric gives rise to one of most studied optimization versions of the JSP,
denoted J ||Cmax in the standard α|β|γ notation (Graham et al., 1979)), which requires
computing a schedule with the minimum possible makespan.

Taking the makespan into account, the decision version of the JSP requires deter-
mining whether there exists a schedule S such that Cmax(S) ≤ C, where C is a fixed
limit on the maximum makespan allowed. If such a schedule S exists, we call the prob-
lem instance feasible, whereas infeasible otherwise. The JSP, in its decision version, is
well-known to be NP-complete (Garey et al., 1976).

3

This paper focuses on infeasible problem instances due to a hard constraint on the
makespan and, more specifically, on the task of repairing infeasibility in the best pos-
sible manner. To this aim, we adopt a job-based view of repairs, that enables relaxing
the problem by dropping some of the jobs in a way that the remaining ones can be
scheduled within the makespan limit imposed by the hard constraint. Throughout, we
will refer to such an infeasible instance by a pair I = (J , C), requiring scheduling the
set of jobs J without exceeding the maximum makespan C.

In this setting, the following definitions serve to characterize different notions of
repairs (Mencı́a et al., 2019):

Definition 1. (FSJ) Given an infeasible instance I = (J , C), S (J is a feasible
subset of jobs (FSJ) of J if and only if (S, C) is feasible.

An FSJ is a subset of jobs that can be scheduled under the makespan constraint.
Thus, it represents a possible way of repairing infeasibility. However, an arbitrary FSJ
may leave out a number of jobs unnecessarily, and so considering some maximality
criteria would be beneficial.

Definition 2. (MFSJ) Given an infeasible instance I = (J , C), S (J is a maximal
feasible subset of jobs (MFSJ) of J if and only if (S, C) is feasible and for all S ′ ⊆ J
with S (S ′, (S ′, C) is infeasible.

Definition 3. (maxFSJ) Given an infeasible instance I = (J , C), S∗ (J is a
maximum feasible subset of jobs (maxFSJ) if and only if (S∗, C) is feasible and for all
FSJs S ′ of J , |S ′| ≤ |S∗|.

MFSJs and maxMFSJs exhibit different forms of maximality. On the one hand,
MFSJs are maximal with respect to set inclusion, that is, no superset of an MFSJ is
an FSJ. On the other hand, maxFSJs are maximal with respect to set cardinality, i.e.,
maxFSJs are the largest possible FSJs. As we will see in the following section, maxF-
SJs are MFSJs as well, but the opposite does not always hold true. Arguably, MFSJs
represent a kind of local optima with respect to approximating maxFSJs, since these
cannot be extended with any jobs without losing feasibility.

These definitions build on related concepts in the analysis of inconsistent proposi-
tional formulas, such as maximal satisfiable subformulas (MSSes) or maximum satisfia-
bility (maxSAT), representing analogous concepts to MFSJs and maxFSJs respectively
(see (Marques-Silva and Mencı́a, 2020) for a recent survey).

The following example (Mencı́a et al., 2019) illustrates all the definitions:

Example 1. Let us consider a job shop with jobs J = {J1, J2, J3, J4} and machines
M = {M1,M2}. Each job Ji consists of a sequence of two operations (θi1, θi2),
with processing times and machine requirements as indicated in Table 1 (e.g., job J1
consists of the sequence of operations (θ11, θ12); θ11 requires machine M1 during 2
time units, and θ12 requires machine M2 during 3 time units, ...).

If we consider a hard constraint limiting the makespan to at most C = 10 the
instance (J , C) is infeasible. There are 11 FSJs of J : ∅, {J1}, {J2}, {J3}, {J4},
{J1, J2}, {J1, J3}, {J1, J4}, {J2, J3}, {J2, J4} and {J1, J2, J4} as there exists a
schedule with makespan less than or equal to 10 for each of them. Out of these

4

Table 1: Instance data.

J1 J2 J3 J4
θi1 2 (M1) 3 (M1) 6 (M2) 5 (M2)
θi2 3 (M2) 2 (M2) 4 (M1) 5 (M1)

J1 θ11,M1 θ12,M2

J2 θ21,M1 θ22,M2

J4 θ41,M2 θ42,M1

1 2 3 4 5 6 7 8 9 10

Figure 1: Gantt chart of a schedule for the maxFSJ {J1, J2, J4} in Example 1.

sets, three are MFSJs: {J1, J3}, {J2, J3} and {J1, J2, J4}; and only the last one is
a maxFSJ, with 3 jobs. Figure 1 shows a schedule for the maxFSJ with makespan 10,
which does not exceed the limit C.

With the definitions above, computing maxFSJs may be seen as the best way of
repairing infeasibility, due to their maximum size. Hence, in this paper we address
the maximization problem of approximating maxFSJs for a given infeasible instance
(J , C), that is finding feasible subsets of jobs with maximum cardinality.

Table 2 summarizes the main notation and terminology introduced in this section.
It will be used throughout the paper.

Table 2: Main notation and terminology.

Notation Definition

JSP Job shop scheduling problem
M Set of machines
Mi i-th machine
J Set of jobs
Ji i-th job
θij j-th operation of job Ji

stθij Starting time of operation θij
pθij Processing time of operation θij
Cu Completion time of operation u

Cmax(S) Makespan of schedule S
C Maximum makespan

(J , C) Problem instance, with jobs J and maximum makespan C
FSJ Feasible subset of jobs

MFSJ Maximal feasible subset of jobs
maxFSJ Maximum feasible subset of jobs

5

3. Related work

The problem studied in this paper was first addressed in (Mencı́a et al., 2019). In
this previous work, the notions of MFSJ and maxFSJ were proposed as a means to
repairing infeasibility in the context of job shop scheduling problems with a hard con-
straint on the makespan. These definitions are based on concepts commonly used in
the field of Boolean satisfiability in the analysis of unsatisfiable propositional formu-
las. For approximating maxFSJs, Mencı́a et al. (2019) proposed a genetic algorithm
that looks for solutions in the space of (approximations of) MFSJs. To this aim, it inte-
grates a solution builder based on a linear search approach (Bailey and Stuckey, 2005;
Marques-Silva et al., 2013) and uses a greedy algorithm (Giffler and Thompson, 1960)
as an incomplete procedure to test the feasibility of subsets of jobs. To our knowledge,
this genetic algorithm is the current best performing approach for solving the problem.
This algorithm was later adapted to handle a weighted version of the problem and com-
bined with a local search approach (Mencı́a et al., 2020). The local search approach
is only applicable when jobs have different weights, so it cannot bring any benefits to
the unweighted version of the problem considered herein. In contrast, improvements
to the core components of the genetic algorithm can be expected to be effective in the
weighted version of the problem as well.

In this paper, we build on this earlier work and make significant contributions, in
both theory and practice. First, we provide a detailed formal analysis proving relevant
properties, as the completeness of the search space of MFSJs, and the soundness of the
solution builder. In addition, we propose two key enhancements to the genetic algo-
rithm: a new, more efficient, solution builder and a new procedure to test the feasibility
of subsets of jobs more effectively. Despite restricting our study to the task of repairing
infeasible job shop scheduling problems with a hard constraint on the makespan, the
scope and applicability of this framework should be underscored. The same notions for
repairing infeasible problem instances could be applied to other versions of job shop
scheduling (e.g., considering setup times, uncertainty or additional constraints on the
resources) or to other scheduling problems where the input is a set of jobs. Further-
more, the hard constraint that makes the problem instance infeasible could be defined
on metrics other than the makespan. In any case, computing MFSJs and maxFSJs may
be a suitable approach for dealing with infeasibility. In addition, the methodology in
the formal analysis and the algorithms proposed herein could serve as a solid basis to
tackle such problems in the future.

In the remainder of this section, we first discuss some related problems and then
review genetic algorithms for solving scheduling problems.

3.1. Related problems

The problem of computing maxFSJs addressed in this paper is related to other
problems studied in the field of scheduling.

For example, Dawande et al. (2006) considered the problem of finding a feasi-
ble subset of jobs in a two-stage flow shop maximizing a weighted sum of the jobs.
However, testing the feasibility of a two-stage flow shop can be done in polynomial
time (Garey et al., 1976), whereas testing the feasibility of general job shop instances
is an NP-complete problem.

6

Another related problem is the one addressed in (Della Croce et al., 2017), which
considers polynomially solvable two machine flow shop and job shop problems, and
focuses on selecting the set of jobs of a given fixed size (introduced as a parameter) that
optimizes the makespan. In contrast, we focus on optimizing the size of the selected
set of jobs, while fixing the limit on the maximum makespan allowed.

The problem addressed herein can be also related to the classical objective function
of minimizing the number of late, or tardy, jobs (Moore, 1968; Della Croce et al.,
2000). In this setting, each job is associated a due date, and the goal is to compute a
schedule that minimizes the number jobs that are completed after their indicated due
dates. This objective function plays an important role in the context of overloaded
single-machine real-time systems (Liao et al., 2019), where the goal is completing the
maximum number of tasks on time. In this paper, our goal is not computing a schedule
that optimizes a given objective function, but identifying the largest subset of jobs that
can be scheduled under the given additional hard constraint, removing any other jobs
that do not take part in the solution.

3.2. Genetic algorithms
Genetic algorithms (GAs) stand out among the most successful population-based

metaheuristics (Talbi, 2009). GAs were originally proposed by Holland (1975) and are
inspired in the theory of evolution. These algorithms maintain a population of solu-
tions which is evolved by the application of selection, recombination and replacement
operators, with the goal of reaching an appropriate tradeoff between exploration of the
search space and intensification in its most promising regions.

Genetic algorithms have been widely used to solve a variety of hard scheduling
problems, including single machine (Mustu and Eren, 2018; Mencı́a et al., 2019), par-
allel machines (Vallada and Ruiz, 2011; Tan et al., 2019), open shop (Andresen et al.,
2008; Hosseinabadi et al., 2019), flow shop (Branda et al., 2021), job shop (Gonçalves
and Resende, 2014; Zhang et al., 2020) or resource constrained project scheduling
problems (Gonalves et al., 2008). In addition, GAs have been successfully applied
in numerous domains, as heterogeneous computing systems Akbari et al. (2017) or
operations management (Lee, 2018), to name a few.

A large body of genetic algorithms has been proposed for solving job shop schedul-
ing problems in their optimization versions. The performance of these algorithms re-
lies on coding schemas specific to the problem, as well as on the use of sophisticated
crossover operators. Some examples of coding schemas are those based on preference
rules (Della Croce et al., 1995), permutations of jobs with repetitions (Bierwirth, 1995)
or random keys (Gonçalves and Resende, 2014). Crossover operators play an impor-
tant role in the evolutionary process, since these allow for an effective transmission of
relevant characteristics from parents to their offspring. Examples of crossover oper-
ators include order-based crossover (Davis, 1985), multi-step crossover (Yamada and
Nakano, 1995) or job-based order crossover (Ono et al., 1996), among others.

In order to decode chromosomes into actual schedules, GAs commonly exploit
schedule builders. These are methods that allow for restricting the search to subsets
of all possible schedules. For instance, the well-known G&T algorithm (Giffler and
Thompson, 1960) defines the space of the so-called active schedules. This algorithm
has been extended to cope with variants of the job shop scheduling problem that include

7

additional elements and constraints, for instance sequence-dependent setup times (Ar-
tigues et al., 2005) uncertainty in the processing times (Palacios et al., 2014), or skilled
operators that assist the processing of the operations (Mencı́a et al., 2015).

Genetic algorithms have also been successfully combined with other metaheuris-
tics, as local search methods. For example, Meeran and Morshed (2012) combined
a genetic algorithm with tabu search to solve real-life job shop scheduling problems.
Kurdi (2015) proposed a hybrid genetic algorithm which incorporates a self-adaptation
strategy based on tabu search and random mutation operators. Hybrid genetic algo-
rithms have also been successful in different variants of the problem, as dynamic (Kun-
dakc and Kulak, 2016) or multiobjective (Gong et al., 2019) job shop scheduling prob-
lems, among others.

4. Search space

The definition of a search space is a fundamental step towards solving hard com-
binatorial problems. Ideally, the search space would exhibit some desirable properties,
such as being of reasonable size and containing high-quality solutions to the problem,
including optimal ones.

When facing scheduling problems, the use of so-called schedule builders is com-
mon for this purpose, e.g. (Giffler and Thompson, 1960; Kolisch, 1996; Artigues et al.,
2005; Palacios et al., 2014; Mencı́a et al., 2015). Schedule builders, also referred to as
schedule generation schemes, are constructive methods for computing and enumerat-
ing a subset of the schedules for a given problem instance, and so enable the definition
of a search space.

However, for solving the problem considered herein, i.e., approximating maxFSJs
for a given infeasible problem instance, computing schedules alone does not suffice,
since it is also necessary to identify feasible subsets of jobs. As a consequence, the
definition of the search space needs to be done in two levels: first on the subset space
of the set of all the jobs, and then on the set of schedules for any given subset of jobs
in order to test its feasibility. We describe both in the following subsections.

4.1. Subset space of the set of jobs
Our approach aims at restricting the search to the set of MFSJs, what comes with

several benefits. First, the search space defined by the set of all MFSJs is complete,
i.e., it contains all optimal solutions to any given problem instance. This follows from
the fact that all maxFSJs are MFSJs as well, as proven next.

Proposition 1. Let I = (J , C) be an infeasible problem instance and S∗ (J a
maxFSJ of J . S∗ is also an MFSJ of J .

Proof. S∗ is a maxFSJ of J so, by Definition 3 it is an FSJ of J . Suppose that S∗ is
not an MFSJ of J . Then, by Definition 2, there must exist a proper superset S ′ (J
of S∗ which is also an FSJ of J . As S∗ (S ′, it necessarily follows that |S∗| < |S ′|,
so S∗ is not a maxFSJ of J . A contradiction.

FSJs exhibit a useful monotonicity property that will be used throughout. We prove
that all the subsets of an FSJ are feasible subsets of jobs as well.

8

Proposition 2. Let I = (J , C) be an infeasible problem instance and S (J an FSJ
of J . Then, for all S ′ ⊆ S, S ′ is an FSJ of J .

Proof. Since S is an FSJ of J , there exists a schedule S for the jobs in S with
Cmax(S) ≤ C. Given S ′ ⊆ S , we can build a schedule S′ by assigning each op-
eration in S ′ the same starting time as in S. S′ is a schedule for the jobs in S ′ and
Cmax(S

′) ≤ Cmax(S) ≤ C, as the operations in S′ are a subset of those in S. Thus,
by Definition 1, S ′ is an FSJ of J .

A consequence of Proposition 2 is the dual result that all the supersets of an infea-
sible set of jobs are infeasible too, as proven next:

Proposition 3. Let I = (J , C) be an infeasible problem instance and let U ⊆ J be
such that the instance (U , C) is infeasible. Then, for all U ′ with U ⊆ U ′ ⊆ J , the
instance (U ′, C) is infeasible.

Proof. Consider an arbitrary U ′ such that U ⊆ U ′ ⊆ J . Since, the instance (U , C)
is infeasible and U ⊆ U ′, not all the subsets of U ′ are FSJs. By the contrapositive of
Proposition 2 it follows that that U ′ is not an FSJ of J , i.e., the instance (U ′, C) is
infeasible.

It is clear that the number of MFSJs for any given problem instance is never greater
than the number of FSJs since, by definition, all MFSJs are FSJs too. However, Propo-
sition 2 allows for easily proving that the number of FSJs can be exponentially greater
than that of MFSJs.

Proposition 4. There are infeasible problem instances with a number of FSJs expo-
nentially greater than the number of MFSJs.

Proof. Consider a feasible problem instance (S, C) and a job j /∈ S such that the
sum of the processing times of its operations exceeds C. The job j alone cannot be
scheduled under the makespan constraint, i.e., the instance ({j}, C) is infeasible. Now
define the instance (J , C), with J = S ∪ {j}. By Proposition 3, this instance is
infeasible since {j} ⊆ J . The set S is the only MFSJ of J , whereas by Proposition 2
each set in the power set of S is an FSJ of J , that is, there are 2|S| FSJs of J .

Noticeably, the monotonicity properties stated above enable an alternative defini-
tion of MFSJs:

Proposition 5. Let I = (J , C) be an infeasible problem instance. S (J is an MFSJ
of J if and only if (S, C) is feasible and for all j ∈ J \ S, (S ∪ {j}, C) is infeasible.

Proof. (If) The instance (S, C) is feasible, so S is an FSJ of J . Let us suppose that
S is not an MFSJ of J . Then, there must exist an FSJ S ′ (J such that S (S ′. As
S ′ is a proper superset of S, S ′ must contain some job j ∈ J \ S . Since (S ∪ {j}, C)
is infeasible for all j ∈ J \ S , by Proposition 3, (S ′, C) is necessarily infeasible. A
contradiction.

(Only if) S is an MFSJ of J so, by Definition 2, for all S ′ ⊆ J such that S (
S ′, the instance (S ′, C) is infeasible. Hence, for all j ∈ J \ S, (S ∪ {j}, C) is
infeasible.

9

Algorithm 1 Solution Builder based on Linear Search.
Data: Set of jobs J , makespan limit C
Result: S (J an MFSJ of J
R ← J ;
S ← ∅;
U ← ∅;
whileR 6= ∅ do

Pick j ∈ R; // Non-deterministically
R ← R \ {j};
if Feasible (S ∪ {j}, C) then
S ← S ∪ {j};

else
U ← U ∪ {j};

end
return S;

Based on the result above, a solution builder was proposed in (Mencı́a et al., 2019)
for computing an MFSJ of J , which requires a linear number of feasibility tests.

4.1.1. Solution builder
Algorithm 1 shows the solution builder1. Given an infeasible problem instance

(J , C), it produces an MFSJ of J by following a linear search approach (Bailey and
Stuckey, 2005; Marques-Silva et al., 2013).

The algorithm maintains a partition {S,U ,R} of J , where S represents a feasible
subset of jobs, U contains jobs j such that (S ∪{j}, C) is infeasible, andR, referred to
as reference set, includes the jobs that still need to be tested. At the beginning,R = J
and both S and U are initialized as empty sets. Then, iteratively until R becomes
empty, the algorithm selects a job j ∈ R and tests whether the instance (S ∪ {j}, C)
is feasible. If it is, S is extended with the job j; otherwise, j is added to U . In either
case, j is removed fromR, which guarantees termination after |J | iterations. Note that
when the algorithm terminates, it holds that U = J \ S .

Algorithm 1 uses a procedure, termed Feasible, to test the feasibility of subsequent
subsets of jobs under the given hard constraint on the makespan. More concretely,
given a set of jobs J ′, and a limit C on the maximum makespan allowed, Feasible
(J ′, C) returns the Boolean value true if there exists a schedule for the jobs in J ′ with
makespan not exceeding C. If such a schedule does not exist, the procedure returns
the value false. In this section, Feasible acts as an abstract procedure, to make the
formal analysis general. Later in the paper, Section 5 and Section 6 detail specific
implementations of this procedure.

Noticeably, whenever Feasible is a complete decision procedure, there is the guar-
antee that upon termination S represents an actual MFSJ of J . We prove this result as

1For the sake of clarity, Algorithm 1 extends the pseudocode in (Mencı́a et al., 2019) by considering the
set U , which allows for proving soundness more easily (Proposition 6).

10

follows:

Proposition 6. Given an infeasible problem instance I = (J , C), Algorithm 1 always
computes an MFSJ of J if Feasible is a complete decision procedure.

Proof. It suffices to note that the following invariant holds: S is an FSJ of J and
for every j ∈ U , it holds that for all FSJs S ′ of J such that S ⊆ S ′, the instance
(S ′ ∪ {j}, C) is infeasible. Since S is only extended with a job j if (S ∪ {j}) is
feasible, S is guaranteed to be an FSJ of J along the whole process. On the other
hand, the job j is added to the set U whenever (S ∪ {j}, C) is infeasible. Now, let S ′
be an FSJ such that S ⊆ S ′ and a job j ∈ U . By Proposition 3, since (S ∪ {j}, C) is
infeasible and S∪{j} ⊆ S ′∪{j}, it follows that the instance (S ′∪{j}, C) is infeasible.
On termination U = J \ S; hence by Proposition 5 S is an MFSJ of J , since (S, C)
is feasible and for all j ∈ J \ S, the instance (S ∪ {j}, C) is infeasible.

As shown in the pseudocode, at each iteration Algorithm 1 picks a job j ∈ R
non-deterministically. Depending on the choices made, different MFSJs can be com-
puted. For example, for the instance from Example 1, if led by the sequence of choices
(J1, J2, J3, J4) the algorithm would compute the MFSJ {J1, J2, J4}. On the other
hand, the sequence of choices (J1, J3, J2, J4) would yield the MFSJ {J1, J3}. The
sequence of choices (J3, J1, J4, J2) would also lead to building the MFSJ {J1, J3}, so
the mapping is many-to-one.

Noticeably, there is no MFSJ that cannot be computed by the solution builder. This
follows from the next result:

Proposition 7. Let S be an MFSJ of J for a given infeasible instance I = (J , C).
There is a sequence of choices σ = (σ1, ..., σ|J |) that leads Algorithm 1 to computing
S.

Proof. Define σS as a permutation of the jobs in S, and σJ\S as a permutation of the
remaining jobs. Build σ = σSσJ\S , by appending both permutations. If led by σ,
Algorithm 1 would build the MFSJ S, since it would pick the jobs in this set before
any other jobs.

This, together with the fact that the solution builder is sound (Proposition 6), im-
plies that when Feasible is a complete decision procedure the search space defined
by the solution builder contains exactly the set of all MFSJs for any given problem
instance, including all maxFSJs as well.

4.1.2. Reducing the number of feasibility tests
As pointed out, the solution builder in Algorithm 1 performs a linear number of

feasibility tests for computing an MFSJ. Although this number is rather low, the so-
lution builder is to be invoked a large number of times (as it will act as the decoder
of a genetic algorithm). So, we propose an alternative method that aims at reducing
the number of feasibility tests. The idea is to first conduct a binary search in order to
obtain an initial under-approximation quickly, and then extend it to an actual MFSJ by
performing a linear search on the remaining jobs.

11

Algorithm 2 Solution Builder with Binary Search.
Data: Set of jobs J , makespan limit C
Result: S (J an MFSJ of J
low ← 0;
up← |J |;
while (up− low) > 1 do

mid← b(low + up)/2c;
if Feasible (J1..mid, C) then
low ← mid;

else
up← mid;

end
S ← J1..low;
U ← Jup..up;
R ← J(up+1)..|J |;
whileR 6= ∅ do

Pick the first job j ∈ R;
R ← R \ {j};
if Feasible (S ∪ {j}, C) then
S ← S ∪ {j};

else
U ← U ∪ {j};

end
return S;

The alternative solution builder is depicted in Algorithm 2. This algorithm assumes
a fixed order of the jobs in the sets, and uses subindices to refer to specific subsets: Ji..j
refers to the set that consists of the elements from the i-th, to the j-th of J whenever
i < j. If i = j it refers to its i-th element, whereas it denotes an empty set if i > j.

As can be observed, the algorithm consists of two phases. First, a binary search is
performed by using the pointers low, up and mid. Throughout this phase it holds that
the instance (J1..low, C) is feasible and (J1..up, C) is infeasible. Notice that initially
low = 0 and up = |J |, so J1..low is the empty set and J1..up contains all the jobs. At
each iteration, the algorithm computes the position mid in the middle of low and up
and tests the feasibility of the instance (J1..mid, C). If it is feasible, low is set to mid.
Otherwise, up is set to mid. The binary search terminates when low = up− 1.

At this point, the set S is initialized with the jobs in J1..low, U is initialized with
the job Jup..up andR with the remaining jobs in J . Then, in the second phase, all the
remaining jobs are processed in order (picking the first one inR at each iteration), fol-
lowing a linear search approach as in Algorithm 1. This guarantees that the computed
set is an MFSJ of J (if Feasible is a complete decision procedure).

In the best case, Algorithm 2 computes an MFSJ with a logarithmic number of
feasibility tests in the size of J , i.e. when the set J1..(|J |−1) is an FSJ of J , which
constitutes an exponential improvement over Algorithm 1. On the other hand, in the
worst case, i.e. when the set J1..1 is not an FSJ of J , the algorithm would invoke the

12

Algorithm 3 G&T schedule builder.
Data: A JSP problem instance P , given by set of jobs J
Result: A schedule S for P
A ← {θi1; Ji ∈ J };
SC ← ∅;
while A 6= ∅ do

v∗ ← argmin{rv + pv; v ∈ A};
B ← {u ∈ A;M(u) =M(v∗), ru < rv∗ + pv∗};
Pick u ∈ B non deterministically;
Set stu ← ru in S;
Add u to SC and update rv for all v /∈ SC;
A ← {v; v /∈ SC,P (v) ⊆ SC};

end
return the built schedule S;

procedure Feasible more times, but with only a logarithmic overhead.
In addition, it is easy to see that for a given fixed order of the jobs representing a

sequence of choices taken in Algorithm 1, the two-phase solution builder would pro-
duce the same MFSJ (provided that Feasible is a complete decision procedure). This,
together with Proposition 7, serves to prove that the search space defined by the new
solution builder contains exactly the set of all MFSJs for any given problem instance.

4.2. Space of schedules for a given set of jobs
The solution builders presented above (Algorithms 1 and 2) rely on iteratively test-

ing the feasibility of subsets of jobs, which is done by invocations to the procedure
Feasible. As pointed out, whenever Feasible is a complete decision procedure the solu-
tion builders are guaranteed to produce an actual MFSJ of J . However, since each of
these feasibility tests requires solving an NP-complete problem (i.e., an instance of the
JSP), using an exact algorithm for this task may be prohibitive.

A more efficient approach would be using an incomplete decision procedure for
this purpose, at the cost of not having the guarantee that the solution builders will
produce an actual MFSJ of J , but an under-approximation instead. The accuracy of the
approximation would depend on the effectiveness of the decision procedure used. This
way, for testing the feasibility of an instance (J ′, C), with J ′ ⊆ J , the incomplete
decision procedure would search (during a short time) for a schedule of the jobs in
J ′ with makespan not exceeding the limit C. If such a schedule is found, the set
would be correctly declared feasible, and the schedule found would be a witness of
the feasibility of J ′. Otherwise, despite not having the guarantee that the instance is
infeasible, it would be handled as infeasible by the solution builders.

In order to compute schedules for a given instance, Mencı́a et al. (2019) proposed
using the well-known G&T schedule builder (Giffler and Thompson, 1960), depicted in
Algorithm 3. Given a JSP instance P , this method iteratively schedules one operation
at a time until building a schedule. In the pseudocode, P (u) denotes the immediate
predecessor of the operation u in its job sequence, and ru denotes the head of u, i.e.
its earliest possible starting time at a given iteration. In addition, the algorithm uses a

13

Algorithm 4 Genetic Algorithm.
Data: A problem instance P and a set of parameters (Pc, Pm,#gen, popsize)
Result: A solution for P
Generate and evaluate the initial population P (0);
for t=1 to #gen-1 do

Selection: organize the chromosomes in P (t− 1) into pairs at random;
Recombination: mate each pair of chromosomes and mutate the two offspring
in accordance with Pc and Pm;
Evaluation: evaluate the resulting chromosomes;
Replacement: make a tournament selection among every two parents and their
offspring to generate P (t);

end
return the best solution built so far;

set with all the operations scheduled so far, termed SC, as well as the set A consist-
ing of all the unscheduled operations being either the first one in their job or whose
immediate predecessor in their job has already been scheduled. At each iteration, the
algorithm builds a set B with the eligible operations that can be scheduled next. To
this aim, it identifies the operation v∗ ∈ A with the earliest possible completion time,
and considers all the operations requiring the same machine as v∗ that can start their
processing before the earliest possible completion time of v∗. Then, one operation in
B is scheduled at its earliest possible starting time (i.e., at its head), updating the sets
SC and A, as well as the heads of all the operations that still need to be scheduled.

The G&T algorithm always returns an active schedule, in which no operation can
be scheduled earlier without delaying the starting time of some other operation. In
addition, notice that the selection of the job j ∈ B scheduled at a given iteration is non-
deterministic. Noticeably, by considering all possible sequences of choices, the G&T
schedule builder defines the search space formed by the set of all active schedules.
This set is well-known to be dominant for the makespan, what means that it contains
schedules with the minimum possible makespan for any given instance.

5. Genetic algorithm

In this section, we describe a genetic algorithm for the problem of approximating
maxFSJs, whose main structure is shown in Algorithm 4. The input to the GA is a prob-
lem instance P (which in this case consists of an infeasible job shop problem instance
given by a pair (J , C)), and it has four parameters: crossover and mutation probabil-
ities (Pc and Pm), number of generations (#gen) and population size (popsize). As
output, the GA returns the largest feasible subset of the jobs in J (under the makespan
limit C) found along the whole search process. The main components of this algorithm
are presented below:

Evolutionary model. The GA follows a generational scheme, as can be observed in
Algorithm 4. As a first step, the initial population is generated at random and the
individuals are evaluated by using the decoding algorithm. At each generation, the

14

population undergoes a selection phase, that organizes potential parents in pairs ran-
domly. Each pair of parents gives rise to two new individuals, obtained by crossover
and mutation operators (according to probabilities Pc and Pm). Then, the replacement
phase builds the new population by performing a tournament among each pair of par-
ents and their two offspring. As a consequence, the best individual found along the
search is guaranteed to be included in the next generation, what constitutes an implicit
form of elitism. The termination criterion considered in Algorithm 4 is completing
#gen generations, although other alternatives can be used in this respect, as letting the
GA perform as many generations as possible by a given time limit.

Coding schema. Chromosomes are permutations with repetitions (Bierwirth, 1995).
Concretely, for a problem instance with n jobs and m machines, an individual is a
permutation of the job indices where each job is repeated m times. This kind of encod-
ing has been commonly used in GAs for solving job shop scheduling problems, and it
admits a number of effective and well-studied genetic operators.

In this setting, the j-th occurrence of the index i in a chromosome represents the j-
th operation of the job Ji, that is, the operation θij . This way, a chromosome encodes an
ordering of the operations that can guide a schedule builder, such as the G&T algorithm,
in the computation of a schedule. We refer to this ordering as operation sequence. For
example, for an instance with 4 jobs and 2 machines, the chromosome (4, 1, 1, 3, 2, 4,
2, 3) encodes the operation sequence (θ41, θ11, θ12, θ31, θ21, θ42, θ22, θ32).

Noticeably, chromosomes defined as permutations with repetitions also encode in-
formation for defining MFSJs, what allows the GA to search in both the subset space
of the set of jobs and the space of schedules for a given subset of jobs at the same time.
In particular, a chromosome encodes a total ordering of the jobs, that we refer to as job
sequence, given by the first appearance of each job. For instance, in this respect the
chromosome (4, 1, 1, 3, 2, 4, 2, 3) yields the job sequence (J4, J1, J3, J2). This infor-
mation can be used to guide a solution builder, such as Algorithm 1 and Algorithm 2.

Another example of a possible chromosome for an instance with 4 jobs and 2
machines could be the following one: (3, 1, 2, 2, 4, 4, 1, 3). The chromosome en-
codes the operation sequence (θ31, θ11, θ21, θ22, θ41, θ42, θ12, θ32) and the job sequence
(J3, J1, J2, J4).

Decoding algorithms. Decoding algorithms transform chromosomes into the actual
solutions they represent. For this purpose, the GA can use any of the two solution
builders presented in Section 4, aiming at approximating MFSJs by exploiting the in-
formation encoded in the chromosomes. This information is used to both guide the
solution builders and to determine the feasibility of a given subset of jobs.

At the highest level, the solution builders process the jobs in the order they appear
in the job sequence encoded in the chromosome. In this respect, Algorithm 1 selects,
at the i-iteration, the i-th job in the sequence, whereas Algorithm 2 assumes that jobs
are ordered according to the job sequence.

On the other hand, in order to check the feasibility of different subsets of jobs
efficiently, the procedure Feasible in Algorithms 1 and 2 is implemented by a single
run of the greedy G&T algorithm. In this context, the G&T algorithm exploits the
operation sequence encoded in the chromosome. More specifically, for testing the

15

feasibility of a given problem instance (J ′, C), with J ′ ⊆ J the G&T algorithm
builds a schedule S for the jobs in J ′ scheduling, at each iteration, the operation in
the set B (see Algorithm 3) that appears first in the operation sequence. We notice that
the operation sequence contains all the operations of the jobs in J , so the operations
of jobs not in J ′ are simply ignored. If the makespan of the computed schedule S
does not exceed the maximum limit C, the instance is declared feasible (with S being
a witness that J is a feasible set of jobs). Otherwise, although there is no guarantee
that the instance is infeasible, the solution builder would handle it as such. This does
not constitute a complete decision procedure, so the computed subset of jobs may not
be an actual MFSJ, but an approximation instead.

Anyway, the computed set is a feasible set of jobs, and its cardinality is the fitness
value of the chromosome.

Crossover and Mutation. The GA exploits the Job-based Order Crossover (JOX) (Ono
et al., 1996) operator, which is particularly tailored to permutations with repetitions.
It works as follows: given a pair of (parent) chromosomes, JOX selects a random
subset of the job indices and copies them to the offspring in the same positions as they
appear in the first parent. The remaining positions are filled from the second parent,
maintaining their relative order. As an example, let us consider the following two
chromosomes:

Parent 1: (2 1 1 3 2 3 1 2 3) Parent 2: (3 3 1 2 1 3 2 2 1)

If the selected subset of jobs only includes the job 2, the generated offspring is:

Offspring: (2 3 3 1 2 1 3 2 1).

The second offspring is obtained by the same procedure, but switching the role
of the parents. On the other hand, the mutation operator introduces small changes by
swapping two consecutive positions of the chromosome randomly.

Overall integrated workflow. Figure 2 shows the overall workflow of the genetic al-
gorithm. Given a problem instance and the GA parameters, the GA starts by gener-
ating and evaluating the initial population. Then, until the termination condition is
met, the population evolves by undergoing selection, recombination, evaluation and
replacement phases. At each generation, the chromosomes in the population are paired
randomly (selection). In the recombination phase, each pair of chromosomes gives rise
to two offspring, by the application of crossover and mutation operators. Then, the
new individuals are evaluated, obtaining actual solutions from the chromosomes. To
this aim, for each individual the job sequence and the operations sequence are extracted
from the chromosome. Next, the solution builder is invoked, which is guided by the job
sequence in the approximation of an MFSJ. For this purpose, either the one based on
linear search (Algorithm 1) or the new one that integrates binary search (Algorithm 2)
can be used. The solution builder makes several invocations to the procedure Feasible,
which is guided by the operations sequence extracted from the chromosome. The im-
plementation of this procedure is based on the G&T algorithm, as explained in this
section. An improvement to this procedure is presented in the following section (Al-
gorithm 5). After all the chromosomes are evaluated, the ones that will survive for the

16

Evaluation

(J , C) Instance,
GA parameters

Generate and Evaluate
Initial Population

Selection
Random

Recombination
Crossover and Mutation

Extract job and
operations sequences

Solution Builder
Alg. 1 or Alg. 2

Procedure Feasible
G&T or Alg. 5

Replacement
Tournament

Terminate?
FSJ with the

greatest size found

no

yes

Figure 2: Overall workflow of the genetic algorithm.

next generation are those that are fitter, according to a tournament between parents and
offspring (replacement). After the GA is run for the given number of generations, the
FSJ with the greatest size found along the whole process is returned.

6. Improving the effectiveness of the decoding algorithms

The decoding algorithms used by the GA aim at under-approximating an MFSJ
efficiently by using the greedy G&T algorithm to test the feasibility of subsequent
subsets of jobs. Arguably, using a greedy algorithm for this purpose represents the most
efficient approach possible but, in turn, the approximations produced may not always
be accurate. If only effectiveness is sought for, one could use a complete decision
procedure; however, as already pointed out, using an exact algorithm, e.g. (Brucker
et al., 1994; Beck, 2007; Mencı́a et al., 2014; Vilı́m et al., 2015), may be too time
consuming, making the approach impractical. Between these two extremes there is a

17

wide range of possibilities, such as using metaheuristics more effective (although more
expensive) than greedy algorithms to test the feasibility of a given subset of jobs.

Herein, we aim at improving the effectiveness of the decoding algorithms by means
of an alternative implementation of the procedure Feasible used in Algorithms 1 and 2.
To this aim, we propose an approach that not only issues the G&T algorithm for this
task, but also uses a light-weight genetic algorithm, termed LWGA throughout, if the
former fails at proving feasibility.

The proposed method is shown in Algorithm 5. Given a set of jobs J ′, a limit on
the makespan C and a probability PLWGA, the algorithm first computes a schedule S
by using the greedy G&T algorithm. If the makespan of S is not greater than C, the
instance (J ′, C) is efficiently declared feasible. Otherwise, the method performs a sec-
ond phase with probability PLWGA (in this respect, the procedure Random(0, 1) gen-
erates a random number in the interval [0,1] with uniform distribution). In this phase
the procedure invokes LWGA, that searches for a schedule minimizing the makespan
and returns the best schedule S′ found after a short running time. Finally, if S′ has
a makespan not exceeding C, the instance is declared feasible, whereas otherwise the
feasibility of the instance is deemed unknown.

We note that the procedure returns a Boolean value indicating whether the instance
(J ′, C) has been proven feasible. In this regard, the value true means that a schedule
with makespan not exceeding C has been found and so the instance is feasible. In
contrast, the value false does not mean that the instance is necessarily infeasible, but
that a schedule with makespan not exceeding C has not been found. So, Algorithm 5
is an incomplete (but sound) decision procedure. However, since it uses a more ef-
fective procedure for searching for high-quality schedules, it can be expected to detect
feasibility more times than only using the G&T algorithm, thus leading to better ap-
proximations of MFSJs. In any case, whenever an instance is declared feasible, there is
the guarantee that the result is correct, and so the computed approximations of MFSJs
are correct as well.

Moreover, although it is not shown in the pseudocode, the procedure exploits the
operation sequences encoded in the chromosomes of the main GA both when issuing
the G&T algorithm (as described in Section 5), and LWGA (as described below). So,
it is integrated in the global search carried out by the main GA.

Since the procedure Feasible is invoked many times along the execution of the
main GA, in order to keep the overhead reasonably low, LWGA is only invoked with
the given probability PLWGA introduced as a parameter. The value of this parameter
is the same for all the invocations along the execution of the main GA. This way, the
potential improvements are equally distributed among all the individuals.

6.1. Light-weight genetic algorithm (LWGA)
As pointed out, LWGA searches for schedules aiming at minimizing the makespan.

It follows the same general structure as the main GA, shown in Algorithm 4. However,
since LWGA must not take a long running time, we need to limit its population size
and number of generations to small values. In addition, LWGA terminates whenever it
finds a schedule with a makespan less than or equal to the limit C.

As the main GA described in Section 5, LWGA uses permutations with repetitions
for encoding chromosomes. In this case, a chromosome only includes the tasks of the

18

Algorithm 5 Procedure Feasible.
Data: Set of jobs J ′, makespan limit C, probability PLWGA

Result: Boolean value indicating that the instance (J ′, C) has been proven feasible
S ← G&T (J ′);
if Cmax(S) ≤ C then

return true;
else if Random(0, 1) ≤ PLWGA then

S′ ← LWGA(J ′, C);
if Cmax(S′) ≤ C then

return true;
end

end
return false

jobs inJ ′, representing operation sequences. Besides, it uses the same crossover (JOX)
and mutation operators. As decoding algorithm, LWGA exploits the G&T algorithm
guided by the operation sequences encoded in the chromosomes. After building a
schedule, the fitness of the individual is the makespan of the computed schedule.

Furthermore, two additional processes are carried out as a means to effectively
integrating LWGA in the global search process conducted by the main GA.

First, in order to exploit the information encoded in a given chromosome c of the
main GA for guiding the search in the space of schedules, LWGA creates its initial
population by the following procedure: a chromosome c′ is created by considering
the tasks of the jobs in J ′ keeping their order as they appear in c, and the resulting
chromosome c′ is included in the population. Then another two chromosomes are
generated by introducing small random perturbations to c′ (by swapping two random
positions of c′), which are included in the initial population as well. The remaining
individuals are generated at random. This way, the characteristics of c are included in
the initial population of LWGA, but not in an extent that would cause it to converge
very prematurely.

On the other hand, when using LWGA, the main GA instruments a Lamarckian
evolution model in order to transfer the characteristics that led to an improvement back
to the main GA’s population. For this purpose, after an approximation of an MFSJ
has been computed by the decoding algorithm of the main GA, if LWGA proved the
feasibility of the subset of jobs, the corresponding chromosome c of the main GA is
replaced by a chromosome c′′ built as follows: the first positions of c′′ correspond to the
chromosome that led LWGA to compute a schedule for such subset of jobs J ′ without
exceeding the makespan limit; then, the remaining positions of c′′ are filled with the
tasks of the remaining jobs in the order they appear in c. Lamarckian evolution models
are commonly used by memetic algorithms, that combine a genetic algorithm with a
local search procedure. However, these could also be expected of practical use in this
this context.

19

7. Experimental results

An experimental study was conducted to evaluate the methods proposed in this
work. For this purpose, we coded a prototype in C++ implementing the algorithms and
ran experiments on a Linux machine (Intel Xeon 2.26 GHz. 128 GB RAM).

The experiments were carried out over a set of infeasible instances derived from
classical JSP benchmarks from the OR-library (Beasley, 1990) as well as larger Tail-
lard’s instances (Taillard, 1993). The benchmark set consists of instances of different
sizes n×m with a number of jobs n ∈ {10, 15, 20, 30, 50} and a number of machines
m ∈ {5, 10, 15, 20}. Specifically, we consider 5 instances of size 10× 5: LA01-05; 5
instances of size 15× 5: LA06-10; 6 instances of size 20× 5: LA11-15 and FT20; 16
instances of size 10×10: LA016-20, ORB01-10 and FT10; 5 instances of size 15×10:
LA21-25; 5 instances of size 20×10: LA26-30; 5 instances of size 30×10: LA31-35;
5 instances of size 15 × 15: LA36-40; 10 instances of size 50 × 15: tai50 15 01-10;
and 10 instances of size 50 × 20: tai50 20 01-10. For each of these instances, three
infeasible instances were built by fixing different values of the makespan limit C to be
70%, 80% and 90% of the optimal makespan of the JSP instance, denoted Copt. So, in
all there are 216 instances.

The goal of the experimental study is to assess the performance of the proposed
methods. To this aim we compare three genetic algorithms, termed GALS, GABS and
GA∗ throughout. All these algorithms share the main structure and components de-
scribed in Section 5, but differ in the solution builder used in the decoding phase. GALS
uses the solution builder based on linear search depicted in Algorithm 1, whereas GABS
exploits the two-phase solution builder that integrates a binary search phase shown in
Algorithm 2. Both GALS and GABS use a single run of the greedy G&T algorithm
(Algorithm 3) for testing the feasibility of different subsets of jobs. On the other hand,
motivated by the first series of experiments shown below, GA∗ integrates the two-phase
solution builder, but using the procedure Feasible given in Algorithm 5, which issues
the light-weight genetic algorithm (termed LWGA in Section 6) with a given proba-
bility PLWGA when the single run of the G&T algorithm fails at proving feasibility.
We notice that GALS corresponds to the genetic algorithm proposed in (Mencı́a et al.,
2019), which was shown to perform (much) better than a simple enumeration of ran-
dom approximations of MFSJs. To our knowledge, this is the only algorithm proposed
so far for the problem tackled in this paper, so it serves as a baseline method in the
experimental evaluation.

In all the experiments, the considered GAs evolve a population of 100 individuals
with crossover probability of 0.9 and mutation probability of 0.1 until a termination
condition is met (either completing a number of generations or surpassing a given time
limit). In the case of GA∗, the underlying LWGA has the same crossover and mutation
probabilities. The algorithms were run 20 times on each instance.

Furthermore, in the experimental study the quality of the solutions computed is
evaluated in terms of their error in percentage w.r.t. the best solution found for each
instance along all the experiments. More concretely, if for a given instance the best
known solution has Nbest jobs and an algorithm finds a solution with N jobs (with
N ≤ Nbest), the error in percentage is computed as 100× (Nbest −N)/Nbest.

Our first hypothesis is that GABS and GALS will yield similar results in terms of the

20

Table 3: Main notation used in the experimental study.

Notation Definition

n Number of jobs
m Number of machines
C Makespan limit

Copt Optimal makespan
LWGA Light-weight genetic algorithm

PLWGA Probability of invoking LWGA in procedure Feasible (Algorithm 5)
GALS GA with the solution builder based on linear search (Algorithm 1)
GABS GA with the solution builder based on binary search (Algorithm 2)
GA∗ GA with the solution builder based on binary search issuing LWGA in procedure Feasible
#c Number of individuals (population size) for LWGA
#g Number of generations for LWGA

GAPLWGA
#c/#g

GA∗ using a probability PLWGA and setting the underlying LWGA with a population
size of #c individuals and #g generations

quality of solutions reached, while GABS will be faster, since the solution builder with
the binary search phase is expected to make less invocations to the procedure Feasible
than the solution builder based on linear search. On the other hand, we expect GA∗ to
reach better solutions than GABS and GALS, due to a more effective implementation of
the procedure Feasible, at the expense of longer running times.

The experimental study is divided in three parts. We first compare GALS and GABS
in order to assess the two solution builders. Then, we focus on GA∗ and analyze the
effect that the parameter PLWGA and the configuration of the underlying LWGA have
on the overall performance of the algorithm. Finally, we provide a detailed comparison
of the three genetic algorithms.

Table 3 summarizes the main notation used in this section.

7.1. Comparing GALS and GABS

We conducted a first series of experiments in order to compare the two solution
builders and assess the efficiency gains that introducing a binary search phase has on
the performance of the algorithm. For this purpose, we ran both GALS and GABS on
the whole benchmark set, limiting the number of generations to 250.

Table 4 summarizes the results. It shows the error (in percentage terms) of the best
(Best) and average solutions (Avg.) obtained by each method over the 20 independent
runs, as well as the computation times in seconds, averaged for each group of instances
of the same size n×m. As we can observe, both algorithms yield solutions of similar
quality regardless of the size of the instances, with only small variations that may be
due to their stochastic nature. The two genetic algorithms are very effective at solving
the smallest instances (up to size 20 × 5), obtaining solutions close to the best known
ones, although the error grows for larger (and more challenging) instances, exceeding
10% on average for the largest ones of size 50× 20.

However, GABS is faster than GALS at completing the 250 generations. On average
GABS takes less than 75% of the time taken by GALS. This indicates that the binary
search phase included in the solution builder used by GABS is effective at saving feasi-
bility tests, what enables reducing the overall computation time. Greater improvements

21

Table 4: Summary of results from GABS and GALS after evolving a population of 100 individuals over 250
generations. Best and average results (in terms of error in percentage) from 20 independent runs are reported.
Running times are given in seconds.

GALS GABS

n×m Best Avg. T.(s) Best Avg. T.(s)

10× 5 0.00 1.09 0.58 0.00 1.12 0.48
15× 5 0.99 1.12 1.78 0.99 1.07 1.27
20× 5 0.68 1.49 3.66 1.01 1.38 2.49
10× 10 1.77 4.82 0.85 2.35 4.75 0.80
15× 10 3.37 7.31 2.51 3.97 6.74 2.21
20× 10 4.83 8.04 5.44 4.73 7.88 4.50
30× 10 3.79 6.18 16.80 3.79 6.28 11.72
15× 15 3.07 7.63 2.98 3.91 7.83 2.78
50× 15 6.08 8.42 80.72 5.91 8.36 57.09
50× 20 7.32 10.28 92.34 7.14 10.20 70.95

All 3.43 5.97 26.62 3.63 5.89 19.76

0 5 10 15 20
GALS

0

5

10

15

20

G
A
B
S

(a) Up to 30 jobs

0 20 40 60 80 100 120
GALS

0

20

40

60

80

100

120

G
A
B
S

(b) 50 jobs

Figure 3: Scatter plots of the time taken (seconds) by GALS and GABS to complete 250 generations on the
instances with (a) up to 30 jobs and (b) 50 jobs.

are observed as the number of jobs grows, which does not come as a surprise since in
these cases a larger number of tests can be saved by applying binary search.

Figure 3 shows two scatter plots depicting the time taken by GALS and GABS to
complete 250 generations for the instances with up to 30 jobs (Figure 3(a)) and for
the largest instances with 50 jobs (Figure 3(b)). Each point represents the running
time in seconds of GALS (horizontal axis) compared to GABS (vertical axis) on a given
instance. Points below the diagonal indicate that GABS is faster than GABS. As can
be observed, the difference in favor of GABS is greater with longer computation times.
Noticeably, for the instances with 50 jobs, every point is far from the diagonal, which
means that for these large instances, GABS is much faster than GALS.

22

Table 5: Summary of average results (error in percentage) from the configurations of GA∗ after evolving a
population of 100 individuals over 250 generations.

PLWGA = 0.15 PLWGA = 0.5 PLWGA = 1

#c/#g 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20

10× 5 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15× 5 0.99 0.99 0.96 0.94 0.97 0.89 0.81 0.79 0.99 0.82 0.59 0.18
20× 5 0.83 0.76 0.73 0.60 0.76 0.65 0.59 0.57 0.65 0.63 0.61 0.47
10× 10 1.57 1.10 0.83 0.69 1.06 0.51 0.30 0.17 0.81 0.23 0.06 0.12
15× 10 4.49 3.79 3.92 3.49 3.64 3.49 3.29 2.86 3.12 2.90 2.52 2.25
20× 10 5.36 4.95 4.75 4.45 4.50 4.22 3.71 3.22 4.42 3.67 3.24 2.81
30× 10 3.43 3.31 3.36 3.12 3.22 2.91 2.70 2.23 2.95 2.59 2.22 1.92
15× 15 3.19 2.76 2.49 2.05 2.53 1.63 1.38 1.13 1.71 1.19 1.16 1.03
50× 15 3.89 3.51 3.41 2.96 3.05 2.67 2.45 2.27 2.61 2.30 2.62 2.62
50× 20 4.73 4.05 3.85 3.41 3.44 2.81 2.91 2.83 2.94 2.92 3.40 3.68
All 2.85 2.46 2.33 2.06 2.23 1.84 1.69 1.51 1.92 1.61 1.58 1.51

7.2. Analyzing GA∗

The second part of the experimental study is aimed at analyzing GA∗. As men-
tioned above, GA∗ uses the procedure given in Algorithm 5 to test the feasibility of
subsets of jobs. This procedure issues a light-weight genetic algorithm (LWGA) with a
given probability PLWGA whenever the G&T algorithm fails at proving feasibility. So,
it is expected to be (much) more time consuming than simply using the G&T algorithm
for this purpose (as GALS and GABS do). As a consequence, and given the results in
the previous subsection, GA∗ uses the solution builder that integrates the binary search
phase in order to save time.

In these experiments we evaluate different values of the parameter PLWGA; con-
cretely we consider values for PLWGA in {0.15, 0.5, 1}. In addition, we evaluate dif-
ferent configurations of LWGA in terms of population size and number of generations.
In this respect, we consider four configurations: evolving a population of 10 individuals
over 10, 20 and 30 generations, and a population of 20 individuals over 20 generations.
Throughout we will use the notation GAPLWGA

#c/#g to refer to GA∗ using a given probabil-
ity PLWGA and setting the underlying LWGA with a population size of #c individuals
and #g generations. Taking all into account, we consider 12 configurations of GA∗.

We first evaluate the different versions of GA∗ with the termination criterion of
completing 250 generations. Besides, since some configurations may be too time con-
suming, we set a timeout of 3600 seconds in these experiments. Table 5 shows, for
each configuration, the error on average of the solutions obtained over the 20 inde-
pendent runs, averaged for groups of instances of the same size. On the other hand,
Table 6 shows the time taken by each configuration in seconds. In both cases, the last
row averages the results over all the instances.

As we can observe in Table 5, the quality of the solutions improves with larger val-
ues of PLWGA in most cases. For most groups of instances, using PLWGA = 1 yields
the best results. However, the largest instances of size 50 × 15 and 50 × 20 are the
exception to this trend. In these cases, options with PLWGA = 0.5 achieved the best
results. This can be explained by the fact that for these large instances, some config-
urations with PLWGA = 1 were only able to complete a fraction of the 250 iterations

23

Table 6: Summary of the average time (in seconds) that each configuration of GA∗ took to evolve a popula-
tion of 100 individuals over 250 generations.

PLWGA = 0.15 PLWGA = 0.5 PLWGA = 1

#c/#g 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20

10× 5 2.2 3.0 3.8 5.7 6.2 9.2 11.8 18.7 12.4 19.0 24.4 40.0
15× 5 5.6 8.0 9.9 15.2 16.3 25.1 32.1 51.8 33.1 52.1 67.6 109.7
20× 5 12.1 18.0 23.1 34.9 35.6 56.3 74.3 117.5 71.4 115.4 153.8 245.1
10× 10 4.5 6.5 8.3 12.6 13.0 20.3 26.2 41.4 26.0 41.1 53.6 86.2
15× 10 12.3 18.3 23.2 36.2 36.2 56.7 73.9 119.3 72.5 116.0 151.2 248.0
20× 10 26.4 40.3 51.5 79.5 79.0 126.6 165.7 262.7 157.2 257.2 339.5 546.4
30× 10 67.4 106.3 140.2 205.1 202.9 337.8 457.0 682.6 404.5 688.9 941.6 1411.4
15× 15 16.8 25.5 33.1 50.5 50.2 80.0 105.8 167.4 100.1 162.5 219.1 349.3
50× 15 397.1 658.4 912.4 1258.7 1206.6 2107.5 2988.6 3567.5 2388.6 3581.2 3600 3600
50× 20 530.3 885.5 1229.5 1707.3 1619.9 2849.5 3600 3600 3212.4 3600 3600 3600

All 139.9 231.4 319.4 444.9 425.6 741.8 986.5 1106.5 843.8 1107.7 1149.8 1233.0

by the time limit of 3600 seconds. In the rest of the experiments, they completed them
and produced the best results. Also, configurations with PLWGA = 0.5 yielded better
results than those with PLWGA = 0.15 for all the instance sets. On the other hand,
assigning the LWGA larger values of population size and number of generations leads
to better results as well. In most cases, the configurations that produce the least aver-
age error are those with GAPLWGA

20/20 , followed by GAPLWGA

10/30 , then GAPLWGA

10/20 and the

configuration in the last position is normally GAPLWGA

10/10 . This ranking does not hold
for PLWGA ∈ {0.5, 1.0} on the largest instances, due to the reason mentioned above.

These results indicate that the use of LWGA is effective at testing feasibility, and
that issuing it more often and with larger population size and number of generations
leads to better results in most cases. However, these improvements do not come without
a cost. As shown in Table 6, running times grow significantly with PLWGA, as well
as with the population size and number of generations of LWGA, being GA0.15

10/10 the
most efficient approach, as could be expected. Note that for some configurations with
PLWGA ∈ {0.5, 1} running times are rather long, especially for the largest instances,
where some of these configurations timed out before completing the 250 generations.

Figure 4 shows two boxplots of the time taken (seconds) to complete 250 genera-
tions by the different configurations of GA∗ on the instances with up to 30 jobs (Fig-
ure 4(a)) and 50 jobs (Figure 4(b)). We can see that, the larger the values of PLWGA,
#c and #g are, the more time consuming the resulting algorithm is.

Figure 5(a) shows a boxplot of the average errors for the 50 × 20 set, which il-
lustrates the behaviour of the different configurations on the largest instances. As we
can observe, the best configurations are those in the middle in terms of resource con-
sumption, which reach a proper balance between the effort spent at each individual and
the global search process that the genetic algorithm is able to conduct under the given
conditions.

In order to do a fair comparison, we conducted a series of experiments giving the
algorithms the same time, letting the different configurations to perform as many gen-
erations as possible by the given time limit. Concretely, for an instance of size n×m,

24

GA0.15
10/10 GA0.15

10/20 GA0.15
10/30 GA0.15

20/20 GA0.5
10/10 GA0.5

10/20 GA0.5
10/30 GA0.5

20/20 GA1
10/10 GA1

10/20 GA1
10/30 GA1

20/20

0

200

400

600

800

1000

1200

1400

1600

1800
tim

e
(s

)

(a) Up to 30 jobs

GA0.15
10/10 GA0.15

10/20 GA0.15
10/30 GA0.15

20/20 GA0.5
10/10 GA0.5

10/20 GA0.5
10/30 GA0.5

20/20 GA1
10/10 GA1

10/20 GA1
10/30 GA1

20/20

0

500

1000

1500

2000

2500

3000

3500

4000

tim
e

(s
)

(b) 50 jobs

Figure 4: Boxplots of the time taken (seconds) by the different configurations of GA∗ to complete 250
generations on the instances with (a) up to 30 jobs and (b) 50 jobs.

GA0.15
10/10 GA0.15

10/20 GA0.15
10/30 GA0.15

20/20 GA0.5
10/10 GA0.5

10/20 GA0.5
10/30 GA0.5

20/20 GA1
10/10 GA1

10/20 GA1
10/30 GA1

20/20

0

1

2

3

4

5

6

7

8

9

er
ro

r(
%

)

(a) 250 generations

GA0.15
10/10 GA0.15

10/20 GA0.15
10/30 GA0.15

20/20 GA0.5
10/10 GA0.5

10/20 GA0.5
10/30 GA0.5

20/20 GA1
10/10 GA1

10/20 GA1
10/30 GA1

20/20

0

2

4

6

8

10

12

er
ro

r(
%

)

(b) Timeout 1000 seconds

Figure 5: Boxplots of the average error in percentage obtained for the instances of size 50× 20, limiting the
configurations of GA∗ to (a) 250 generations and (b) 1000 seconds.

we set the time limit to n×m seconds (which we believe is a reasonable choice).
The results are summarized in Table 7, which reports the errors on average over the

20 independent runs produced by the different configurations, averaged for each group
of instances, as well as the average values over the whole benchmark set. Looking at the
results for the smallest instances, i.e., 10×5 and 15×5, we can draw similar conclusions
as to what we observed in the previous comparisons: the heavier configurations of GA∗

perform better, although with small differences in this case. However, as the size of the
instances grows, this trend is inverted, favoring smaller values of PLWGA as well as
smaller population size and number of generations of the underlying LWGA. Figure
5(b) shows a boxplot for the 50× 20 instance set. We can see how the lighter versions
of GA∗ are now favored when comparing to the first series of experiments.

Overall, the best configuration of GA∗ seems to be GA0.15
10/20, since it yields the

least average error if all the instances are considered. So, we will use this configuration

25

in the next series of experiments.

7.3. Detailed comparison

The last part of the experimental study is aimed at comparing the three GAs. In this
comparison GA∗ is configured with PLWGA = 0.15 and the underlying LWGA with a
population size of 10 individuals and 20 generations.

As before, we first compare the algorithms with a termination criterion of 250 gen-
erations. The results are summarized in Table 8, which reports the best and average
errors over the 20 independent runs and the time taken in seconds, averaged for in-
stances of the same size and the same value of %Copt.

It can be observed that GA∗ reaches (much) better results than the other two meth-
ods for all instances sizes considered in terms of both best and average solutions, and
that the difference grows in favor of GA∗ with the size of the instances. As was ex-
pected, GA∗ takes significantly more time than GALS and GABS, especially for the
large instances (which require a larger number of feasibility tests).

On the other hand, the imposed value ofC (w.r.t %Copt) seems to affect the running
times of the algorithms. In general, GALS and GABS take more time when the value of
C is large, although GABS is more stable. This may be due to the fact that the under-
approximations of maxFSJs computed are larger with high values of C, and so the
feasibility tests are expected to be more expensive, since more jobs must be scheduled
by the G&T algorithm. Interestingly, GA∗ shows a different trend, often taking more
time for low values of C. This may be due to the fact that with lower values of C, more
infeasible sets of jobs would need to be tested, increasing the number of invocations to
the underlying LWGA, and so running time.

Figures 6(a), 6(c) and 6(e) show the evolution of the average error of the solutions
computed by each algorithm for the 30× 10, 50× 15 and 50× 20 instance sets along
the 250 generations. It can be appreciated that GABS and GALS have similar results at

Table 7: Summary of average results (error in percentage) from the configurations of GA∗ after n × m
seconds.

PLWGA = 0.15 PLWGA = 0.5 PLWGA = 1

#c/#g 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20 10/10 10/20 10/30 20/20

10× 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15× 5 0.99 0.97 0.97 0.87 0.99 0.92 0.79 0.62 0.94 0.74 0.47 0.35
20× 5 0.62 0.55 0.46 0.51 0.66 0.55 0.57 0.57 0.68 0.60 0.63 0.60
10× 10 0.38 0.14 0.07 0.10 0.36 0.10 0.03 0.12 0.32 0.05 0.02 0.09
15× 10 2.80 2.16 2.60 2.24 2.77 2.62 2.84 2.34 2.69 2.62 2.66 2.58
20× 10 3.51 2.99 3.25 3.21 3.66 3.62 3.54 3.99 4.47 3.62 3.74 4.18
30× 10 2.63 2.81 2.68 2.97 3.13 3.12 3.18 3.24 3.12 3.31 3.36 3.44
15× 15 1.42 1.23 1.17 1.19 1.13 1.20 1.11 1.25 1.25 1.16 1.19 1.22
50× 15 3.34 3.42 3.58 3.64 3.65 4.02 4.53 4.75 4.18 4.79 5.35 5.67
50× 20 3.88 3.91 4.13 4.36 4.34 5.02 5.64 6.08 5.20 6.11 6.91 7.12

All 1.93 1.80 1.86 1.90 2.06 2.12 2.26 2.37 2.30 2.37 2.55 2.67

26

Table 8: Summary of results from GALS, GABS and GA∗ after evolving a population of 100 individuals over
250 generations.

GALS GABS GA∗

n×m %Copt Best Avg. T.(s) Best Avg. T.(s) Best Avg. T.(s)

10× 5

70 0.00 0.00 0.51 0.00 0.00 0.48 0.00 0.00 3.76
80 0.00 0.38 0.61 0.00 0.12 0.48 0.00 0.00 3.42
90 0.00 2.89 0.63 0.00 3.22 0.47 0.00 0.00 1.94

Avg. 0.00 1.09 0.58 0.00 1.12 0.48 0.00 0.00 3.04

15× 5

70 0.00 0.08 1.64 0.00 0.00 1.33 0.00 0.00 10.09
80 1.54 1.69 1.80 1.54 1.77 1.32 1.54 1.54 8.68
90 1.43 1.57 1.90 1.43 1.43 1.17 1.43 1.43 5.16

Avg. 0.99 1.12 1.78 0.99 1.07 1.27 0.99 0.99 7.98

20× 5

70 1.11 2.41 3.34 1.11 1.93 2.58 1.11 1.11 21.67
80 0.00 1.09 3.70 0.98 1.29 2.59 0.00 0.25 18.50
90 0.93 0.97 3.92 0.93 0.93 2.29 0.93 0.93 13.88

Avg. 0.68 1.49 3.66 1.01 1.38 2.49 0.68 0.76 18.02

10× 10

70 1.25 3.60 0.62 2.29 3.57 0.64 0.00 0.00 6.34
80 2.68 4.79 0.87 2.68 5.02 0.86 0.00 1.16 7.03
90 1.39 6.08 1.05 2.08 5.64 0.90 0.00 2.14 6.21

Avg. 1.77 4.82 0.85 2.35 4.75 0.80 0.00 1.10 6.53

15× 10

70 2.00 6.90 2.01 2.00 6.03 1.95 0.00 2.82 18.11
80 3.48 7.71 2.53 5.30 7.18 2.26 1.67 3.85 19.18
90 4.62 7.31 2.98 4.62 7.00 2.42 3.08 4.69 17.47

Avg. 3.37 7.31 2.51 3.97 6.74 2.21 1.58 3.79 18.25

20× 10

70 5.93 9.36 4.58 4.40 9.28 4.08 4.40 6.07 41.13
80 3.92 8.31 5.50 5.17 7.96 4.63 1.25 4.97 42.25
90 4.64 6.45 6.25 4.64 6.39 4.80 2.29 3.82 37.48

Avg. 4.83 8.04 5.44 4.73 7.88 4.50 2.64 4.95 40.28

30× 10

70 4.55 7.67 14.66 4.55 7.47 11.88 1.78 3.75 124.77
80 3.23 5.33 16.95 3.23 5.88 12.06 0.00 2.58 112.19
90 3.60 5.54 18.78 3.60 5.47 11.22 3.60 3.60 82.02

Avg. 3.79 6.18 16.80 3.79 6.28 11.72 1.79 3.31 106.33

15× 15

70 0.00 4.76 2.07 2.50 5.59 2.10 0.00 0.00 22.26
80 4.22 9.30 3.03 4.22 9.39 2.93 0.00 3.46 26.76
90 5.00 8.83 3.83 5.00 8.50 3.32 3.33 4.83 27.52

Avg. 3.07 7.63 2.98 3.91 7.83 2.78 1.11 2.76 25.52

50× 15

70 7.48 9.75 68.31 6.89 9.60 55.35 1.49 4.00 716.23
80 5.45 8.34 81.67 6.22 8.47 59.13 2.06 3.64 690.99
90 5.32 7.18 92.18 4.63 7.02 56.81 1.85 2.88 568.07

Avg. 6.08 8.42 80.72 5.91 8.36 57.09 1.80 3.51 658.43

50× 20

70 8.63 12.52 74.26 8.95 12.32 63.37 2.31 5.39 874.16
80 7.39 9.87 93.02 6.80 9.91 73.29 1.71 3.62 931.55
90 5.93 8.45 109.73 5.67 8.38 76.20 1.23 3.15 850.92

Avg. 7.32 10.28 92.34 7.14 10.20 70.95 1.75 4.05 885.54

All 3.43 5.97 26.62 3.63 5.89 19.76 1.11 2.46 231.38

each generation, while GA∗ yields solutions with much less error along the whole pro-
cess. Although the improvement in terms of the errors is less significant during the last

27

50 100 150 200 250
generations

0

2

4

6

8

10

12

14

16
er

ro
r(

%
)

GALS

GABS

GA∗

(a) Generations (30× 10)

50 100 150 200 250 300
time (s)

0

2

4

6

8

10

12

14

16

er
ro

r(
%

)

GALS

GABS

GA∗

(b) Time (30× 10)

50 100 150 200 250
generations

0

2

4

6

8

10

12

14

16

18

er
ro

r(
%

)

GALS

GABS

GA∗

(c) Generations (50× 15)

100 200 300 400 500 600 700
time (s)

0

2

4

6

8

10

12

14

16

18

er
ro

r(
%

)

GALS

GABS

GA∗

(d) Time (50× 15)

50 100 150 200 250
generations

0

5

10

15

20

er
ro

r(
%

)

GALS

GABS

GA∗

(e) Generations (50× 20)

200 400 600 800 1000
time (s)

0

5

10

15

20

er
ro

r(
%

)

GALS

GABS

GA∗

(f) Time (50× 20)

Figure 6: Evolution of the average error in percentage over generations and time obtained by the genetic
algorithms for the instances of sizes 30× 10, 50× 15 and 50× 20.

generations, it seems in the three sets that the results could improve if the algorithms
were given more generations, which we do in the following series of experiments.

The previous series of experiments shows that GA∗ reaches better solutions than
the other two methods, but also that it takes more time. To perform a fair comparison

28

Table 9: Summary of results from GALS, GABS and GA∗ after evolving a population of 100 individuals for
the same running time of n×m seconds.

GALS GABS GA∗

n×m %Copt Best Avg. Best Avg. Best Avg.

10× 5

70 0.00 0.00 0.00 0.00 0.00 0.00
80 0.00 0.12 0.00 0.00 0.00 0.00
90 0.00 3.11 0.00 3.00 0.00 0.00

Avg. 0.00 1.08 0.00 1.00 0.00 0.00

15× 5

70 0.00 0.08 0.00 0.08 0.00 0.00
80 1.54 1.54 1.54 1.54 1.54 1.54
90 1.43 1.57 1.43 1.43 0.00 1.36

Avg. 0.99 1.06 0.99 1.02 0.51 0.97

20× 5

70 1.11 1.50 1.11 1.50 0.00 1.06
80 0.00 0.78 0.00 0.83 0.00 0.00
90 0.00 0.88 0.93 0.93 0.00 0.60

Avg. 0.37 1.05 0.68 1.09 0.00 0.55

10× 10

70 1.25 3.71 0.00 3.35 0.00 0.00
80 0.89 4.29 2.68 4.11 0.00 0.04
90 2.08 4.12 2.08 3.85 0.00 0.38

Avg. 1.41 4.04 1.59 3.77 0.00 0.14

15× 10

70 0.00 5.23 0.00 5.25 0.00 1.31
80 3.48 5.57 3.48 4.75 0.00 2.86
90 3.08 5.31 3.08 5.46 0.00 2.31

Avg. 2.19 5.37 2.19 5.15 0.00 2.16

20× 10

70 2.97 6.82 2.97 7.09 2.97 4.33
80 1.25 5.76 2.58 5.75 1.25 2.99
90 1.11 4.40 1.11 4.35 0.00 1.65

Avg. 1.78 5.66 2.22 5.73 1.41 2.99

30× 10

70 0.91 5.13 2.69 5.31 0.00 2.43
80 0.80 3.35 2.40 3.51 0.00 2.39
90 3.60 3.88 3.60 3.78 3.60 3.60

Avg. 1.77 4.12 2.90 4.20 1.20 2.81

15× 15

70 0.00 3.20 0.00 4.26 0.00 0.00
80 2.22 7.62 2.00 7.48 0.00 0.44
90 3.33 5.50 1.67 5.58 1.67 3.25

Avg. 1.85 5.44 1.22 5.77 0.56 1.23

50× 15

70 4.79 7.38 4.49 7.37 2.08 3.88
80 4.66 6.86 4.14 6.62 1.80 3.55
90 3.47 5.56 3.46 5.36 1.15 2.82

Avg. 4.30 6.60 4.03 6.45 1.68 3.42

50× 20

70 5.97 9.70 5.64 9.33 1.98 5.05
80 4.55 7.57 4.52 7.65 1.42 3.51
90 4.45 6.73 3.45 6.29 0.98 3.17

Avg. 4.99 8.00 4.54 7.76 1.46 3.91

All 2.23 4.59 2.26 4.49 0.69 1.80

between the three algorithms, we carried a new series of experiments, having a time
limit of n × m seconds as termination condition. Table 9 shows the results of these

29

experiments. The results show that although GALS and GABS are able to improve, their
results still lay behind those achieved by GA∗ significantly, especially for the largest
instances.

Figures 6(b), 6(d) and 6(f) show the evolution of the average error over time (first
generation and each 5 seconds) of each method for the 30 × 10, 50 × 15 and 50 × 20
instance sets. Even though the errors are different, we can detect some tendencies
shared among the methods across the three instance sets. We can observe that GABS
takes the lead early, followed by GALS. This can be explained by the efficiency of the
binary search integrated in the solution builder used by GABS. During a brief time,
both GABS computes marginally better solutions than GA∗. In the case of the 50× 20
set, GALS is ahead of GA∗ as well. However, right after that, GA∗ takes the lead, and
from that moment on, the difference in favor of GA∗ grows over time. By the time
GALS and GABS converge, GA∗ is able to compute much better solutions, still having
room for improvement.

In order to make the experimental study more robust, we have made a series of
statistical inference tests to the results in Table 92. These tests aim at detecting statisti-
cally significant differences among the algorithms, in terms of the average error of the
solutions they compute over the whole set of instances.

Following (Garcı́a et al., 2010; Gallardo and Cotta, 2015), we start performing an
Aligned Friedman Rank Test. This is a multiple-comparison non-parametric test that
detects whether there are significant differences among the results from a collection of
algorithms and creates a ranking of them from the best to the worst performing one. In
this test, the null hypothesis states that the rankings between the algorithms are equal.
If it is rejected, we then perform a series of post-hoc procedures to compare the control
algorithm (the one that is ranked first) with the other algorithms. We considered all
the post-hoc procedures discussed in (Garcı́a et al., 2010): Bonferroni-Dunn, Holm,
Hochberg, Hommel, Holland, Rom, Finn, Finner and Li.

Table 10: Average rankings of the algorithms calculated by the Aligned Friedman Rank Test.

Position Algorithm Ranking

1 GA∗ 132.75
2 GABS 411.43
3 GALS 429.33

Table 10 shows the average ranking computed by the Aligned Friedman Rank Test
(distributed according to χ2 with 2 degrees of freedom: 149.18). The test yielded a p-
value of 1.16E-10. This means that there are significant differences among the results
returned by the algorithms. Also, we can see in the ranking that the best algorithm is
GA∗, followed by GABS in second place and GALS in the last position.

We carried out post-hoc procedures in order to compare the algorithm that ranked
first (GA∗) with the other algorithms (GALS and GABS). In all cases, the null hypothesis
states that the distributions obtained by GA∗ and the other two algorithms are equal.

2For this purpose, we used the software available at http://sci2s.ugr.es/sicidm.

30

Table 11: Adjusted p-values of the post-hoc procedures, comparing GA∗ with GALS and GABS.

Algorithm pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

GALS 1.33E-60 1.33E-60 1.33E-60 1.33E-60 0.0 1.33E-60 0.0 6.65E-61
GABS 1.10E-53 5.49E-54 5.49E-54 5.49E-54 0.0 5.49E-54 0.0 5.49E-54

The adjusted p-values obtained by each procedure, pBonf (Bonferroni-Dunn), pHolm
(Holm), pHoch (Hochberg), pHomm (Hommel), pHoll (Holland), pRom (Rom), pFinn
(Finner) and pLi (Li) are shown in Table 11. As can be observed, all these values are
very close to 0, which means that the null hypothesis is rejected in all cases, so we can
conclude that the differences are statistically significant in favor of GA∗.

To further strengthen the experimental analysis, we performed a Wilcoxon’s paired
test to compare GALS and GABS, with a significance level of α = 0.05. The null
hypothesis states that there are not significant differences between both algorithms, and
the alternative hypothesis states that GABS produces solutions with less error in average
than those computed by GALS. The obtained p-value is 0.0048, showing statistically
significant differences in favor of GABS.

From the experimental results, we can conclude that the proposed methods are fit
for their respective purposes. The results confirm that the new solution builder im-
proves efficiency. So, if there are tight time requirements, the best approach would
be using GABS, since it is the fastest algorithm while computing solutions of similar
quality than GALS along generations. On the other hand, the results also indicate that
considering more effective implementations of the procedure Feasible leads to improv-
ing the quality of the solutions computed, at the cost of longer running times. This way,
if more computation time is available, GA∗ should be the preferred approach. In both
cases, the proposed approaches outperform the genetic algorithm proposed in (Mencı́a
et al., 2019).

8. Conclusions

Repairing infeasibility in scheduling constitutes a useful (and challenging) task. In
this paper, we target infeasible job shop problems with a hard constraint on makespan
and focus on the task of computing the largest subset of jobs that can be scheduled
under such constraint.

This problem was tackled in (Mencı́a et al., 2019) by means of an efficient genetic
algorithm. This algorithm relies on a solution builder that defines the search space.
Building on this approach, we provide a formal analysis of the search space and the
solution builder and make key enhancements to the genetic algorithm: a new solution
builder aimed at improving efficiency by exploiting a binary search phase and a new
procedure for testing the feasibility of different subsets of jobs aimed at improving
effectiveness, which relies on a light-weight genetic algorithm. Experimental results
confirm that the proposed methods bring substantial benefits in practice, allowing the
genetic algorithm to compute higher quality solutions.

The results also encourage further research, opening a wide space of promising pos-
sibilities for the future, as devising new solution builders or new procedures for testing

31

feasibility. Another interesting line for future research is the development of alterna-
tive algorithms, and their combination with the genetic algorithms proposed herein. In
this respect, devising a local search approach, or even an exact method, seems promis-
ing. Finally, future efforts will target the task of repairing infeasibility considering
other scheduling problems and hard constraints defined on metrics different from the
makespan.

Acknowledgements

This research is supported by the Spanish Government under projects TIN2016-
79190-R and PID2019-106263RB-I00, and by the Principality of Asturias under grant
IDI/2018/000176.

References

Akbari, M., Rashidi, H., Alizadeh, S. H., 2017. An enhanced genetic algorithm with
new operators for task scheduling in heterogeneous computing systems. Eng. Appl.
Artif. Intell. 61, 35–46.

Allahverdi, A., Aydilek, H., 2014. Total completion time with makespan constraint
in no-wait flowshops with setup times. European Journal of Operational Research
238 (3), 724 – 734.

Andresen, M., Brsel, H., Mrig, M., Tusch, J., Werner, F., Willenius, P., 2008. Simulated
annealing and genetic algorithms for minimizing mean flow time in an open shop.
Mathematical and Computer Modelling 48 (7), 1279–1293.

Artigues, C., Lopez, P., Ayache, P., 2005. Schedule generation schemes for the job shop
problem with sequence-dependent setup times: Dominance properties and computa-
tional analysis. Annals of Operations Research 138, 21–52.

Bailey, J., Stuckey, P. J., 2005. Discovery of minimal unsatisfiable subsets of con-
straints using hitting set dualization. In: PADL. pp. 174–186.

Beasley, J. E., 1990. Or-library: Distributing test problems by electronic mail. J Oper
Res Soc 41 (11), 1069–1072.

Beck, J. C., 2007. Solution-guided multi-point constructive search for job shop
scheduling. J. Artif. Intell. Res. 29, 49–77.

Bierwirth, C., 1995. A generalized permutation approach to job shop scheduling with
genetic algorithms. OR Spectrum 17, 87–92.

Branda, A., Castellano, D., Guizzi, G., Popolo, V., 2021. Metaheuristics for the flow
shop scheduling problem with maintenance activities integrated. Computers & In-
dustrial Engineering 151, 106989.

Brucker, P., Jurisch, B., Sievers, B., 1994. A branch and bound algorithm for the job-
shop scheduling problem. Discret. Appl. Math. 49 (1-3), 107–127.

32

Brucker, P., Knust, S., 2006. Complex Scheduling. Springer.

Choi, J. Y., 2015. Minimizing total weighted completion time under makespan con-
straint for two-agent scheduling with job-dependent aging effects. Computers & In-
dustrial Engineering 83, 237 – 243.

Davis, L., 1985. Applying adaptive algorithms to epistatic domains. In: Joshi, A. K.
(Ed.), IJCAI. Morgan Kaufmann, pp. 162–164.

Dawande, M., Gavirneni, S., Rachamadugu, R., 2006. Scheduling a two-stage flowshop
under makespan constraint. Mathematical and Computer Modelling 44 (1), 73 – 84.

Della Croce, F., Gupta, J. N., Tadei, R., 2000. Minimizing tardy jobs in a flowshop with
common due date. European Journal of Operational Research 120 (2), 375 – 381.

Della Croce, F., Koulamas, C., T’Kindt, V., 2017. A constraint generation approach for
two-machine shop problems with jobs selection. Eur. J. Oper. Res. 259 (3), 898–905.

Della Croce, F., Tadei, R., Volta, G., 1995. A genetic algorithm for the job shop prob-
lem. Comput. Oper. Res. 22 (1), 15–24.

Deng, G., Su, Q., Zhang, Z., Liu, H., Zhang, S., Jiang, T., 2020. A population-based
iterated greedy algorithm for no-wait job shop scheduling with total flow time crite-
rion. Engineering Applications of Artificial Intelligence 88, 103369.

Gallardo, J. E., Cotta, C., 2015. A grasp-based memetic algorithm with path relinking
for the far from most string problem. Eng. Appl. Artif. Intell. 41, 183–194.

Garcı́a, S., Fernández, A., Luengo, J., Herrera, F., 2010. Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Inf. Sci. 180 (10), 2044–2064.

Garey, M., Johnson, D., Sethi, R., 1976. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1 (2), 117 – 129.

Giffler, B., Thompson, G. L., 1960. Algorithms for solving production scheduling
problems. Operations Research 8, 487–503.

Gonalves, J., Mendes, J., Resende, M., 2008. A genetic algorithm for the resource
constrained multi-project scheduling problem. European Journal of Operational Re-
search 189 (3), 1171–1190.

Gonçalves, J. F., Resende, M. G. C., 2014. An extended akers graphical method with a
biased random-key genetic algorithm for job-shop scheduling. Int. Trans. Oper. Res.
21 (2), 215–246.

Gong, G., Deng, Q., Chiong, R., Gong, X., Huang, H., 2019. An effective memetic
algorithm for multi-objective job-shop scheduling. Knowledge-Based Systems 182,
104840.

33

Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics
5, 287 – 326.

Guyon, O., Lemaire, P., Pinson, E., Rivreau, D., 2014. Solving an integrated job-shop
problem with human resource constraints. Annals OR 213 (1), 147–171.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor.

Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., Elhoseny, M., 2019. Ex-
tended genetic algorithm for solving open-shop scheduling problem. Soft Comput.
23 (13), 5099–5116.

Kolisch, R., 1996. Serial and parallel resource-constrained project scheduling meth-
ods revisited: Theory and computation. European Journal of Operational Research
90 (2), 320 – 333.

Kundakc, N., Kulak, O., 2016. Hybrid genetic algorithms for minimizing makespan
in dynamic job shop scheduling problem. Computers & Industrial Engineering 96,
31–51.

Kurdi, M., 2015. A new hybrid island model genetic algorithm for job shop scheduling
problem. Computers & Industrial Engineering 88, 273 – 283.

Lee, C., 2018. A review of applications of genetic algorithms in operations manage-
ment. Engineering Applications of Artificial Intelligence 76, 1 – 12.

Liao, X., Zhang, H., Koshimura, M., Huang, R., Yu, W., 2019. Maximum satisfiabil-
ity formulation for optimal scheduling in overloaded real-time systems. In: Nayak,
A. C., Sharma, A. (Eds.), PRICAI. Vol. 11670 of Lecture Notes in Computer Sci-
ence. Springer, pp. 618–631.

Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A., 2013. On computing
minimal correction subsets. In: IJCAI. pp. 615–622.

Marques-Silva, J., Mencı́a, C., 2020. Reasoning about inconsistent formulas. In: IJ-
CAI. pp. 4899–4906.

Meeran, S., Morshed, M. S., 2012. A hybrid genetic tabu search algorithm for solving
job shop scheduling problems: a case study. J. Intell. Manuf. 23 (4), 1063–1078.

Mencı́a, C., Sierra, M. R., Mencı́a, R., Varela, R., 2019. Evolutionary one-machine
scheduling in the context of electric vehicles charging. Integrated Computer-Aided
Engineering 26, 49–63.

Mencı́a, C., Sierra, M. R., Varela, R., 2014. Intensified iterative deepening a* with
application to job shop scheduling. J. Intelligent Manufacturing 25 (6), 1245–1255.

34

Mencı́a, R., Mencı́a, C., Varela, R., 2019. Repairing infeasibility in scheduling via ge-
netic algorithms. In: de Vicente, J. M. F., Sánchez, J. R. Á., de la Paz López, F.,
Toledo-Moreo, F. J., Adeli, H. (Eds.), From Bioinspired Systems and Biomedical
Applications to Machine Learning - 8th International Work-Conference on the Inter-
play Between Natural and Artificial Computation, IWINAC 2019, Almerı́a, Spain,
June 3-7, 2019, Proceedings, Part II. Vol. 11487 of Lecture Notes in Computer Sci-
ence. Springer, pp. 254–263.

Mencı́a, R., Mencı́a, C., Varela, R., 2020. A memetic algorithm for restoring feasibility
in scheduling with limited makespan. Natural Computing (Online First).

Mencı́a, R., Sierra, M. R., Mencı́a, C., Varela, R., 2015. Memetic algorithms for the
job shop scheduling problem with operators. Appl. Soft Comput. 34, 94–105.

Mencı́a, R., Sierra, M. R., Mencı́a, C., Varela, R., 2015. Schedule generation schemes
and genetic algorithm for the scheduling problem with skilled operators and arbitrary
precedence relations. In: Proc. of ICAPS. AAAI Press, pp. 165–173.

Moore, J. M., 1968. An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15 (1), 102–109.

Mustu, S., Eren, T., 2018. The single machine scheduling problem with sequence-
dependent setup times and a learning effect on processing times. Applied Soft Com-
puting 71, 291–306.

Nowicki, E., Smutnicki, C., 2005. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling 8, 145–159.

Ono, I., Yamamura, M., Kobayashi, S., 1996. A genetic algorithm for job-shop schedul-
ing problems using job-based order crossover. In: Proceedings of 1996 IEEE Inter-
national Conference on Evolutionary Computation, Nayoya University, Japan, May
20-22, 1996. pp. 547–552.

Palacios, J. J., Vela, C. R., Rodrı́guez, I. G., Puente, J., 2014. Schedule generation
schemes for job shop problems with fuzziness. In: Proc. of ECAI. pp. 687–692.

Peng, B., L, Z., Cheng, T., 2015. A tabu search/path relinking algorithm to solve the
job shop scheduling problem. Computers & Operations Research 53, 154 – 164.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European Journal of
Operational Research 64 (2), 278–285.

Talbi, E., 2009. Metaheuristics - From Design to Implementation. Wiley.

Tan, M., Yang, H. L., Su, Y. X., 2019. Genetic algorithms with greedy strategy for green
batch scheduling on non-identical parallel machines. Memetic Comp. 11, 439–452.

Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 211 (3),
612–622.

35

Vilı́m, P., Laborie, P., Shaw, P., 2015. Failure-directed search for constraint-based
scheduling. In: CPAIOR. pp. 437–453.

Yamada, T., Nakano, R., 1995. A genetic algorithm with multi-step crossover for job-
shop scheduling problems. In: First International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications. pp. 146–151.

Zhang, C. Y., Li, P., Rao, Y., Guan, Z., 2008. A very fast TS/SA algorithm for the job
shop scheduling problem. Computers and Operations Research 35, 282–294.

Zhang, G., Hu, Y., Sun, J., Zhang, W., 2020. An improved genetic algorithm for the
flexible job shop scheduling problem with multiple time constraints. Swarm and
Evolutionary Computation 54, 100664.

36

	Introduction
	Preliminaries
	Related work
	Related problems
	Genetic algorithms

	Search space
	Subset space of the set of jobs
	Solution builder
	Reducing the number of feasibility tests

	Space of schedules for a given set of jobs

	Genetic algorithm
	Improving the effectiveness of the decoding algorithms
	Light-weight genetic algorithm (LWGA)

	Experimental results
	Comparing GALS and GABS
	Analyzing GA*
	Detailed comparison

	Conclusions

