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Abstract
A new clustering method for random intervals that are measured in the same units over
the same group of individuals is provided. It takes into account the similarity degree
between the expected values of the random intervals that can be analyzed by means of
a two-sample similarity bootstrap test. Thus, the expectations of each pair of random
intervals are compared through that test and a p-value matrix is finally obtained. The
suggested clustering algorithm considers such amatrixwhere each p-value can be seen
at the same time as a kind of similarity between the random intervals. The algorithm is
iterative and includes an objective stopping criterion that leads to statistically similar
clusters that are different from each other. Some simulations to show the empirical
performance of the proposal are developed and the approach is applied to two real-life
situations.

Keywords Random intervals · Similarity measure · Bootstrap test · p-values matrix ·
Clustering approach

1 Introduction

Interval-valued observations appear in many real-life situations as those involving
fluctuations, subjective perceptions, ranges, censored or grouped data, to mention only
a few (Billard and Diday 2003; D’Urso and Giordani 2004; Hudgens 2005; Horowitz
andManski 2006; Kreinovich et al. 2007;Magnac andMaurin 2008; Ramos-Guajardo
and Grzegorzewski 2016).

Random intervals (RIs for short) have been shown to model and handle suitably
such kind of data in different settings as, for instance, regression analysis, time series,
hypothesis testing and clustering (Blanco-Fernández et al. 2013; Cappelli et al. 2013;
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DeCarvalho et al. 2006a; D’Urso et al. 2015; González-Rodríguez et al. 2009; Ramos-
Guajardo and Blanco-Fernández 2017; Ramos-Guajardo et al. 2020; Sinova et al.
2012). This work is focused on those situations in which a random process generating
interval-valued outcomes is considered, and classical statistics are applied on them.
Therefore, the approach proposed here is soundly applicable when the intervals gen-
erated by the random process either represent precise objects or they are imprecise
descriptions or perceptions provided by an observer. Thus, intervals themselves are
considered, without losing any information delivered by the interval structure.

Diverse (crisp) hierarchical and non-hierarchical clustering methods for grouping
interval-valued data have been developed in the literature (see, for instance, (Hajjar and
Hamdan 2013; Park et al. 2020; Rodriguez and De Carvalho 2019) and the references
therein). Most of these methods have been elaborated in the context of symbolic data
analysis. Concerning hierarchical methods, agglomerative and divisive methods have
been introduced in Chavent (1998), Gowda and Ravi (1995), Xu et al. (2018). Besides,
in the partitioning clustering framework several methods have been proposed based
on different techniques, including dynamic clustering, city-block distances and self-
organizingmaps, to name a few (seeChavent and Lechevallier 2002;DeCarvalho et al.
2006a, b; Hajjar and Hamdan 2013; Ralambondrainy 1995). Note that all mentioned
methods are useful for classifying individuals but not variables.

Most of the approaches to the clustering of real variables found in the literature are
of hierarchical type (Nicolau and Bacelar-Nicolau 1998) and vary according to either
the nature of the variables under study or to the choice of the similarity measure. The
usefulness of a hierarchical clustering method for variables focuses, for example, on
being able to replace a set of variables that are closely related by a single representative
variable or even by a synthetic variable by means of a principal component analysis
approach (El-Shaarawi and Piegorsch 2002). Such a clustering method also allows
arranging variables into homogeneous clusters in order to get meaningful structures.
Two examples of the clustering of real variables can be found, for instance, in Chavent
et al. (2012). Thefirst one entails the classification of 10 sports performedby41 athletes
(according to their performances), and the second one is devoted to the classification
of 31 variables describing some properties of 21 French wines.

In the real framework, a frequently used technique to cluster a set of variables
consists of calculating similarities between these variables by means of correlation
measures. However, the space of intervals is not linear but semilinear due to the
lack of symmetric element with respect to the Minkowski addition, and the exten-
sion of the concept of covariance (and therefore of correlation) is not straightforward
derived. Some alternatives to the employment of correlation measures for clustering
real variables have beenproposed, for instance, inKojadinovic (2004),Maharaj (1996).
Maharaj (1996) showed the use of the p-values obtained from a two-sample test to
apply later a hierarchical clustering in the framework of time series. This method
inspired the one developed by González-Rodríguez et al. (2009) that, as far as we
know, is the only hierarchical approach in the literature for clustering RIs measured in
the same units over the same group of individuals. Specifically, their approach aims
to classify fuzzy random variables (FRVs for short), which are those variables taking
fuzzy data as responses, although RIs can be seen as a particular case.
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The goal of themethod developed inGonzález-Rodríguez et al. (2009) in the context
of RIs is to group s features when the available data is a matrix of intervals obtained
when observing s independent RIs on n independent statistical units. This objective is
achieved by taking into account the p-values obtained by applying a hypothesis test
for checking the equality of expectations of RIs proposed in González-Rodríguez et al.
(2006). Thus, the higher the p-value attained, the more similar are the expected values
of two RIs, since each p-value can be seen as a measure of the similarity between two
RIs measured in the same group of individuals. However, it should be noted that the
multi-sample test in González-Rodríguez et al. (2006) is only valid for simple RIs, i.e,
those taking on a finite quantity of values.

In this work, the method in González-Rodríguez et al. (2009) is proposed to be
extended for general (not only simple) RIs measured in the same units over the same
group of individuals by using a bootstrap test procedure based on a similarity measure
that is able to check not only the strict equality between expectations but also a degree
of similarity among them ranging from 0 and 1, where 1 means that the intervals
are exactly equal [which is analogous to the method in González-Rodríguez et al.
(2009)] and 0 means there is not intersection between them. Note that the concept
of similarity proposed here is a geometric one in the sense that two intervals are
considered more similar whenever the ratio between the part they have in common
and the union of both is higher. Thus, if that ratio is equal to 1 then both intervals are
completely equal. Another possibility could be to consider a distance between intervals
but then the concept of geometric similarity would be lost, and both the analysis and
the interpretability will be different. Then, the idea is to relax the concept of strict
equality between expected values by using a measure of geometric similarity between
intervals that was initially introduced by Jaccard (1901), andwhich is defined as a ratio
of the Lebesgue measures of the intersection and the union intervals (Shawe-Taylor
and Cristianini 2004). To do that, a two-sample similarity test for the expected value
of random intervals suggested by Ramos-Guajardo and Blanco-Fernández (2017) can
be applied to obtain the p-values matrix instead of the usual two-sample test for the
equality of expectations of RIs. The main advantages of the new approach are the
following: (1) it can be used for comparing all types of RIs and not only simple RIs,
(2) two groups of RIs can be linked providing their expected values present a high
degree of similarity (according to the Jaccard-based similarity coefficient), not being
necessary the strict equality between such expectations.

In this framework a hierarchical clustering method for RIs will be developed allow-
ing specifying the degree of similarity that is intended to exist at least between the
expectations of the clusters that are joined together in every step. Thus, once we have
prefixed a similarity grade, the idea is to detect clusters of RIs such that the RIs in
each group have not necessarily equal but similar population expected values at certain
extent.

The paper is organized as follows. Section 2 includes two cases study involving
real-life RIs in order to motivate the proposal. In Sect. 3 some preliminaries on RIs
are given. Section 4 contains the clustering criterion to be applied based on the two-
sample similarity test for RIs. The suggested hierarchical clustering algorithm for
RIs is provided in Sect. 5. The results of a simulation study are discussed in Sect. 6
where the empirical performance of the proposal is investigated, also in comparison
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with the method in González-Rodríguez et al. (2009). The application of the approach
to the real-life cases described in Sect. 2 is analyzed in Sect. 7 also in contrast to
other methods by taking into account different similarity grades to set up the clusters.
Finally, some concluding remarks are provided in Sect. 8.

2 Case-studies

The method to be developed in the next sections will allow us to classify random
intervals measured in the same units over the same group of individuals by considering
a measure of similarity between those random intervals. Below are presented two real
situations in which the procedure outlined in this work can be subsequently applied.

2.1 Mathematics related beliefs questionnaire

As a first real life situation, a questionnaire including 17 statements has been proposed
to a group of 117 students attending the second course of the Degree in Primary
Education of the University of Cantabria (Spain). The statements are related to their
mathematics related beliefs and are described below:

– Q1 I think what I learn in math class is interesting.
– Q2 I like what I learn in math class.
– Q3 I am very interested in mathematics.
– Q4 I like to do math stuff.
– Q5 In math, I prefer challenging tasks to learn new things.
– Q6 I hope to do well on math homework and on math tests.
– Q7 I prefer mathematics in which I must strive to find the solution than those that
do not require much effort.

– Q8 I have found that if I have patience, I can do difficult math problems.
– Q9 I am sure I can learn how to solve the most difficult math problem.
– Q10 I do not have to try too hard to understand math.
– Q11 Compared to other classmates I think I am good at math.
– Q12 I think I will do well in math this course.
– Q13 I understand everything we have done in math this year.
– Q14 I can usually do math problems that take a long time to solve.
– Q15 I can understand even the most difficult subject to teach me in mathematics.
– Q16 By doing my best in math I try to show my teacher that I am better than other
classmates.

– Q17 I put a lot of effort into math to show the teacher and my classmates how
good I am.

The survey respondents used interval data in a scale ranging from 0 to 10 for
answering the questionnaire, where 0 represents a totally disagree to each statement
whereas 10 represents a totally agree to it. Thus, each response in terms of an interval
corresponds to the set of values that the student considers compatible with his/her
opinion at some extent, i.e., the student considers that his/her opinion cannot be outside
of this set. In this context, the interval responses of the 117 students about his/her
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opinion about each statement i , for i ∈ {1, . . . , 17} are given in the same units and
can be modeled through an RI QI. The purpose is, therefore, to classify the 17 RIs
based on a measure of similarity between their expected values, as it will be seen in
the following sections.

2.2 Daily concentration of PM10 particles in Spanish cities

The second study addresses the analysis of the daily concentration of PM10 parti-
cles from June to September 2019 (122 days) in 18 Spanish autonomous cities. The
Spanish Ministry of the Environment defines the PM10 particles such as dust parti-
cles, ash, soot, metal, cement or pollen, scattered in the atmosphere, whose diameter
varies between 2.5 and 10 μm. Nowadays, scientists consider such particles are the
most severe environmental pollution problem, due to their serious affections to the
respiratory tract and the lung.

The hourly data on the concentration of PM10 particles from June to September
of 2019 in the different cities have been extracted from thewebsite https://www.miteco.
gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-
del-aire/evaluacion-datos/datos/Datos_oficiales_2019.aspx. The cities analyzed were
Vitoria, Palma deMallorca, Santiago de Compostela, Logroño, Madrid, Murcia, Pam-
plona,Oviedo,LasPalmasdeGranCanaria, SantaCruzdeTenerife, Santander, Sevilla,
Toledo, Valencia, Valladolid, Zaragoza, Ceuta and Barcelona. Themeasurement of the
daily concentration of these particles in each city i , for i ∈ {1, . . . , 18} is modeled
through an RI Xi whose data Xi j = [Xm

i j , X
M
i j ] are determined by the minimum and

maximum concentration of PM10 particles reached during day j (Xm
i j and X

M
i j , respec-

tively), for i ∈ {1, . . . , 122}. Thus, each interval reflects the daily variability of the
pollution by PM10 particles in the corresponding city. Moreover, each of the cities
can be identified with an RI and the aim is to be able to classify the 18 Spanish cities
according to their daily PM10 concentration levels.

3 Preliminaries

LetKc(R) be the family of non-empty closed and bounded intervals of R. An interval
A ∈ Kc(R) can be characterized by either its mid /spr representation or its inf/sup
representation. The first one, which is so that A = [mid A ± spr A] with mid A ∈ R

being the mid-point or center and spr A ≥ 0 being the spread or radius of A, has been
shown to be more operative than the second one, given by A = [inf A, sup A], and
a valuable tool for different statistical purposes (see, for instance, Blanco-Fernández
et al. 2011; D’Urso and Giordani 2004; Sinova et al. 2012).

The usual arithmetic between intervals is based on the Minkowski’s addition and
the product by a scalar. In terms of the (mid , spr ) representation it is given by

A1 + λA2 = [(mid A1 + λmid A2) ± (spr A1 + |λ|spr A2)],
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where A1, A2 ∈ Kc(R) and λ ∈ R. It should be remarked that the space (Kc(R),+, ·)
is not linear but semilinear due to the lack of symmetric element with respect to
the Minkowski addition. Thus, in general, A + (−1)A �= 0 unless A = {a} is a
singleton. Moreover, the Minkowski difference between two intervals A + (−1)B
does not coincide with the natural difference A − B, since it does not fulfill the
addition/subtraction simplification, i.e. (A+(−1)B)+B �= A (see Blanco-Fernández
et al. 2013 for more details).

On the other hand, the Lebesgue measure (or length) of A ∈ Kc(R) so that A �= ∅
is given by λ(A) = 2spr A whereas the Lebesgue measure of the empty set is clearly
λ(∅) = 0. In addition, according to (Shawe-Taylor and Cristianini 2004), if A, B ∈
Kc(R) the Lebesgue measure of the intersection between A and B can be expressed
as follows:

λ(A ∩ B) = max
{
0,min

{
2spr A, 2spr B, spr A + spr B − |mid A − mid B|

}}
.

(1)

A random interval (RI for short) is a random variable modelling those situations in
which intervals on Kc(R) are provided as outcomes. Mathematically, given a proba-
bility space (Ω,A, P), an RI is a Borel measurable mapping X : Ω → Kc(R) w.r.t.
the well-known Hausdorff metric on Kc(R) (Matheron 1975). Equivalently, X is an
RI if both mid X , spr X : Ω → R are real-valued random variables and spr X ≥ 0
a.s.-[P].

The expected value of X introduced by Aumann (1965) is expressed as the
interval E([mid X ± spr X ]) = [E(mid X) ± E(spr X)] whenever mid X , spr X ∈
L1(Ω,A, P), i.e., whenever mid X , spr X are integrable functions in the probability
space (Ω,A, P). Given a simple random sample of X , {Xi }ni=1, the corresponding
sample expectation of X is defined coherently in terms of the interval arithmetic
as X = (1/n)

∑n
i=1 Xi , and it fulfils X = [mid X ± spr X ]. It should be noted

that mid X and spr X are the sample mean of the real-valued random variables
mid X and spr X , respectively, i.e., mid X = (1/n)

∑n
i=1 mid Xi = mid X and

spr X = (1/n)
∑n

i=1 spr Xi = spr X .
On the basis of the measure defined in (1), a measure of the degree of similar-

ity between two intervals A, B ∈ Kc(R) can be defined conforming to the Jaccard
coefficient (Jaccard 1901) as

S(A, B) = λ(A ∩ B)

λ(A ∪ B)
, (2)

where λ(A ∪ B) = λ(A) + λ(B) − λ(A ∩ B), and both A and B are presumed not to
be reduced to a singleton. Undoubtedly, since λ(A∩ B) ≤ λ(A∪ B) it is fulfilled that
0 ≤ S(A, B) ≤ 1. Moreover, S(A, B) = 0 iff A ∩ B = ∅, S(A, B) = 1 if A = B,
and S(A, B) ∈ (0, 1) iff A ∩ B �= ∅ and A �= B. Some situations considering various
possible similarity degrees are gathered in Fig. 1.

Notice, for instance, that the similarity measure of intervals A = [0, 2] and B =
[1, 2] is 1/2, and so it is the similarity measures of A and C = [0, 1], of A and
D = [0, 4], and of A and E = [−2, 2].
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Fig. 1 Different representations
for the similarity degree between
two intervals A and B

4 Clustering criterion: two-sample similarity test for RIs

In this paper we aim at developing a method to cluster k independent RIs by paying
attention to their expected values.

Given a probability space (Ω,A, P) and a set of s independent simple RIs Xi :
Ω → Kc(R), for i = 1, . . . , s, the purpose is to get different groups Gk ⊂ {1, . . . , s}
so that the RIs belonging to the same group can be considered to be similar at some
extent.

Concerning the generation process of the data, a simple random sample {Xi j }nj=1
distributed as the RI Xi is drawn for each i ∈ {i, . . . , s}. Thus, in practice the data
collected is gathered in an interval data matrix [xi j ] j=1,...,n

i=1,...,s where each xi j ∈ Kc(R).
In order to test if the expected values of two RIs can be considered to be similar at

some extent, a version for different sample sizes of the two-sample similarity test for
the expected value of RIs proposed in Ramos-Guajardo and Blanco-Fernández (2017)
is suggested. It should be noted that the version of the test for different sample sizes
is necessary to be able to establish such a comparison between clusters that include
different number of RIs and, therefore, different sample sizes.

First, the study developed for equal sample sizes is recalled. Let X ,Y : Ω −→
Kc(R) be two independent RIs such that spr E(X) > 0 and spr E(Y ) > 0, and
belonging to the class

P =
{
X : Ω → Kc(R) |σ 2

mid X < ∞ , 0 < σ 2
spr X < ∞ ∧ σ 2

mid X , spr X �= σ 2
mid Xσ 2

spr X

}
,

in order to assure the non-singularity of the covariance matrices that relate mid X and
spr X , and mid Y and spr Y . Note that in the expression of P , σ 2

mid X and σ 2
spr X denote

the variances of the real variables mid X and spr X , whereas σ 2
mid X , spr X is the square

of the covariance between the real variables mid X and spr X .
To test the null hypothesis H0 : S(E(X), E(Y )) ≥ d, where d ∈ [0, 1] is the degree

of similarity between E(X) and E(Y ), is necessary to compute the probability that the
empirical version of the Jaccard-based similarity coefficient introduced in (2) is less
than d, whenever the null hypothesis is satisfied. However, such a computation is not
immediate, since it is necessary to consider the measure of the intersection between
two intervals is given by the expression in (1). Thus, based on this intersectionmeasure,
the test can also be expressed as follows by considering the mid/spr characterization of
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intervals (note that there has also been a change in the inequalities of the hypotheses):

H0 : max
{
d spr E(Y ) − spr E(X), d spr E(X) − spr E(Y ),

(1 + d) |mid E(X) − mid E(Y )| + (d − 1) (spr E(X) + spr E(Y ))
}

≤ 0;
H1 : max

{
d spr E(Y ) − spr E(X), d spr E(X) − spr E(Y ),

(1 + d) |mid E(X) − mid E(Y )| + (d − 1) (spr E(X) + spr E(Y ))
}

> 0.

(3)

Let {Xi }ni=1 and {Yi }ni=1 be two simple random samples drawn from X and Y ,
respectively. The test statistic is defined as

T =√
nmax

{
d spr Yn − spr Xn, d spr Xn − spr Yn,

(1 + d)
∣∣mid Xn − mid Yn

∣∣ + (d − 1)
(
spr Xn + spr Yn

) }
.

(4)

Considerably large values of the statistic above would refer to a similarity degree
between the expected values of X and Y lower than d and far from d and, as a con-
sequence, a small p-value, so the null hypothesis should be rejected. The asymptotic
distribution of the statistic T under H0 is discussed in Lemma 1 and its proof is
provided in Ramos-Guajardo and Blanco-Fernández (2017). The corresponding limit

distribution is based on the bivariate normal distributions Z = (z1, z2)′ ≡ N2

(
0,Σ1

)

and U = (u1, u2)′ ≡ N2

(
0,Σ2

)
, where Σ1 is the covariance matrix for the random

vector (mid X , spr X) and Σ2 is the corresponding one for (mid Y , spr Y ).

Lemma 1 (Ramos-Guajardo and Blanco-Fernández 2017) For n ∈ N, let {Xi }ni=1 and{Yi }ni=1 be two random samples independent and equally distributed from X and Y ,
respectively, and defined on the probability space (Ω,A, P). Let Tn be defined as in
(4). If X ,Y ∈ P , then:

(a) If spr E(X) = d spr E(Y ) and mid E(X) −mid E(Y ) = (1− d)spr E(Y ), then it
is fulfilled that

T
L−→ max{du2 − z2, (1 + d)(z1 − u1) + (d − 1)(z2 + u2)}.

(b) If spr E(X) = d spr E(Y ) and −mid E(X) +mid E(Y ) = (1− d)spr E(Y ), then
it is fulfilled that

T
L−→ max{du2 − z2, (1 + d)(u1 − z1) + (d − 1)(z2 + u2)}.

(c) If d spr E(X) = spr E(Y ) and mid E(X) − mid E(Y ) = (1 − d)

d
spr E(Y ), then

it is fulfilled that

T
L−→ max{dz2 − u2, (1 + d)(z1 − u1) + (d − 1)(z2 + u2)}.
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(d) If d spr E(X) = spr E(Y ) and−mid E(X)+mid E(Y ) = (1 − d)

d
spr E(Y ), then

it is fulfilled that

T
L−→ max{dz2 − u2, (1 + d)(u1 − z1) + (d − 1)(z2 + u2)}.

It is also recalled that other situations under H0 different than the ones shown in
the lemma above imply a weak convergence of T to a limit distribution stochastically
bounded by one of those provided in the lemma. In addition, since the limit distribution
of T depends on X , an alternative X -dependent statistic, called T ′, based on the ideas
described in Ramos-Guajardo (2015) is proposed, and the consistency and power of
the test are also studied (see Lemma 2 in Ramos-Guajardo and Blanco-Fernández
(2017) for more details).

The asymptotic distribution of the proposed statistic is not effective to compute
critical values, so a bootstrap procedure is recommended. Specifically, a residual-
type bootstrap based on the studies of Shao and Tu in Shao and Tu (1995) has been
employed. Thus, if we consider bootstrap samples from X and Y , i.e. {X∗

i }ni=1 and
{Y ∗

i }ni=1 being chosen randomly and with replacement from {Xi }ni=1 and {Yi }ni=1,
respectively, the bootstrap statistic is defined as follows:

T ∗ =max
{√

n
(
d

(
spr Y ∗

n − spr Yn
) + spr Xn − spr X∗

n

) + min
(
0, n1/4(spr Yn − spr Xn)

)
,

√
n

(
d

(
spr X∗

n − spr Xn
) + spr Yn − spr Y ∗

n

) + min
(
0, n1/4(spr Xn − spr Yn)

)
,

√
n
(
(1 + d)

(
mid X∗

n − mid Xn + mid Yn − mid Y ∗
n

)

+ (d − 1)
(
spr X∗

n − spr Xn + spr Y ∗
n − spr Yn

) )

+ min
(
0, n1/4(mid Xn − mid Yn)

)
,

√
n
(
(1 + d)

(
mid Xn − mid X∗

n + mid Y ∗
n − mid Yn

)

+ (d − 1)
(
spr X∗

n − spr Xn + mid Y ∗
n − mid Yn

) )

+ min
(
0, n1/4(mid Yn − mid Xn)

) }
.

As it has been described in Ramos-Guajardo and Blanco-Fernández (2017), the
minima-terms included in T ∗ are useful to determine the parts on its expression which
have the influence to the maximum depending on the situation under H0. It has been
also shown that T ∗ convergesweekly (almost sure) to the same distributions as the ones
provided in Lemma 1 under the same requisites. In addition, the bootstrap approach is
also consistent and, in practice, the distribution of T ∗ is approximated by considering
the Monte Carlo method. The p-value of the bootstrap test would be the probability
that T ∗ > T . In practice, the bootstrap procedure consists of getting a large sample
B of values of the statistic, T ∗

1 , . . . , T ∗
B , close enough to the population distribution,

and the p-value is approximated by the proportion of values in T ∗
1 , . . . , T ∗

B which are
greater than or equal to the value of the statistic T .
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Remark 1 Note that the results above are valid for equal sample sizes. Nevertheless,
if the size of the samples drawn from X and Y differs, the same statistics T and
T ∗ are valid as long as the corresponding sample sizes, say n and m, satisfy that
n/(n + m) → p1 ∈ (0, 1) and m/(n + m) → (1 − p1) ∈ (0, 1), as n and m tends to
∞.

5 Hierarchical clusteringmethod for RIs

The two sample similarity test for RIs given in Sect. 4 can be used to get a matrix of
similarities to apply later a hierarchical clustering for interval-valued data following
the ideas in González-Rodríguez and others (González-Rodríguez et al. 2009). In that
paper the authors start from amatrix P holding the p-values obtained by using a multi-
sample test for random fuzzy sets to all the pairs of random fuzzy sets. The procedure
to get the p-values to cluster RIs is provided in the next lines.

Assume that X1 . . . , Xs are s independent RIs taking values in Kc(R). For each
j ∈ {1, . . . , s}, let {X jl}n j

l=1 be a simple random sample obtained from the RI X j , and
let N ∈ N be the overall sample size.

Maharaj (1996) showed the use of the p-value of a two-sample test in order to
get a matrix of p-values, which can be interpreted as a matrix of similarities, to
apply later a hierarchical clustering in the framework of time series, whenever the
measure employed is symmetric and non-negative. The sameprocedure can be imitated
by considering the similarity measure proposed in (2) due to its symmetry and no
negativity. Thus, the two-sample similarity bootstrap test described in Sect. 4 can be
applied to each pair i1, i2 ∈ 1, . . . , s in order to get a matrix of p-values P = [pi1,i2 ],
where pi1,i2 is the p-value of the test H0 : S(E(Xi1), E(Xi2)) ≥ d. Of course, it
is necessary to fix in advance a value d ∈ [0, 1] as a threshold so that two RIs are
grouped together whenever H0 is not rejected at the usual significance levels.

It is well-known that a p-value close to zero suggests rejecting the null hypothesis
H0. Hence, the closer to zero the p-value is, the lower the similarity between E(X j1)

and E(X j2) with respect to d is. On the other hand, one can assume that if a p-value
is high, the similarity between E(X j1) and E(X j2) cannot be far below d, otherwise
the test would be rejected. In fact, the higher the p-value is, the more similar E(X j1)

and E(X j2) are and, in particular, if j1 = j2 the p-value should be equal to 1. In
this way the obtained matrix P can be seen as a kind of similarity matrix. In addition,
consistentlywith (González-Rodríguez et al. 2009), d( j1, j2) = 1− p j1, j2 is a distance
that quantifies how similar E(X j1) and E(X j2) are with respect to d, so that the lower
such a distance is, themore reason E(X j1) and E(X j2)must belong to the same cluster.
Those distances can be used to obtain a hierarchical clustering method with any of the
usual linkage criteria.

The proposed hierarchical clustering procedure starts from the singleton clusters,
Cl = Xl for l ∈ {1, . . . , s}, and computes the matrix of p-values P resulting from
the corresponding two-sample similarity bootstrap tests H0 : S(E(Xi1), E(Xi2)) ≥ d
for i1, i2 ∈ 1, . . . , s. For that, the bootstrap procedure is applied to each pair of
RIs by resampling from the individuals composing each variable to form a bootstrap
sampling and computing the bootstrap statistic based on the midpoints and spreads
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of the resampling. At each stage, the procedure merges the two RIs with the highest
p-value, whenever it is greater than a fixed significance level α. The two RIs involved
in the new cluster form a unique RI (with double sample size) and the resampling in the
next step is made over the individuals that make up such a joint RI. Then, the measures
needed to start again the process are computed by considering the new cluster. Finally,
the stopping criterion of the procedure is determined on the basis of the significance
level α, which usually ranges from 0.01 to 0.1.

The reported method requires the computation of the bootstrap p-values for the
two-sample similarity tests associated to all pairs of clusters at every step, which
implies a moderate computational cost. However, one of the main advantages of this
method in contrast to the one proposed in González-Rodríguez et al. (2009) is that the
former is more flexible in the sense that the clustering of RIs is based on their degree
of similarity and not on their exact equality. In this way, two random intervals could be
grouped whenever their expectations present a high degree of similarity (according to
the Jaccard-based similarity coefficient), and it is not necessary that both expectations
are exactly equal. Besides, the multi-sample test employed in González-Rodríguez
et al. (2009) is valid for fuzzy random variables or random intervals taking on a finite
quantity of values, whereas the method proposed in the manuscript allows to classify
all types of random intervals.

The clustering algorithm is displayed below.
Clustering algorithm

Step 1 Fix a similarity degree d, a significance level α and the number of bootstrap
replications B. Let Ci = Xi be the singleton clusters for i ∈ {1, . . . , s}.

Step 2 For each i ∈ {1, . . . , s}, obtain a large number B of boostrap samples
{X∗b

i1 , . . . , X∗b
ini

}Bb=1 drawn from {Xi1, . . . , Xini }.
Step 3 For each cluster Ci , compute the values mid Xi and spr Xi .
Step 4 For each cluster Ci and each value b ∈ {1, . . . , B}, compute the mid and

spread of the sample mean of the values of each resample b, i.e., mid X∗b
i and

spr X∗b
i .

Step 5 For each pair of clusters C1 and C2 compute the associate p-value pC1,C2 by
using Monte Carlo method as follows:

5.1 Initialize a counter W = 0 and compute the value of the two-sample similarity
test statistic

T =√
n1 max

{
D spr XC2 − spr XC1 , d spr XC1 − spr XC2 ,

(1 + d)
∣∣mid XC1 − mid XC2

∣∣
+ (d − 1)

(
spr XC1 + spr XC2

) }
.

5.2 For each value b ∈ {1, . . . , B}, compute the value of the bootstrap statistic

T ∗b = max
{√

n1
(
d

(
spr X∗b

C2
− spr XC2

)
+ spr XC1 − spr X∗b

C1

)

+min
(
0, n1/41 (spr XC2 − spr XC1)

)
,
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√
n1

(
d

(
spr X∗b

C1
− spr XC1

)
+ spr XC2 − spr X∗b

C2

)

+min
(
0, n1/41 (spr XC1 − spr XC2)

)
,

√
n1

(
(1 + d)

(
mid X∗b

C1
− mid XC1 + mid XC2 − mid X∗b

C2

)

+(d − 1)
(
spr X∗b

C1
− spr XC1 + spr X∗b

C2
− spr XC2

) )

+min
(
0, n1/41 (mid XC1 − mid XC2)

)
,

√
n1

(
(1 + d)

(
mid XC1 − mid X∗b

C1
+ mid X∗b

C2
− mid XC2

)

+(d − 1)
(
spr X∗b

C1
− spr XC1 + mid X∗b

C2
− mid XC2

) )

+min
(
0, n1/41 (mid XC2 − mid XC1)

) }
,

and IF T ∗b > T , THEN W=W+1.
5.3 Compute the bootstrap p-value as pC1,C2 = W/B.

Step 6 Find the maximum value of the matrix of p-values P obtained in the previous
step, say max(P), and label by CP1 and CP2 one of the pairs of clusters with
this p-value.

Step 7 IF

max(P) > α

THEN
join the clusters CP1 and CP2 in a new cluster C = CP1 ∪CP2 and repeat Steps
3 and 4 for this new cluster by computing the mid and spread of the sample
mean of the elements inC , and of the mean of the elements of each resampling
b ∈ {1, . . . , B}. Compute the p-values between the new joint cluster and the
other ones as in Step 5.1.-5.3. and go to Step 6.
ELSE
Stop.

Theorem 1 demonstrate that the clusters obtained by applying the approach
described in the previous algorithm are statistically pairwise different. The result is
supported by next proposition.

Proposition 1 LetC = {X1}∪· · ·∪{Xm1}be a cluster and let Y be a random interval so
that S(E(Xi ), E(Y )) ≥ d for a fixed similarity degree d ∈ [0, 1] and i ∈ {1, . . . ,m1}.
Then, S(E(C), E(Y )) ≥ d.

Proof As S(E(Xi ), E(Y )) ≥ d for i ∈ {1, . . . ,m1}, then, H0 in (3) is fulfilled for
each pair {Xi ,Y }. In addition,

min{spr E(Xi )}m1
i=1 ≤ spr E(C) ≤ max{spr E(Xi )}m1

i=1,

min{mid E(Xi )}m1
i=1 ≤ mid E(C) ≤ max{mid E(Xi )}m1

i=1.
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These conditions imply that

ξ1 = dspr E(Y ) − spr E(C) ≤ dspr E(Y ) − min{spr E(Xi )}m1
i=1 ≤ 0;

ξ2 = dspr E(C) − spr E(Y ) ≤ d max{spr E(Xi )}m1
i=1 − spr E(Y ) ≤ 0.

In addition, the same conditions together with the triangular inequality entails that

m1 · ξ3 =m1 ·
(
(1 + d)|mid E(C) − mid E(Y )| + (d − 1)(spr E(C) + spr E(Y ))

)

≤m1

(
(1 + d)

∣∣∣
m1∑
i=1

(mid E(Xi ) − mid E(Y ))

∣∣∣ + (d − 1)
m1∑
i=1

(spr E(Xi ) + spr E(Y ))
)

≤0

Therefore, ξ3 ≤ 0 and max{ξ1, ξ2, ξ3} ≤ 0, which means that H0 in (3) is fulfilled
for {C,Y }, so the result is given. ��
Theorem 1 Given a similarity degree d ∈ [0, 1] and a fixed significance level α,
the clustering algorithm provided in this section produces clusters {Ci }ki=1 such that
for all k1 �= k2 ∈ {1, . . . , k} there exist i1 ∈ Ck1 and i2 ∈ Ck2 satisfying that
S(E(Xi1), E(Xi2) < d at the significance level α.

Proof LetCk1 andCk2 be two clusters obtained by following the algorithm above such
that Ck1 = {X1} ∪ . . . ∪ {Xm1} and Ck2 = {Y1} ∪ . . . ∪ {Ym2}.

Suppose that S(E(Xi ), E(Y j ) ≥ d for i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m2}.
Then, H0 in (3) is fulfilled for each pair {Xi ,Y j }. By Proposition 1, the inequal-
ity S(E(Ck1), E(Y j )) ≥ d is given for all j ∈ {1, . . . ,m2}. In the same way, by
applying again Proposition 1 to the random interval Ck1 and {Y j }m2

j=1 it is satisfied
that S(E(Ck1), E(Ck2)) ≥ d, and the algorithm would have continued by join-
ing Ck1 and Ck2 . Thus, there must exist at least i1 ∈ Ck1 and i2 ∈ Ck2 so that
S(E(Xi1), E(Xi2) < d. ��

From Theorem 1 it can be concluded that the clusters are different from each other.
Besides, the procedure developed here is more flexible that the one in González-
Rodríguez et al. (2009) since a degree of similarity between the expected values of
the RIs can be chosen to compare with and not only exact equalities are allowed to
classify the RIs. Moreover, in this case it is not required neither to prefix the number of
clusters nor to solve any other optimization problem since the design of the clusters is
given automatically by considering the probability of type I error that can be assumed.

6 Simulation studies

In this section some simulation studies are carried out in order to evaluate the per-
formance of the proposal. In addition, a comparison between the method developed
by González-Rodríguez et al. in González-Rodríguez et al. (2009) using the ANOVA
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test introduced in González-Rodríguez et al. (2012) particularizing it to RIs and the
method proposed in this work is also established. From now on, the new proposal will
be called ClustSim whereas the method in González-Rodríguez et al. (2009) will be
called ClustANOVA. Note that the clustering algorithm used in ANOVA is the same
as in González-Rodríguez et al. (2009) but considering the test and bootstrap statistics
T and T ∗ proposed in González-Rodríguez et al. (2012) for the ANOVA test instead
of the ones proposed in González-Rodríguez et al. (2006) for the multi-sample test for
simple RIs.

As a first study, an inspection of the behavior of the type I error of the procedure
ClustSim is developed. Thus, k populations belonging to the same cluster (i.e., whose
similarity between the expectations of each pair of variables can be assumed to be
greater than or equal to d) have been simulated for d ∈ {0.8, 0.9, 1}. Moreover, the
case d = 1 (equality of expectations) is also compared with method ClustANOVA
in terms of type I error. RIs are randomly generated based on two parameters: their
midpoint and their spreads. Therefore, any real continuous random variable will be
valid for modeling the behavior of the midpoints, while for modeling the behavior of
spreads it is necessary to consider a real continuous and positive random variable.

As a first attempt the following distributions have been chosen without loss of
generality for j ∈ {1, . . . , k}:

mid X j ↪→ U (0 + ( j − 1)(1 − d)/(k − 1), 1)

spr X j ↪→ U (0, 1 − ( j − 1)(1 − d)/(k − 1))
(5)

As an example of the generation process, the case d = 0.8 and k = 3 is being
inspected, which is so that

X1 is so that mid X1 ↪→ U (0, 1) and spr X1 ↪→ U (0, 1),
X2 is so that mid X2 ↪→ U (0.1, 1) and spr X2 ↪→ U (0, 0.9),
X3 is so that mid X3 ↪→ U (0.2, 1) and spr X3 ↪→ U (0, 0.8).

Thus, E(X1) = [0, 1], E(X2) = [0.1, 1] and E(X3) = [0.2, 1], so we can
assure that the degree of similarity between those expectations is at least 0.8 since
S(E(X1), E(X2)) = S(E(X2), E(X3)) = 0.9 and S(E(X1), E(X3)) = 0.8.

As it has been shown that the empirical sizes of the bootstrap similarity test and the
ANOVA test are quite close to the expected nominal significance levels for moderate
sample sizes (see Ramos-Guajardo 2015, and González-Rodríguez et al. 2012), then
we will fix n = 100. In addition, the algorithm has been run for 1000 simulations with
500 bootstrap replications of the bootstrap test each by considering a significance level
α = 0.05 by considering 3, 5 and 8 populations belonging to one unique cluster. The
proportion of times in which the correct number of clusters is obtained in every situ-
ation whenever uniform distributions are considered for mid /spr has been collected
in Table 1.

An analogous study has been carried out given alternative distributions for the
midpoints and spreads. Specifically, variations from normal/beta distributions and
Student’s/chi-square distributions for midpoints/spreads have been considered by
applying a variable generation process equivalent to the one described in Sect. 5.
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Table 1 Proportion of times in
which the correct number of
clusters is obtained when
uniform distributions are
considered for mid /spr

mid /spr ≈ uniform/uniform
Method k = 3 k = 5 k = 8

d = 0.8 ClustSim .9712 .9754 .9782

d = 0.9 ClustSim .9591 .9604 .9548

d = 1 ClustSim .9035 .9084 .8951

ClustANOVA .8987 .9041 .9027

Table 2 Proportion of times in
which the correct number of
clusters is obtained when
normal/beta distributions are
considered for mid /spr

mid /spr ≈ normal/beta
Method k = 3 k = 5 k = 8

d = 0.8 ClustSim .9678 .9649 .9699

d = 0.9 ClustSim .9628 .954 .9509

d = 1 ClustSim .9011 .8989 .8923

ClustANOVA .8934 .8991 .8976

Table 3 Proportion of times in
which the correct number of
clusters is obtained when
student’s/chi-square
distributions are considered for
mid /spr

mid /spr ≈ Student’s/chi-square
Method k = 3 k = 5 k = 8

d = 0.8 ClustSim .9698 .9641 .971

d = 0.9 ClustSim .9601 .9576 .9633

d = 1 ClustSim .8934 .8887 .8857

ClustANOVA .8901 .8932 .8822

The proportion of times in which the correct number of clusters is obtained in both
situations is gathered in Tables 2 and 3.

From Tables 1, 2 and 3 it can be concluded that the procedure has a success rate
close to the empirical size of the bootstrap method (1 − α) for values d = 0.8 and
d = 0.9. However, it can be observed that in the case d = 1 the results obtained remain
below 1−α. Although it is true that the method proposed in González-Rodríguez et al.
(2009) based on the multi-sample test introduced in González-Rodríguez et al. (2006)
for simple RIs presents better results, it should be noted that in that case, apart from
being an appropriate procedure only for a very specific case of RIs, the bootstrap test
statistic includes the variability of the RIs in its denominator, while in the ClustSim
and ClustANOVA methods such variability is not included in the bootstrap statistics
(see Ramos-Guajardo 2015; González-Rodríguez et al. 2012). Since the inclusion of
variability of RIs is not a straightforward problem, it is left as an open problem to be
addressed in the near future.

On the other hand, as a second scenario different sample sizes are considered,
being them n ∈ {50, 80, 100}, as well as s = 10 RIs and three similarity grades
d ∈ {0.8, 0.9, 1}. A structure of 3 clusters is considered so that 2 RIs belong to Cluster
1, 3 RIs belong to Cluster 2 and 5 RIs belong to Cluster 3. Regarding the distinction
of clusters three different situations are considered:
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– Case 1The clusters are distinguished with respect to themidpoints of the intervals.
– Case 2 The clusters are distinguished with respect to the midpoints and the spreads
of the intervals.

– Case 3 The clusters are distinguished with respect to the spreads of the intervals.

In addition, two levels of separation for the clusters are taken into account:

– Case A small separation between clusters.
– Case B large separation between clusters.

The details of the generation process for the midpoints and spreads of the RIs in
cases d = 0.8, d = 0.9 and d = 1 whenever uniform distributions are considered for
mid /spr are gathered on Tables 4, 5 and 6.

An anologous generation process has been carried out for the situations in which
normal/beta distributions and Student’s/chi-square distributions have been considered
for mid /spr . However, the specific details of such a generation process have been
omitted tomake the section easier to follow by the reader and due to extension reasons.

As an example, the RIs obtained through the generation process for case 2.A (clus-
ters distinguished with respect to the midpoints and spreads of the intervals and small
separation between clusters) when d = 0.8 proposed in Table 4 fulfil the following
conditions:

– The RIs involved in the first cluster (say X1 and X2) satisfy that E(X1) = [−1, 0]
and E(X2) = [−1,−0.2], so S(E(X1), E(X2)) = 0.8.

– The RIs involved in the second cluster (say X3, X4 and X5) satisfy that
E(X3) = [−0.5, 0.5], E(X4) = [−0.45, 0.45] and E(X5) = [−0.4, 0.4], so
the lowest similarity grade among each pair of random intervals in cluster 2 is
S(E(X3), E(X5)) = 0.8.

– The RIs involved in the third cluster (say X6, X7, X8, X9 and X10) satisfy that
E(X6) = [0, 1], E(X7) = [0.05, 1], E(X8) = [0.1, 1], E(X9) = [0.15, 1] and
E(X10) = [0.2, 1], so the lowest similarity grade among each pair of random
intervals in cluster 3 is S(E(X6), E(X10)) = 0.8.

– The highest similarity grade between RIs of different clusters is given by
S(E(X1), E(X3)) = S(E(X3), E(X6)) = 1/3.

In order to gather the similarity degree between each pair of expected values of
the variables involved in the different situations displayed in Tables 7, 8 and 9,
the corresponding similarity degree matrices Sdcase are shown in Appendix A, for
d ∈ {0.8, 0.9, 1} and case ∈ {1.A, 2.A, 3.A, 1.B, 2.B, 3.B}. Note that the similarity
degree matrices provided do not depend on the distributions chosen for midpoints
and spreads, since the three types of RIs generation processes considered (uni-
form/uniform, normal/beta and Student’s/chi-square) led to the same expected value
for each RI, i.e., the expected value obtained for Xi , for i ∈ {1, . . . , 10}, when
applying an RI generation process based on uniform distributions for midpoints and
spreads coincided with the one obtained when applying the alternatives normal/beta
and Student’s/chi-square in the different frameworks analyzed.

For every case and every sample size chosen, r = 300 random samples have been
generated and, for each data set, B = 500 bootstrap replications of the two-sample
similarity bootstrap test has been carried out in order to generate the p-values of the
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Table 4 Generation of mids and spreads in each case for d = 0.8

Case Cluster mid /spr Case Cluster mid /spr

1.A 1 U(−1, 0)/U(0,1) 1.B 1 U(−1, 0)/U(0,1)

U(−1.11,−0.11)/U(0,1) U(-1.11,-0.11)/U(0,1)

2 U(−0.5, 0.5)/U(0,1) 2 U(1,2)/U(0,1)

U(−0.4474, 0.5526)/U(0,1) U(0.944,1.944)/U(0,1)

U(−0.5526, 0.4474)/U(0,1) U(1.056,2.056)/U(0,1)

3 U(0,1)/U(0,1) 3 U(3,4)/U(0,1)

U(0.028,1.028)/U(0,1) U(3.028,4.028)/U(0,1)

U(0.056,1.056)/U(0,1) U(3.056,4.056)/U(0,1)

U(0.083,1.083)/U(0,1) U(3.083,4.083)/U(0,1)

U(0.11,1.11)/U(0,1) U(3.11,4.11)/U(0,1)

2.A 1 U(−1, 0)/U(0,1) 2.B 1 U(−1, 0)/U(0,1)

U(−1, −0.2)/U(0,0.8) U(−1, −0.2)/U(0,0.8)

2 U(−0.5, 0.5)/U(0,1) 2 U(1,2)/U(0,1)

U(−0.45, 0.45)/U(0,0.9) U(1.05,1.95)/U(0,0.9)

U(−0.4, 0.4)/U(0,0.8) U(1.1,1.9)/U(0,0.8)

3 U(0,1)/U(0,1) 3 U(3,4)/U(0,1)

U(0.05,1)/U(0,95) U(3.05,4)/U(0,0.95)

U(0.1,1)/U(0,0.9) U(3.1,4)/U(0,0.9)

U(0.15,1)/U(0,0.85) U(3.15,4)/U(0,0.85)

U(0.2,1)/U(0,0.8) U(3.2,4)/U(0,0.8)

3.A 1 U(0,1)/U(0,2.5) 3.B 1 U(0,1)/U(0,3.5)

U(0,1)/U(0,2) U(0,1)/U(0,2.8)

2 U(0,1)/U(0,1) 2 U(0,1)/U(0,2)

U(0,1)/U(0,0.9) U(0,1)/U(0,1.8)

U(0,1)/U(0,0.8) U(0,1)/U(0,1.6)

3 U(0,1)/U(0,0.25) 3 U(0,1)/U(0,25)

U(0,1)/U(0,2375) U(0,1)/U(0,0.2375)

U(0,1)/U(0,225) U(0,1)/U(0,0.225)

U(0,1)/U(0,0.2125) U(0,1)/U(0,0.2125)

U(0,1)/U(0,0.2) U(0,1)/U(0,0.2)

similarity matrix P. Tables 7, 8 and 9 collect the percentage of times in which the
algorithm suggests 3 clusters containing the initial RIs of the generation process with
respect to all the different cases proposed in Tables 4, 5 and 6 and the three types of
distributions considered for mid /spr . Again, the case d = 1 of method ClustSim has
been compared with method ClustANOVA in this framework.

From the results gathered in Tables 7, 8 and 9 we can conclude that the procedure
proposed in this work determines the correct number of clusters (as well as the RIs
belonging to each cluster) in most of the suggested situations. However, once again
it can be seen that in the case d = 1 the correct detection of clusters is not so suit-
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Table 5 Generation of mids and spreads in each case for d = 0.9

Case Cluster mid /spr Case Cluster mid /spr

1.A 1 U(−1, 0)/U(0,1) 1.B 1 U(−1, 0)/U(0,1)

U(−1.053,−0.053)/U(0,1) U(−1.053,−0.053)/U(0,1)

2 U(−0.5, 0.5)/U(0,1) 2 U(1,2)/U(0,1)

U(−0.526, 0.474)/U(0,1) U(0.974,1.974)/U(0,1)

U(−0.474, 0.526)/U(0,1) U(1.026,2.026)/U(0,1)

3 U(0,1)/U(0,1) 3 U(3,4)/U(0,1)

U(0.013,1.013)/U(0,1) U(3.013,4.013)/U(0,1)

U(0.026,1.026)/U(0,1) U(3.026,4.026)/U(0,1)

U(0.04,1.04)/U(0,1) U(3.04,4.04)/U(0,1)

U(0.053,1.053)/U(0,1) U(3.053,4.053)/U(0,1)

2.A 1 U(−1, 0)/U(0,1) 2.B 1 U(−1, 0)/U(0,1)

U(−1, −0.1)/U(0,0.9) U(−1, −0.1)/U(0,0.9)

2 U(−0.5, 0.5)/U(0,1) 2 U(1,2)/U(0,1)

U(−0.475, 0.475)/U(0,0.95) U(1.025,0.975)/U(0,0.95)

U(−0.45, 0.45)/U(0,0.9) U(1.05,1.95)/U(0,0.9)

3 U(0,1)/U(0,1) 3 U(3,4)/U(0,1)

U(0.025,1)/U(0,975) U(3.025,4)/U(0,0.975)

U(0.05,1)/U(0,0.95) U(3.05,4)/U(0,0.95)

U(0.075,1)/U(0,0.925) U(3.075,4)/U(0,0.925)

U(0.1,1)/U(0,0.9) U(3.1,4)/U(0,0.9)

3.A 1 U(0,1)/U(0,2) 3.B 1 U(0,1)/U(0,4)

U(0,1)/U(0,1.8) U(0,1)/U(0,3.6)

2 U(0,1)/U(0,1) 2 U(0,1)/U(0,2)

U(0,1)/U(0,0.95) U(0,1)/U(0,1.9)

U(0,1)/U(0,0.9) U(0,1)/U(0,1.8)

3 U(0,1)/U(0,0.4) 3 U(0,1)/U(0,0.4)

U(0,1)/U(0,0.39) U(0,1)/U(0,0.39)

U(0,1)/U(0,0.38) U(0,1)/U(0,0.38)

U(0,1)/U(0,0.37) U(0,1)/U(0,0.37)

U(0,1)/U(0,0.36) U(0,1)/U(0,0.36)

able, which may be due to the lack of a variability-related term in the corresponding
test statistics. In all cases it should be remarked that the results are better when the
sample size is larger. This is because both the two-sample similarity bootstrap test
and the ANOVA test perform better for moderate/large sample sizes. Finally, there
are no major differences in the performance of methods ClustSim and ClustANOVA
when considering one type of distributions or another for mid /spr as well as when
considering differences in midpoints, in spreads, or in both.
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Table 6 Generation of mids and spreads in each case for d = 1

Case Cluster mid /spr Case Cluster mid /spr

1.A 1 U(−1, 0)/U(0,1) 1.B 1 U(−1, 0)/U(0,1)

2 U(−0.5, 0.5)/U(0,1) 2 U(1,2)/U(0,1)

3 U(0,1)/U(0,1) 3 U(3,4)/U(0,1)

2.A 1 U(−1, 0)/U(0,1) 2.B 1 U(−1, 0)/U(0,1)

2 U(−0.4, 0.4)/U(0,0.8) 2 U(1.1,1.9)/U(0,0.8)

3 U(0.1,1)/U(0,0.9) 3 U(3.1,4)/U(0,0.9)

3.A 1 U(0,1)/U(0,2) 3.B 1 U(0,1)/U(0,4)

2 U(0,1)/U(0,1) 2 U(0,1)/U(0,2)

3 U(0,1)/U(0,0.25) 3 U(0,1)/U(0,0.25)

Table 7 Percentage of times in
which the algorithm suggests the
true composition of clusters
when uniform distributions are
considered for mid /spr

mid /spr ≈ uniform/uniform
Case d Method n = 50 n = 80 n = 100

1.A. 0.8 ClustSim .9154 .9394 .9498

0.9 ClustSim .8912 .929 .9513

1 ClustSim .8456 .8765 .9028

ClustANOVA .8438 .8755 .903

2.A. 0.8 ClustSim .9428 .9606 .9479

0.9 ClustSim .9134 .9391 .9562

1 ClustSim .8567 .8812 .9055

ClustANOVA .858 .8802 .9041

3.A. 0.8 ClustSim .937 .9424 .9475

0.9 ClustSim .9213 .9399 .9495

1 ClustSim .8568 .8767 .9105

ClustANOVA .8629 .8805 .9011

1.B. 0.8 ClusSim .9205 .9432 .9537

0.9 ClustSim .9145 .9392 .9509

1 ClustSim .8598 .8795 .8985

ClustANOVA .8561 .8812 .9014

2.B. 0.8 ClustSim .9387 .9583 .9524

0.9 ClustSim .9271 .9365 .9542

1 ClustSim .8598 .8799 .9019

ClustANOVA .8579 .8808 .9025

3.B. 0.8 ClustSim .9305 .9436 .9487

0.9 ClustSim .9209 .9312 .9471

1 ClustSim .8533 .8744 .8969

ClustANOVA .8519 .8713 .9003
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Table 8 Percentage of times in
which the algorithm suggests the
true composition of clusters
when normal/beta distributions
are considered for mid /spr

mid /spr ≈ normal/beta
Case d Method n = 50 n = 80 n = 100

1.A. 0.8 ClustSim .9111 .9323 .9486

0.9 ClustSim .8903 .9291 .9509

1 ClustSim .8407 .8742 .8978

ClustANOVA .8419 .871 .8966

2.A. 0.8 ClustSim .9401 .9689 .9468

0.9 ClustSim .9106 .9377 .953

1 ClustSim .8533 .8792 .9028

ClustANOVA .8555 .8781 .9006

3.A. 0.8 ClustSim .9356 .9409 .949

0.9 ClustSim .9289 .9387 .95

1 ClustSim .8581 .8776 .9055

ClustANOVA .8602 .8777 .9023

1.B. 0.8 ClusSim .9201 .9419 .9502

0.9 ClustSim .9139 .9362 .9488

1 ClustSim .8549 .878 .8966

ClustANOVA .8511 .8764 .9004

2.B. 0.8 ClustSim .9355 .9554 .9476

0.9 ClustSim .9219 .9333 .9502

1 ClustSim .8581 .8704 .8993

ClustANOVA .8575 .8731 .8984

3.B. 0.8 ClustSim .9291 .9484 .9509

0.9 ClustSim .9199 .9289 .9452

1 ClustSim .8513 .8704 .8939

ClustANOVA .8521 .8691 .8977

7 Real-life applications

The clustering method proposed in this work (ClustSim) is applied to the real cases
presented in Sect. 2 by considering several similarity grades from which the different
variables will be grouped. Situations d = 1, d = 0.9 and d = 0.8 are explored
in both scenarios and B = 5000 bootstrap replications have been considered in all
cases. The p-value matrices computed by following the procedure in the different
cases are included in Appendices B and C. Besides, a comparison between case d = 1
of ClustSim, the procedure ClustANOVA developed in González-Rodríguez et al.
(2009) and the classical hierarchical clustering method just using the midpoints is also
provided.
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Table 9 Percentage of times in
which the algorithm suggests the
true composition of clusters
when Student’s/chi-square
distributions are considered for
mid /spr

mid /spr ≈ Student’s/chi-squared
Case d Method n = 50 n = 80 n = 100

1.A. 0.8 ClustSim .9107 .9298 .9477

0.9 ClustSim .8893 .9278 .9489

1 ClustSim .8402 .8733 .8961

ClustANOVA .8408 .869 .8963

2.A. 0.8 ClustSim .9391 .9669 .9459

0.9 ClustSim .9081 .9367 .95

1 ClustSim .8512 .8787 .9005

ClustANOVA .8545 .8778 .8996

3.A. 0.8 ClustSim .9365 .9418 .9472

0.9 ClustSim .9266 .938 .9479

1 ClustSim .8555 .8763 .9117

ClustANOVA .8562 .8707 .9006

1.B. 0.8 ClusSim .9198 .9412 .9487

0.9 ClustSim .9131 .9354 .9481

1 ClustSim .853 .8767 .8962

ClustANOVA .8507 .8747 .8985

2.B. 0.8 ClustSim .9347 .9506 .948

0.9 ClustSim .9212 .9323 .9492

1 ClustSim .8566 .8698 .8984

ClustANOVA .8569 .8719 .8981

3.B. 0.8 ClustSim .9288 .9478 .949

0.9 ClustSim .9211 .933 .9479

1 ClustSim .8527 .8688 .894

ClustANOVA .8515 .8733 .8991

7.1 Application 1: mathematics related beliefs questionnaire

The aim is to classify theRIs associatedwith the statementsQ1−Q17 aboutmathemat-
ics related beliefs according to the opinion given by 117 students. The representation
of the sample means of the answers to each statement (which is also an interval) is
gathered Fig. 2. It should be noticed that the spreads of the expected values considered
are very similar (around 1 in all cases) which implies that the classification will be
given based on the differences in midpoints in this case.
Case d = 1:
A p-value lower than the significance level α = 0.05 in the p-value matrix P1 (see
AppendixB) implies that the themeanvalues of the rating of two statements involved in
the questionnaire can be considered to be not completely equal. The optimal solution
when applying the clustering procedure proposed in this work to the matrix P1 is
composedby seven clusters:Cluster 1={Q2,Q14},Cluster 2={Q3,Q10,Q15},Cluster
3={Q4,Q7,Q9,Q11,Q5}, Cluster 4={Q1,Q8,Q13}, Cluster 5={Q16,Q17}, Cluster
6={Q6} and Cluster 7={Q12}.
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Fig. 2 Representation of the sample mean of RIs Q1–Q17

Cluster 1 connects the statement related with the taste for mathematical learning
and the one related to the perseverance when solving math problems; in both cases
the average midpoints are around 5.2 points. Statements in Cluster 2 are those whose
average midpoints are around 4.4 points and they talk about personal interest in math
and self-abilities in understanding math. Cluster 3 includes those statements with
average midpoints around 4.75 points which are related with general math liking,
effort capacity and self-concept in math compared to other students. On the other
hand, statements in Cluster 4 (average midpoints around 5.9 points) refer to learning
interest, patience when solving math and self-expectations in understanding math
the current course. Cluster 5 contains two statements regarding competitiveness and
insecurity when dealing with mathematics with average midpoints around 3.5 points
and, finally, the statement making up the sixth cluster has an average midpoint around
8 points and corresponds to the own general expectations in math marks, whereas the
onemaking up the seventh cluster (whit an averagemidpoint around 6.4 points) entails
self-concept about math achievements the current course.

The procedure ClustANOVA has also been applied leading to the same statements
classification than ClustSim for d = 1. Besides, if the classical hierarchical algorithm
for the mean of the midpoints of the intervals is applied, the dendrogram displayed in
Fig. 3 is obtained.

Figure 3 shows that similar clusters are givenwhen an appropriate cut of the dendro-
gram is considered. However, while an objective stopping criterion leads automatically
to six groups when applying the other two procedures, further analyses are required
to find a suitable cut for this classical approach. In addition, the classical hierarchi-
cal clustering approach does not consider the inherent imprecision in the students’
answers, producing a loss of information that can be avoided by using the whole inter-
vals and not only their midpoints while it is true that this loss of information is not well
reflected in this example due to the similarity in the spreads of the different expected
values.
Case d = 0.9:
In this case, a p-value lower than α = 0.05 in the p-value matrix P2 (see Appendix B)
implies that the similarity degree between the mean values of the rating of two state-
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Fig. 3 Dendrogram of the classical hierarchical algorithm for the mean of the midpoints of the intervals
corresponding to RIs Q1–Q17

ments involved in the questionnaire can be considered to be lower than 0.9. For
instance, the p-value equal to .004 for statements Q1 and Q5 means that such state-
ments are perceived in a very different way by the sample of students.

The method is applied to matrix P2, and five clusters have been obtained,
mainly, Cluster 1={Q2,Q14}, Cluster 2={Q3,Q4,Q5,Q7,Q9,Q10,Q11,Q15}, Clus-
ter 3={Q1,Q8,Q12,Q13}, Cluster 4={Q16,Q17} and Cluster 5={Q6}.

Clusters 1, 4 and 5 coincide with Clusters 1, 5 and 6 in case d = 1. On the other
hand, Cluster 2 is obtained by linkingClusters 2 and 3 in case d = 1, having statements
with average midpoints between 4 and 5 points. Thus, it includes statements related
with general math liking, personal interest in math, self-abilities in understanding
math, effort capacity in math and self-concept in math compared to other students.
Statements included in Cluster 3 are the result of joining Clusters 4 and 7 in case
d = 1 and refers to learning interest, patience when solving math, self-expectations in
math understanding and math achievements during the current course. The statements
included in new Cluster 3 have average midpoints between 5.5 and 6.5 points.
Case d = 0.8:
The p-value matrix is P3 (see Appendix B) and, in this case, four clusters are obtained
when applying the clustering procedure proposed in thiswork.Thefirst cluster contains
all elements of Clusters 1 and 2 for case d = 0.9 concerningmath liking, math interest,
self-concept in math compared to other students, effort capacity and self-expectations
in the current course, perseverance and self-abilities in understanding math. All those
statements have average midpoints moving betwen 4 and 5.5 points. Finally, Clusters
2, 3 and 4 coincide with clusters 3, 4 and 5 in case d = 0.9.
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Fig. 4 Representation of the sample mean of the daily concentration of PM10 particles in the 18 Spanish
cities

7.2 Application 2: daily concentration of PM10 particles in Spanish cities

Now the aim is to classify the RIs associated with 18 Spanish cities according to
their concentration of PM10 particles during 122 days of the central months of 2019.
Figure 4 shows the representation of the intervals corresponding to the sample means
of the daily concentration of PM10 particles in the 18 cities.
Case d = 1
A p-value lower than α = 0.05 in the p-value matrix R1 (see Appendix C) indi-
cates that the mean values of the daily concentration of PM10 particles in the
two cities compared are not equal. The solution obtained after applying the pro-
posed procedure leads to nine clusters, which are the following: Cluster 1={Vitoria,
Valladolid}, Cluster 2={Oviedo,Madrid}, Cluster 3={Palma de Mallorca, Sevilla,
Valencia}, Cluster 4={Logroño, Las Palmas de Gran Canaria}, Cluster 5={Santiago
de Compostela, Barcelona, Toledo.}, Cluster 6={Pamplona, Zaragoza}, Cluster
7={Santander, Ceuta}, Cluster 8={Murcia} andCluster 9={SantaCruz deTenerife}.

It can be concluded Santa Cruz de Tenerife is, by far, the city that presents the
least pollution by PM10 particles in mean in the central months of 2019 followed by
the cities composing Cluster 6, that are Pamplona and Zaragoza. On the other hand,
cities in Cluster 5 have the highest maximums, although the average intervals are quite
wide because the variability of the daily concentration of PM10 particles during these
months has been greater. The rest of the clusters contain cities that have had amoderate
variability in terms of the concentration of PM10 particles, and said variability for the
cities that make up each cluster can be considered to be the same.

The procedure ClusANOVA has also been applied given the analogies of both
procedures, and the optimal solution coincides with the one above. Once again, the
results obtained in the study of simulations are corroborated in relation to the similar
performance of both methods.
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Fig. 5 Dendrogram of the classical hierarchical algorithm for the mean of the midpoints of the intervals
corresponding to the daily concentration of PM10 particles in the 18 Spanish cities

On the other hand, the classical hierarchical algorithm for the mean of the mid-
points of the intervals has been implemented leading to the classification shown in the
dendrogram gathered in Fig. 5.

Figure 5 evidences that most of clusters are given when an appropriate cut of
the dendrogram is considered. Nevertheless, in this case it should be noted that the
imprecision and variability collected by an interval is lost when the information is
summarized by a single value. This is the case, for example, of the city ofMurcia,which
according to the method proposed in this work does not belong to the same cluster as
Santiago de Compostela, Toledo and Barcelona since the variability presented by the
mean daily concentration of PM10 particles in the 4 cities cannot be considered to be
the same.
Case d = 0.9
Now a p-value lower than α = 0.05 in the p-value matrix R2 (see Appendix C)
implies that the similarity degree between the mean values of the daily concentration
of PM10 particles in the two cities compared can be considered to be lower than 0.9.

In this case, the clustering approach is applied to matrix R2, and five clusters
have been obtained, mainly, Cluster 1={Vitoria, Valladolid, Oviedo, Madrid, San-
tander, Ceuta}, Cluster 2={Palma deMallorca, Logroño, Las Palmas deGranCanaria,
Valencia}, Cluster 3={Santiago de Compostela, Murcia, Sevilla, Toledo, Barcelona},
Cluster 4={Pamplona, Zaragoza} and Cluster 5={Santa Cruz de Tenerife}.

Clusters 4 and5 are the same thatClusters 6 and9 in the cased = 1, and comprehend
the cities with lower minimum pollution and lower variability of such pollution during
the analyzed period of 2019. Cluster 1 comes from joining Clusters 1, 2 and 7 in the
case d = 1, concerning cities that present moderate variabilities in terms of pollution
with low minimums. On the other hand, Cluster 2 links Clusters 3 and 4 in case
d = 1 except for the city of Sevilla which now is added to the previous Cluster 5
to form Cluster 3 (jointly with Murcia) in the new cluster composition. It can be
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concluded that Sevilla and Murcia are now linked with the cities that have the highest
maximumvalues in terms of pollution, while the cities that includeCluster 2 havemore
moderate minimums and maximums, as well as a moderate variability. Therefore, it
can be observed that if d reduces from 1, the cluster is obtained such that a degree of
overlapping of two intervals are rightly considered even if the midpoints are slightly
different.
Case d = 0.8:
The p-value matrix obtained in this case is R3 (see Appendix C) and the application
of the approach leads to four clusters: Clusters 1, 3 and 4 coincide with Clusters 1, 4
and 5 in case d = 0.9, referred to those cities with lower minimum daily concentration
of PM10 particles and lower/moderate variability of such concentration. The second
cluster is the result of linking Clusters 2 and 3 in case d = 0.9, corresponding to cities
with higher maximum values and higher variability in terms of pollution.

8 Final remarks

In this contribution a novel approach for clusteringRIs has been introduced. In contrast
to the method developed in González-Rodríguez et al. (2009) for clustering simple
fuzzy random variables (where RIs can be seen as a particular case of fuzzy random
variables) based on the equality of expectations, the linkage criteria suggested here
considers the similarity degree of expected values of the RIs belonging to the same
cluster. It allows us to previously specify a degree of similarity in (0, 1) between
expected values that we are willing to admit. Thus, a two-sample test for the degree of
similarity of RIs is applied and a p-value matrix is obtained, that indicates somehow
how similar are each pair of RIs and serves as a starting point of the clustering algo-
rithm. The simulation studies to observe the performance of the approach along with
the real data applications have shown the benefits of the proposed strategy of analysis,
also compared to the method in González-Rodríguez et al. (2009) when the ANOVA
test for all types RIs introduced in González-Rodríguez et al. (2012) is considered.

As future directions, the partition of RIs based on fuzzy clustering procedures
and the similarity measure included here could be analyzed. The inclusion of the
variability of the RIs both in the suggested statistic as well as in the ANOVA statistic
in González-Rodríguez et al. (2012) can also be studied. The cluster analysis of more
complex kind of variables (as, for instance, fuzzy random variables) considering such
similarity measure can also be carried out. In addition, a distance between random
intervals instead of a similarity index could be also considered for developing different
clustering approaches. Finally, the classification of variables whose outputs are more
complex objects in the context of simbolic data analysis based on a similarity grade
could also be addressed.
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Appendix A Similarity degree matrices for the situations considered
in Tables 7, 8 and 9

S0.81.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .8 .33 .288 .382 0 0 0 0 0
.8 1 .242 .203 .284 0 0 0 0 0
.33 .242 1 .9 .8 .33 .309 .285 .263 .242
.288 .203 .9 1 .9 .382 .355 .33 .307 .284
.382 .284 .8 .9 1 .288 .265 .243 .223 .203
0 0 .33 .382 .288 1 .95 .9 .85 .8
0 0 .309 .355 .265 .95 1 .95 .9 .85
0 0 .285 .33 .243 .9 .95 1 .95 .9
0 0 .263 .307 .223 .85 .9 .95 1 .95
0 0 .242 .284 .203 .8 .85 .9 .95 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.82.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .8 .33 .31 .286 0 0 0 0 0
.8 1 .2 .172 .143 0 0 0 0 0
.33 .2 1 .9 .8 .33 .3 .267 .233 .2
.31 .172 .9 1 .9 .31 .355 .33 .307 .284
.286 .143 .8 .9 1 .288 .276 .241 .207 .172
0 0 .33 .31 .288 1 .95 .9 .85 .8
0 0 .3 .255 .276 .95 1 .95 .9 .85
0 0 .267 .33 .241 .9 .95 1 .95 .9
0 0 .233 .307 .207 .85 .9 .95 1 .95
0 0 .2 .284 .172 .8 .85 .9 .95 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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S0.83.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .8 .4 .36 .32 .1 .095 .09 .085 .08
.8 1 .5 .45 .4 .125 .119 .113 .106 .1
.4 .5 1 .9 .8 .25 .237 .225 .212 .2
.36 .45 .9 1 .89 .278 .264 .25 .236 .222
.32 .4 .8 .89 1 .312 .297 .281 .266 .25
.1 .125 .25 .278 .312 1 .95 .9 .85 .8

.095 .119 .237 .264 .297 .95 1 .947 .895 .842
.09 .113 .225 .25 .281 .9 .947 1 .944 .889
.085 .106 .212 .236 .266 .85 .895 .944 1 .941
.08 .1 .2 .222 .25 .8 .842 .889 .941 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.81.B = S0.82.B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .8 0 0 0 0 0 0 0 0
.8 1 0 0 0 0 0 0 0 0
0 0 1 .9 .8 0 0 0 0 0
0 0 .9 1 .9 0 0 0 0 0
0 0 .8 .9 1 0 0 0 0 0
0 0 0 0 0 1 .95 .9 .85 .8
0 0 0 0 0 .95 1 .95 .9 .85
0 0 0 0 0 .9 .95 1 .95 .9
0 0 0 0 0 .85 .9 .95 1 .95
0 0 0 0 0 .8 .85 .9 .95 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.83.B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .8 .571 .514 .457 .071 .068 .064 .061 .057
.8 1 .714 .643 .571 .089 .085 .08 .076 .071

.571 .714 1 .9 .8 .125 .119 .113 .106 .1

.514 .643 .9 1 .889 .139 .132 .125 .118 .111

.457 .571 .8 .889 1 .156 .148 .141 .133 .125

.071 .089 .125 .139 .156 1 .95.9 .85 .8

.068 .085 .119 .132 .148 .95 1 .947 .895 .842

.064 .08 .113 .125 .141 .9 .947 1 .944 .889

.061 .076 .106 .118 .133 .85 .895.944 1 .941

.057 .071 .1 .111 .125 .8 .842.889 .941 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.91.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .9 .33 .357 .311 0 0 0 0 0
.9 1 .288 .31 .267 0 0 0 0 0
.33 .288 1 .95 .9 .33 .322 .311 .299 .288
.357 .31 .95 1 .95 .311 .3 .289 .277 .267
.311 .267 .9 .95 1 .357 .345 .333 .321 .31
0 0 .33 .311 .357 1 .975 .95 .925 .9
0 0 .322 .3 .345 .975 1 .975 .95 .85
0 0 .311 .389 .333 .95 .975 1 .975 .95
0 0 .299 .277 .321 .925 .95 .975 1 .975
0 0 .288 .267 .31 .9 .925 .95 .975 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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S0.92.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .9 .33 .322 .31 0 0 0 0 0
.9 1 .267 .254 .241 0 0 0 0 0
.33 .267 1 .95 9 .33 .317 .3 .283 .267
.322 .254 .95 1 .95 .322 .305 .288 .271 .254
.31 .241 .9 .95 1 .31 .293 .276 .259 .241
0 0 .33 .322 .31 1 .975 .95 .925 .9
0 0 .317 .305 .293 .975 1 .975 .95 .925
0 0 .3 .288 .276 .95 .975 1 .975 .9.5
0 0 .283 .271 .259 .925 .95 .975 1 .975
0 0 .267 .254 .241 .9 .925 .95 .975 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.93.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .9 .5 .47 .45 .2 .195 .19 .185 .18
.9 1 .556 .528 .5 .222 .217 .211 .206 .2
.5 .556 1 .95 .9 .4 .39 .38 .37 .36

.475 .528 .95 1 .9474 .421 .411 .4 .39 .379
.45 .5 .9 .9474 1 .444 .433 .422 .411 .4
.2 .222 .4 .421 .444 1 .975 .95 .925 .9

.195 .217 .39 .411 .433 .975 1 .974 .949 .923
.19 .211 .38 .4 .422 .95 .974 1 .974 .947
.185 .206 .37 .39 .411 .925 .949 .974 1 .973
.18 .2 .36 .379 .4 .9 .923 .947 .973 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.91.B = S0.92.B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .9 0 0 0 0 0 0 0 0
.9 1 0 0 0 0 0 0 0 0
0 0 1 .95 .9 0 0 0 0 0
0 0 .95 1 .95 0 0 0 0 0
0 0 .9 .95 1 0 0 0 0 0
0 0 0 0 0 1 .975 .95 .925 .9
0 0 0 0 0 .975 1 .975 .95 .925
0 0 0 0 0 .95 .975 1 .975 .95
0 0 0 0 0 .925 .95 .975 1 .975
0 0 0 0 0 .9 .925 .95 .975 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0.93.B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .9 .5 .475 .45 .1 .098 .095 .093 .09
.9 1 .556 .528 .5 .111 .108 .106 .103 .1
.5 .556 1 .95 .9 .2 .195 .19 .185 .18

.475 .528 .95 1 .947 .211 .205 .2 .195 .189
.45 .5 .9 .947 1 .222 .217 .211 .206 .2
.1 .111 .2 .211 .222 1 .975 .95 .925 .9

.098 .108 .195 .205 .217 .975 1 .974 .949 .923

.095 .106 .19 .2 .211 .95 .974 1 .974 .947

.093 .103 .185 .195 .206 .925 .949 .974 1 .973
.09 .1 .18 .189 .2 .9 .923 .947 .973 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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S11.A = S12.A = S13.A = S11.B = S12.B = S13.B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix B p-valuematrices generated in the real-life Application 1

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .024 0 .001 .005 0 .005 .418 .001 0 0 .033 .802 .09 0 0 0
.024 0 .102 .431 .329 0 .339 .002 .399 .055 .155 0 .020 .522 .0191 0 0
0 .102 1 .372 .479 0 .433 0 .314 .821 .751 0 0 .011 .579 .01 .001

.001 .431 .372 1 .833 0 .877 0 .995 .259 .578 0 .004 .119 .131 0 0

.005 .329 .479 .833 1 0 .942 0 .879 .33 .687 0 .001 .08 .193 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

.005 .339 .433 .877 .942 0 1 0 .912 .323 .664 0 .001 .099 .169 .001 .001

.418 .002 0 0 0 0 0 1 0 0 0 .276 .609 .01 0 0 0

.001 .399 .313 .994 .879 0 .912 0 1 .274 .545 0 .002 .118 .13 .001 0
0 .055 .821 .259 .33 0 .323 0 .274 1 .577 0 0 .01 .794 .02 .002
0 .155 .751 .578 .687 0 .664 0 .545 .576 1 0 0 .0318 .365 .002 0

.033 0 0 0 0 0 0 .276 0 0 0 1 .098 0 0 0 0

.802 .02 0 .004 .001 0 .001 .609 .002 0 0 .098 1 .063 0 0 0
.09 .522 .011 .119 .08 0 .099 .011 .118 .01 .032 0 .063 1 0 0 0
0 .002 .579 .131 .193 0 .169 0 .129 .794 .345 0 0 0 1 .029 .008
0 0 .01 0 0 0 .001 0 .001 .02 .002 0 0 0 .029 1 .607
0 0 .001 0 0 0 .001 0 0 .002 0 0 0 0 .008 .607 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .067 0 .009 .004 0 .004 .644 .005 0 0 .094 1 .202 0 0 0
.067 1 .152 .624 .503 0 .488 .001 .609 .106 .277 0 .041 .747 .035 0 0
0 .152 1 .531 .644 0 .631 0 .541 1 .99 0 0 .032 .859 .019 .003

.009 .624 .531 1 0 1 .003 1 .379 .771 0 .235 .228 0 0

.004 .503 .644 1 1 0 1 0 1 .511 .943 0 .004 .164 .32 .004 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

.004 .488 .631 1 1 0 1 0 1 .48 .907 0 .004 .166 .284 .004 0

.644 .014 0 .003 0 0 0 1 .001 0 0 .43 .896 .044 0 0 0

.005 .609 .541 1 1 0 1 0 1 .392 .799 0 .002 .214 .229 .002 0
0 .106 1 .379 .511 0 .48 0 .392 1 .782 0 0 .023 1 .039 .021
0 .277 .99 .771 .943 0 .907 0 .799 .782 1 0 .002 .076 .592 .011 .002

.094 0 0 0 0 0 0 .43 0 0 0 1 .176 .001 0 0 0
1 .041 0 .006 .004 0 .004 .896 .002 0 .002 .176 1 .12 0 0 0

.202 .747 .032 .235 .164 0 .166 .044 .214 .023 .076 .001 .12 1 .009 0 0
0 .035 .859 .228 .32 0 .284 0 .229 1 .592 0 0 .009 1 .065 .026
0 0 .019 0 .004 0 .004 0 .002 .039 .011 0 0 0 .065 1 .863
0 0 .003 0 0 0 0 0 0 .021 .002 0 0 0 .026 .863 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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P3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .14 .001 .018 .01 0 .009 .984 .011 .001 .008 .192 1 .374 0 0 0
.140 1 .265 .89 .714 0 .73 .032 .868 .221 .437 .001 .09 1 .076 0 0
.001 .265 1 .782 .959 0 .905 .001 .767 1 1 0 .077 1 .051 .011
.018 .89 .782 1 1 0 1 .003 1 .599 1 0 .024 .434 .405 .002 0
.01 .714 .959 1 1 0 1 0 1 .746 1 0 .007 .31 .551 .004 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

.009 .73 .905 1 1 0 1 .001 1 .699 1 0 .004 .312 .506 .008 .001

.984 .032 .001 .003 0 0 .001 1 .003 0 0 .75 1 .106 0 0 0

.011 .868 .767 1 1 0 1 .003 1 .605 1 0 .01 .382 .417 .002 0

.001 .221 1 .599 .746 0 .699 0 .605 1 1 0 0 .037 1 .1 .035

.008 .437 1 1 1 0 1 0 1 1 1 0 .001 .15 .861 .023 .004

.192 .001 0 0 0 0 0 .75 0 0 0 1 .392 .002 0 0 0
1.001 .09 .003 .024 .007 0 .004 1 .01 0 .001 .392 1 .275 0 0 0
.374 1 .077 .434 .31 0 .312 .106 .382 .037 .15 .002 .275 1 .006 0 0
0 .076 1 .405 .551 0 .506 0 .417 1 .861 0 0 .006 1 .132 .049
0 0 .051 .002 .004 0 .008 0 .002 .1 .023 0 0 0 .132 1 1
0 0 .011 0 0 0 .001 0 0 .035 .004 0 0 0 .049 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix C p-valuematrices generated in the real-life Application 2

R1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 .006 0 .18 0 .004 .128 .007 0 .077 0 0 0 .873 .007 .187 0
0 1 .051 .319 .042 .02 0 0 .112 0 .006 .106 .059 .78 0 0 0 .048

.006 .051 1 .026 .066 .073 0 .02 .011 0 .017 .255 .22 .057 .004 0 .02 .279
0 .319 .026 1 .128 .002 0 .035 .426 0 .061 .061 .022 .187 0 0 .007 .004

.18 .042 .066 .128 1 0 0 .76 .02 0 .202 .121 0 .039 .189 0 .132 .002
0 .02 .073 .002 0 1 0 0 0 0 0 .031 .288 .081 0 0 0 .277

.004 0 0 0 0 0 1 0 0 0 0 0 0 0 0 .692 0 0

.128 0 .02 .035 .76 0 0 1 .007 0 .084 .011 0 .004 .147 0 .039 0

.007 .112 .011 .426 .02 0 0 .007 1 0 .209 .017 .009 .042 .009 0 .046 .006
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

.077 .006 .017 .061 .202 0 0 .084 .209 0 1 .011 0 .007 .062 0 .475 0
0 .106 .255 .061 .121 .031 0 .011 .017 0 .011 1 .061 .132 0 0 0 .044
0 .059 .22 .022 0 .288 0 0 .009 0 0 .061 1 .172 0 0 0 .815
0 .78 .057 .187 .039 .081 0 .004 .042 0 .007 .132 .172 1 0 0 .002 .101

.873 0 .004 0 .189 0 0 .147 .009 0 .062 0 0 0 1 0 .198 0

.007 0 0 0 0 0 .692 0 0 0 0 0 0 0 0 1 0 0

.187 0 .02 .007 .132 0 0 .039 .046 0 .475 0 0 .002 .198 0 1 0
0 .048 .279 .004 .002 .277 0 0 .006 0 0 .044 .815 .101 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .002 .017 .033 .623 0 .061 .788 .07 0 .455 .018 0 .004 1 .048 .818 0
.002 1 .126 1 .305 .243 0 .049 .516 0 .071 .362 .392 1 .002 0 .013 .263
.017 .126 1 .08 .247 .133 0 .157 .048 0 .124 .463 .439 .157 .027 .001 .077 .459
.033 1 .08 1 .286 .026 0 .164 .817 0 .476 .218 .097 .833 .022 0 .162 .057
.623 .305 .247 .286 1 .008 .002 1 .109 0 .447 .543 .033 .21 .645 .002 .301 .02
0 .243 .133 .026 .008 1 0 0 .002 0 0 .228 .57 .447 0 0 0 .512

.061 0 0 0 .002 0 1 0 0 0 0 0 0 0 .017 1 0 0

.788 .049 .157 .164 1 0 0 1 .023 0 .336 .227 .002 .038 .639 0 .174 .002
.07 .516 .048 .817 .109 .002 0 .023 1 0 .476 .043 .04 .384 .039 0 .395 .015
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

.455 .071 .124 .476 .447 0 0 .336 .476 0 1 .24 .003 .05 .467 0 1 .002

.018 .362 .463 .218 .543 .228 0 .227 .043 0 .24 1 .364 .382 .008 0 .045 .263
0 .392 .439 .097 .033 .57 0 .002 .04 0 .003 .364 1 .549 0 0 .002 1

.004 1 .157 .833 .21 .447 0 .038 .384 0 .05 .382 .549 1 0 0 .01 .43
1 .002 .027 .022 .645 0 .017 .639 .039 0 .467 .008 0 0 1 .017 .95 0

.048 0 .001 0 .002 0 1 0 0 0 0 0 0 0 .017 1 0 0

.818 .013 .077 .162 .301 0 0 .174 .395 0 1 .045 .002 .01 .95 0 1 0
0 .263 .459 .057 .02 .512 0 .002 .015 0 .002 .263 1 .43 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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R3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .047 .161 .247 1 .001 .366 1 .399 0 1 .207 .001 .037 1 .27 1 .003
.047 1 .281 1 .843 1 0 .739 .978 0 .673 .88 .98 1 .037 0 .233 .906
.161 .281 1 .202 .744 .296 .002 .589 .08 0 .278 .757 .678 .263 .156 .002 .219 .734
.247 1 .202 1 .59 .304 0 .487 1 0 1 .541 .571 1 .218 0 .944 .381
1 .843 .744 .59 1 .106 .02 1 .219 0 .852 1 .214 .851 .997 .023 .636 .153

.001 1 .296 .304 .106 1 0 .01 .07 0 .006 .892 .986 1 0 0 0 .933

.366 0 .002 0 .02 0 1 .005 0 0 0 0 0 0 .202 1 0 0
1 .739 .589 .487 1 .01 .005 1 .097 0 .911 1 .061 .467 1 .006 .602 .033

.399 .978 .08 1 .219 .07 0 .097 1 0 .948 .17 .245 .984 .401 0 1 .158
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 .673 .278 1 .852 .006 0 .911 .948 0 1 .892 .053 .443 1 .001 1 .036

.207 .88 .757 .541 1 .892 0 1 .17 0 .892 1 1 .868 .203 0 .58 .998

.001 .98 .678 .571 .214 .986 0 .061 .245 0 .053 1 1 .98 .004 0 .019 1

.037 1 .263 1 .851 1 0 .467 .984 0 .443 .868 .98 1 .02 0 .141 .911
1 .037 .156 .218 .997 0 .202 1 .401 0 1 .203 .004 .02 1 .156 1 .001

.27 0 .002 0 .023 0 1 .006 0 0 .001 0 0 0 .156 1 .002 0
1 .233 .219 .944 .636 0 0 .602 1 0 1 .58 .019 .141 1 .002 1 .006

.003 .906 .734 .381 .153 .933 0 .033 .158 0 .036 .998 1 .911 .001 0 .006 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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