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Abstract: The structure of the naturally occurring, iron-rich mineral Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2
ankerite was studied in a joint experimental and computational study. Synchrotron X-ray powder
diffraction measurements up to 20 GPa were complemented by density functional theory calculations.
The rhombohedral ankerite structure is stable under compression up to 12 GPa. A third-order
Birch–Murnaghan equation of state yields V0 = 328.2(3) Å3, bulk modulus B0 = 89(4) GPa, and its
first-pressure derivative B’0 = 5.3(8)—values which are in good agreement with those obtained in our
calculations for an ideal CaFe(CO3)2 ankerite composition. At 12 GPa, the iron-rich ankerite structure
undergoes a reversible phase transition that could be a consequence of increasingly non-hydrostatic
conditions above 10 GPa. The high-pressure phase could not be characterized. DFT calculations were
used to explore the relative stability of several potential high-pressure phases (dolomite-II-, dolomite-
III- and dolomite-V-type structures), and suggest that the dolomite-V phase is the thermodynamically
stable phase above 5 GPa. A novel high-pressure polymorph more stable than the dolomite-III-type
phase for ideal CaFe(CO3)2 ankerite was also proposed. This high-pressure phase consists of Fe and
Ca atoms in sevenfold and ninefold coordination, respectively, while carbonate groups remain in
a trigonal planar configuration. This phase could be a candidate structure for dense carbonates in
other compositional systems.

Keywords: iron-rich ankerite; carbonate mineral; high pressure; phase transition; compressibility

1. Introduction

The phase stability and elastic properties of minerals depend essentially on three
intrinsic variables: the chemical composition (X), the pressure (P), and the temperature
(T) [1,2]. The actual crystal structure of a mineral also depends on the associated energy
landscape, which indicates the possible existence of the local minima, activation barriers,
kinetic effects, and metastable phases [3,4]. Understanding the formation processes and
stability of carbonate minerals under different thermodynamic conditions is crucial for
Earth sciences and the geological carbon cycle. Carbonates are important components
of the Earth’s surface, and are continuously incorporated into the mantle via subduction.
In the mantle, carbonates may decompose, reduce, or survive depending on the afore-
mentioned variables [5]. Previous studies have demonstrated that carbonates of divalent
metals with different radii and electronic characteristics present distinctive behaviors under
compression and heating [6–10]. This is particularly relevant within the complex scenario
of Earth’s mantle, where natural compositions likely include the coexistence of several
divalent cations.

The structural behavior and physical properties of pure CaMg(CO3)2 dolomite and
iron-bearing dolomite CaMgxFe1-x(CO3)2 compositions have been studied at high pressures
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and/or high temperatures [11–22]. The structure of CaMg(CO3)2 dolomite is rhombohedral
(space group R-3) at ambient conditions, and can be described as a combination of alternat-
ing calcite- and magnesite-like layers [23,24]. In naturally occurring iron-rich dolomites
(named ankerites), about half of the Mg atoms are substituted by Fe atoms, although a small
amount of manganese is usually present. The pure iron analogue of dolomite, CaFe(CO3)2,
has never been synthesized or found in nature [25]. High-pressure, ambient-temperature
structural studies on iron-bearing dolomite with stoichiometry CaMg0.6Fe0.4(CO3)2 re-
vealed two phase transitions at 17 and 35 GPa [11,19]. The novel high-pressure polymorphs,
named dolomite-II and –III, are triclinic, and the coordination number of their cations in-
creases from 6 at ambient pressure to 7/8 and 7/9, respectively. Dolomite-III features a
3 plus 1 carbon coordination at 60 GPa [19]. Moreover, a recent theoretical DFT study of
dolomite predicted a low-energy monoclinic C2/c polymorph above 15 GPa, whose thermo-
dynamic stability would increase with iron content [12,14]. This phase was subsequently
found in high-pressure (between 40 and 60 GPa) and high-temperature (1800–2300 K) ex-
periments, remaining stable down to 12 GPa at ambient temperature. All of these phases
could play important roles as carbon carriers in the Earth’s mantle cycling [11,19].

The structural behavior of a ferroan dolomite with higher Fe content upon compres-
sion was reported in [10]. Single-crystal X-ray diffraction (XRD) measurements of the
CaMg0.27Fe0.68Mn0.05(CO3)2 carbonate were performed up to 4 GPa, and no phase transi-
tions were observed in the studied pressure range. The isothermal bulk modulus and axial
compressibilities were determined, and the results showed that the Mg↔ Fe substitution
does not cause noticeable changes in the compressional parameters.

In this work, we have carried out in situ powder XRD measurements at pressures
up to 20 GPa on the naturally occurring iron-rich Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2
ankerite, similar in composition to that studied by Ross et al. [10]. We found that ankerite
undergoes a phase transition above 12 GPa to a polymorph not previously reported in
literature. Our P–V data are compared to those from other dolomite experiments, and the
effect of Mg–Fe substitution on dolomite carbonates is discussed. DFT calculations on the
hypothetical pure CaFe(CO3)2 ankerite shed light on its phase stability and complement
the experimental results.

2. Materials and Methods
2.1. Experimental Details

Naturally occurring ankerite crystals from Erzberg (Austria) were kindly provided
by the Yale Peabody Museum (Specimen YPM MIN 032451). Some of the crystals were
crushed to obtain a fine white powder. Quantitative chemical analyses were performed
with a Philips XL30 scanning electron microscope using energy-dispersive X-ray spec-
troscopy. According to these analyses, the chemical composition of our ankerite sample
was Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2. Powder XRD data at ambient conditions
confirmed the dolomite-type structure.

High-pressure angle-dispersive powder XRD experiments were conducted at the
MSPD beamline of the ALBA-CELLS synchrotron light source [26] located in Cerdanyola
del Vallès (Spain), using a monochromatic incident beam of 0.4246 Å. HP measurements
were performed using a diamond anvil cell (DAC)—a technique that allowed us to strongly
modify the atomic interactions and characterize in situ the samples [27,28]. In our room-
temperature high-pressure (HP) experiment, the ankerite sample was placed in a stainless
steel gasket cavity inside the gas-membrane-driven DAC, together with Cu powder used
for pressure determination [29], and a 4:1 mixture of methanol–ethanol used as a pressure-
transmitting medium [30]. Diffraction patterns were collected at different pressures for
20 s up to 20 GPa at room temperature. LaB6 powder was used for distortion correction,
and integration to conventional 2θ-intensity data was carried out using Dioptas software
version 0.5.0 [31]. The indexing and refinement of the powder patterns were performed
using the UnitCell [32] and PowderCell [33] program packages.
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2.2. Computational Details

The equations of state (EOSs) and structural parameters of the five phases (ankerite,
HP-ankerite, dolomite-II, dolomite-III and dolomite-V) were calculated using density
functional theory (DFT) under periodic boundary conditions. We used the plane-wave
approach in the projector-augmented wave (PAW) formalism [34], as implemented in
Quantum ESPRESSO [35] version 6.5. The PAW datasets for Ca (8 valence electrons), C (4),
and Fe (16) were obtained from PSlibrary version 1.0 [36]. We used the PBEsol exchange
correlation functional [37]. We expected the magnetic behavior of the three phases to be
similar under pressure, so we made some simplifications to our computational procedure.
First, in all cases, we considered only the ferromagnetic ordering. This greatly improved
the stability of the self-consistent field (SCF) procedure in our calculations, allowing us
to use the primitive unit cell, and circumventing the need to consider various atomic
magnetic moment permutations for each phase, as would be the case had we used an
antiferromagnetic ordering. We did not use a Hubbard-like or a similar correction to the d
orbitals of Fe because of problems with the SCF convergence and the smoothness of the
resulting equations of state. In addition, no magnetic transitions were observed in the
studied pressure range.

The cutoff energies for the wave function and density plane-wave expansions were
100 Ry and 1000 Ry, respectively. Shifted uniform (Monkhorst–Pack) k-point grids were
used with 6 × 6 × 6 (ankerite), 4 × 4 × 2 (HP-ankerite), 4 × 4 × 4 (dolomite-II), 3
× 2 × 2 (dolomite-III), and 4 × 4 × 4 (dolomite-V) k-points. These parameters yield
less than 0.1 mRy in the total energy, and less than 0.01 GPa in the calculated pressure.
Smearing of the Kohn–Sham state occupations was applied using Marzari–Vanderbilt
(cold) smearing [38], with a smearing parameter of 0.001 Ry.

Geometry relaxations were carried out for each phase at zero pressure and 50 GPa.
The optimization used tight total energy and force convergence thresholds (10−5 Ry in the
energy and 10−4 Ry/bohr in the forces). Next, a volume grid was constructed with 41 points
between the 0 and 50 GPa volumes. Subsequent fixed-volume geometry relaxation yielded
the EOS for each phase. The Gibbs2 program [39,40] was used to calculate the enthalpy vs.
pressure and energy vs. volume diagrams, as well as the phase transition sequence, from
the EOS data.

3. Results and Discussion

Before studying our ankerite sample under compression we performed an ambient-
conditions powder XRD measurement to confirm its structure. The indexation of our
data confirmed a rhombohedral symmetry with lattice parameters a = 4.8361(9) Å and
c = 16.185(3) Å (V = 327.83 (1) Å3), in excellent agreement with those expected from the
Goldsmith linear regression formulae interrelating chemical composition and hexagonal
lattice constants (a = 4.834 Å and c = 16.185 Å) [41], and those from previous studies on
iron-rich ankerites [10,24]. The Rietveld refinement of the ambient-conditions powder
XRD pattern suggests the following values for refinable atomic coordinates: zC = 0.244(2),
xO = 0.919(2), yO = 0.302(4), and zO = 0.576(2), in agreement with our calculated values
(zC = 0.2428, xO = 0.9206, yO = 0.3084, and zO = 0.5770) and results from other literature [10].
The crystal structure of ankerite, depicted in Figure 1, is similar to that of dolomite. Like
calcite, it consists of alternating layers of cations and [CO3] carbonate groups, which adopt
a highly deformed NaCl (B1) structure type [23]. The diagonal of the B1 structure is
shortened in order to properly accommodate the carbonate groups. However, in dolomite
and ankerite, different cations are present, and Ca and Mg/Fe cations are segregated in
alternate layers. In our case, the ankerite stoichiometry has an 8% Ca mole fraction in the
Fe/Mg layers. The accommodation of metal atoms of different sizes entails a small rotation
of the CO3 groups of each layer around the threefold axis with respect to their position in
calcite (space group R-3c), which means that these groups cannot be related by a c-glide.

Once the crystal structure of ankerite was confirmed at ambient conditions, we studied
it under compression at room temperature. Synchrotron XRD measurements showed that
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the initial rhombohedral phase was stable up to 12 GPa (Figure 2). Under compression, all
of the diffraction peaks shifted to higher angles, as expected for a decrease in interplanar
distances. Above 4 GPa, a new diffraction peak appeared in the CCD image, marked with
an asterisk in the integrated XRD pattern at 9.5 GPa in Figure 2. This peak corresponds
to the (210) reflection of the molecular CO2–I solid phase, as inferred from the indexed
volumes and its equation of state [42]. As far as we know, the formation of carbon dioxide
in a room-temperature compression experiment on a carbonate has never been reported,
with the decomposition process requiring high temperatures. We speculate that the Cu
metal used as an internal pressure gauge could have catalyzed this process. No other
additional Bragg peaks were observed in the 0–12 GPa pressure range, so we could study
the evolution of the iron-rich ankerite structure under compression. Unfortunately, the XRD
patterns present texturing effects due to uneven crystal sizes, precluding full structural
refinements. Lattice parameters and unit cell volumes at different pressures from Le Bail
refinements are collected in Table 1.
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Figure 1. Iron-rich R-3 ankerite structure under ambient conditions. Triangular [CO3], and octahedral
(CaO6) and ((Fe/Mg)O6) units are colored light gray, orange, and green, respectively, as with the
central atoms. The O atoms are colored in red. The unit cell is depicted by a solid black line.

The evolution of the unit-cell volumes of our Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2
iron-rich ankerite upon compression at room temperature is plotted in Figure 3, where
we compare them with previous experimental data up to 4 GPa and those obtained in
our theoretical calculations. The pressure−volume curves were analyzed using a third-
order Birch–Murnaghan (BM) equation of state (EOS) [43]. The fitting of our experimental
values yields a zero-pressure volume V0 = 328.9(5) Å3, a bulk modulus B0 = 83(6) GPa,
and its first-pressure derivative B’0 = 6.2(11); and V0 = 328.0(2) Å3 and B0 = 94.7(11)
GPa when fixing the B’0 to 4. These results compare well with the compressibility of a
compositionally similar ankerite reported by Ross and Reeder using a second-order BM
EOS (V0 = 327.82(11) Å3 and B0 = 91.7(4) GPa) [10]. Taking into account both our and
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previous [10] datasets, the EOS fit to all of the experimental high-pressure P–V values yields
V0 = 328.2(3) Å3, a bulk modulus B0 = 89(4) GPa, and its first-pressure derivative B’0 = 5.3(8).
In the case of the calculations for pure FeCa(CO3)2, the obtained values for V0, B0, and
B0
′ are 319.29(6) Å3, 99.4(7) GPa, and 3.85(8), respectively. Note that the experimental

compressibility is in good agreement with that predicted by our ab initio calculations.
Our results show that the bulk moduli of our ferroan dolomite and the pure CaMg(CO3)2
dolomite (B0 = 94.1(7) GPa and B’0 fixed to 4 [10]) are similar. This is consistent with the
fact that carbonate (CO3) units are incompressible, rigid units, and the overall compression
of the structure is due to the cation-centered (CaO6) and ((Fe,Mg)O6) octahedra. The
latter of these motifs has similar compressibility regardless of whether it is occupied by
Fe or Mg atoms. We can also compare the observed compressibility with that of related
calcite-type carbonates (B0,CaCO3 = 67(2) GPa, B0,FeCO3 = 117(1) GPa, B0,MgCO3 = 107(1) GPa,
B0,MnCO3 =107(1) GPa) [6], and conclude that the bulk modulus of iron-rich ankerites is
approximately the mean of the bulk moduli of the two end-member carbonates with major
cation proportions in each layer: B0(Cax(Fe,Mg)1−xCO3)~(B0(CaCO3) + B0(FeCO3))/2 =
(67(2) + 117(1))/2 = 92(2) GPa.
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Figure 2. Selected powder XRD patterns of Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 ankerite from
experiments. Backgrounds have been subtracted. Reflections of the initial dolomite-type structure
are indicated as vertical marks and labelled. The diffraction peak assigned to the (210) reflection of
the molecular CO2–I solid phase is denoted with an asterisk (*). Synchrotron radiation wavelength
was 0.4246 Å.
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Table 1. Experimentally determined lattice parameters (a and c) and unit cell volume of R-3
Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 ankerite at different pressures. Pressure uncertainties are
estimated to be ~0.05 GPa below 8 GPa, and ~0.1 GPa above this pressure.

Pressure (GPa) a Axis (Å) c Axis (Å) Unit Cell Volume (Å3)

0.00 4.8361(12) 16.185(7) 327.83(15)

0.01 4.8262(12) 16.174(7) 327.18(15)

0.26 4.8273(11) 16.160(7) 325.96(14)

0.36 4.8361(11) 16.142(7) 325.75(14)

0.56 4.8249(11) 16.128(7) 325.15(14)

1.60 4.8171(14) 16.043(13) 322.39(19)

1.75 4.8177(14) 16.040(13) 322.40(19)

1.80 4.8173(14) 16.035(13) 322.26(19)

2.10 4.8137(14) 16.004(13) 321.17(19)

2.50 4.8111(14) 15.957(12) 319.86(19)

3.10 4.8054(14) 15.925(12) 318.47(19)

3.45 4.8028(14) 15.872(12) 317.07(19)

4.20 4.7964(13) 15.828(12) 315.35(18)

4.75 4.7917(13) 15.769(12) 313.56(18)

5.50 4.7851(13) 15.691(12) 311.15(18)

6.05 4.7815(13) 15.637(12) 309.61(18)

6.95 4.7751(13) 15.566(11) 307.39(18)

7.65 4.7698(13) 15.498(11) 305.35(17)

8.3 4.7654(13) 15.432(11) 303.50(17)

9.5 4.7598(13) 15.345(11) 301.07(17)

9.6 4.7592(13) 15.338(11) 300.86(17)

9.8 4.7591(13) 15.328(11) 300.66(17)

10.3 4.7590(13) 15.294(11) 299.98(17)

11.0 4.7565(13) 15.232(11) 298.45(17)

12.1 4.7560(14) 15.125(11) 296.28(17)

We mentioned above that ankerite has the (CO3) units arranged in layers and oriented
perpendicular to the c axis, and that these carbonate groups share corners with interlayer
cation ((Ca,Fe,Mg)O6) octahedra. This spatial arrangement explains the experimentally
observed axial compressibilities. Figure 4 illustrates the evolution of the a/a0 and c/c0
lattice parameter ratios with increasing pressure, which suggests that their contraction
is rather anisotropic. According to our experiments, the compressibility of the a axis is
considerably less than that of the corresponding c axis. Experimental (calculated) axial
linear compressibilities for ankerite in the 0–9 GPa range, defined as βx = (−1/x)(∂x/∂P),
are βa = 1.66(2) × 10−3 (1.25(5) × 10−3) and βc = 5.64(5) × 10−3 (5.77(9) × 10−3) GPa−1.
The calculated βc is in good agreement with the experimental values, but the predicted
βa is significantly smaller than the experimental value. According to the experiments, the
βc/βa axial compression ratio is 3.40(6), and the c/a axes ratio increases with pressure
according to the expression c/a = 3.353(1) − 0.0136(2) × P. The slope of this straight
line is similar to that obtained by Ross and Reeder [10], as well as our DFT calculations
(Figure 5). This anisotropic lattice behavior is due to the fact that the C–O bonds, which are
arranged parallel to the ab plane, are much less compressible than the Ca/Fe/Mg–O bonds.
Thus, from our calculations, we observed that the interatomic Ca–O and Fe–O distances
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shortened by ~3.22% and 2.88%, respectively, between atmospheric pressure and 10 GPa,
whereas the C–O distance only varied 0.54% in the same pressure range.
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Figure 3. Pressure–volume data per unit cell. Black squares, red circles, and green triangles refer
to our Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 experimental (Exp.) data and the reported data by
Ross and Reeder (CaMg0.27Fe0.68Mn0.05(CO3)2) [10] and Merlini et al. (CaMg0.6Fe0.4(CO3)2) [19],
respectively. The black and red lines represent the fits of our room-temperature experimental data
with a third-order Birch–Murnaghan EOS in the quasi-hydrostatic pressure range and up to 11 GPa,
to be compared with the theoretically calculated P–V curve for pure CaFe(CO3)2 ankerite (blue line).
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Figure 4 shows that the compressibility of the a axis significantly decreases above
9 GPa, which could be caused by deviatoric stresses as a consequence of the loss of
hydrostaticity of the methanol–ethanol pressure-transmitting medium [30]. At pressures
higher than 12.6 GPa, additional diffraction peaks progressively appear (Figure 2). We tried
to index the XRD pattern above that pressure, assuming the possibility of phase coexistence
between the low-pressure R-3 phase and a new high-pressure (HP) phase, or assuming
a single HP phase. Major decomposition or chemical reaction processes were ruled out,
because the initial rhombohedral ankerite structure was recovered after decompression
(Figure 2). As potential HP structures we considered the two dense polymorphs (-II and
-III) found for both CaMg0.92Fe0.08(CO3)2 dolomite [44] and a more Fe-enriched dolomite
CaMg0.6Fe0.4(CO3)2 [19], above 17 and 35 GPa, respectively. We also considered the recently
reported HP–HT polymorph-V [12,14,21]. However, these structures did not allow us to
explain the new peaks. We then proceeded to use our best indexation at 16.2 GPa to
try to elucidate the HP phase by means of the Endeavour software [45]. The indexed
lattice parameters at this pressure were a = 5.274(7) Å, b = 4.148(4) Å, c = 9.261(11) Å,
α = 78.99(9)◦, β = 111.35(8)◦, and γ = 107.02(9)◦ (M (9 peaks) = 37.8, and V = 179.6 Å3 for
the assumed 2 formula units in the unit cell). This unit cell would entail a volume collapse
of approximately 6% at the transition. The structure solution was performed using a special
variant of the “direct space” approach—namely, a combined global optimization of the
difference between the calculated and observed diffraction data, and of the potential energy
of the system. Due to the usage of the potential energy, this method has been used to solve
several HP novel crystalline phases [46,47]. The Endeavour program suggested a potential
structure that was subsequently relaxed using DFT calculations. The calculated final
structure, however, could not explain the experimental XRD pattern either, but it resulted
in a thermodynamically competitive phase at high pressures for an ideal CaFe(CO3)2
ankerite composition. The lattice parameters and atomic coordinates of the substance
hereafter called “HP-ankerite” are shown in Table 2, and the structure is depicted in
Figure 6.
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Table 2. Calculated atomic coordinates for the P-1 “HP-ankerite” phase at 35.2 GPa. The lattice
parameters at this pressure would be: a = 4.985 Å, b = 4.136 Å, c = 8.250 Å, α = 76.11◦, β = 99.13◦, and
γ = 105.82◦.

Atom
Atomic Coordinates

x y z

Ca 0.3086 0.6672 0.0719

Fe 0.1347 0.3180 0.4615

C 0.5655 0.2320 0.3151

C 0.0567 0.0757 0.8053

O 0.0511 0.7440 0.3225

O 0.2078 0.2069 0.9225

O 0.9949 0.2440 0.1855

O 0.7198 0.0792 0.4260

O 0.4813 0.1549 0.1745

O 0.5023 0.4917 0.3469
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Figure 6. Structure of the calculated P-1 “HP-ankerite” phase for pure CaFe(CO3)2 ankerite at
35.2 GPa. The red spheres represent the O atoms, whereas the light gray, orange, and green spheres
correspond to C, Ca, and Fe atoms, respectively. The (CaO9) and (FeO7) polyhedra are also depicted.

In order to get further insight into the relative thermodynamic stability of the different
possible CaFe(CO3)2 polymorphs and their pressure-induced transformations, we have
performed ab initio total-energy calculations of our “HP-ankerite” phase, the low-pressure
dolomite-type ankerite [10], and the high-pressure dolomite-II- [11,19], dolomite-III- [19],
and dolomite-V-type phases [12,14,21]. The aim was to check the stability of this suggested
phase with respect to other experimentally observed phases in iron-containing dolomites
that could be candidates for high-pressure phases of pure ankerite.

Figure 7 shows the calculated curves for energy as a function of volume, and the
enthalpies calculated for each phase referring to the enthalpy of dolomite-type pure ankerite
are shown in the inset. According to our calculations, the enthalpies of the dolomite- and
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dolomite-II-type phases are very similar below 15 GPa (within 0.04 eV per formula unit of
one another), the dolomite-II-type enthalpy curve lying below that of dolomite. Therefore,
the dolomite-II-type phase would be the most thermodynamically stable phase amongst
those considered, and the small energy difference between the dolomite- and dolomite-
II-type phases could indicate that either of them may be observable under the proper
experimental conditions for CaFe(CO3)2 ankerite. It should be noted that the relaxation of
the dolomite-II phase converges to a structure similar to that of the dolomite-type ankerite
at pressures below 18 GPa, with Ca and Fe atoms being octahedrally coordinated. Only
above this pressure, the coordination of the Ca atoms increases to 7 in the dolomite-II
phase. The plot of the theoretical enthalpy also indicates that, above 31 GPa, the “HP-
ankerite” phase reported here for the first time for CaFe(CO3)2 is energetically more stable
than the dolomite-III-type phase found experimentally at high pressures in iron-bearing
dolomite. Nevertheless, as shown in Figure 7, our DFT calculations confirm the results
of previous theoretical studies [12,14], which predicted that the C2/c dolomite-V phase
is the thermodynamically stable phase above 5 GPa. This phase has only been observed
experimentally after heating.
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dolomite-I-type, P-1 dolomite-II-type [19], P-1 dolomite-III-type [19], C2/c dolomite-V-type [12],
and the P-1 “HP-ankerite” (this work) ankerite phases. Inset: Enthalpy difference as a function of
pressure, showing the stabilities with respect to R-3 CaFe(CO3)2 ankerite.

The “HP-ankerite” phase is depicted in Figure 6. It consists of trigonal planar (CO3)
carbonate groups, (FeO7) pentagonal bipyramids, and complex (CaO9) polyhedra. This
structure presents an increase in the coordination number of the Ca atoms from the
dolomite-II-type phase, where the Fe and Ca atoms are six- and sevenfold coordinated by
oxygen atoms, respectively. The carbonate groups are no longer parallel between them, like
in ankerite or the dolomite-II phase, but they adopt two different orientations. The struc-
ture is so different that it could not be considered a simple distortion of the low-pressure
phases. Note that ninefold or higher coordination for Ca atoms has been found in other
carbonate phases, such as CaCO3 aragonite [48], dense BaCa(CO3)2 alstonite [9,49], and
calcium silicate-carbonates [50,51]. The irregular and large cation-centered oxygen poly-
hedra of this potential ankerite HP phase suggest that other divalent cation species could
be accommodated in these sites. Therefore, this phase is a candidate for dense carbonate
structures in other compositional systems.
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4. Conclusions

Iron-bearing carbonates are candidate phases for carbon storage in deep Earth, and
may play an important role in the geological carbon cycle. Subducting slabs, for instance,
likely carry iron–bearing carbonates to the mantle, where high-pressure, high-temperature
conditions modify their physical properties. In this study we tried to elucidate the structural
behavior of (1) natural iron-rich Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 ankerite under
compression using synchrotron X-ray diffraction, and (2) ideal pure CaFe(CO3)2 ankerite
using DFT calculations. The latter stoichiometric composition of ankerite has never been
found to occur naturally, nor synthesized in a laboratory as an ordered phase. To date, only
a disordered structure has been achieved, but thermodynamic models predict the stability
of ordered CaFe(CO3)2 ankerite below 450 ◦C [25].

Our experiments on natural Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 ankerite reveal
that the initial rhombohedral dolomite-type structure is stable up to 12 GPa, where it under-
goes a phase transition. Unfortunately, the structure of the high-pressure polymorph could
not be identified, but the recovery of the initial structure indicates its reversible character,
and rules out chemical reactions or significant decomposition. In order to shed light on
the high-pressure phase diagram of this iron-rich carbonate, we undertake a DFT study of
the stability of different candidate phases for a pure CaFe(CO3)2 composition. Previous
experimentally observed polymorphs of dense dolomite were considered [11,19], as well as
a tentative structure named “HP-ankerite” suggested by the indexation of the high-pressure
powder pattern and potential energy calculations. Ab initio calculations show that, above
31 GPa, this latter high-pressure phase is more stable than the experimentally observed
dolomite-III phase, but the dolomite-V phase is the thermodynamically stable phase above
5 GPa. Therefore, “HP-ankerite” could be a potential metastable phase of ankerite. Its
structure can be described in terms of trigonal planar (CO3) carbonate groups, sharing
corners with (FeO7) pentagonal bipyramids and complex (CaO9) polyhedra. Note that
the predicted transition pressure is lower than that reported in the literature for the spin
crossover in siderite or magnesiosiderite iron-bearing carbonates [52].

Carbonates at depth could be strongly enriched in iron with respect to the surrounding
minerals or carbonates at shallower depths. The implications of the present theoretical
results would depend on the effects of high pressures in stabilizing a hypothetical ordered
CaFe(CO3)2 ankerite phase. Further experiments are needed in order to fully character-
ize the observed high-pressure Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 polymorph, and
confirm the existence of crystalline pure CaFe(CO3)2 material at high pressures.
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