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Abstract: We derive new reduction formulas for the incomplete beta function B(ν, 0, z) and the Lerch
transcendent Φ(z, 1, ν) in terms of elementary functions when ν is rational and z is complex. As
an application, we calculate some new integrals. Additionally, we use these reduction formulas
to test the performance of the algorithms devoted to the numerical evaluation of the incomplete
beta function.
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1. Introduction

The origin of the beta function B(ν, µ) goes back to Wallis’ attempt of the calculation
of π [1]. For this purpose, he evaluated the integral

B(ν, µ) =
∫ 1

0
tν−1(1− t)µ−1dt, (1)

where ν and µ are integers or µ = 1 and ν is rational. Moreover, Wallis suggested that [2]
(p. 4)

π

4
=

1
2

∫ 1

0
t−1/2(1− t)1/2dx =

1
4

lim
n→∞

(
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n− 1)
1√
n

)2
.

This result may have led Euler to consider the integral (1) for ν and µ not necessarily
integers and its relation to the gamma function. In fact, Euler derived the following relation
between the beta and gamma functions [2] (Equation 1.1.13):

B(ν, µ) =
Γ(ν)Γ(µ)
Γ(ν + µ)

.

A natural generalization of the beta function is the incomplete beta function, defined
as [3] (Equation 8.17.1)

B(ν, µ, z) =
∫ z

0
tν−1(1− t)µ−1dt, 0 ≤ z ≤ 1, ν, µ > 0, (2)

where it is straightforward to continue analytically to complex values of ν, µ, and z.
Many applications have been developed over time regarding the B(ν, µ, z) function.

For instance, in statistics it is used extensively as the probability integral of the beta distri-
bution [4] (pp. 210–275). Additionally, it appears in statistical mechanics for Monte Carlo
sampling [5], in the analysis of packings of granular objects [6], and in growth formulas in
cosmology [7]. Therefore, to evaluate the B(ν, µ, z) function, it is quite interesting to have
reduction formulas to simplify its computation, both symbolically and numerically. For
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instance, when µ = m + 1 is a positive integer (i.e., m = 0, 1, 2, . . .), we have the following
reduction formula in terms of elementary functions [8] (Equation 58:4:3)

B(ν, m + 1, z) = zν
m

∑
k=0

(
m
k

)
(−z)k

k + ν
. (3)

However, when µ = 0, the incomplete beta function is given in terms of the Lerch
transcendent [8] (Equation 58:4:4)

B(ν, 0, z) = zνΦ(z, 1, ν), ν > 0, (4)

where the Lerch transcendent is defined as [9] (Equation 1.11(1))

Φ(z, s, ν) =
∞

∑
k=0

zk

(k + ν)s , |z| < 1, ν 6= 0,−1,−2, . . . (5)

It is worth noting that (3) can be proved by induction from (4) and (5), applying the
connection formula [8] (Equation 58:5:3):

B(ν, µ, z) = B(ν + 1, µ, z) + B(ν, µ + 1, z).

Nevertheless, reduction formulas for B(ν, 0, z) when ν is a rational number do not
seem to be reported in the most common literature. The aim of this note is just to provide
such reduction formulas in terms of elementary functions. As an application, we will
calculate some new integrals in terms of elementary functions. Additionally, we will check
that the numerical evaluation of the incomplete beta function is improved with these
reduction formulas.

This paper is organized as follows: In Section 2 we derive reduction formulas for
B(ν, 0, z), for ν both positive rational and negative rational. Particular cases of the reduction
formulas for ν = n and ν = n + 1/2 (where n is a non-negative integer) are also considered.
In Section 3, we apply the reduction formulas derived in Section 2 to calculate some
integrals which do not seem to be reported in the most common literature. Furthermore,
for particular values of the parameters, the symbolic computation of these integrals is
quite accelerated using the aforementioned reduction formulas. Moreover, we use these
reduction formulas to numerically test the performance of the algorithm provided in
MATHEMATICATM to compute the incomplete beta function.

2. Main Results

First, note that according to (4) and (5),

B(ν, 0, z) =
∞

∑
k=0

zk+ν

k + ν
. (6)

The series in Equation (6) is divergent for non-positive integral values of ν. Therefore,
we will consider two separate cases in this section: ν ∈ Q+ and ν ∈ Q−\{−1,−2, . . .}.
Here Q+ and Q− denote the sets of positive and negative rational numbers, respectively.

2.1. Case ν ∈ Q+

Consider ν = n + r > 0 where n = bνc ≥ 0 is the integer part of ν and 0 ≤ r ≤ 1.
From (6), we have

B(n + r, 0, z) =
∞

∑
k=0

zk+n+r

k + n + r
=

∞

∑
k=n

zk+r

k + r

=
∞

∑
k=0

zk+r

k + r
−

n−1

∑
k=0

zk+r

k + r
. (7)
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Set r = 1 in (7) and then apply the Taylor expansion [3] (Equation 4.6.1)

log(1 + z) = −
∞

∑
k=1

(−z)k

k
,

to obtain

B(n + 1, 0, z) = − log(1− z)−
n

∑
k=1

zk

k
, n = 0, 1, 2, . . . (8)

Furthermore, set r = 1/2 in (7) and apply the Taylor expansion [3] (Equation 4.38.5)

tanh−1 z =
∞

∑
k=0

z2k+1

2k + 1
, (9)

to obtain

B
(

n +
1
2

, 0, z
)
= 2

(
tanh−1√z−

n−1

∑
k=0

zk+1/2

2k + 1

)
, n = 0, 1, 2, . . . (10)

More generally, set r = p/q ∈ Q in (7) with p, q coprimes. Then,

B
(

n +
p
q

, 0, z
)
= zp/q

∞

∑
k=0

zk

k + p/q
−

n−1

∑
k=0

zk+p/q

k + p/q
, (11)

Rewrite the first sum of (11) as a hypergeometric function (see [2] (p. 61–62)),

∞

∑
k=0

zk

k + p/q
=

1
p/q 2F1

(
1, p/q

1 + p/q

∣∣∣∣z). (12)

Apply now the reduction formula [10] (Equation 7.3.1.131)

2F1

(
1, p/q

1 + p/q

∣∣∣∣z)
= − p

q
z−p/q

q−1

∑
k=0

exp
(
−2πipk

q

)
log
(

1− z1/q exp
(

2πik
q

))
, (13)

p, q = 1, 2, . . . ; p ≤ q.

Therefore, taking into account (12) and (13), rewrite (11) as the following result.

Theorem 1. For ν = n + p
q ∈ Q+, with n = bνc and p, q coprimes, the reduction formula

B(ν, 0, z) = zνΦ(z, 1, ν) (14)

= −
q−1

∑
k=0

exp
(
−2πipk

q

)
log
(

1− z1/q exp
(

2πik
q

))
−

n−1

∑
k=0

zk+p/q

k + p/q
.

holds true.

Remark 1. Notice that the reduction formula (10) is included in (14), but not (8), which is a
singular case.



Mathematics 2021, 9, 1486 4 of 6

2.2. Case ν ∈ Q−\{−1,−2, . . .}
Consider ν = −n + r < 0 where n = b|ν− 1|c ≥ 0, and 0 < r < 1. From (6), we have

B(−n + r, 0, z) =
∞

∑
k=0

zk−n+r

k− n + r
=

∞

∑
k=−n

zk+r

k + r

=
∞

∑
k=0

zk+r

k + r
+

n

∑
k=1

z−k+r

−k + r
. (15)

Taking r = 1/2 and applying again (9), we have

B
(
−n +

1
2

, 0, z
)
= 2

(
tanh−1√z−

n

∑
k=1

z−k+1/2

2k− 1

)
. (16)

More generally, take r = p/q ∈ Q with p, q coprimes in (15), and apply (12) to obtain
the following result.

Theorem 2. For ν = −n+ p
q ∈ Q−, with n = b|ν− 1|c and p, q coprimes, the reduction formula

B(ν, 0, z) (17)

= −
q−1

∑
k=0

exp
(
−2πipk

q

)
log
(

1− z1/q exp
(

2πik
q

))
+

n

∑
k=1

zp/q−k

p/q− k
.

holds true.

Remark 2. Notice that (16) is included in (17) as a particular case. Additionally, in (17),
B(ν, 0, z) 6= zνΦ(z, 1, ν) since (4) does not hold true for ν < 0.

3. Applications

In this section, we apply the reduction formulas obtained in Section 2 to express
certain integrals in terms of elementary functions and evaluate the incomplete beta function
with some specified arguments. Additionally, we will use these reduction formulas as a
benchmark for the computation of the incomplete beta function.

3.1. Calculation of Integrals

Straightforward from the definition of the incomplete beta function given in (2), we
obtain the following integral representation:

B(ν, µ, z) = zν
∫ 1

0
tν−1(1− zt)µ−1dt. (18)

Additionally, an integral representation of the Lerch transcendent is [9] (Equation 1.11(3))

Φ(z, s, ν) =
1

Γ(s)

∫ ∞

0

ts−1e−(ν−1)t

et − z
dt, Re ν > 0. (19)

Notice that from (4), (18) and (19), we have

I(ν, z) :=
∫ 1

0

tν−1

1− zt
dt =

∫ ∞

0

e−(ν−1)t

et − z
dt = z−νB(ν, 0, z), Re ν > 0. (20)
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Therefore, from (14) and (20), we have for ν = n + p
q ∈ Q+, with n = bνc and

p, q coprimes,

I(ν, z) (21)

= −z−n−p/q
q−1

∑
k=0

exp
(
−2πipk

q

)
log
(

1− z1/q exp
(

2πik
q

))
−

n−1

∑
k=0

zk−n

k + p/q
.

As another example, in the literature we found [8] (Equation 58:14:7)∫ z

0
tanh2λ−1 t dt =

1
2

B
(

λ, 0, tanh2 z
)

, Re λ > 0. (22)

Therefore, from (14) and (22), we have for λ = n + p
q ∈ Q+, with n = bλc and

p, q coprimes, ∫ z

0
tanh2λ−1 t dt (23)

= −1
2

q−1

∑
k=0

exp
(
−2πipk

q

)
log
(

1− (tanh z)2/q exp
(

2πik
q

))

−1
2

n−1

∑
k=0

(tanh z)2(k+p/q)

k + p/q
.

The integral given in (23) generalizes the results found in the literature for λ = n + 1
and λ = n + 1

2 with n = 0, 1, 2, . . . [11] (Eqns. 2.424.2–3).

3.2. Numerical Evaluation

From a numerical point of view, the reduction Formulas (14) and (17) are quite
useful to plot B(ν, 0, z) as a function of ν in the real domain. However, for some real
values of ν and z, we obtain a complex value for B(ν, 0, z). In these cases, the imaginary
part of B(ν, 0, z) is not always easy to compute. Figure 1 shows the plot of Im(B(ν, 0, z))
as a function of z for ν = 12.3. The reduction formula (14) shows the correct answer,
i.e., Im(B(ν, 0, z)) = −π, meanwhile the numerical evaluation of Im(B(ν, 0, z)) with
MATHEMATICATM diverges from this result. A similar feature is observed using (17)
and a negative value for ν. It is worth noting that the equivalent numerical evaluation of
Im(zνΦ(z, 1, ν)) with MATHEMATICATM yields also −π.

Figure 1. Evaluation of Im(B(ν, 0, z)) with MATHEMATICATM and (14) with ν = 12.3.

4. Conclusions

On the one hand, we have derived in (14) and (17) new expressions for the incomplete
beta function B(ν, 0, z) and the Lerch transcendent Φ(z, 1, ν) in terms of elementary func-
tions when ν is rational and z is complex. Particular formulas for non-negative integers
values of ν and for half-integer values of ν are given in (8), (10) and (16) respectively.
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On the other hand, we have calculated the integrals given (20) from the reduction
Formulas (14) and (17) and the integral representation of the incomplete beta function and
the Lerch transcendent. Additionally, in (23), the integral

∫ z
0 tanhα t dt is calculated in terms

of elementary functions for α ∈ Q and α > −1. It is worth noting that (23) generalizes
the results found in the literature, which are restricted to α = n + 1 and α = n + 1/2 with
n = 0, 1, 2, . . ..

Finally, with the aid of the reduction Formulas (14) and (17), we have tested that
the numerical algorithm provided by MATHEMATICATM sometimes fails to compute
the imaginary part of B(ν, 0, z). Additionally, the reduction Formulas (14) and (17) are
numerically useful to plot B(ν, 0, z) as a function of ν in the real domain.

All the results presented in this paper have been implemented in MATHEMATICATM

and can be downloaded from https://bit.ly/2XT7UjK, (accessed on 24 June 2021).
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