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de la Calb

aInstituto Tecnológico de Castilla y León, Burgos, Spain
bComputer Science Department, University of Oviedo, Oviedo, Spain
cDepartment of Neurology, University of Novi Sad, Republic of Serbia

Abstract

Technologies such as Big Data and IoT have shown the need for intelligent
unsupervised processing of Multivariate Time Series (MTS), MTS clustering
among them. The challenges in MTS clustering includes not only the se-
lection of the algorithm but also the MTS representation and the similarity
measurement among the instances. This study proposes an ensemble of MTS
clustering methods that merges different MTS representations and distance
functions, aggregating them to obtain a similarity measurement. Further-
more, a proposal for prior knowledge representation is proposed to balance
the aggregation of the distances. The final clustering is performed either
using k-means or hierarchical clustering.

The experimentation set up includes the implementation of the ensemble
with either 4 or 5 different methods, including an MTS extension of k-Shape.
The results show that the ensemble is biased towards the best methods,
which helps the clustering practitioner in the selection of the most suitable
prototypes. Moreover, the evaluation of the ensemble with the number of
clusters set to the number of labels shows that metrics, such as the sensi-
tivity and specificity, must drive the rule of the elbow; alternatively, this
value represents the most interesting prior knowledge bit in MTS clustering.
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Further work includes the study of digital markers to compare MTS repre-
sentations and distance functions and the use of external metrics to balance
the aggregation of the methods.

Keywords: Multi-variate Time Series, Clustering, Prior knowledge,
Ensemble of clustering

1. Introduction

Technologies, such as Big Data, IoT and Industry 4.0, have provide the
capability to gather immense volumes of data; the main part of them comes
from sensory data related to a concrete problem. These sensory data include
several variables and time series are gathered for each of these variables;
the combination of several variables, each being a time series is known as
Multivariate Time Series (MTS). Therefore, MTS has regained the focus of
the research community with the effervescence of the technologies mentioned
before; MTS instance clustering (for short, MTS clustering) is one of the
most challenging topics regarding MTS [1, 2, 3], either with unsupervised
solutions or semi-supervised approaches [3, 4].

Nevertheless, the performance of the MTS clustering techniques varies
to the considered problem or data set, affecting the confidence of the user
on the obtained results. In order to cope with this situation, this research
proposes ensemble of MTS clustering methods. The aim is not to generate a
competitive method to compare with other state-of-the-art clustering algo-
rithms; instead, the idea is to provide the experimenter with a tool to merge
the results from different algorithms. This idea is not new and has been
applied to MTS classification [5]. To group the MTS instances, this study
chooses several MTS clustering methods in parallel, converts their outcomes
into adjacency matrices, and aggregates the obtained results. An optional
prior knowledge helps in tuning the clusters obtained so far or in the evalua-
tion of the produced instance clusters. The solution is evaluated with several
data sets from the community, showing a balanced performance in both clus-
tering processes. Interestingly, this study extends kShape [6], a well-known
and highly competitive univariate time series clustering, to deal with MTS
instances.

Therefore, the main novelties in this study are:

• A proposal for an ensemble of MTS clustering is detailed with the aim
of obtaining a suitable performance independently of the problem.
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• The ensemble includes a wide range of TS representations and distance
measurements.

• The ensemble merges the outcome from the different clustering algo-
rithm runs using graph representation and by aggregation the graphs.

• Prior knowledge can be introduced to modulate the fusion of the dif-
ferent methods according to their performance.

• An MTS extension of k-Shape [6] to cope with MTS instances.

The structure of the paper is as follows. The next Section introduces the
related work on the topic, while Section 3 completely describes the proposal
for multi-dimensional MTS instances clustering and the ensemble of the clus-
tering algorithms. Section 4 includes the description of the experimentation
and the MTS data sets, as well as the MTS extension for k-Shape. Section
5 is devoted to the results and the discussion. Finally, the conclusions are
drawn.

2. Related Work

The MTS clustering problem refers to arranging MTS instances in suit-
able groups so that the instances within a group share several relevant be-
haviours and properties. Many different methods address the MTS cluster-
ing, typically including a MTS representation and suitable distance function
plus a clustering algorithm. As an example, the study in [7] proposed the
Haar wavelet transformation and the k-means algorithm in the design of an
ambient-air vaporizer under time-series weather conditions. The work in [8]
proposed unsupervised shapelets search to differentiate MTS subsets that in-
clude common distinctive sub-sequences and the k-means algorithm, in order
to create groups accordingly.

Distance measurement functions are one of the most focused research
topics when dealing with MTS clustering as these functions are the base on
which many clustering algorithms rely [9]. By far, Dynamic Time Warping
(DTW) [10, 11, 12] is still a reference as a general distance measurement
among univariate and multivariate TS, although many different alternatives
have been studied. For instance, [13] proposed two distance measurements
considering the magnitude and phase shift of relevant TS points according to
the Pearson correlation; the second of these distances is claimed to produce
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similar or better clustering results than DTW. A different enhancement to
DTW was presented in [14] introducing the so-called complexity-invariant
distance measurement (CID). Estimated quantile auto-covariances have been
proposed as a distance measurement in partitional clustering of time series,
taking advantage of the ability of these correlation values to retain relevant
dynamic features [15]. Finally, motif and minimum description length were
proposed to group sub-sequences of time series in a process of active learning
based time series segmentation in [16]. Interested readers can focus on [14,
17, 18] for further information.

MTS from photovoltaic array systems were clustered using DTW and
k-means in [19]. Besides, the study in [20] proposed a hybrid distance mea-
surement (combining the PCA similarity index and the average-based Eu-
clidean distance) and the Fuzzy C-means clustering algorithm to group the
MTS instances. PCA and a modification of the k-means algorithm have been
applied to MTS clustering in [21] by projecting to the new coordinate space
and then reassigning the MTS to each cluster. Fotso et al [22] proposed
the u-shapelets transformation to group time series using a specific distance
measurement based on eigenvector decomposition and the comparison of the
autocorrelation matrices.

Hierarchical clustering [18] was applied in [23] to the clustering time se-
ries using CID distance measurement. Similarly, [24] proposed hierarchical
clustering and a Fuzzy extension to DTW to the grouping of MTS; the ag-
gregation of linear Fuzzy information granules on segments of the time series
is used to modify the clusters found so far. Recently, a weighted features
based clustering was proposed in [25]. In this study, DTW and shape-based
distance (SBD) [6] were used to modify the fuzzy membership distance ma-
trix according to the distortion between MTS and the difference in shape,
correspondingly. Fuzzy c-means was used to cluster the fuzzy membership
matrices. Paparrizos et al proposed the k-Shape and the k-MultiShapes time
series clustering methods [6], the two algorithms are based on k-means and
rely on two shape-based methods to calculate the centroids of time series.
Interestingly, k-Shape and k-MultiShapes are both scalable and with low
computational restrictions, making them suitable for high dimensional prob-
lems.

In [26, 27], recurrent Neural Networks were used to measure the similarity
either between TS within the same MTS instance or between TS belonging
to different MTS instances. The results show promising performance, de-
spite the high time complexity. Furthermore, in [28], the authors proposed
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Gaussian Mixture Model kernels, augmented with prior distributions learned
from randomly selected features, to find similarities between MTS instances
with missing data. The outcomes of each Gaussians Mixture Model are then
combined using a kernel similarity matrix. In [29], a regression model-based
clustering is proposed: a polynomial regression model is used to determine
the most relevant variables that are later used in the clustering of the data.

On the other hand, semi-supervised MTS clustering makes use of feedback
from the user in the form of pairing related instances [4]. This latter study
proposed a semi-supervised MTS hierarchical clustering method by extend-
ing the COBRAS (COnstraint-Based Repeated Aggregation and Splitting)
algorithm to deal with MT either using k-Shape or DTW as distance func-
tions. Besides, [30] analyzed the performance of different MTS distance mea-
surements when used in spectral clustering, namely, Normalized Cut (NCut).
The authors proposed the use of a combination of the distance measurements
and some information concerning the relationships among the instances to
produce a semi-supervised MTS spectral clustering. Two options were eval-
uated when combining the distances measurements: a linear combination of
the distances measurements and hybrid bipartite graph formation.

Interestingly, MTS clustering performance relies on the performance of
the different components in the design of the solution, having these decisions
a high impact on the quality of the obtained groups. Consequently, the
practitioner should deal with the outcomes and decide which one is the most
interesting. From his/her point of view, a tool merging the outcomes from
the different methods would facilitate the decision-making process.

3. An MTS Clustering Ensemble with Prior Knowledge Assess-
ment

In this study, we propose an ensemble of several MTS clustering al-
gorithms to assist the practitioner in selecting the best option among the
methods. This ensemble includes several different MTS representation and
distance measurement functions, makes use of a clustering algorithm, and,
finally, merges the outcomes of the different runs through the agglomeration
of the produced graphs. Additionally, the user can provide prior knowledge
to empower the runs according to their accomplishment with this knowledge,
modifying the aggregation. A general overview of this proposal is included in
Fig. 1; the process of running the different clustering algorithms and obtain-
ing a final clustering solution is called, from here in after, Multi-dimensional
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Figure 1: General Overview of the proposal. The MTS instances are represented using
several techniques and clustered using a specific distance measurement function. A final
merging stage aggregates the outcomes from each part. The prior knowledge modifies the
weights of the methods according to their compliance with the given restrictions.

MTS Instance Clustering (MIC).
This section firstly introduces the different TS representations and the

corresponding distance measurements; the reasons for their selection are also
explained. Next, the algorithm for clustering the MTS instances is selected.
The prior knowledge’s representation is detailed afterward. Finally, the de-
scription of the ensemble is described.

3.1. Time Series Representation and Distance Measurements Functions

From now on, we call raw data the original MTS sequences. An MTS
instance (tsi) can be written as tsi =< xi

1, x
i
2, · · · , xi

M >, where i ∈ [1, L] is
the instance position, L is the number of MTS instances and M is the number
of variables. Moreover, each xi

m represents an univariate time series, that is,
xi
m=< xi

m1, x
i
m2, · · · , xi

mN >, where N is the number of samples, m refers the
variable and i the MTS instance’s index within the data set. We assume
an MTS data set as a collection of instances of raw MTS with arbitrary
length. Note that we can store MTS for which the variables have different
sampling rates provided there are some timestamps where all the sampling
of all the variables coincide in time [31, 32] using polynomial interpolation.
Besides, a long MTS is expected to be split in different instances; automatic
segmentation of MTS can be employed in these cases to produce the set of
suitable instances [24, 31, 33].

In this study, we have chosen several TS representation techniques and
distance measurements. The selection of these techniques was based on in-
cluding MTS representation and distance measurements from a very different

6



nature but still competitive in the literature, to ensure broad coverage of tech-
niques. The point is that if this proof of concept works, then the idea can be
also extended to analyze different MTS clustering solutions. Additionally, k-
Shape [6] has been extended to MTS and added to the ensemble to evaluate
this latter assumption.

The combination of TS representation and distance measurements con-
sidered in this study are:

• TS representation in the time domain: Adaptive Piecewise Con-
stant Approximation (APCA) [34], where each variable j in a raw
TS is represented by M segments APCA(tsij)={< vij1 , p

ij
1 >, · · · , <

vijM , pijM >}. The coefficients vijk are the mean of the values of variable j
in tsi in the interval [pijk−1, p

ij
k ], with pij0 = 0. The limits of the intervals

are computed with the Haar Discrete Wavelet Transform [35].

Three different pairs of representation and distance measurements are
used: MINDIST (the distance function defined in the study with the
definition of APCA), DTW and SBD (Shape-Based Distance, [6]). We
combine APCA and SBD because this latter’s complexity grows with
the length of the time series; APCA acts as reducing the overall com-
plexity, allowing to apply this method to a wider variety of problems.

• TS representation in the frequency domain: Fast Fourier Transform
(FFT) [36, 37] computed on the z-scored raw data, limiting the coeffi-
cients to the 10 components. The distance between two univariate TS
is measured with the Energy of the differences between them.

• TS represented with the raw data, measuring the distance among two
TS with the Compression-based dissimilarity measure (CDM) [31]. To
overcome with the problem of TS of different length, the longer TS is
windowed and the CDM is averaged. Let a be the length of the shorter
TS instance, then the window is of size a and the shift is a/2, padding
the end of the longest TS with the last sample. We consider two TS
of similar length whenever the differences in length do not surpass the
1.5 ratio.

In this study, we choose to aggregate the distances among all the variables
to obtain the distance between two MTS instances. Given two instances tsi

and tsj, the aggregated distance is calculated using Eq. 1, where d(xi
m, x

j
m)

is the distance between variables xi
m and xj

m.
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D(tsi, tsj) =

√√√√ M∑
m=1

d2(xi
m, x

j
m) (1)

3.2. MTS Instance Clustering

MTS clustering aims to group similar instances of the MTS data set
considering all the variables. Each pair of TS representation and distance
measurement is then clustered. Although the clustering algorithm applied to
each pair may vary, in this research we kept the same clustering algorithm
for all the cases. Furthermore, we evaluate and compare the performance
of the ensemble using two clustering algorithms: on the one hand, the well-
known k-means algorithm; on the other hand, hierarchical clustering (hclust)
algorithm.

While hclust represents the natural clustering method (it has already been
used with APCA and MINDIST or DTW and with FFT [34], or in conjunc-
tion with CMD [31]), the use of k-means needs some justification. The wide
use of k-means in the literature [8, 34, 38] and its successful performance are
the main reasons to consider this clustering algorithm. Nevertheless, there is
an increase in the total amount of time of the algorithms due to the k-means
variability forces to repeat the clustering a predefined number of times to
average the results (see Section 3.4).

Table 1 shows the different acronyms used in this research for the com-
bination of clustering algorithm with the TS representation and distance
measurement. It is worth to notice that, from now on, we call our com-
plete approach MIC-k-means or MIC-hclust accordingly with the clustering
method, including the merging procedure and the prior knowledge.

3.3. Prior Knowledge Representation

The idea of prior knowledge is to avoid the ensemble to bias towards those
methods that perform better. The prior knowledge represents relationships
between MTS instances that the clustering practitioner knows beforehand;
therefore, this knowledge can feed the system before running the MTS clus-
tering. In this study, we have considered two possible sources of prior knowl-
edge: on the one hand, there are some MTS instances that the practitioner
knows should be in the same cluster because they are highly related. On
the other hand, there are some MTS instances that the practitioner knows
should belong to different clusters because they never co-occur or are highly
unrelated.
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Table 1: Acronyms of the different combinations of TS representation, distance mea-
surement and clustering algorithm. The aggregation of the results from each clustering
algorithm produces the final clustering: MIC-k-means and MIC-hclust. When developing
the MIC with k-means, each method is repeated a predefined number of times and the
aggregation of the distances is computed.

clustering method
k-means hclust

APCA & MINDIST k-A-MIN h-A-MIN
APCA & DTW k-A-DTW h-A-DTW
APCA & SBD k-A-SBD h-A-SBD
FFT & Energy k-FFT h-FFT

Raw data & CMD k-CMD h-CMD
MIC-k-means MIC-hclust

We use a list of constraints to represent these knowledge items; a clus-
tering solution would have higher reliability with the increasing number of
accomplished constraints. Each constraint is a list of signed indexes with the
following meaning:

• Each index refers to an specific MTS instance.

• Positive indexes in a constraint mean these MTS instances should be
grouped together.

• A negative index in a constraint means this MTS instance should not
be grouped together with the positive MTS instances contained in the
constraint.

• A constraint contains at least 2 positive indexes.

An example of prior knowledge is depicted in Table 2. In this study, we
limit the number of constraints to a percentage of the number of instances.
We keep this percentage rather small; otherwise, it might imply that the
knowledge about the problem is enough to move directly into classification
instead of clustering. Additionally, we limit the number of positive indexes
and the number of negative indexes to a percentage of the number of instances
as well.

9



Table 2: An example of the prior knowledge representation.

[ [1, 2, 3, -4, -5], [1, 7, 8], [1, 2, -9, -10] ]

[1, 2, 3,−4,−5] Instances 1, 2 and 3 shall be grouped together, but
neither instance 4 nor 5 should. Nothing is said about
the relationship between 4 and 5.

[1, 7, 8] Instances 1, 7 and 8 shall be grouped in the same
cluster.

[1, 2,−9,−10]] Instances 1 and 2 shall be grouped together, but nei-
ther instance 9 nor 10 should. Nothing is said about
the relationship between 9 and 10.

3.4. Merging the Different Methods

MIC includes 5 different stages to merge all the methods: i) Initializa-
tion, ii) Running each clustering method, iii) Prior Knowledge assessment,
iv) Aggregation of the clustering alternatives and v) Performing the final
clustering.

The Initialization stage receives all the parameters, such as the number
of clusters K, the internal MIC clustering algorithm or the prior knowledge
to use. Besides, Algorithm 1 gives details of the second stage. Ten repeti-
tions of k-means are considered due to its variability when this method is
selected. The output is a list containing an L× L similarity matrix for each
TS representation and distance measurement. In the case of hclust, a simi-
larity matrix’s cell < i, j > contains 1 if the instances i and j belong to the
same cluster; otherwise, the cell contains 0. In the case of k-means, each cell
contains the average of the number of times that the corresponding instances
have been grouped in the same cluster among the repetitions.

Algorithm 1 presents the assessment due to prior knowledge. Its out-
come is a vector containing the weights to the similarity matrices, which are
adjusted according to the number of constraints its corresponding matrix
satisfies.

The final stage is to produce the final clustering; this clustering makes
use of the aggregation of the similarity matrices using the weights. In this
study, we propose the following clustering options:

• Extended spectral clustering to manage similarity matrices with real
values in the interval [0.0, 1.0] [39], computing the generalized spectrum
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Algorithm 1: Running each clustering method

Input:
the MTS data set;
the number of clusters K;
the MIC clustering method: either k-means or hclust;
Result:
The clustering-results list with the similarity for each TS
representation and distance measurement;
if MIC uses k-means then

numrep ← 10;
else

numrep ← 1;
end
clustering-results ← empty list ;
foreach TS representation and distance measurement do

rep-results ← empty list;
M ← Compute the distance matrix for the MTS data set;
for i from 1 to numrep do

rep-results[i] ← cluster using the distances in M
end
sim-matrix ← Average-Repetitions(rep-results);
clustering-results.append(sim-matrix);

end
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Algorithm 2: Assessment using the prior knowledge

Input:
The list SM with the similarity matrices, one per TS representation
and distance measurement;
The list APK containing the prior knowledge;
Result:
The vector weights, same length as SM ;
Let weights be an empty vector;
Let sizeAPK be the number of restrictions in APK;
Let sizeSM be the length of the SM ;
if sizePAK is empty then

return a vector containig sizeSM repetitons of 1
sizeSM

;
end
foreach s ∈ 1 : sizeSM do

v ← 0;
foreach constraint R in APK do

holdR← TRUE;
foreach cell < i, j > in SM do

if instances i and j have been grouped together then
if R contains i and j AND R does not hold then

holdR← FALSE;
end

end

end
if holdR is TRUE then

v ← v + 1
sizeAPK

;
end

end
weights.append(v) ;

end
return weights/

∑
weights;
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of the similarity matrix and choosing the eigenvalues whose values are
higher than the median. We limit this number to the K most significant
eigenvectors. Finally, hclust produces the clusters. We identify this
option with sub-index CUT .

• Transforming the similarity matrix into an adjacency matrix using the
0.5 threshold and performing the clustering.The sub-index 0.5 identifies
this option.

• Similar to the previous option but allowing uncertainty: those sim-
ilarity values higher than 0.6 become a link, those smaller than 0.4
represent no link. Values in between are either linked and not linked.
Sub-index UNC identifies this option.

4. Experimental Set Up

4.1. The Experimentation Data Sets

This study makes use of the labeled MTS data sets enumerated in Table
3, all of them available at the Time Series Classification site [40]. The
reason for using labeled MTS data is because it allows us to evaluate the
performance of the clustering algorithms.

4.2. The Experiment Set Up

This study focuses on how MIC can assist the clustering practitioner in
the selection of a final solution; therefore, the performance metrics are not so
important as the guidelines MIC produces, biasing towards the best solutions.
Therefore, this study compares MIC versus each of the individual methods
that it merges: On the one hand, the three approaches in [34]: h-A-MIN,
h-A-DTW, and h-FFT. On the second hand, h-CMD [31] and an extension
of k-Shape [6] to MTS problems; the next Subsection focused on detailing
this latter method.

We perform the analysis using two situations: using an ensemble with the
four first methods and, secondly, using an ensemble with the five methods.
This allows us to evaluate the changes and improvements in the ensemble’s
outcome due to the incorporation of a new method, which might work better
or worse than those already considered.

We set the value of K (the desired number of clusters) in two ways: On
the one hand, we use the rule of the elbow to select the best K value. On the
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Table 3: MTS data sets used in this research. All of them are available at the Time Series
Classification site [40].

MTS Data set Description
Articulary Word
Recognition (AWR)
[41, 42]

25 train and 25 test instances of 12 variables,
each with 143 samples belonging to 25 different
words.

Cricket (Cr)[42, 43] Records the movements of the hands of 4 cricket
umpires using accelerometers. A total of 12
classes, with 6 variables and 1197 samples each
per instance. The data set includes 108 train
instances and 72 test instances.

Epilepsy (EP)[44] This data set includes tri-axial accelerometer
data recorded for several Activities of Daily Liv-
ing and simulated Epileptic seizures (up to 4 dif-
ferent labels). The data set includes 137 train
instances and 128 test instances. Each instance
includes 3 variables and 206 samples.

Finger Movements
(FM) [45]

This data set has a correspondence to Benjamin
Blankertz for the BCI II competition (Data set
IV). The data set includes 316 train instances
and 100 test instances, two possible labels. Each
instance includes 28 variables, 50 samples each.

HeartBeat (HB) [46,
47]

This data set is derived from the Phys-
ioNet/CinC Challenge 2016. The data set in-
cludes 61 instance for training and 61 for test-
ing, two possible labels. Each instance has 61
variables and 405 samples.
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other hand, we evaluate the methods with the value of K set to the number
of labels.

Having used labeled MTS instances, we measure the performance of the
methods with the Sensitivity (SEN) and the Specificity (SPE) metrics (see
Eq. 2 and Eq. 3, respectively). Algorithm 3 computes the counters True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN).

SEN =
TP

TP + FN
(2)

SPE =
TN

FP + TN
(3)

Algorithm 3: Calculation of the performance counters.

Let n be a matrix of zeros with size L× 4 for the counters;
foreach instance i from 1 to L do

foreach instance j from i to L do
if i and j have same labels AND are grouped in the same
cluster then

n[i, TP ] + +; n[j, TP ] + +;
else if i and j have same labels AND are grouped in different
clusters then

n[i, FN ] + +; n[j, FN ] + +;
else if i and j have different labels AND are grouped in the
same cluster then

n[i, FP ] + +; n[j, FP ] + +;
else /* i and j have different labels AND are

grouped in different clusters */

n[i, TN ] + +; n[j, TN ] + +;

end

end
columnSum← sum n by column;
return 1

L
× columnSum;

Finally, we make use of the following prior knowledge options:

• The number of constraints (NR) takes the following possible values 0%,
5%, and 10% of the number of MTS instances.
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• Both the number of positive indexes (nPIR) and the number of negative
indexes (nNIR) within a constraint take the value of 5% of the number
of MTS instances.

• The constraints were randomly generated introducing a variable num-
ber of positive instances (from 2 to nPIR) and a variable number of
negative instances (0 to nNIR).

• The same prior knowledge rule set was applied in all the experimenta-
tion for comparison purposes.

4.3. An MTS extension for k-Shape

The high performance reported for k-Shape [6] with univariate time series
suggested that its behavior with MTS instances would also be remarkable. A
simple extension is proposed by i) designing an MTS-enabled SBD distance
measurement (mSBD) and ii) developing an MTS Shape Extraction (mSE).
We keep the same k-Shape clustering algorithm but using the two previous
extended tools instead. From now on, this method is referred as k-A-Sp.

Each univariate time series within an MTS instance is represented with
APCA. We analysed two percentages of reduction for APCA: 10% (k-A-
Sp10%) and the

√
N% (k-A-Sp√

(N)
), both calculated on the number of sam-

ples N ; we keep the latter one as the best case in the subsequent ensembles.
Afterwards, we propose to calculate the mSBD as the square root of the
sum of the squares of the SBD for each variable (Eq. 4), where SBDm(i, j)
represents the value of SBD for instances i and j computed on variable m.

mSBD(i, j) =
M∑

m=1

SBDm(i, j) (4)

Besides, the mSE generates the MTS centroids per cluster as the aggrega-
tion of the eigenvectors, one from each variable. Each eigenvector is obtained
using the Shape Extraction method in [6].

5. Results and Discussion

The following tables display the obtained results: i) Table 4 shows the
figures obtained without prior knowledge and finding the number of clusters
with the rule of the elbow, ii) Table 5 presents the obtained numbers when
using prior knowledge and setting the best number of clusters with the rule
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of the elbow, and iii) Table 6 shows the results obtained using the number
of labels as the number of clusters.

There are several important findings from the results in Table 4. Firstly,
the MTS clustering methods performed quite differently. On the one hand, h-
A-MIN, h-A-DTW and h-FFT produced good results for the AWR, CR and
HB data sets either concerning the number of clusters or the metrics SEN
and SPE. However, the SPE values with the HB data set are surprisingly low;
that is, the MTS instances with the same label were assigned to practically
all the different groups.

On the other hand, the performance of the three remaining methods
(namely, h-CMD, k-A-Sp10% and k-A-Sp√

(N)%
) was really poor for the two

metrics, and, even though the best number of clusters were suitable, the MTS
instances were misled among all the groups. We consider the k-A-Sp√

(N)%

in the ensembles due to its slightly better metric values.
It is worth mentioning the poor performance of the k-A-Sp with the two

percentages of reduction. This issue was further studied, comparing the k-A-
Sp and the k-Shape with univariate time series included in [6]. The results,
which have not been included in this research for the sake of simplicity, sug-
gested that the APCA reduction loses too much covariance information, pe-
nalizing the capacity to detect the correct relationships among the instances.

Table 4 also includes the mean of the metrics considering 4 or 5 methods
for the sake of clarity and comparison reasons when moving forward to the
results of the ensembles. For the AWR, CR and EP data sets, the perfor-
mance of the ensembles was really good, not only having better metrics than
the mean values in the majority of the cases but also outperforming all of
the individual methods. Nonetheless, the ensembles show no clear pattern
with the FM and HB data sets, in some cases performing better than the
expected mean of the metrics.

In our opinion, these results give support to our hypothesis that the
ensemble could help the MTS clustering practitioner in the selection of the
best clustering option using employing the integration of the individual MTS
clustering methods. Interestingly, the k-means seems to be more robust and
to produce better results than the ensembles with the h-clust. It seems that
the k-means repetitions reinforce the relationships among the MTS instances,
increasing the metrics consequently.

Considering the results in Table 5, the advantages of including prior
knowledge are not clear: for some methods, there are improvements with
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the 5% of prior knowledge, but without a clear pattern. In other words,
the benefits depend on the data set. This finding suggests that the effort in
labelling and introducing the prior knowledge would barely pay off. Perhaps
different prior knowledge representations, such those proposed in [26, 27],
could lead to better resutls.

Comparing the performances with the number of clusters set to the num-
ber of labels showed surprising results, as can be seen in Table 6. As expected,
the individual MTS instance clustering methods performed worse or equal
than with the rule of the elbow. This was expected as well for the k-means
ensembles but results show a different story.

Table 6 shows the results when the number of clusters is set to the number
labels in the data set. As expected, the individual MTS instance clustering
methods performed at most as good as with the rule of the elbow, being
worse in the majority of the cases. Interestingly, the performance of the
ensembles varied according to the data set: in some cases, better SEN values
were obtained although at the cost of a worse SPE. This result suggest that
perhaps using these metrics (or its combination with the geometric mean) in
the rule of the elbow would lead to better performance groupings.

Besides, there are some concerns with the use of these ensembles. On the
one hand, the use of several distance functions increases the time consump-
tion; methods without MTS representation would possibly increase the cost
of the experimentation. On the other hand, the selection of a time series rep-
resentation should be carefully done to avoid problems as those commented
for the k-A-Sp. Moreover, the ensembles proposed in this study show a robust
performance even when several methods perform poorly on the data.

Finally, the number of labels in the MTS data set seems to have a reper-
cussion in the ensembles as the performance is better for those with a higher
number of classes. However, this remark requires further experimentation to
verify it.

Some other issues that need further study. For instance, the credibility
of each method can vary according to certain external metrics (the coinci-
dence of MTS events, temporal sequences of relevant changes, error in pre-
dicting MTS instances when modelling with others [26], etc), which might
increase the SEN and SPE of the ensembles. Furthermore, these external
metrics can also be used as distance metrics as suggested in [27], although
this approach needs some simplifications to reduce the computational costs.
Similarly, studying more combinations of MTS representation and distance
functions and, more importantly, finding digital markers of the plausibility
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of each one and each combination will lead to automatically set the ensemble
according to the MTS problem.

6. Conclusion and Future Work

This study addresses the ensemble of MTS clustering methods to assist
the practitioner in the selection of the best clustering options. Besides, a rep-
resentation of prior knowledge is presented and evaluated with the ensemble.
The ensemble includes several different MTS representation methods with an
associated distance function; each of these pairs produces a similarity ma-
trix that is aggregated. Finally, a clustering algorithm generates the final
grouping.

The obtained results show the capacity of the ensemble to retain the
performance of the better methods in the majority of the cases, even when
half of the methods were remarkably worse than the others. Moreover, the
proposed prior knowledge representation did not enhance the metrics of the
ensemble, suggesting this type of knowledge is not suitable for the clustering
methods. However, the number of clusters is a parameter that helps the
ensemble; this prior knowledge requires further study.

Besides, the use of external metrics may help in balancing the methods
to merge. Furthermore, some of these external metrics can also be used as
distance measurements. An in-depth study is needed in the evaluation of the
different MTS representation and the distance function to determine digital
markers of the most interesting candidates according to the problem. All of
these aspects represent future research.
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