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ABSTRACT

The Big Code and Mining Software Repositories research lines analyze large amounts of source code to
improve software engineering practices. Massive codebases are used to train machine learning models
aimed at improving the software development process. One example is decompilation, where C code
and its compiled binaries can be used to train machine learning models to improve decompilation.
However, obtaining massive codebases of portable C code is not an easy task, since most applications
use particular libraries, operating systems, or language extensions. In this paper, we present Cnerator,
a Python application that provides the stochastic generation of large amounts of standard C code.
It is highly configurable, allowing the user to specify the probability distributions of each language
construct, properties of the generated code, and post-processing modifications of the output programs.
Cnerator has been successfully used to generate code that, utilized to train machine learning models,
has improved the performance of existing decompilers. It has also been used in the implementation

of an infrastructure for the automatic extraction of code patterns.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

“Big code” is a recent line of research that brings together big
data and source code analysis [1]. It is based on using the source
code of millions of programs to build different types of tools to
improve software development [2]. Machine learning is used to
create useful predictive models that learn common patterns from
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a large number of source code applications [3,4]. For example,
JavaScript programs are used to train a model capable of deob-
fuscate variable names from their usage [5]; Java and C# files
with the same behavior are used to learn automatic translation
between these two languages [6]; and vulnerable C source code
is used to train models that predict vulnerabilities by analyzing
the source code of new programs [7].

Likewise, the Mining Software Repositories (MSR) field ana-
lyzes the rich data available in source code repositories to un-
cover information about software systems and projects [8]. In
this case, the source code data is enriched with other information
taken from defect tracking systems, archived communications be-
tween project personnel, version control systems, and question-
and-answer sites [9]. Examples of MSR projects include software
repair models that analyze bug fix transactions in software repos-
itories [10], change prediction systems that identify the code
prone to change in subsequent releases [11], and the automatic
retrieval of help information for source code fragments using
question-and-answer websites [12].

One of the languages used to build those machine learning
models is the C programming language. From its creation in
the 70s, C is still in use, particularly for the development of
systems software, embedded system applications, and programs
that access specific hardware addresses [13]. Its low demand for
runtime system resources and its wide availability have made
it a usual candidate to implement language interpreters and
computationally intensive programs. According to the Tiobe [14],
LangPop [15], and the Transparent Language Popularity Index [16]
programming language rankings, C is still the most widely used
language in January 2021', obtaining the fifth position in the
PYPL [17], Redmonk [18] and Trendy Skills [19] rankings.

There exist many different variants of the C programming
language, which include language extensions and modifications
depending on the operating system, compiler and target hard-
ware. Therefore, different ANSI/ISO standardizations of C are de-
fined to facilitate the development of portable software [20].
However, it is still difficult to find applications written in 100%
standard C source code that could be compiled with many differ-
ent compilers. Most of the existing open-source applications have
particular dependencies on non-portable code. This is an issue
when building predictive models from source code, since a large
number of programs is usually required [21].

There exist tools capable of generating random C source code,
but they are mainly aimed at testing compilers, rather than cre-
ating machine learning models [22]. Therefore, they are not de-
signed to build massive amounts of standard C code, and they do
not cover every language construct—we detail them in Section 2
and evaluate them in Section 5.

For this reason, we developed Cnerator, a Python applica-
tion that generates large amounts of standard ANSI/ISO C source
code [20] to train machine learning models. Cnerator is highly
customizable to generate all the syntactic constructs of the C
language, necessary to build accurate predictive models with
machine learning algorithms. The code it generates is ready to
be compiled by any standard language implementation. Cnerator
has been used to improve state-of-the-art decompilers [23] and to
implement an infrastructure for the automatic extraction of code
patterns [24]. The stochastic generation of source code programs
has also been used to detect bugs in existing compilers [25].
Another potential use of Cnerator is testing whether a compiler
implements the ANSI/ISO standard specification correctly.

1 These rankings measure the popularity of each programming language,
using different criteria. For example, the Tiobe language ranking uses 25
search engines to calculate each language index, depending on the number
of searches done by users (https://www.tiobe.com/tiobe-index/programming-
languages-definition).
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The rest of this article is structured as follows. Section 2 details
the related work, and the software functionality and architecture
are presented in Section 3. An illustrative example is described
in Section 4. Section 5 evaluates Cnerator and compares it with
related approaches. Conclusions are presented in Section 6.

2. Problems and background

As mentioned, there are tools for the random generation of
C code. Most of them are aimed at finding bugs in C compilers,
rather than at training machine learning models.

Csmith is a well-known generator of random C programs [25]
created as a fork of randprog [26]. Its main purpose is the de-
tection of bugs in C compilers. Generated programs conform to
the C99 standard, and they avoid the undefined behavior con-
structs specified in C99. To find compiler bugs, each generated
program is compiled by different compilers and executed. If a
checksum of the global variables upon program termination is
different from the rest of executions, the compiler that produced
that binary has an error (i.e.,, randomized differential testing).
Csmith implements different safety mechanisms such as pointer
analysis, bounded loop constructs, and different dynamic checks.
Csmith has been used to detect more than 325 errors in existing
compilers, including the verified CompCert C compiler [27].

ldrgen is a tool for the random generation of C programs
to test compilers and program analysis tools [28]. Existing sys-
tems generate large amounts of dead code that the compiler
reduces to little relevant binary, because dead code is deleted.
For this reason, ldrgen implements a liveness analysis algo-
rithm during program generation to avoid producing dead code.
It is implemented as a plugin for the Frama-C extensible frame-
work [29]. 1drgen has been used to detect missed compiler
optimizations [30].

YARPGen is a random test-case generator for C and C++ com-
pilers, created to find and report compiler bugs [31]. YARPGen
is created to overcome the saturation point reached by existing
compiler testing methods, where very few bugs are found. This is
not because compilers are bug-free, but rather because generators
contain biases that make them incapable of testing specific parts
of compiler implementations. YARPGen generates programs free
of undefined behaviors without dynamic safety checks, unlike
Csmith. Its approach is to implement different static analyses
to generate code that conservatively avoids undefined behaviors.
It also implements generation policies that systematically skew
probability distributions to cause certain optimizations to take
place more often. YARPGen has found more than 220 bugs in GCC,
LLVM, and the Intel C++ compiler. Those bugs were not previously
found by other compiler testing tools.

The family of Orange random C code generators is focused
on generating arithmetic expressions [32]. Instead of differential
testing, they track the expected values of each test after execu-
tion, checking whether the obtained values are the expected ones.
The programs generated by Orange generators are safe, avoiding
the undefined behaviors of the C programming language. Orange
code generators do not include important language features such
as control flow statements, structs, arrays or pointers.

QUEST is a code generator tool aimed at finding several com-
piler bugs related to calling conventions [33]. It generates func-
tion declarations randomly, and then generates type-driven test
cases that invoke each function. A global variable is generated
for each parameter and return value. Assertions are used to
check that each value received and returned is the appropriate
one. QUEST avoids undefined behavior by simply not generating
potentially dangerous constructs (e.g., arithmetic expressions). It
was used to find 13 bugs in 5 different compilers [33].
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3. Software framework

In this section, we first describe the main functionalities of
Cnerator. Then, we present its architecture and a brief description
of each module.

3.1. Software functionalities

These are the main functionalities provided by Cnerator:

1. ANSI/ISO standard C. All the source code generated by Cn-
erator follows the ISO/IEC 9899:2018 (C17) standard speci-
fication [20]. The code strictly follows the syntax grammar,
type system and semantic rules of the standard specifi-
cation. This makes the generated code to be able to be
compiled by any compiler implementing the standard.

2. Probabilistic randomness. C language constructs are ran-
domly generated, following different probability distribu-
tions specified by the user. For example, it is possible to
describe the probability of each kind of statement and ex-
pression construct, the number of statements in a function,
and the types of their arguments and return values. To
this aim, the user can specify fixed probabilities of each
element, or use different probability distributions, such as
normal, uniform, and direct and inverse proportional.

3. Highly customizable. Many features of the programs to
be generated are customizable. Some examples include
the types of each language construct, array dimensions
and sizes, struct fields, maximum depth of expression and
statement trees, number of function parameters and state-
ments, global and local variables, structures of control flow
statements, and type promotions, among others—see the
detailed documentation [34].

4, Large amounts of code. Cnerator is designed to allow gen-
erating large amounts of C source code (see Section 5). One
parameter indicates the number of independent compila-
tion units to be created for the output application, so that
each unit could be treated as an independent module. This
feature, together with the probabilistic randomness, makes
Cnerator an ideal tool to build predictive models, because
the input programs used to train such models comprise
abundant and varied code patterns.

3.2, Software architecture

Fig. 1 shows a UML package diagram describing the archi-
tecture of Cnerator. When executing the tool, three types of
optional arguments may be passed: command-line arguments,
JSON specification files, and Python post-processing traversals.
If no parameter is passed, Cnerator creates a random output
program, using the default probability values [34]. The generated
program consists of a group of compilation units (a pair of .h and
.c files) that can be compiled independently, even though they
commonly depend on other compilation units.

As command-line arguments, the user may pass parameters
such as the number of output compilation units, probability val-
ues of syntactic constructs, and the output directory and file
names, among others (all the parameters are detailed in the user
manual [34]). The Parameter Processing module takes all the
parameters passed by the user and customizes the behavior of
Cnerator accordingly.

Cnerator accepts two types of JSON configuration files as pa-
rameters (examples are presented in Section 4). The first one
allows specifying the probability values and probability distribu-
tions of multiple C syntactic constructs. The Probabilities mod-
ule stores the default probability distributions of all the syntax
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constructs, and provides different helper functions to facilitate
its specification. As shown in Fig. 3 (explained in Section 4),
JSON probability specification files permit the use of those helper
functions to modify the default probability distributions.

The second type of JSON input allows the user to control the
number and characteristics of all the functions to be generated.
For example, we can enforce Cnerator to generate a program with
as many functions as built-in types in the language, and make
each function return an expression of each built-in type. The
Controlled Function Generation module interprets the JSON file to
drive the process of program generation. To this aim, it asks the
main Program Generation module to generate random functions,
and discards those not fulfilling the requirements specified in the
JSON file. If no function generation file is provided, Program Gen-
eration just produces a random program following the existing
probability distributions.

The third type of argument is an ordered collection of Python
post-processing specification files. When the user wants the out-
put program to fulfill some requirements not guaranteed by the
stochastic generation process, these post-processing files can be
used to modify the generated code in order to meet such re-
quirements. By following an introspective implementation of the
Visitor design pattern [35], the user can specify the traversal of
the program representation produced by Cnerator (an example
is presented in Section 4). We use the singledispatch Python
package [36] to traverse program representations.

The Program Representation module is mainly an in-memory
representation of Abstract Syntax Trees (AST) [37]. Cnerator pro-
duces ASTs modeling the generated program before generating
the output code. The AST data structure implements the Inter-
preter design pattern [38] to convert a program representation
into a set of output compilation units [39].

4. Illustrative example

In this section, we show how Cnerator was used to build
classifiers for inferring the return type of C functions from bi-
nary code, outperforming the existing decompilers [23]. We used
Cnerator to produce abundant C source code in order to train
supervised machine learning models. Such models are capable of
inferring function return types by just analyzing their compiled
binary code. As shown in Fig. 2, state-of-the-art decompilers pro-
vide 30% F;-measure?® for this classification problem [23], while
our machine learning model achieves 79.1%.

Initially, we searched for 100% standard C applications in
GitHub, Bitbucket and SourceForge, finding 2329 instances (func-
tions) to be used in our classification problem [23]. We then
realized that model accuracy could be increased if more programs
were added to the dataset (F;-measure showed a high coefficient
of variation). Therefore, we used Cnerator to generate additional
programs and included them in the dataset. Fig. 2 shows how
Fi-measure of the classifier grows with an increasing number of
instances, obtaining a coefficient of variation below 2% for 20,000
functions. Gradient boosting was the classifier with the best
performance (accuracy and F;-measure) out of the 14 machine
learning algorithms tested [23].

Fig. 3 shows an excerpt of two of the JSON files used to
customize Cnerator. The one on the left overwrites some default
probabilities. The first entry (function_basic_stmt_prob) de-
fines the probability of building basic statements (i.e., statements
not containing other statements, unlike for and switch), and
the second one states that 10% array definitions should initialize
their values. These two examples specify fixed probabilities that

2 Although different compilers were measured, Fig. 2 only shows IDA
(Hex-Rays) because it outperforms the rest of decompilers [23].
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Fig. 1. UML package diagram describing the architecture of Cnerator.

80%

70%

60%
=@= (lassifier built with Cnerator
50% IDA (Hex-Rays) decompiler
Most frequent class

40%

F1-measure

30%

20%

10%

0%

0 300 600 1,250 2,500 5,000 10,000 20,000

Number of Instances

Fig. 2. Fi-measure of gradient boosting classification model for increasing
number of instances in the dataset. Whiskers represent 95% confidence intervals,
for 30 training/test iterations for each number of instances. The x-axis has a
logarithmic scale.

must sum zero. The three remaining entries use uniform/equal,
proportional and normal distributions to specify, respectively, the
usage of primitive types, and the number of function parameters
and statements in the main function.

The right-hand JSON file in Fig. 3 shows the controlled
function-generation method used to build the dataset for the
decompiler scenario. The two first entries are examples of how
we made Cnerator generate 1000 functions returning each of
the types defined in the standard specification.? The condition
in the lambda expression checks that the returned type is the
expected one. The last entry shows a different example, not used
in the decompiler scenario, where the user demands Cnerator to
generate a function containing at least one if statement with an
else clause.

Fig. 4 shows an example Python post-process specification file.
The code traverses the representation of the generated program
(its AST), and adds a unique label before each return statement.
The purpose of this instrumentation is to identify in the com-
piled code the binary patterns used for each high-level return
statement. Those binary code patterns are later labeled with the
high-level return type to build predictive models with supervised
machine learning algorithms [23].

3 Only void and bool are shown for the sake of brevity.

The _instrument_statements function takes a list of state-
ments (represented as AST nodes) and adds a unique label -
prefixed with __RETURN__ (line 09) - before each return state-
ment. That function is later used in the traversal of function
definitions (line 18), and do, while, for and block statements
(line 26)—if and switch control flow statements follow the
same template. The code in Fig. 4 is an instance of an introspec-
tive implementation of the Visitor design pattern [35]. The visit
annotations indicate the AST node to be traversed, and default
tree traversal is performed with reflection [40].

5. Implementation and empirical results

We compare Cnerator with the random C code generators
discussed in Section 2. We select the following evaluation criteria
related to the generation of large amounts of standard C code to
train machine learning models (Section 3.1). It is worth noting
that the comparison is not aimed at identifying the best tool,
but at analyzing their appropriateness to generate abundant and
varied source code.

1. Generation of standard ANSI/ISO C code, which can be
compiled by any standard compiler implementation.

2. It can be specified the probability of each language con-
struct.

3. The tool can be customized to describe properties fulfilled
by the different language constructs (e.g., types returned by
functions, array dimensions, maximum depth of expression
and statement trees, or number of function parameters and
statements).

4. Generation of a configurable number of independent com-
pilation units.

5. Avoidance of dynamic undefined and unspecified behav-
iors.

6. Generation of code for all the language constructs.

7. Generation of large numbers of functions (and their invo-
cations).

The results of the comparison are detailed in Table 1. All
the tools but 1drgen and Orange generate standard C code.
Csmith is the only system, besides Cnerator, that allows setting
the probability of some language constructs (inline functions,
array accessing loop, and built-in function invocation for Csmith;
much more for Cnerator [34]). Csmith supports the customization
of some basic properties of the generated code (criterion 3),
such as the maximum depth of blocks, pointer indirections, array
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"function_basic_stmt_prob": {
"assignment": 0.3,
"invocation": 0.4,
"augmented_assignment”: 0.15,
"incdec": 0.1,
"expression_stmt": 0.05
1
"array_literal_initialization_prob": {
"True": 0.1, "False": 0.9
1
"primitive_types_prob": {
"__prob_distribution__":
"__values__ ": [
"ast.Bool",
"ast.SignedChar",
"ast.UnsignedChar"”,
"ast.SignedShortInt”,

"equal_prob",

1
s
"param_number_prob": {
"__prob_distribution__":
S "proportional_prob",
_ values__ ": {
"e": 1, "1": 2, "2": 3,
"3": 3, "4": 2, "5": 1

}
s
"number_stmts_main_prob": {
"__prob_distribution__":
"__mean__": 10,
__stdev__": 3

"normal_prob",

1
}
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"function_returning_void": {
"total": 1000,

"condition": "lambda f:
o isinstance(f.return_type,
o ast.Void)"

¥
"function_returning_bool": {
"total": 1000,

"condition": "lambda f:
o isinstance(f.return_type,
o ast.Bool)"

i

"function_with_if_else": {
"total": 1,
"condition": "lambda f:
< any(stmt for stmt in f.children
o if isinstance(stmt, cnerator.ast.If)
o and any(stmt.else_statements))"

Fig. 3. Two example JSON files used to customize program generation with Cnerator. The left-hand side shows a sample probability specification file, and the

right-hand side specifies an example of controlled function generation.

dimensions and expression complexity. 1drgen allows the speci-
fication of the maximum number of statements per block, expres-
sion depth, functions, function arguments, and statement nesting
depth. Cnerator is the only system that allows the generation of
any number of independent compilation units.

The feature of avoiding dynamic undefined and unspecified
behaviors (criterion 5) shows a different pattern. All the tools but
Cnerator provide this feature because their objective, unlike ours,
is detecting bugs in compilers (Section 2). On the contrary, Cn-
erator is the only tool that generates all the language constructs
(criterion 6), because the generated code is used to train machine
learning models that perform better when the code has more
variability. Both Csmith and YARPGen provide a lot of language
constructs, but do not support others.*

In order to evaluate the capability of generating large amounts
of source code (criterion 7), we measure the tools that allow spec-
ifying the number of functions in a program (Csmith, 1drgen and
Cnerator) and ask them to generate programs with an increasing
number of functions. Both Csmith and 1drgen show a runtime
memory error when they are asked to generate 100 functions,
in an Intel Core i7 2.5 GHz computer with 16 GB RAM running
Ubuntu 20.04.2.0 LTS. The results for Cnerator are detailed in
Table 2. Cnerator generates the 20,000 functions for the example
in Section 4 in 5.2 min, producing more than 2 million non-empty
source lines of code (SLOC).

4 Csmith does not generate assignments as statements, array-typed struct
fields, strings, dynamic memory allocation, floating-point types, unions, recur-
sion, and function pointers. YARPGen does not produce function calls, ++ and
-- operators, pointer arithmetic operations, assignments as expressions, non-
integer local variables, and has some restrictions when generating floating-point
values and loops.

Table 1
Qualitative comparison of random C code generators (@ = yes, O = no, and
D = partially).

Criterion Csmith ldrgen  YARPGen Orange QuEsT  Cnerator
1 [ J O [ J O [ J (
2 ] O O O O (
3 ] ] O O O o
4 O O O O O o
5 [ J ] [ J [ [ J O
6 ] O ] O O [
7 O O O O O ([

These results show how the differences between Cnerator
and the rest of the random C generators are caused by the
purpose they are designed for. All the tools but Cnerator are
aimed at testing compiler implementations, and that is why, for
those tools, the avoidance of dynamic undefined behaviors is so
important. However, this feature makes code generation to be
more difficult, even requiring the implementation of backtracking
algorithms [31]. Moreover, this complexity limits the number
of language constructs to be generated, and the production of
programs with large amounts of source code. On the contrary,
those two last features are very important to Cnerator, designed
to train machine learning models. It also provides some other fea-
tures necessary for its aim, such as the specification of language
construct probabilities and a high degree of customization.
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from singledispatch import singledispatch
from cnerator import ast
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def _instrument_statements(statements: List[ast.ASTNode]) -> List[ast.ASTNode]:

nwon

instrumented_stmts = []
for stmt in statements:
if isinstance(stmt, ast.Return):

label_ast = ast.Label(generate_label())
instrumented_stmts.append(label_ast)

visit(stmt)
instrumented_stmts.append(stmt)
return instrumented_stmts

@visit.register(ast.Function)
def _(function: ast.Function):

won

Includes a unique label before any return statement

Traverses a function definition to add a unique label before each return statement

non

iterates through the statements

i1f the statement is return..

creates a new AST node for the Label
and places the Label before the return
traverses the statement

appends return after the Label

H R R HRHR

wn

function.stmts = _instrument_statements(function.stmts)

@visit.register(ast.Do)
@visit.register(ast.While)
@visit.register(ast.For)
@visit.register(ast.Block)
def _(node):

nnn

Traverses a control flow statement to add a unique Llabel before each return statement

non

node.statements = _instrument_statements(node.statements)

_return_label _counter = 0

def generate_label() -> str:
"""Generates a new unique Llabel string
global _return_label_counter
_return_label counter += 1

mon

return f"__RETURN{_return_label_counter}_

Fig. 4. Python code excerpt of an AST post-processing example.

Table 2
Increasing sizes of C programs generated by Cnerator. SLOC stands for source
lines of code and counts non-empty lines of source code, excluding comments.

Number of functions Seconds SLOC
10 0.335 1,078
50 0.433 4,159
100 0.696 13,184
500 2.907 73,935
1,000 4269 139,756
2,500 12.601 342,669
5,000 30.062 717,562
10,000 74.771 1,345,993
20,000 312.237 2,692,157

6. Conclusions

Cnerator is a Python application that provides the controlled
stochastic generation of standard ANSI/ISO C code to train ma-
chine learning models. It is highly configurable, allowing the user
to define the probability distributions of each language construct,
specify the properties of the generated functions, perform post-
processing modifications of the generated programs, and define
the number of output compilation units.

Cnerator has been successfully used to build machine learning
models that improve state-of-the-art decompilers [23]. It has also
been utilized to implement an infrastructure for the automatic
extraction of code patterns [24]. It could also be used to test
existing C compilers, including the correct implementation of the
ANSI/ISO standard.

Cnerator is distributed with different examples, configuration
files and complete documentation. Its source code is available for
download at GitHub under a permissive BSD 3-clause license.
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