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Abstract: Infrared thermography is a widely used technology that has been successfully applied
to many and varied applications. These applications include the use as a non-destructive testing
tool to assess the integrity state of materials. The current level of development of this application
is high and its effectiveness is widely verified. There are application protocols and methodologies
that have demonstrated a high capacity to extract relevant information from the captured thermal
signals and guarantee the detection of anomalies in the inspected materials. However, there is still
room for improvement in certain aspects, such as the increase of the detection capacity and the
definition of a detailed characterization procedure of indications, that must be investigated further to
reduce uncertainties and optimize this technology. In this work, an innovative thermographic data
analysis methodology is proposed that extracts a greater amount of information from the recorded
sequences by applying advanced processing techniques to the results. The extracted information is
synthesized into three channels that may be represented through real color images and processed
by quaternion algebra techniques to improve the detection level and facilitate the classification of
defects. To validate the proposed methodology, synthetic data and actual experimental sequences
have been analyzed. Seven different definitions of signal-to-noise ratio (SNR) have been used to
assess the increment in the detection capacity, and a generalized application procedure has been
proposed to extend their use to color images. The results verify the capacity of this methodology,
showing significant increments in the SNR compared to conventional processing techniques in
thermographic NDT.

Keywords: infrared thermography; non-destructive testing; processing technique; dimensionality
reduction; colorization; quaternion

1. Introduction

Infrared Thermography (IRT) is among the latest developed Non-destructive Testing
(NDT) techniques that are currently undergoing significant advances and seem to still
have a wide margin for improvement. It also stands out for its great versatility and
speed of inspection [1]. Infrared thermography is a technology that enables temperature
measurements of objects through the relationship between their temperature and the
thermal radiation they emit. IRT measures thermal radiation in the infrared spectral range,
at distance and without contact with the object being measured [2]. Currently, there are
numerous IRT applications, most of them being passive, such as detection of failures in
electrical systems, wear on rotating machines and monitoring of terrestrial climate from
satellites, among others [3–6]. On the contrary, the application of IRT as an NDT technique
is an active application, i.e., it requires a controlled thermal stimulation to be applied to the
material under inspection. Its operating principle is based on the analysis of the internal
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heat flows produced in the inspected objects and the effects on the thermal radiation
they emit.

Infrared imaging technology has evolved rapidly in the recent years. From the earliest
experiments with “calorific rays” detector materials carried out by Herschel in 1800 [7] to
the present, infrared (IR) sensors have been developed extensively, from thermal devices
equipped with scanning systems to modern photonic sensors arranged in focal plane arrays
and thermal cameras for smartphones [8,9]. Thermal stimulation techniques for infrared
thermographic NDT have also evolved over time, so the use of some of these techniques is
currently well established [10]. These technological advances together with the decrease of
manufacturing costs have stimulated the rapid expansion of IRT technology, including its
application as NDT technique, which currently provides high levels of defect detection.
However, in addition to infrared sensors and thermal stimulation systems, the IRT NDT
technique also requires an efficient and precise methodology for the analysis of the results
that ensures the correct characterization of the detected indications and enables the accurate
determination of key parameters such as the size of the detected defects, the depth at which
they are found and their nature [11,12].

Infrared thermography is a technology of proven effectiveness for its application as
NDT technique; however, one of its main limitations is the lack of a general criterion to
correctly characterize the detected defects. Numerous analysis methodologies based on
different data processing techniques are available presently, but generally the characteris-
tics of the detected defects that they produce depend on many factors, such as their nature
and depth, so the same result may correspond to different fault conditions [13,14]. Further-
more, each processing technique provides higher detection capacity for different faults,
and different processing techniques show each defect by different signal characteristics.
This situation makes the experience and skill of the inspector decisive in the analysis stage
and reveals a high dependency on the human factor.

This study was conducted to deal with these limitations, with the objective of advanc-
ing in the definition of the correct protocol for defects characterization, improving at the
same time the detection capacity of IRT NDT. For this purpose an innovative processing
methodology is proposed, which makes use of colorization techniques to enhance the
information gathered in the original thermographic sequences.

Thermographic images are intrinsically monochromatic since IR sensors provide
intensity values, commonly digitized to 14-bit data by an A/D converter after the capture
stage, which correspond to the radiation levels received from the measuring point within
their sensitive spectral range. Depending on the type of sensor, different spatial resolution
may be available in the measurements, but each pixel will always provide a scalar value
over time. Therefore, thermographic images are naturally represented through intensity
images by means of grayscale images and false color images, adapting the measured
radiometric values to the desired dynamic range for correct visualization.

Several studies have investigated color thermographic images to process IRT NDT data
and improve the defect detection efficiency of the technique. There are two general research
lines related to color thermographic images. In one line, authors apply colormaps to the
raw thermographic signals to produce false color thermographic images and then apply
conventional color image processing techniques to extract information of interest. The
authors in [15] take the values contained in the red channel of the false color thermographic
images produced by the camera software and use it as indicator of hot areas for defects
location. In this case, any other colormap with a different red color values distribution
would provide different results. The authors in [16,17] apply a color space transformation
to the original false color thermographic images to process the thermographic values in the
HSI and HSV color spaces. The hue is considered the key information for segmentation
and defect detection, but this magnitude is dependent on the colormap so different hue
distributions provide different results.

This analysis approach degrades the original information, drastically reducing the
quantity and quality of the information available in the analysis since the raw signal is
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arbitrary split into three color ranges that depend on the specific colormap being used.
The results obtained in these studies are outperformed by processing the raw intensity IR
images with grayscale processing methods such as image filtering and contrast adjustment.
The results produced are ad-hoc and dependent on the choice of the colormap to transform
the original intensity signals to produce the three channel color images. However, very few
of these studies indicate the colormap used in the analysis.

In the other line of research related to color thermographic images, authors take
advantage of the higher capacity to store information provided by the 3 channels in true
color images to include independent information and make the results more informative.
The true color channels are used as holders where information obtained from different
processing techniques applied to the original IR data are deposited. The initial precursor
of this research line was Roche et al. in [18,19] where the channels of the RGB color space
were included with the coefficients obtained from the application of the well-known Ther-
mographic Signal Reconstruction (TSR) algorithm to produce a better characterization of
defects by the resulting colors. Afterwards, Balageas et al. in [20] validated the RGB projec-
tion methodology for results obtained from different conventional processing algorithms
used in IRT NDT such as spectral analysis, principal components analysis or higher order
statistics, among others. More recently, Venegas et al. in [21] proposed a series of RGB
channels selection criteria to make the color generation process objective and generalize
the application procedure to any processing algorithm.

The current study advances this second line of research for colorization of thermo-
graphic images. As with previous cases, this work is based on the RGB color space to
include information in the available channels, but on the contrary, an innovative approach
is applied to produce the RGB sequence, which is subsequently processed by quaternion
analysis to enhance the detection ability. The results obtained by applying different quater-
nion algebra techniques are evaluated by several metrics demonstrating they outperform
the current state of the art.

2. Background on Thermographic NDT Processing Techniques

Among the processing algorithms most widely used in thermographic applications,
the following ones may be mentioned.

Thermographic Signal Reconstruction (TSR)

Thermographic signal reconstruction is a processing technique widely used in IRT
NDT for enhancing detection of defects and filtering noise [22,23]. The application pro-
cedure consists of several steps including the logarithmic transformation of the captured
data, the interpolation at early stages and the polynomial fitting, among others. The poly-
nomial fitting stage consists of fitting the temperature-time history of each pixel to an
n-degree polynomial through the expression (1), where ∆T is the temperature variation,
t is the time variable and ai are the fitting coefficients. The resulting polynomial is dif-
ferentiated to produce an increase in the signal-to-noise (SNR) compared to the original
thermographic sequence.

ln(∆T) = an[ln(t)]
n + an−1[ln(t)]

n−1 + · · ·+ a1ln(t) + a0 (1)

Spectral Analysis

This processing algorithm consists of applying the Fourier Transform (FT) to the raw
thermographic data sequence [24]. The IRT sequence is transformed from time to frequency
domain by the relation (2), where Fn is the nth complex Fourier coefficient with Ren and
Imn as real and imaginary parts respectively, T is the temperature value of each pixel and
N is the total number of elements in the time sequence.

Fn =
N−1

∑
k=1

T(k)e
(2πikn)

N = Ren + Imn (2)
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Principal Component Analysis (PCA)

Principal component analysis is a common technique used to synthesize data of high
dimensionality. It is a classical multivariate analysis technique useful for data compression
and detection of linear relationships based on the second order statistics of the initial
data [25]. PCA is performed with thermographic data by the singular value decomposition
of the temperature-time sequence of each pixel according to the relation:

Ap = UT
S A (3)

where U is the eigenvector matrix, A is the initial matrix and Ap is the final result taking
into account the first s principal components whose quantity could be selected based on
the desired amount of the variance proportion retained in the s eigenvalues.

Partial Least Squares Regression (PLSR)

Partial least squares regression is a processing technique based on the decomposition of
the thermographic data sequence into a set of latent variables. The bilinear decomposition
of the temperature-time sequence matrix and the observation time matrix produces a
new set of thermal images and observation time vector of latent variables that consider
only the most important variations [26]. PLS regression method is applied to IRT data by
the expression:

X = TPT + E (4)

Y = TQT + F (5)

where X is the thermal sequence, Y is the time series, T is the scores matrix, P and Q are
the loadings matrices and E and F are the residuals matrices.

Higher Order Statistics (HOS)

The calculation of the higher order statistical moments of the surface temperature
distribution in thermographic NDT is a processing approach that provides a mapping
of the surface temperature evolution through a unique image built with these statistical
values [27]. The most efficient moments for IRT NDT applications were demonstrated to
be the standardized central moments calculated by:

Mn =
E[(X− E[X])n]

σn (6)

where E[X] is the mean value of the distribution, σ is the standard deviation and n is the
order of the moment.

Polynomial Fitting

In this study, TSR was not applied but only the polynomial fitting stage was performed
for data processing. The other stages of TSR were not applied because of the lower
effectiveness when using step heating, the particular thermal stimulation used in this study.
Contrary to TSR, polynomial fitting is applied to the original thermal data represented in
linear scale and is conducted by the expression (7), where T is the temperature values, t is
the time independent variable and ai are the fitting coefficients. The resulting polynomial is
differentiated to produce successive derivatives with increased signal-to-noise ratio (SNR)
values, reducing noise contents.

T(t) = antn + an−1tn−1 + · · ·+ a1t + a0 (7)

3. Proposed Approach
3.1. Foundation of the Proposed Methodology

The proposed methodology consists of two stages (Figure 1). The first stage applies
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a novel method called Thermographic Colorization by Computational Synthesis (TCCS),
whose main purpose is to extract a large amount of relevant information from NDT
thermographic inspections and synthesize it in a single-color video sequence. The hue and
saturation characteristics of color images offer greater information synthesis capacity than
conventional grayscale images, which capture only information about the intensity levels.
The proposed TCCS method synthesizes in only three channels the information contained in
a series of thermographic sequences obtained from different polynomial approaches, using
dimensionality reduction techniques, so that synthesized information may be represented
through color scale images. The second stage of the proposed methodology applies
quaternionic algebra operations to the produced color images to optimize the visualization
and characterization of the detected defects.

POLYNOMIAL FITTING
GRADES: 3-22

QUATERNION 
PROCESSING

THERMOGRAPHIC TEST

DIMENSIONALITY 
REDUCTION

GAUSSIAN KPCA

Q FOURIER Q PCA

Q FILTER

INSPECTION RESULTS INSPECTION RESULTSINSPECTION RESULTS

STAGE 1

STAGE 2

Figure 1. Methodology followed in the proposed quaternionic NDT thermography.

The motivation to develop the TCCS method arises from a limitation detected in TSR
and polynomial fitting techniques. These processing techniques approximate the original
thermographic signal using a low-degree polynomial, generally between 6 and 8 [23,28],
and consider that this unique polynomial represents the best approximation for the thermal
evolution of all the observed elements, both defects and internal structure of the material
and healthy areas. However, it was verified in previous studies that the degree of the
polynomial approximation that produces the highest detection levels is not always the
same, and the optimal fitting degree does not guarantee the visualization of all the detected
defects [18,21,29]. Furthermore, it was shown in [21] that different degrees of polynomial
approximation enable the detection of different defects.

3.2. Description of the Colorization Procedure

The proposed method of thermographic colorization seeks to calculate P polynomials
of different degrees for each one that approximate the original thermal sequence. The infor-
mation contained in these approximations are then synthesized in a reduced number of
sequences using dimensionality reduction techniques. In this study, several reduction tech-
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niques have been analyzed, including PCA, Kernel principal component analysis (KPCA),
independent component analysis (ICA) and minimum noise fraction (MNF).

The dimensionality reduction process is applied to each group of P images that is
obtained by selecting the frame in the same position from the P calculated polynomial
approximations. This process is carried out for all the frame positions so that a sequence
of N color images is available after the reduction procedure, where each color image
synthesizes in three channels the information contained in the P approaches initially
generated for each frame (Figure 2).

N fra
mes

P sequences

DIM
ENSIONALITY REDUCTION

R G B

3 sequences

N fra
mes

Figure 2. Dimension reduction scheme applied with the proposed colorization method.

Each of the dimensionality reduction techniques reconstructs the original data in a new
space based on a different principle. The PCA and KPCA techniques optimize the variance
of the input data, the MNF technique optimizes the SNR and the ICA technique uses the
principle of independence (measured by the entropy parameter in this study) to project the
original data into the new space. After the application of each of these techniques, a new
sequence is obtained with the same number of images as the initial sequence but with new
features characteristic of the applied reduction technique.

To complete the proposed colorization process and produce a color image from each
frame, three images must be selected from each reconstructed sequence. The most intuitive
criterion for selecting the three images with the greatest relevance and informative content
is to choose the three images that maximize the dimensional reduction principles applied
by each technique, i.e., the variance, the SNR and the entropy. According to this criterion,
for the cases of PCA, KPCA and MNF, the first three components are selected, since they are
techniques that sort the results in decreasing order of the parameter used, while in the case
of ICA, the entropy parameter must be evaluated in the results obtained and then select
the three components with higher values, since this technique does not sort the results in
the application process.

3.3. Description of the Quaternion Processing

The results obtained after applying the dimensionality reduction techniques are color
image sequences, where each color image is made up of a triplet of single-channel images.
These single-channel images collect a large amount of information from the original P
polynomial approximations based on a reduction technique used in the process. It has been
verified in previous studies that, in general, the color images generated from thermographic
results lose contrast, and defects that can be seen in the individual channels may be hidden,
due to the lower capacity of human vision to perceive variations of certain shades of color
than gray scales [21]. On the contrary, human perception is more effective with specific
color levels that with intensity gray levels.

Applying image processing to these color images, substantially improves the visual-
ization of the results. Color images can be processed using grayscale imaging techniques
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applied to each channel individually or specific color imaging techniques applied to the
three channels jointly (Figure 3a), but these procedures are sometimes inefficient and un-
able to perform advanced mathematical operations. Quaternion analysis was used instead
in this study to carry out the processing of the color images.

A quaternion q is an element of the 4D normed algebra over R, denoted by H, with the
base {1, i, j, k}.

H = {q = q01 + q1i + q2j + q3k with q0, q1, q2, q3 ∈ R}

where q0, q1, q2 and q3 are real coefficients, and i, j and k are imaginary operators that
satisfy the following multiplication rules:

i2 = j2 = k2

ij = −ji = k

ki = −ik = j

jk = −kj = i

The components of a pixel in a color image expressed in RGB space can be represented
in quaternion form using pure quaternions [30], where the three imaginary parts are used
to represent the color components: Red, Green and Blue (Figure 3b). Each pixel at (x,y)
coordinates of an RGB image can be expressed as

q(x, y) = r(x, y)i + g(x, y)j + b(x, y)k (8)

where r(x, y), g(x, y) and b(x, y) are the red, green, and blue components, respectively.
Subsequently, color image processing based on quaternion operations is applied, which

improves the efficiency of the processing of individual channels and allows operations that
cannot be applied to the channels individually or jointly by conventional techniques.

B

R
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µ gr
ayq

ref

Hue
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e

Saturation

O

i

j

k

(a)

B

R

G

k

j

i

q=(ri+gj+bk)

q

(b)

Figure 3. Color image processing: (a) quaternionic relationships between RGB and HSV color spaces, (b) geometric
representation of a color by quaternions.

The quaternion analysis techniques that have been applied in this study are Fourier
quaternion analysis, quaternion principal component analysis, and quaternion image
filtering for color edge detection. Color image filtering has also been applied for smoothing
and enhancing, which produces the same results as applying the filtering individually to
each channel but improves the efficiency of processing when applied to the three channels
at the same time.
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Discrete Quaternion Fourier Transform (DQFT)

The definition of Fourier transform has been extended to quaternion analysis based
on the operations of multiplication and exponentiation of quaternions [31,32]. As a con-
sequence of the non-commutativity of the quaternion product, there are three different
definitions of the discrete quaternion Fourier transform. The expressions for each of the
definitions are shown below.
Two-sided DQFT:

FL−R(u, v) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

e−µ2π xu
M f (x, y)e−µ2π

yv
N (9)

Left-sided DQFT:

FL(u, v) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

e−µ2π( xu
M +

yv
N ) f (x, y) (10)

Right-sided DQFT:

FR(u, v) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−µ2π( xu
M +

yv
N ) (11)

where f is a quaternionic function defined on a set of spatial coordinates (x, y) ∈ R2, F
is the DQFT defined over a set of frequency coordinates (u, v) ∈ R2, and µ is a pure unit
quaternion that determines a direction in space. It is common in color image processing to
choose the direction coinciding with the luminance axis or gray axis. (r = g = b).

The results produced by each of the definitions of the DQFT are different. However,
for practical NDT visualization and detection purposes, the results of the different transfor-
mations are qualitatively similar. In this study, the definition of the left-sided DQFT has
been used without loss of generality in the final results.

Quaternion Principal Components Analysis (QPCA)

Quaternion extensions of various classical techniques have been developed, such as
principal component analysis, which provide methods for the processing of color images
taking into account their particular characteristics through quaternion analysis [33].

There are two different types of eigenvalue problem associated with quaternions
due to the non-commutativity of the quaternion product. Given a quaternion matrix
M ∈ HN×N the left eigenvalues λl and the right eigenvalues λr can be determined.

This study has been limited to the problem of right eigenvalues due to theoretical
limitations related to left eigenvalues, which do not seem to be fully resolved [34].

Any quaternion matrix M ∈ HN×N can be decomposed as

M = WDW∗ (12)

where W ∈ HN×N is a unitary matrix, i.e., W∗W = WW∗ = 1, containing the eigenvectors
of M, and D ∈ CN×N is an upper triangular matrix with the diagonal containing the
eigenvalues. W∗ is the quaternion conjugate of W, where given a quaternion q = q01 +
q1i + q2j + q3k its quaternion conjugate is q∗ = q01− q1i− q2j− q3k. If M is a Hermitian
matrix, i.e., M = M∗, then its eigenvalues are real (D ∈ RN×N). Every N × N quaternion
matrix has exactly N complex right eigenvalues with non-negative imaginary part, but can
have infinite eigenvalues since q−1λq is also eigenvalue.

Given a color image of size N×M, represented by a matrix Q ∈ HN×M, the quaternion
principal component analysis consists of decomposing the mean covariance matrix of a
color image C as

C = WDW∗ (13)
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The mean covariance matrix is obtained by the mean value of the covariance matrices
calculated for each column qi in the input matrix Q, which is considered the maximum
likelihood estimator of the covariance matrices for quaternionic matrices. It can be verified
that the matrix C is quaternionic Hermitian and, therefore, the coefficients on the diagonal
of D are real values. After diagonalizing the covariance matrix, the new image Y of
principal components is obtained by transforming each column of the original image Q to
the new base through the expression

yi = WTqi (14)

Quaternion spatial convolution

The spatial convolution technique has also been extended to quaternions, with differ-
ent definitions because of the non-commutativity of quaternion multiplication. The defini-
tion used in this study, widely used in color image processing, indicates that convolution
in a quaternionic color image Q ∈ HN×M can be expressed as

Q f ilt(x, y) =
n

∑
τ1=−n

m

∑
τ2=−m

hl(τ1, τ2)Q((x− τ1)(y− τ2))hr(τ1, τ2) (15)

where hl and hr are two conjugated filters of dimension N ×M with N = 2n + 1 ∈ N and
M = 2m + 1 ∈ N.

A series of color edge detectors have been developed from this definition of convolu-
tion [35]. These methods use two conjugate filters hl and hr that produce a rotation of an
angle π around the gray axis at each pixel and compare its value with neighboring pixels.

The edge detection filter used in this study, composed of a pair of conjugate filters, is
defined as follows:

hl =

 1 1 1
0 0 0
q q q

 and hr =

 1 1 1
0 0 0
q∗ q∗ q∗

 (16)

where the q value is calculated as q = eµ π
2 , being µ = µgris =

i+j+k√
3

the grayscale axis.

3.4. Description of the Evaluation Metrics

The quality of the signals generated, processed or measured is a fundamental re-
quirement in all engineering disciplines. Engineers and researchers characterize signals
quantitatively to assess the quality of equipment and processes, and to act accordingly.
For this purpose, a large number of signal quality metrics have been developed [36,37].

To control the quality of the images and to be able to maintain it, and even improve
it, it is necessary to measure the quality in each of the stages they go through. Presently,
Image Quality Assessment (IQA) is of great importance in visual communication and is
essential for most image processing applications.

In general, image quality metrics can be classified into subjective and objective. Sub-
jective metrics present important practical limitations, mainly due to the high degree of
variability of the response to certain factors. Among the different options available in objec-
tive evaluation, there are scalar metrics, which include bivariate measures such as the mean
square error and the Lp norm, metrics that try to imitate the human visual system such as
the Human Visual System (HVS), and also graphic metrics. Within objective evaluation,
pixel-based techniques, such as Mean Square Error (MSE), Root Mean Square Error (RMSE),
and signal-to-noise ratio (SNR), are widely applied due to its simple calculation method-
ology. In general, these metrics are defined only for monochromatic images, discarding
information related to color.

The physical meaning of the SNR metric depends on the magnitudes involved.
The general purpose of the SNR is to compare the level of a desired signal to the level
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of the background noise, and is often calculated in decibel scales for magnitudes with
wide dynamic range [13,38]. The following definitions for SNR have been used in this
study to evaluate the performance of the proposed analysis methodology and compare it
to conventional processing algorithms [13]:

SNR1 =
µS
σN

(17)

SNR2 =
|µS − µN |

σN
(18)

SNR3 = 10 log10
|µS − µN |2

σ2
N

(19)

SNR4 =
σS
σN

(20)

SNR5 =
σ2

S
σ2

N
(21)

SNR6 = 10 log10

(
σ2

S
σ2

N

)
(22)

SNR7 =
|µS − µN |√
(σ2

S + σ2
N)/2

(23)

where σS is the standard deviation of the signal in the defect region of the image, σN is the
standard deviation of the noise in the reference or sound region of the image, µN is the
mean level of the noise in the reference or sound region of the image and µS is the mean
level of the signal in the defect region of the image.

4. Results
4.1. Data Used in the Evaluation

Computationally generated thermal data has been used in the first analysis stage of
this study, in order to avoid the influence of imperfections inherent to real situations on the
behavior of the analyzed methods. The absence of effects related to the noise produced by
the IR sensor, the heterogeneities of the stimulation on the surface of the inspected objects
and the uncertainties about the characteristics of the base material and the defects, enables
the analysis of the fundamental characteristics of the developed methods and to determine
their characterization capabilities.

The generation of synthetic data has been carried out by simulating an ideal thermo-
graphic NDT test. The equation that governs the heat transfer process conducted in NDT
thermographic inspections has been defined by means of a heterogeneous 3D isotropic
thermal diffusion model and the consideration of a series of simplifying hypotheses, such
as opaque, heterogeneous and isotropic material, with thermophysical properties inde-
pendent of temperature, no internal heat sources, and incident energy being diffuse and
homogeneously distributed along the external surface. This model is mathematically
represented by Equation (24).
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∂T(x, t)
∂t

−∇ · (α(x)∇T(x, t)) = F(x, t) (24)

x ∈ R3 , t ≥ 0 , α(x) ∈ R+

where T is the temperature at each material point, α is the thermal diffusivity of the material
α = k/(ρcp), k is the thermal conductivity, ρ is the density of the material, cp is the specific
heat at constant pressure and F represents the heat sources. The Equation (24) states the
balance among the heat generated inside the material (F(x, t)), the net heat flux in the
material (ρ(x)cp(x)∂T(x, t)/∂t) and the heat stored inside the material (∇ · (k(x)∇T(x, t))).

The type of material modeled consisted of a Carbon Fiber Reinforced Polymer (CFRP).
This is a composite material with excellent mechanical properties and relationship between
resistance and weight, widely used in the aeronautical industry. The sample consisted
of several layers with the fibers oriented in a specific direction, stacked and bonded
by an epoxy resin. The thermal characteristics of this material were modeled by three
different values of thermal diffusivity, one for each coordinate axis. These diffusivity
values have been estimated as the mean value of the data obtained from various biblio-
graphic sources [39,40], so that the values finally used have been αx = 7.0± 2 · 10−7 m2/s,
αy = 3.5± 2 · 10−7 m2/s and αz = 1.0± 0.3 · 10−6 m2/s. This sample was designed with
18 internal defects of sizes 10× 10 mm2 and 5× 5 mm2 located at different depths from
1 mm to 9 mm (Figure 4a). These defects were modeled with thermal properties simu-
lating delaminations with α = 1.25± 2 · 107 m2/s. This diffusivity value corresponds to
Polytetrafluoroethylene (PTFE), whose use to simulate delaminations is widespread.
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Figure 4. Modeled NDT thermographic inspections: (a) position of defects with depth indicated numerically [mm], (b)
thermal stimulation considered in the model, (c) scaled temperature values obtained with the theoretical model in absence
of noise after 5 s in the heating process , (d) scaled temperature values obtained with the theoretical model in the presence
of noise after 5 s in the heating process.

Optical Step Heating Thermography (OSHT) has been modeled for experimental
capacity reasons. The stimulation conditions simulated a constant heating of the inspected



Appl. Sci. 2021, 11, 790 12 of 24

sample, applied to its external surface by means of halogen lamps, generating a heat
flow into the material (Figure 4b). The thermal stimulation has been applied for 10 s,
homogeneously distributed over the entire external surface with an energy of F = 1.5 K/s.
This value was previously estimated experimentally through laboratory tests.

The spatial and temporal evolution of temperature has been calculated from (24) by
programming an algorithm for numerical resolution by finite differences and considering
representative parameters of NDT thermographic inspections and the inspected material
(Figure 4c). The theoretical thermal evolution was corrupted with noise to obtain data
closer to real conditions. It was demonstrated in previous studies that the noise affecting
IR sensors can be modeled by Gaussian white noise [41,42], so this was the type of noise
used to approximate the theoretical data to actual experimental situations (Figure 4d).

The next stage in the analysis of the proposed methods has been carried out by using
data collected from experimental tests performed in the laboratory. OSHT inspections
have been conducted using two 1000 W halogen lamps at 80% of their capacity. The lamps
heated the material under inspection for 10 s and both the heating and the cooling phases
were recorded, making a total inspection time of 20 s. Infrared images have been acquired
with a FLIR SC5500 model and a front face test setup (Figure 5a). A slight deviation was
applied in the perpendicular orientation of the camera with respect to the inspected sample
to avoid reflections of the sensor itself on the surface of the material. The sample used
in the experimental analysis was made in a sandwich structure of composite material
with 1 mm thick skins and 5 mm thick foam core. The defects intentionally introduced in
this sample were small sheets of PTFE of sizes 10× 10 mm2, 5× 5 mm2, 5× 3 mm2 and
3× 3 mm2. The defects were located at two different depths, under 1 mm skin and under
1 mm skin and additional 0.1 mm adhesive layer (Figure 5b). For repeatability analysis,
two defects of each size were set at each depth. The emissivity of this sample was estimated
experimentally as 0.91.

  120 cm  

 90 cm 

 90 cm 

35°

35° 
  

(a)

1mm

0.1mm

5mm

ENERGY

(b)

Figure 5. Experimental NDT thermographic inspections: (a) setup of the laboratory tests, (b) depth
of defects in the inspected material.

4.2. Results in the Colorization Procedure

The first stage in the evaluation of the proposed colorization techniques has consisted
of calculating the polynomial approximations of the original sequence of computationally
generated data. A total of 20 polynomial approximations have been calculated for degrees
3 to 22. No approximations of a degree lower than 3 have been calculated due to the high
inaccuracy of the approximation obtained, nor have approximations been calculated for
degrees greater than 22 because they do not provide additional information regarding
approximations of lower degrees.

After calculating the approximation data, dimensionality reduction techniques have
been applied to the generated sequence to obtain a new sequence of color images with syn-
thesized information. Finally, Quaternion Fourier Transformation (QFT) and Quaternion
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Principal Component Analysis have been applied to the synthesized sequences, and the
resulting images have been processed by quaternionic filtering to optimize the visualization
of the detections.

Several reduction techniques have been analyzed, including PCA, KPCA, ICA and
MNF. The parameters used for PCA and MNF are defined by the mathematical method
itself. On the other hand, the kurtosis metric has been used in the ICA analysis, and kernels
with standard deviation values of 0.01, 0.05, 0.1, 0.5, 1 and 5 have been used in the Gaussian
KPCA. The computational algorithms for the application of these reduction methods have
been programmed in MATLAB with the support of the hyperspectral analysis package [43].

The different techniques have been applied to the original sequence of synthetic
data, obtaining the corresponding processed sequences. It was found that the reduction
technique that produced the best results, being able to synthesize the greatest amount of
relevant information in 3 images, was the KPCA technique, followed by the MNF, PCA
and ICA technique, respectively. Some representative results obtained with the different
colorization techniques are shown in Figure 6.

(a) (b)

(c) (d)

Figure 6. RGB images obtained by the projection of the results produced with the different dimen-
sionality reduction techniques at the instant 5 s in the thermal sequence: (a) ICA, (b) PCA, (c) MNF,
(d) KPCA.

In general, and as can be seen in Figure 6, the results provided by the ICA and
PCA reduction techniques produce a visualization of different defects using different
color ranges, but on the contrary, these two techniques collect large amount of noise in
the results, hiding defects that are visible by other reduction techniques (Figure 6a,b).
The MNF technique significantly filters the noise level of the images; however, this filtering
is produced at the expense of an important reduction in the signal value of defects, obtaining
reduced detection levels (Figure 6c). Finally, the KPCA technique produces satisfactory
results not only by reducing the noise level of the image but also by increasing the flaw
detection capacity (Figure 6d).

The reduction technique that produced the best results in terms of reducing noise
levels and improving defect detection levels was the KPCA. For this reason, it has been
chosen as the reduction technique to be applied for dimensionality reduction before the
quaternionic processing.
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4.3. Results in the Quaternion Processing

The results obtained after the dimensionality reduction process applied to the sequence
of polynomial approximations have been processed with Quaternion Fourier Transform
and Quaternion Principal Component Analysis. Subsequently, the results obtained with
the application of QFT and QPCA have been processed using quaternionic filtering to
optimize the visualization. The quaternionic processing algorithms have been programmed
in MATLAB with the additional support of the quaternion package [44]. Some of the results
obtained for each of the quaternionic processing techniques are shown below.

Quaternion Fourier analysis requires a quaternion to which apply the processing and,
in addition, it also requires a unit quaternion that defines an analysis direction. Depending
on the analysis direction, the QFT result varies. Without going into theoretical details
about the effect of the analysis direction, which is beyond the scope of the current study,
an experimental analysis of the effect it produces on the visualization of defects has been
carried out. For this purpose, 32 different directions defined by the radii of a unit sphere
have been analyzed, as shown in Figure 7a.
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Figure 7. Supporting spheres used in the optimization of the analysis directions in QFT: (a) sphere of analysis directions, (b)
sphere of calculated values for the analysis directions shown in (a), (c) sphere of SNR values for the analysis directions
shown in (a).

The values required for the calculation of the evaluation metrics, i.e., the mean values
and standard deviations of the areas occupied by the defects and the healthy reference
areas close to them, are extracted from the results obtained with the QFT processing. These
values are calculated for each of the existing defects and for each of the 3 color channels
defined by the quaternion axes. An efficient way to collect these data has consisted of
storing them using analysis directions spheres, where the calculated values are stored as
color data expressed in RGB space for each of the analyzed directions (Figure 7b). This
way, each point of the resulting sphere indicates the QFT analysis direction by its spatial
coordinates, and the corresponding calculated values for the metrics by its RGB color.

After the application of the QFT processing with the direction analysis to the different
reduced sequences, the data measured for each defect are recovered and the metrics are
calculated. The results obtained in the calculation of the metrics can be analyzed graphically
through spheres of directions where the radius of the sphere at each point coincides with
the value of the metric calculated for each analysis direction defined by the point, being
the optimal direction the one with a larger radius (Figure 7c).

Figure 8 shows some representative results obtained with the QFT technique. It was
observed that the defects that are detected are represented in different color depending
on the depth. Defects of the same type located at different depths produce different color
tones, while defects of the same type located at the same depth produce similar tones. This
behavior is observed in the results obtained with the synthetic data, where the induced
defects are of the same type and are located at different depths (Figure 8a–c, and with
the experimental specimen, which contains defects of the same type and located at the
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same depth but of different sizes (Figure 8d–f). Frequently, the QFT results that produce
the highest levels of defect detection are in the first 10% of the results in the generated
sequence. However, numerous cases have been found in which this rule is not followed.

(a) (b) (c)

(d) (e) (f)

Figure 8. Results obtained with the application of QFT processing to the sequence colorized by
Gaussian KPCA: (a) σ = 0.01, direction 15 and frame 1, (b) σ = 0.05, direction 63 and frame 7, (c)
σ = 0.5, direction 54 and frame 17, (d) σ = 5, direction 26 and frame 3, (e) σ = 5, direction 66 and
frame 1, (f) σ = 1, direction 67 and frame 12.

The application of QPCA processing requires only the quaternion being processed.
In Figure 9 some results obtained from the application of QPCA to the sequence reduced
by Gaussian KPCA are shown. Generally, the results that produce the highest levels of
detection are the frames included within the first 5 results of the processed sequence,
increasing the noise level and losing detection capacity for frames with further positions.
Results with lower noise levels lose the ability to detect most subtle defects. The results that
allow the detection of a greater number of defects, located deeper, also contain a certain
level of noise, so that in general the optimal detections do not occur in the first result.
As with QFT processing, QPCA results generate similar color tones for defects of the same
type and located at the same depth (Figure 9a–c), while defects located at different depths
generate different color tones (Figure 9d–f).

Finally, quaternionic filtering by spatial convolution (QFILT) has been applied to the
results obtained with the application of QFT and QPCA. The objective of this processing
is to enhance the edges of the defects to improve the visualization and facilitate their
location. For its application, the pair of conjugate filters defined in the Quaternion Spatial
Convolution section together with a scale factor S = 1/6 has been used to average the sum
of the 6 pixel values defined by the pair of filters. Some results obtained in this analysis
are shown in Figure 10, where the upper row corresponds to the starting results obtained
with QFT and QPCA, and the lower row corresponds to the results obtained after the
quaternionic filtering. It is observed that the edges of the defects appear colored with
different shades depending on the original color of the defect, while the internal areas
appear with colors tending to shades of gray. Additionally, the edges of the defects are not
shown with a single color but are represented with two different tones. This effect occurs
as a result of the path followed in the convolution process. In this study, the path followed
in the convolution went from top to bottom and from left to right. The change of the path
produces different tones at the edges.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Results obtained with the application of QPCA processing to the sequence colorized by
Gaussian KPCA: (a) σ = 0.1 and frame 2, (b) σ = 1 and frame 3, (c) σ = 1 and frame 3, (d) σ = 0.1
and frame 2, (e) σ = 0.1 and frame 2, (f) σ = 0.5 and frame 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Original data and final results obtained with the application of quaternionic filtering by spatial convolution to
the sequence obtained after QFT and QPCA: (a) result for QFT with direction 33 at frame 4, (b) result for QFT with direction
33 and frame 16, (c) result for QPCA at frame 2, (d) result for QPCA at frame 3, (e) result for QFILT applied to input (a), (f)
result for QFILT applied to input (b), (g) result for QFILT applied to input (c), (h) result for QFILT applied to input (d).

5. Discussion

The results obtained with the proposed colorization methodology have been compared
with conventional processing techniques, including the original sequence of thermographic
data, the approximate polynomial sequences and their first two derivatives, as well as
the principal component analysis applied to the original sequence. The metrics used to
evaluate the quality of the results produced have been the SNR in the different versions
described before. The SNR calculation procedure was automated, taking advantage of
the prior knowledge of the position of the defects, locating the measurement areas of the
defects and their corresponding healthy reference areas for each of the induced faults.
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To correctly compare data of different nature, such as the grayscale images of the
original sequence and conventional processes, and the color images of the sequences
resulting from the colorization processing, the definition for the SNR has been generalized.
The magnitude used to calculate these metrics in grayscale images is the intensity or
luminance of the image. In the case of color images represented in RGB space, this
magnitude or similar does not exist, but the RGB components are available, which do not
describe image intensity properties. To be able to compare color images with grayscale
images, it is necessary to represent the color images in a space that separates the intensity
characteristics from the characteristics exclusive to the color.

Colors can be represented in the HSV space so that the value (V), hue (H) and satu-
ration (S) of each pixel in the image are available [45]. The value component is naturally
comparable to the intensity of grayscale images, while the other two components provide
additional information unique to color images. Intuitively, it is reasonable to think that a
color image provides more information than a grayscale image as it has two additional
information channels. In this sense,

The saturation component provides extra information about the intensity of the color,
which could be related to the severity of a defect. However, the hue component is a
magnitude that does not have a defined order, so the hue value does not provide useful
information on the quality of defect detection as it cannot be compared in an orderly
manner. Due to this limitation, it was decided to discard this color space to evaluate the
results obtained in the colorization techniques. The color space that was finally used was
the Lab space [46,47].

The Lab color space (L*a*b* or CIELAB) is the color model normally used to describe
all the colors that the human eye can perceive (Figure 11). It was developed specifically
for this purpose by the Commission Internationale d’Eclairage (International Commission
on Illumination). The goal of the Lab space is to produce a color space that is more
“perceptually linear” than other color spaces, i.e., a change of the same amount in any color
value produces a visual change of the same intensity. Due to the property of perceptual
linearity of the Lab space, these parameters make it possible to quantify color variations
and relate them to flaw detection levels.
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Figure 11. Color spaces used in the study: (a) RGB space used to display color images resulting from the proposed
processing, (b) Lab space used to evaluate the results obtained.

The procedure followed to evaluate the results obtained consisted of transforming
the RGB color values (Figure 11a), obtained by means of colorization and quaternionic
processing techniques, to the Lab color space (Figure 11b). Next, the mean values and
variances of the measurement areas of each defect are calculated for each of the Lab
components (µL, µa, µb, σL, σa and σb,), and then the magnitude of the vector defined by
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these components is calculated through the expressions (25) and (26). Finally, the formulas
of the SNR metrics are applied with the obtained values µq and σq.

µq =
√

µ2
L + µ2

a + µ2
b (25)

σq =
√

σ2
L + σ2

a + σ2
b (26)

5.1. Analysis of the Results and Comparison to Common Processing Techniques

In this study, a large amount of data has been generated as a result of the analysis
of different dimensionality reduction techniques, different quaternionic data processing
techniques and the application of different SNR metrics on a total of 34 defects. The presen-
tation and discussion of the results has been simplified to show those of greater relevance.
For this, the results obtained for the dimensionality reduction techniques using Gaussian
KPCA are presented below, with the QFT, QPCA and quaternionic filtering by spatial
convolution (QFILT) processing, and the seven different SNR metrics calculated for the
synthetic defects located under 1 mm (def1), 3 mm (def2) and 5 mm (def3), and the experi-
mental defects located deeper and with larger size (def4), medium size (def5) and smaller
size (def6).

Figure 12 shows the graphical representation by bar diagrams of the maximum SNR
values obtained for the defects analyzed with the different quaternionic processing tech-
niques together with the values obtained with conventional thermographic data processing
techniques (polynomial fitting, first and second derivatives, and PCA) as well as the value
obtained with the original sequence. The y-axis values are represented in a logarithmic
scale to correctly visualize the data for all cases. The SNR values have been calculated for
the intensity data considering them as gray colors, i.e., assigning the 3 color components
the same value, equal to the value of its intensity, and applying the same procedure as for
the color data produced in the quaternionic processing.

It can be observed in Figure 12 that the ranges of the values obtained for the different
cases of SNR are very different, which means that different definitions of SNR are not
mutually comparable. In most cases, larger and more superficial defects produce higher
SNR values. It can be verified that quaternionic processing techniques produce higher
SNR values than conventional ones for all the SNR cases except for SNR7, where the
experimental defects produce maximum values for first derivative and conventional PCA.
QFT processing has provided maximum SNR values for all the synthetic defect cases,
while QPCA has provided maximum SNR values for the experimental defects. In general,
the QFILT processing does not increase the SNR with respect to QFT and QPCA, what can
be justified by the effect that this processing produces to the input data. The area inside the
defects acquires a homogeneous shade tending to gray, while the edges are highlighted
with colors. Most probably the use of another sharpness-type metric provided a more
favorable evaluation for this quaternionic processing.

Figure 13 shows the maximum SNR values obtained for the analyzed defects by
applying quaternionic processing to the different cases of dimensionality reduction by
Gaussian KPCA. The y-axis values are represented in a logarithmic scale to correctly
visualize the data for all cases. It is verified again that the ranges of values obtained for the
different cases of SNR are very different, which means that different definitions of SNR are
not mutually comparable.
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Figure 12. Maximum SNR values obtained with the proposed quaternion processing techniques and
the conventional thermographic processing techniques: (a) SNR1, (b) SNR2, (c) SNR3, (d) SNR4, (e)
SNR5, (f) SNR6, (g) SNR7.
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Figure 13. Maximum SNR values obtained with Gaussian KPCA dimensionality reduction technique
applied with different variance values: (a) SNR1, (b) SNR2, (c) SNR3, (d) SNR4, (e) SNR5, (f) SNR6,
(g) SNR7.
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It is observed that the maximum values of SNR are produced for different values of
variance depending on the defects analyzed and the metric used. For SNR1, the maximum
values for synthetic defects are obtained with variances greater than 0.05, while for experi-
mental defects they are obtained for variances greater than 0.1. In both cases the variance
of 0.01 obtained acceptable results. For SNR2, the maximum values are produced for a
variance of 0.05 in the case of experimental defects, while for synthetic defects, variances
greater than 0.05 maximize defects located at a depth less than or equal to 3 mm and a
variance of 0.01 maximizes the deeper defects. SNR3 produces results similar to SNR2
in the case of synthetic defects, while for experimental defects, very similar results are
obtained for all the analyzed variances, with slightly higher values for variances less than
0.5. For SNR4 and SNR5, synthetic defects located at depths less than or equal to 3 mm
produce maximum values for variances greater than 0.05, while defects located at greater
depths maximize SNR for variances less than 0.05. Regarding the experimental defects,
the SNR values are maximized for variances less than 0.5 in both cases. SNR6 produces re-
sponses similar to SNR4 and SNR5 for the case of synthetic defects, while for experimental
defects it produces very similar results for all the variance values analyzed, with slightly
higher levels for variances of 0.05 and 0.1. Finally, for SNR7, synthetic defects located at
depths greater than 3 mm produce maximum values for variances greater than 0.5, while
defects at depths less than or equal to 3 mm maximize the SNR for variances less than 1.
Regarding the experimental defects, in all cases the maximum values of SNR occur for
variances greater than 0.01.

Figure 14 shows the mean SNR values obtained with the defects analyzed for each of
the SNR metric definitions. The y-axis values are represented in a logarithmic scale to be
able to correctly visualize the data for all cases. Important differences are observed among
the values that each of the definitions produces. In general, defects located at shallower
depths and larger defects have produced higher SNR values for all metrics except for SNR1,
where synthetic defects at different depths have very similar values, even in some cases,
defects located at greater depths have higher SNR values.
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Figure 14. Average SNR values obtained with the different SNR metric definitions for the ana-
lyzed defects.

It is observed in Figure 14 that the SNR5 metric produces very high values, of the
order of 106, for the most superficial synthetic defects, compared to the rest of the synthetic
and experimental defects of the order of 102. The values produced by SNR3 and SNR6
for the different defects are much more balanced than the rest of the metrics, due to the
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application of logarithms in their calculation. For the rest of the metrics, the differences
between the SNR values for different defects is much more significant, clearly highlighting
the values for the most superficial synthetic defects.

6. Conclusions

In this study, a new methodology for the processing and analysis of NDT thermo-
graphic sequences is proposed. This methodology consists of two stages. The first stage
applies a novel method called Thermographic Colorization by Computational Synthesis
(TCCS), which extracts a large amount of relevant information from NDT thermographic
inspections and synthesize it in a single-color video sequence. The second stage applies
quaternionic algebra operations to the produced color images to optimize the visualization
and characterization of the detected defects.

The information synthesis process is carried out by means of dimensionality reduction
techniques. In this study, four reduction techniques have been analyzed: Independent
Component Analysis, Principal Component Analysis, Kernel Principal Component Anal-
ysis and Minimum Noise Fraction, proving that the KPCA technique produces the best
results. After the data synthesis colorization stage, color image processing techniques
based on quaternion algebra operations are applied. Three different techniques of quater-
nion analysis have been applied: Quaternion Fourier transform, Quaternionic Principal
Components Analysis and Quaternionic Filtering by Spatial Convolution.

A graphical method for optimizing the analysis directions in QFT has been developed
that enables the automatization of this quaternionic processing. This method is based on
the use of spheres to define the directions of analysis, synthesize the information about
the output signal levels through the color of each point on the sphere, and graphically
represent the final results produced by the assessment metrics.

The use of color images as results of NDT thermographic inspections makes the con-
ventional SNR definitions used to assess the results not directly applicable. In order to
assess results represented by color images and compare them with conventional results
represented by grayscale images, the application method of SNR metrics has been general-
ized in this study. For this, a perceptually linear color space (Lab) has been used, to which
the color and gray data are transformed, and the definition of SNR has been adapted to
extend it to the 3D case.

The evaluation of the results obtained has shown that the proposed methodology
improves the results compared to conventional thermographic NDT processing, increasing
the level of detection and improving the distinction of the defects by their representation in
different color shades. The results have been evaluated with different definitions of SNR,
for most of which the quaternionic Fourier and principal component analyses produce a
high increase in the SNR level. It has been found that quaternionic filtering by spatial con-
volution does not produce an increase in SNR, even though it improves the visualization of
the detected defects and facilitates their characterization. This shows that the SNR metric is
not suitable for evaluating processing results whose effect is focused on edge enhancement.

Finally, the analysis of the results obtained using different SNR metrics has demon-
strated that the choice of the SNR definition to assess the results has a great impact in the
final values, and it can be concluded that the values obtained with different SNR definitions
are not comparable among them, producing values of very different orders of magnitude
for the same defect.
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