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Abstract 
This work studies a two-stage hybrid flowshop problem with secondary resources (workers). The goal is 
to minimize the average tardiness. The workers are assigned to the workstations by time buckets (work 
shifts), and the assignment changes during the planning horizon. Two versions of the problem are studied: 
(i) the case where the average efficiency of the workers determines the time to process jobs; (ii) the case 
where the efficiency of the slowest worker assigned to a workstation determines the time to process jobs. 
The problem is NP hard and a set of heuristics are proposed to generate job sequences and worker 
assignments.  Computational experiments are performed on randomly generated test problems. The 
experiments revealed that the proposed heuristics are able to find a large percentage of the optimal 
solutions for small sized instances, while on large sized instances the heuristic performance depended on 
experimental factors. 

 
 
1. INTRODUCTION 
Scheduling jobs and assigning workers to the production equipment is a relevant problem in production 
environments. The relevance of this problem increases when workers have diverse skills and efficiency 
levels related to the production equipment and the jobs being manufactured. In many production 
environments the effective allocation of workers to the tasks at hand is fundamental in meeting the 
organizations financial and customer service goals.  

The motivation of this paper is based on a manufacturer of make to order industrial electrical 
devices where workers with diverse skill and efficiency levels must be assigned to a set of jobs. In this 
environment, the process to manufacture/ assemble these devices consist of two stages: the (i) 
construction/preparation of components and (ii) the assembly of the module(s). These devices (products) 
are custom-made and belong to product families. Based on customer specifications, work is to be 
performed in each stage of the process. Orders should be delivered by a due date. There are parallel 
workstations at each stage. The facility has a set of highly experienced workers that can work in any of 
the two stages and for any of the product families. The efficiency of each worker is related to the stage in 
production and to the family of the job processed. The nature of the observed system is one of frequent 
reconfiguration of their equipment, workspaces, and workforce to meet the ever-changing market needs 
that come as customer orders. Workforce reconfiguration is an element of many types of production 
systems (Hashemi-Petroodi et al., 2020).  

In the observed environment, workers are assigned to the different workstations per shift. There is 
a limit of employees working simultaneously in a workstation due to space and tool constraints. For 
workstations to function properly, they need a minimum number of workers. For example, a workstation 
can require a minimum of two workers to be able to allow handling of large modules or to administer 



 
 

certain tests. Figure 1 illustrates the observed environment where the four squares to the left represent the 
workstations for the first stage of the process, and the three workstations to the right (rectangles) represent 
the second stage workstations. Eleven workers (A to J), represented by circles, are assigned to the 
workstations on a daily basis (single shift per day). For Monday’s work shift (top section of the figure), 
three of the first stage workstations are operational with a total of seven workers, and two of the second 
stage workstations are operational, with four workers. For Tuesday’s work shift, the number of 
operational workstations for stage 1 is reduced by one and the number of workers is also reduced. 
Furthermore, workstation W1-2 has a different set of workers based on the jobs to be processed that day. 
For stage 2 the number of operational workstations does not change, however each gets assigned one 
more worker. Finally, for Wednesday’s shift there are no operational workstations in stage 1, and all 
available workstations in stage 2 are operational. Two of the workstations have four workers, while 
workstation W2-1 has three, noting that while the number of workers assigned to W2-1 did not change 
from Tuesday to Wednesday, the set of workers did change. This related to the specific jobs to be 
processed each day and the ability/efficiency of the workers to these jobs. 
 

Figure 1 here 
 
The effect workers may have on each other when working together in a workstation, may be 

another relevant element of this environment. When a team is made of workers with significantly 
different aptitudes/speeds/efficiencies, the overall work tends to be done at the pace of the slowest 
worker. This may be due to the complexity of the processes and/or dependencies between employees 
within the workstation. This can be consistent with the concept of bottleneck scheduling (the slowest link 
controls the speed of the chain!). 

Following the observed production environment, this paper addresses a hybrid flowshop (HFS) 
with secondary resources problem. There are two stages and at each stage there is a predefined number of 
identical workstations. The set of secondary resources (workers) are assigned to the workstations on a 
time bucket basis across the planning horizon. In practice, workers were assigned to different 
workstations every few days as orders were completed and or priorities changed. The process focuses on 
meeting customer due dates; accordingly, this paper addresses the minimization of average tardiness.  
 
 There is an extensive body of work related to the flowshop problem and recent literature reviews 
have been performed by Neufeld et al. (2016) and Rossit et al. (2018). Many articles published are 
specific to the hybrid flowshop (HFS) version of the problem since the seminal work of Arthanary and 
Ramamurthy (1971). Literature reviews that describe the work related to HFS were performed by Linn 
and Zhang (1999), Ruiz and Vázquez-Rodríguez (2010), Ribas et al. (2010), and Pena-Tibaduiza et al. 
(2017). The makespan is the most commonly addressed criteria for the HFS and recent articles include 
Ying and Lin (2018), Fernandez-Viagas et al. (2018) and Öztop et al. (2019).  By contrasts, research that 
addresses problems that considers tardiness criteria (as in this paper) is relatively limited. The article by 
Guinet and Solomon (1996) address the HFS problem of minimizing the maximum tardiness. The authors 
propose a set of heuristics and they evaluate their performance against a lower bound on the optimal 
solution. Lee and Kim (2004), develop dominance properties and lower bound for the total tardiness two 
stage HFS problem. They consider the case where there is one machine in the first stage, and multiple 



 
 

machines in the second stage. They develop a branch and bound algorithm to find close to optimal 
solutions.   

Choi et al. (2005) takes on the minimization of total tardiness on the HFS when jobs can return to 
a previously visited stage. In Khalouli et al. (2010) the goal is to minimize both the tardiness and the 
earliness of the jobs in a HFS problem. Several heuristics are proposed and evaluated. Yu et al. (2017) 
develop algorithms for the case of a HFS with batching (and setups). The authors develop a mixed integer 
programming model for the case where the number of batches is given and then use iterative algorithms 
to find solutions. The articles by Khare and Agrawal (2019) and Schaller and Valente (2019) consider the 
combination of earliness and tardiness in the HFS. Khare and Agrawal (2019) develop and evaluate 
several metaheuristics for the sequence dependent setups case and evaluate their performance versus other 
well-known metaheuristics. Schaller and Valente (2019) develop heuristics for the case where unforced 
idle time is allowed as to delay jobs that otherwise would be early. Recently, Yang and Xu (2020) 
addressed the minimization of delivery and tardiness costs in the distributed permutation flowshop. 
 Research that considers dual or secondary resources is considerable in the scheduling literature 
(Wörbelauer et al. 2019), although the work in the flowshop setting is not extensive. Examples include 
Ruiz-Torres and Centeno (2008), Mehravaran and Logendran (2013), and Figielska (2018). In Ruiz-
Torres and Centeno (2008), there are secondary resources that must be allocated across the stages in order 
to minimize the number of jobs that are late. The paper presents a lower bound process and evaluates 
several heuristics against this lower bound. Mahravaran and Logendran (2013) consider the assignment of 
labor to the machines in order to minimize work in process inventory while maximizing the service level. 
They propose three search algorithms and evaluate their efficiency and effectiveness. Figielska (2018), 
addresses the two stage flowshop problem as to minimize the maximum completion time where 
renewable resources are shared among the stages. Heuristics are proposed and computational experiments 
demonstrate they are of good quality even with strong resource constraints.  

The only two articles found in the literature that consider secondary resources in the HFS setting 
are Figielska (2009) and Figielska (2018), and in both the objective is to minimize the makespan. In 
Figielska (2009), the problem involves renewable resources in the first stage where multiple machines are 
available, while the second stage has a single machine and does not require the secondary resource. The 
problem described in Figielska (2018) involves renewable resources that are shared across the two stages, 
and there are multiple parallel machines in each stage. In both papers, heuristics based on column 
generation techniques are proposed and evaluated versus a lower bound.  
 The research considered in this paper builds on the existing literature related to the HFS problem, 
in particular, and to reconfigurable production systems in general with many novel elements. This paper 
considers secondary resources with different, family specific efficiencies, a possibility in many real-world 
systems with labor intensive operations. As the efficiency of the resource varies, the time to process jobs 
depends on the specific set of resources assigned to its processing. A unique consideration of this work is 
modelling the set’s efficiency by the worst resource in the group. This consideration has not previously 
accounted for on the flowshop literature. Furthermore, the assignment of secondary resources is 
performed by time buckers (worker shifts); an element commonly found in real world production systems 
and highly relevant in flexible production systems. Managers can reassign workers during the week to 
different areas to balance work and meet customer needs.  



 
 

Previous research in the flowshop problem that includes the time buckets characterization was not 
found in the literature. The next contribution of this research is the modeling of workstation overall 
efficiency, which determines the jobs process times, based on two relevant cases; aggregate efficiency of 
the worker set, and slowest efficiency of the worker set. While the second case can represent a significant 
issue in some industrial settings, it is not considered in previous flowshop literature. This article provides 
multiple contributions to the HFS body of knowledge of practical relevance as the problem is based on a 
complex real-world setting. 
 The remaining of the paper is organized as follows. Section 2 provides the problem description, 
Section 3 describes a pertinent example, Section 4 presents a set of algorithms aimed to generate feasible 
schedules, Section 5 describes a set of experiments to evaluate the schedule generation methods, and 
finally, Section 6 describes the conclusions and provides directions for future research. 
 
 
2. PROBLEM DESCRIPTION 
 
2.1 Problem Structure 
This research considers a two-stage hybrid flowshop with secondary resources where a set of independent 
jobs must be processed in both stages. The characteristics of the problem to be studied are the following: 
 

• There is a set 𝑁𝑁 of jobs to be scheduled. 
• There are two stages and all jobs must be processed in each stage. 
• Only one job can be processed at a time in a workstation and no preemption or division of jobs is 

allowed. 
• There is a set 𝑈𝑈 of product families. 
• Jobs belong to a product family; let 𝑦𝑦𝑗𝑗 be the family of job 𝑗𝑗. 
• Jobs have a due date; let 𝑑𝑑𝑗𝑗 be the due date of job 𝑗𝑗. 
• Jobs have work content in time units (work volume) for each stage which includes setup and 

movement time between workstations; let 𝑣𝑣𝑗𝑗,𝑖𝑖 be the work content of job 𝑗𝑗 in stage 𝑖𝑖. 
• The planning horizon is divided into time buckets of equal duration 𝑏𝑏. 
• There are 𝑚𝑚𝑖𝑖 identical parallel workstations available in stage 𝑖𝑖.  
• There is a set 𝐺𝐺 of secondary resources (workers) to be assigned to the workstations.  
• A workstation in stage 𝑖𝑖 must be assigned a minimum number of workers 𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 to be operational. 
• A workstation in stage 𝑖𝑖 can have a maximum of 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚workers. 
• Workers are fully cross trained; thus, workers can be assigned to any of the two stages to process 

any job. 
• The assignment of workers to workstations is per time bucket in the planning horizon and let 𝑍𝑍𝑠𝑠,𝑡𝑡 

represent the set of workers assigned to workstation s during time bucket 𝑡𝑡. 
• Workers can be left unassigned during a time bucket if for example all workstations processing 

jobs at that time have their maximum possible number of assigned workers. It is assumed that 
unassigned workers will be performing work in other operations and/or training. 



 
 

• Workers have different aptitude/speed/efficiency which depend on the stage and the product 
family; let 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖 be efficiency of a worker 𝑤𝑤 to perform a job of family 𝑓𝑓 in stage 𝑖𝑖. 

• Worker efficiencies (the 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖) are positive real numbers with a maximum value of 1. 
• Workstation efficiency during a time bucket is a function of the workers assigned to it. 

 
The efficiency of a workstation determines the amount of work that is performed during a time 

bucket 𝑡𝑡. A workstation’s overall efficiency is defined by two different cases: a) aggregate efficiencies 
(AE case) and b) slowest efficiency (SE case). The first represents the case where there is no negative 
interaction between the workers conducting the work in a workstation, while the second represents the 
case where the slowest worker limits the work of all the workers on a workstation. This second case is 
based on observations made on the industrial case that serves as the basis of this research. Let Ξ(𝑠𝑠) be 
equal to the stage of station 𝑠𝑠 (thus Ξ(𝑠𝑠) = 1 or 2). When the AE case is assumed, the overall efficiency 
in workstation 𝑠𝑠 at stage 𝑖𝑖 for family 𝑓𝑓 during time bucket 𝑡𝑡 is defined by ∑ 𝑒𝑒𝑔𝑔,𝑓𝑓,Ξ(𝑠𝑠) 𝑔𝑔∈𝑍𝑍𝑠𝑠,𝑡𝑡 . When the SE 

case is assumed, the overall efficiency is defined by �𝑍𝑍𝑠𝑠,𝑡𝑡�  × 𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔∈𝑍𝑍𝑠𝑠,𝑡𝑡𝑒𝑒𝑔𝑔,𝑓𝑓,Ξ(𝑠𝑠), where |𝑠𝑠𝑒𝑒𝑡𝑡| is used to 
indicate the cardinality of the set. The time required to complete work (duration of work) is based on the 
following relationship: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑑𝑑𝑚𝑚 𝑑𝑑𝑓𝑓 𝑤𝑤𝑑𝑑𝑑𝑑𝑤𝑤 =  
𝑤𝑤𝑑𝑑𝑑𝑑𝑤𝑤 𝑐𝑐𝑑𝑑𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡

𝑑𝑑𝑣𝑣𝑒𝑒𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜 𝑒𝑒𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑦𝑦
 

 
For example, at the start of a schedule a workstation in stage 1 has been assigned two workers 

and it will start to process a job from family 𝑓𝑓. These workers have an efficiency of eight tenths (0.8) and 
an efficiency of one (1) respectively for family 𝑓𝑓. The work content for this job is ten (10) hours (𝑣𝑣𝑗𝑗,1 = 
10). Consequently, the duration of this job (clock hours) is of five hours and fifty-five minutes [10 / (0.8 
+1) = 5.55 hours]. In the discussion of the problem and the example section, the term 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 will be 
used to define clock hours (durations) and 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 will be used to define work content hours. Thus, the 
efficiency variable is a ratio: 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑/𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑.  

The schedule (a solution to the problem) consists of two components: (i) the allocation of the 
workers to workstations on a time bucket basis and (ii) the sequence of jobs in each workstation. Let 𝐾𝐾𝑠𝑠 
be the ordered set of jobs (a sequence) in workstation 𝑠𝑠. The schedule results in completion time for each 
job in stage 2 where 𝑐𝑐𝑗𝑗 is the completion time (at stage 2) of job 𝑗𝑗 and its tardiness is 𝑚𝑚𝑑𝑑𝑚𝑚 [0, 𝑐𝑐𝑗𝑗 − 𝑑𝑑𝑗𝑗]. 
Let Θ represent the average tardiness. Accordingly, the results of this schedule are contemplated as: Θ =
 ∑ 𝑚𝑚𝑑𝑑𝑚𝑚 [0, 𝑐𝑐𝑗𝑗 − 𝑑𝑑𝑗𝑗]𝑗𝑗∈𝑁𝑁 𝑚𝑚⁄ . The goal and intent of the scheduling process is to minimize the average 
tardiness. 
 
 
2.2 Problem Structure Limitations 
The problem studied does not consider the utilization of the workers, thus worker’s idle time is not 
measured, although relevant in practice. Workers that are not assigned to a workstation in a complete time 
bucket or through some segment of a time bucket are assumed to be performing other relevant activities 
as minor maintenance and training.  



 
 

 
2.3 Problem Complexity 
As mentioned in Pinedo (2016), the flowshop problem with two machines for the total completion time 
objective (𝐹𝐹2||∑𝑐𝑐𝑗𝑗) is NP-Hard, therefore, based on complexity hierarchy, the two machine flowshop 
problem with total tardiness objective is NP Hard. Similarly, based on complexity hierarchy, the hybrid 
flowshop problem is more complex than the “base” flowshop problem. Hence, it is concluded that the 
problem addressed in this research is NP-Hard. We also note that our problem characterization includes 
secondary resources and time buckets, which increase the problem’s complexity. This complexity serves 
as a way to characterize many elements of a real-world setting. 
 
2.4 Summary of Notation 

Indexes 
i stages 
w  workers 
s workstations 
f families 
j jobs 
t time buckets 
 
Parameters 
𝑚𝑚𝑖𝑖  Number of available parallel workstations on stage i 
𝑋𝑋𝑖𝑖  Set of available parallel workstations in stage i 
G Overall set of workers 
𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Maximum number of workers that can be assigned to a workstation on stage i  
𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚  Minimum number of workers that can be assigned to a workstation on stage i  
b  Duration of a time bucket in hours 
N Set of all jobs to be scheduled 
𝑈𝑈 Set of all product families 
𝑑𝑑𝑗𝑗 Due date for job j 
𝑦𝑦𝑗𝑗 Product family of job j 
𝑣𝑣𝑗𝑗,𝑖𝑖  Work content for job j on stage i in hours 
𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖 Efficiency of the worker w while performs a job of family f on stage i  
 (∈(0,1]) 
Ξ(𝑠𝑠)  Stage of station 𝑠𝑠 (thus Ξ(𝑠𝑠) = 1 or 2) 
𝑐𝑐𝑗𝑗  Completion time of job j on stage 2 
ΘΨ  Average tardiness of a schedule Ψ  
 
Decision Variables 
𝑍𝑍𝑠𝑠,𝑡𝑡 Set of workers assigned to workstation s during time bucket t 
𝐾𝐾𝑠𝑠 Ordered set (sequence) of jobs on workstation s 
  



 
 

3. ILLUSTRATION CASE 
An example is provided to illustrate the problem. There are 6 jobs to be scheduled and the jobs belong to 
one of two families. There are 3 parallel workstations available at each stage, 7 workers, and the duration 
of each bucket is 8 hours (𝑚𝑚1 = 𝑚𝑚2 = 3, 𝐺𝐺 = {w1, w2, w3, w4, w5, w6, w7}, 𝑏𝑏 =  8 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠). Let 𝑋𝑋1 = 
{s1-1, s1-2, s1-3} and 𝑋𝑋2 = {s2-1, s2-2, s2-3}. The minimum and maximum workers per workstation in 
stage 1 is 1 and 4 respectively, while for stage 2 is 1 and 3 (𝑔𝑔1𝑚𝑚𝑖𝑖𝑚𝑚 =  1,𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚 =  4,𝑔𝑔2𝑚𝑚𝑖𝑖𝑚𝑚 = 1,𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚 = 3). 
The information regarding the jobs and the workers is presented in Tables 1 and 2 respectively.  

 
Tables 1 and 2 here 

 
3.1 Example Schedule and Worker Assignments 
 
The production planner has developed job sequences and worker assignments based on personal logic and 
experience. The planner has determined that for this planning horizon two workstations are to be 
operational for each of the two stages. Furthermore, the planner has decided on the following job 
sequences in the workstations: 𝐾𝐾𝑠𝑠1−1 = 𝑗𝑗1 − 𝑗𝑗3 − 𝑗𝑗5;  𝐾𝐾𝑠𝑠1−2 = 𝑗𝑗2 − 𝑗𝑗4 − 𝑗𝑗6; 𝐾𝐾𝑠𝑠2−1 = 𝑗𝑗1 − 𝑗𝑗3 − 𝑗𝑗6; and 
𝐾𝐾𝑠𝑠2−2 = 𝑗𝑗2 − 𝑗𝑗4 − 𝑗𝑗5. 
This set of sequences is called S1. The planner has decided in the following worker assignments: workers 
w1 and w7 will start at workstation s1-1 and change to workstation s2-2 at 𝑡𝑡 = 6; workers w2 and w5 are 
assigned to workstation s1-2 for 𝑡𝑡 =  1. . . .4; then worker w2 is assigned to s2-1 for all future time 
buckets, while w5 is left with the same assignment; workers w4 and w6 are assigned to workstation 1-2 
for 𝑡𝑡 = 1 … 2; and then to station s2-1 for all future time buckets; and worker w3 is assigned to 
workstation s1-1 for 𝑡𝑡 =  1 and then assigned to workstation s2-2 for all future time buckets.  
 
Figure 2 presents (i) the workstation sequences and (ii) the worker assignments previously described. The 
shaded areas represent stage two (2) workstations. Part (iii) of Figure 2 presents the schedule that 
“combines” the job sequences (S1) with the worker assignments (A1) and assumes the AE workstation 
overall efficiency case. Table 3 provides the start, the duration, and the end times of each job in each 
stage for this schedule. All values in the table are in 𝛿𝛿hours. 
 

Figure 2 here 
 

Table 3 here 
 

The process and calculations to determine the start and end times for the first two jobs assigned to 
workstation s1-2 are described next.  
 

Job j2 starts on workstation s1-2 at clock time 0 in time bucket 1 (𝑡𝑡 = 1). Job j2 has a work 
content of 26 𝜇𝜇hours and belongs to family 2 (see Table 1: 𝑣𝑣𝑗𝑗,1 = 26 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠, 𝑓𝑓𝑗𝑗 = 2). During 𝑡𝑡 =
 1, workers w2, w4, w5 and w6 are assigned to workstation s1-2.  

 
 



 
 

worker 𝑒𝑒𝑔𝑔,𝑓𝑓2,1 
w2 0.65 
w4 0.9 
w5 0.8 
w6 1.0 

Sum 3.35 
 
The sum of the efficiencies for this set of workers for family 2 is 3.35, therefore the overall 
efficiency of the workstation is 3.35 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑 / 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑. The amount of work this set of workers 
performs on job j2 during 𝑡𝑡 =  1 is 26.8 𝜇𝜇hours (3.35 × 𝑏𝑏). As the work content of j2 (26) is 
less than or equal to the work that can be completed by the workers (26.8), j2 will be completed 
during 𝑡𝑡 =  1. The time to complete the work (duration) is determined by: 
 

=  
𝑤𝑤𝑑𝑑𝑑𝑑𝑤𝑤 𝑐𝑐𝑑𝑑𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 

𝑑𝑑𝑣𝑣𝑒𝑒𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜 𝑒𝑒𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑦𝑦
=

26 𝜇𝜇hours
3.35 𝜇𝜇hour / 𝛿𝛿hour

= 7.761 𝛿𝛿hours 

 
The end clock time for j2 in stage 1 is 7.761 (𝑐𝑐𝑗𝑗2,1 = 7.761). It is important to note that this job 
will not immediately start on stage 2 as there are no workers in any of the workstation of that 
stage at 𝑡𝑡 =  1. 
 
Job j4 (𝑣𝑣𝑗𝑗,1 = 15 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠, 𝑓𝑓𝑗𝑗 = 2) starts immediately after j2 is finished in s1-2 and there are 0.239 
𝛿𝛿hours still available in this time bucket (8 – 7.761). As job j4 is from family 2, the overall 
efficiency is 3.35 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑 / 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑. Therefore, 0.8 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 of work content are completed for j4 
(3.35 × 0.239) during 𝑡𝑡 =  1. Given j4 has 15 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 of work content, j4 is not finished during 
t = 1, and there are 14.2 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 still to be completed after the end of this bucket.  
 
At 𝑡𝑡 =  2, the same set of workers is assigned to s2-1, thus the overall efficiency does not 
change. The amount of work content that can be completed at 𝑡𝑡 =  2 is 26.8 𝜇𝜇hours and given 
26.8 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 ≥ 14.2 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 (the work left from 𝑡𝑡 =  1), j4 will be completed during 𝑡𝑡 =  2. 
 
The time to complete the work (duration) at 𝑡𝑡 =  2 is determined by: 
 

=  
𝑤𝑤𝑑𝑑𝑑𝑑𝑤𝑤 𝑐𝑐𝑑𝑑𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 

𝑑𝑑𝑣𝑣𝑒𝑒𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜 𝑒𝑒𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑦𝑦
=

14.2 𝜇𝜇hours
3.35 𝜇𝜇hour / 𝛿𝛿hour

= 4.239 𝛿𝛿hours 

 
 
The end time for j4 in stage 1 is 12.239 (𝑐𝑐𝑗𝑗4,1 = 12.239). The sum of 8 from (𝑡𝑡 =  1) and 4.239 
(duration during 𝑡𝑡 =  2). Therefore j4 is completed in this station during time bucket 2. 
 
Appendix 1 provides additional examples of the calculations of the start and end time of the 

schedule in station 1-2. Table 4 provides the job-related measures. The average tardiness is 3.632. Finally, 



 
 

it is noted that this schedule is not an optimal solution to this problem and none of the algorithms under 
consideration are guaranteed to find the optimal solution. 
 

Table 4 here 
 

3.2 Schedule under SE case assumption 
This section describes the resulting schedule under the assumption of the SE case. Therefore, it is now 
assumed that the slowest worker dictates the amount of work that is performed in a workstation during a 
time bucket.  Figure 3 presents two schedules. The top schedule is the same as that shown in Figure 2 
(resulting from combining S1 and A1 under the AE case) while the bottom schedule is the result of 
combining S1 and A1 under the SE case. The schedule under the AE is presented again in Figure 3 to 
provide a clear examination of the schedule differences due to the two assumption regarding the overall 
efficiencies of the workstations. 
 

Figure 3 here 

Table 5 presents the start, duration, and end times for all the jobs in both stages under the SE 
case. The majority of the durations are, as expected, longer under the SE case. The few exceptions relate 
to jobs that are processed in different time buckets with different worker sets.  
 

Table 5 here 
 

To demonstrate the differences between the AE and SE assumptions, the determination of the 
completion time of job j2 in workstation s1-2 is described next.  
 

At 𝑡𝑡 =  1 job j2 (𝑣𝑣𝑗𝑗,1 = 26 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠, 𝑓𝑓𝑗𝑗 = 2) starts on workstation s1-2 at clock time 0. During 𝑡𝑡 =
 1, workers w2, w4, w5, w6 are assigned to workstation s1-2.  
 

worker 𝑒𝑒𝑔𝑔,𝑓𝑓2,1 
w2 0.65 
w4 0.9 
w5 0.8 
w6 1.0 

Minimum 0.65 
 
The minimum efficiency for this set of workers for family 1 is 0.65 and given there are 4 workers, 
the overall efficiency of the workstation is 2.6 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑 / 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑 (0.65 × 4). Note: in this situation 
it would make sense to remove w2 from the workstation altogether; it is clearly not a good set of 
workers to put together. The amount of work this set of workers performs on job j2 during 𝑡𝑡 =  1 
is 20.8 𝜇𝜇hours (2.6 × 𝑏𝑏). Given j2 has 26 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 of work content, j2 is not finished during 𝑡𝑡 =
 1, and there are 5.2 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 still to be completed after the end of this bucket.  
 



 
 

At 𝑡𝑡 =  2, the worker assignment is not changed and based on the previous calculations j2 can be 
completed during 𝑡𝑡 =  2. The time to complete the work (duration) at 𝑡𝑡 = 2 is determined by 
(5.2 𝜇𝜇hours)/(2.6 𝜇𝜇ℎ𝑑𝑑𝑑𝑑𝑑𝑑 / 𝛿𝛿ℎ𝑑𝑑𝑑𝑑𝑑𝑑) = 2𝛿𝛿hours.  The end time for j2 in stage 1 is at clock time 
10. By comparison, under the AE case, j2 was completed at clock time 7.76, 2.24 hours earlier. 

 
Table 6 provides the completion time and tardiness for each job. The average tardiness is 5.888. As in the 
schedule presented for the AE case, this schedule is not an optimal solution to this problem. 
 

Table 6 here 
 

4. SOLUTION METHODS 

The problem as described requires decisions regarding the number of workstations to have operational for 
each stage, the sequence of orders to the workstations, and the assignment of the workers. The assignment 
of workers to the workstations is performed in a per time bucket basis (for example a shift). This section 
presents a set of sequencing and resource allocation rules aimed at generating feasible and effective 
solutions. It is noted that the authors know of no previously proposed solution methods for this particular 
version of the hybrid flowshop problem that can be used as a comparison point.  
 
The section is divided into two subsections, the first detailing how initial schedules are developed, and the 
second describing approaches to improving the schedules through worker reallocation. 
 
4.1 Initial Schedule Development 
The initial schedule building process is divided into three phases. The first phase involves determining the 
number of workers that will be initially allocated to each stage and determining the number of 
workstations that will be operational. The second phase performs an initial assignment of workers to 
operational workstations. The third phase of the initial schedule involves assigning workers to each 
workstation and developing job sequences in each operational workstation.  
 
Phase 1. Initial number operational workstations per stage.   
Step 1. Determine the target number of workers per stage based on the proportion of total workload 
volume and modify such that at least one workstation is operational for each stage, and so all workers can 
be allocated to a workstation.  Let 𝑉𝑉1 and 𝑉𝑉2 be total workload volume for stages 1 and 2 respectively 
and 𝜌𝜌𝑖𝑖be the number of workers initially assigned to stage i. 

1.1.  Calculate the total workload per stage: 𝑉𝑉1 = ∑ [𝑣𝑣𝑗𝑗,1]𝑗𝑗∈𝑁𝑁 ,𝑉𝑉2 = ∑ [𝑣𝑣𝑗𝑗,2]𝑗𝑗∈𝑁𝑁 . 
1.2  Calculate the proportional number of workers per stage: 𝜌𝜌1 =  ⌈( |𝐺𝐺| × 𝑉𝑉1)/(𝑉𝑉1 + 𝑉𝑉2)⌉ and 

𝜌𝜌2 =  ⌊( |𝐺𝐺| × 𝑉𝑉2)/(𝑉𝑉1 + 𝑉𝑉2)⌋. 
1.3 Calculate the number of workers needed to have one operational workstation per stage: 𝛼𝛼𝑖𝑖 =

𝑚𝑚𝑑𝑑𝑚𝑚 [0,𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 − 𝜌𝜌𝑖𝑖] for 𝑖𝑖 =  1, 2. 
1.4 Let 𝜌𝜌1 =  𝜌𝜌1 + 𝛼𝛼1 − 𝛼𝛼2 and 𝜌𝜌2 =  𝜌𝜌2 + 𝛼𝛼2 − 𝛼𝛼1.  
1.5  Calculate the extra workers based on the maximum possible number of workstations per stage: 

𝜀𝜀𝑖𝑖 = 𝑚𝑚𝑑𝑑𝑚𝑚 [0,𝜌𝜌𝑖𝑖 −  𝑚𝑚𝑖𝑖 × 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚] for 𝑖𝑖 =  1, 2. 



 
 

1.6.  Let 𝜌𝜌1 =  𝜌𝜌1 + 𝜀𝜀2 − 𝜀𝜀1; and 𝜌𝜌2 =  𝜌𝜌2 + 𝜀𝜀1 − 𝜀𝜀2.  
 

Determine the number of operational workstations for each stage, where 𝛾𝛾𝑖𝑖 is the number of 
operational parallel workstations in stage i. This is done by one of three rules: the first determines the 
largest number possible for both stages; the second rule determines the smallest number possible for both 
stages, the third determines the largest and smallest number of workstations for stages 1 and 2 
respectively. Note that a rule where the smallest and largest number of workstations for stages 1 and 2 
respectively was examined, but pilot experiments demonstrated it generated poor results thus not 
considered further. 
 

(Rule 1).  
1.7. Let 𝛾𝛾𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑚𝑚 [𝑚𝑚𝑖𝑖 , �𝜌𝜌𝑖𝑖 𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚⁄ �] for 𝑖𝑖 =  1, 2. 
(Rule 2).  
1.7.  Let 𝛾𝛾𝑖𝑖 = ⌈𝜌𝜌𝑖𝑖 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚⁄ ⌉ for 𝑖𝑖 =  1, 2. 
(Rule 3).  
1.7.  Let 𝛾𝛾1 = 𝑚𝑚𝑖𝑖𝑚𝑚 [𝑚𝑚1, �𝜌𝜌1 𝑔𝑔1𝑚𝑚𝑖𝑖𝑚𝑚⁄ �] and 𝛾𝛾2 = 𝑚𝑚𝑖𝑖𝑚𝑚 [𝑚𝑚2, ⌈𝜌𝜌2 𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚⁄ ⌉]  

 
Phase 2. Initial worker assignment  
Step 2. Initialize the sets for workers and workstations. Calculate the average efficiency for each worker 
and the control ratio, a variable used to determine the stage that will be assigned the next worker. Let 𝛤𝛤𝑖𝑖 
be the set of operational parallel workstations in stage i. 
 

2.1  Let 𝐺𝐺’ =  𝐺𝐺 and 𝑍𝑍𝑠𝑠,1 = ∅ ∀𝑠𝑠 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 =  1, 2. 
2.2  Select any 𝛾𝛾𝑖𝑖 worstations from 𝑋𝑋𝑖𝑖 and assign to set 𝛤𝛤𝑖𝑖 for 𝑖𝑖 =  1, 2. 
2.3 Let 𝑒𝑒𝑤𝑤,𝑖𝑖

𝑚𝑚𝑎𝑎𝑎𝑎 = [∑ 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖]𝑓𝑓∈𝑈𝑈 /𝑓𝑓 ∀𝑤𝑤 ∈ 𝑊𝑊,∀𝑖𝑖 =  1, 2.   
2.4 Let 𝜎𝜎𝑐𝑐𝑐𝑐𝑚𝑚𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 =  𝜌𝜌1 (𝜌𝜌1 + 𝜌𝜌2).⁄  

 
Step 3. Select the stage to assign the next worker based on smallest absolute difference to the control 
ratio. Assign the selected worker to the workstation on that stage with the minimum number of workers. 
End this phase when all workers have been assigned. Note that 𝑑𝑑𝑏𝑏𝑠𝑠[𝑚𝑚] is used to indicate absolute value. 
  

3.1 Let 𝜎𝜎1 =  (𝜌𝜌1 − 1) (𝜌𝜌1 + 𝜌𝜌2 − 1),⁄ 𝜎𝜎2 =  𝜌𝜌1 (𝜌𝜌1 + 𝜌𝜌2 − 1).⁄   
3.2 If 𝑑𝑑𝑏𝑏𝑠𝑠[𝜎𝜎1 − 𝜎𝜎𝑐𝑐𝑐𝑐𝑚𝑚𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐] > 𝑑𝑑𝑏𝑏𝑠𝑠[𝜎𝜎2 − 𝜎𝜎𝑐𝑐𝑐𝑐𝑚𝑚𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐] and 𝜌𝜌′1 > 0 then 𝑖𝑖′ =  1, else 𝑖𝑖′ =  2. 
3.3  Let  𝑤𝑤′ = {𝑤𝑤 |𝑤𝑤 ∈  𝐺𝐺’,𝑚𝑚𝑑𝑑𝑚𝑚 �𝑒𝑒𝑤𝑤,𝑖𝑖′

𝑚𝑚𝑎𝑎𝑎𝑎�}, 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤𝑖𝑖′,𝑚𝑚𝑖𝑖𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��} and 𝜌𝜌𝑖𝑖′ = 𝜌𝜌𝑖𝑖′ − 1. 
3.4 Let 𝑍𝑍𝑠𝑠′,1 = 𝑍𝑍𝑠𝑠′,1 ∪ 𝑤𝑤′ and 𝐺𝐺′ = 𝐺𝐺′ − 𝑤𝑤′. 
3.5 If |𝐺𝐺′| > 1 then return to 3.1. 
3.6 Let 𝑤𝑤′ = {𝑤𝑤 |𝑤𝑤 ∈  𝐺𝐺’}.  
3.7 If 𝜌𝜌1 = 1 then 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤1′,𝑚𝑚𝑖𝑖𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��} else 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤2′,𝑚𝑚𝑖𝑖𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��} 
3.8 Let 𝑍𝑍𝑠𝑠′,1 = 𝑍𝑍𝑠𝑠′,1 ∪ 𝑤𝑤′ 
3.6 Let 𝑍𝑍𝑠𝑠,𝑡𝑡 = 𝑍𝑍𝑠𝑠,1 ∀𝑠𝑠 ∈ 𝛤𝛤𝑖𝑖  , 𝑡𝑡 =  2 …  ∞, 𝑖𝑖 =  1, 2. 
 



 
 

Phase 3. Job assignment to workstations 

Step 4. Initialize the set for unassigned jobs and the ordered set of jobs for the workstations in stage 1. 
Assign jobs from the set of unassigned jobs by minimum due date (ties solved arbitrarily) to the 
workstations, selecting the workstation where the job will be completed first. The function 𝐶𝐶𝐶𝐶(𝑠𝑠) 
determines the clock time of the ordered set of jobs assigned to workstation 𝑠𝑠.  
 

4.1  Let 𝑁𝑁’ =  𝑁𝑁 and 𝐾𝐾𝑠𝑠 = ∅ ∀𝑠𝑠 ∈ 𝛤𝛤1. 
4.2  Let 𝑗𝑗′ = {𝑗𝑗 |𝑗𝑗 ∈ 𝑁𝑁′,𝑚𝑚𝑖𝑖𝑚𝑚 �𝑑𝑑𝑗𝑗�}. 
4.3 Let 𝑁𝑁′ = 𝑁𝑁′ − 𝑗𝑗′. 
4.4 Add 𝑗𝑗’ to the next position of 𝐾𝐾𝑠𝑠∀𝑠𝑠 ∈ 𝛤𝛤1.  
4.5 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤1,𝑚𝑚𝑖𝑖𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}. 
4.6 Let 𝐾𝐾𝑠𝑠 = 𝐾𝐾𝑠𝑠 − 𝑗𝑗′∀𝑠𝑠 ∈ 𝛤𝛤1 and add 𝑗𝑗’ to the end of 𝐾𝐾𝑠𝑠′. 
4.7 If 𝑁𝑁’ ≠ ∅ return to 4.2. 

 
Step 5. Initialize the set for unassigned jobs and the ordered set of jobs for the workstations in stage 2. 
Assign jobs from the set of unassigned jobs by completion time in stage 1 (ties solved arbitrarily), 
selecting the workstation based on one of two rules. The first rule selects the workstation that is available 
first, the second rule selects the workstation where the job will be completed first. 
 

5.1  Let 𝑁𝑁’ =  𝑁𝑁. Let 𝐾𝐾𝑠𝑠 = ∅ ∀𝑠𝑠 ∈ 𝛤𝛤2. 
5.2  Let 𝑗𝑗′ = {𝑗𝑗 |𝑗𝑗 ∈ 𝑁𝑁′,𝑚𝑚𝑖𝑖𝑚𝑚 �𝑐𝑐𝑗𝑗,1�}. 
5.3 Let 𝑁𝑁′ = 𝑁𝑁′ − 𝑗𝑗′. 
 
(Rule 1) 
5.4  Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤2,𝑚𝑚𝑖𝑖𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}. Add 𝑗𝑗’ to the next position of 𝑠𝑠′.  
5.5 If 𝑁𝑁’ ≠ ∅ return to 5.2. 
 
(Rule 2) 
5.4 Add 𝑗𝑗’ to the next position of 𝐾𝐾𝑠𝑠∀𝑠𝑠 ∈ 𝛤𝛤2.  
5.5 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  𝛤𝛤2,𝑚𝑚𝑖𝑖𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}. 
5.6 Let 𝐾𝐾𝑠𝑠 = 𝐾𝐾𝑠𝑠 − 𝑗𝑗′∀𝑠𝑠 ∈ 𝛤𝛤1 and add 𝑗𝑗’ to the end of 𝐾𝐾𝑠𝑠′. 
5.7 If 𝑁𝑁’ ≠ ∅ return to 5.2. 

 
4.2 Improvement Strategies 
Two worker reassignment procedures based on neighborhood search methods are presented in this 
section. They are based on two algorithms described separately, the first searches using single job 
reinsertions and the second uses pairwise exchanges. Let Ψ represent the current schedule (sequence of 
jobs assigned to each workstation and worker assignment to each workstation per time bucket). This 
schedule has an average tardiness of ΘΨ and all jobs are completed by time bucket 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ). 
 
 



 
 

Algorithm 1. Insert(𝝉𝝉) 
This algorithm determines the workstation that has assigned the jobs with the highest total tardiness that 
are finished after time bucket 𝜏𝜏. The process considers adding workers to that workstation and the process 
continues until it cannot find improvements for insertions based on time bucket 𝜏𝜏. Let 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 be the 
maximum number of workers allowed for workstation 𝑠𝑠, where 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚  ∀𝑠𝑠 ∈ 𝛤𝛤1 and 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚  ∀𝑠𝑠 ∈ 𝛤𝛤2. Let 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑖𝑖𝑚𝑚 be the minimum number of workers allowed for workstation 𝑠𝑠, where 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑔𝑔1𝑚𝑚𝑖𝑖𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤1 and 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑔𝑔2𝑚𝑚𝑖𝑖𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤2. 
 
Inputs 𝜏𝜏,Ψ  

A1.1  Let  Ω = 𝛤𝛤1 ∪ 𝛤𝛤2. 
A1.2 Let 𝜑𝜑𝑠𝑠 =  ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,1 ≥ 𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤1 𝑗𝑗∈𝐾𝐾𝑠𝑠 and 𝜑𝜑𝑠𝑠 =  ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,2 ≥ 𝑏𝑏 ×  𝜏𝜏.  ∀𝑠𝑠 ∈ 𝛤𝛤2 𝑗𝑗∈𝐾𝐾𝑠𝑠 .  
A1.3 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  Ω,𝑚𝑚𝑑𝑑𝑚𝑚 [𝜑𝜑𝑠𝑠], �𝑍𝑍𝑠𝑠,𝜏𝜏� < 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚}. 
A1.4 If 𝜑𝜑𝑠𝑠′ = 0 or 𝑠𝑠′ =  ∅ then End else  Ω = Ω − 𝑠𝑠′. 
A1.5 Let 𝐺𝐺’ =  𝐺𝐺 – 𝑍𝑍𝑠𝑠′,𝜏𝜏. 
A1.6 Let 𝐺𝐺’ = { 𝐺𝐺′ –⋃ 𝑍𝑍𝑠𝑠,𝜏𝜏𝑠𝑠∈Ω |�𝑍𝑍𝑠𝑠,𝜏𝜏� = 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑖𝑖𝑚𝑚}.  
A1.7 Generate the set Ξ of |𝐺𝐺’| temporary schedules by adding each worker in 𝐺𝐺’ to workstation 𝑠𝑠’ 

during time bucket 𝜏𝜏.  
A1.8 Let θ′ = {θ |θ ∈  Ξ,𝑚𝑚𝑖𝑖𝑚𝑚 [Θθ]}. 
A1.9 If ΘΨ > Θθ′ then let Ψ =  θ′ and go to Step A1.1. 
A1.10 If Ω = ∅ then End, else go to step A1.3. 

 
Algorithm 2. Exchange(𝝉𝝉) 
This algorithm determines the workstation that has assigned the jobs with the highest total tardiness that 
are finished after time bucket 𝜏𝜏. The process considers exchanges between workers in that workstation 
and all others until it cannot find improvements for exchanges based on time bucket 𝜏𝜏.  
 
Inputs 𝜏𝜏,Ψ  

A2.1  Let  Ω = 𝛤𝛤1 ∪ 𝛤𝛤2. 
A2.2 Let 𝜑𝜑𝑠𝑠 =  ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,1 ≥ 𝑏𝑏 ×  𝜏𝜏  ∀𝑠𝑠 ∈ 𝛤𝛤1 𝑗𝑗∈𝐾𝐾𝑠𝑠 and 𝜑𝜑𝑠𝑠 =  ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,2 ≥ 𝑏𝑏 ×  𝜏𝜏  ∀𝑠𝑠 ∈ 𝛤𝛤2 𝑗𝑗∈𝐾𝐾𝑠𝑠 .  
A2.3 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈  Ω,𝑚𝑚𝑑𝑑𝑚𝑚 [𝜑𝜑𝑠𝑠]}. 
A2.4 If 𝜑𝜑𝑠𝑠′ = 0 then End else  Ω = Ω − 𝑠𝑠′. 
A2.5 Let 𝐺𝐺’ =  𝐺𝐺 – 𝑍𝑍𝑠𝑠′,𝜏𝜏. 
A2.6 Generate the set Ξ of �𝑍𝑍𝑠𝑠′,𝜏𝜏�  × |𝐺𝐺′| temporary schedules by exchanging each worker in 𝑍𝑍𝑠𝑠′,𝜏𝜏 

with each worker in 𝐺𝐺′ during time bucket 𝜏𝜏. 
A2.7 Let θ′ = {θ |θ ∈  Ξ,𝑚𝑚𝑖𝑖𝑚𝑚 [Θθ]}. 
A2.9 If ΘΨ > Θθ′ then let Ψ =  θ′ and go to Step A2.1. 
A2.9 If Ω = ∅ then End, else go to step A2.3. 

 
 

 



 
 

 

Phase 4. Search for improved schedules 
Step 6. Given an input schedule Ψ generate new schedules by changing the worker assignments. This is 
done by one of two rules: the first rule implements Insert(𝜏𝜏) one bucket at a time for all time buckets, and 
then implements Exchange(𝜏𝜏) one bucket at a time for all time buckets; the second rule implements 
Insert(𝜏𝜏) and then implements Exchange(𝜏𝜏) one bucket at a time for all time buckets  
 
Input: Ψ  
Step 6. (Rule 1) 

6.1 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ) 
Perform Insert(𝜏𝜏).  

Next. 
6.2 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ)  

Perform Exchange(𝜏𝜏).   
Next. 

 
Step 6. (Rule 2) 

6.1 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ).  
Perform Insert(𝜏𝜏).  
Perform Exchange(𝜏𝜏). 

Next 
 

It is noted that during the execution of both Insert(𝜏𝜏) or Exchange(𝜏𝜏), the current schedule Ψ may 
change, and therefore the value of 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ); the end point of the For-Next loop. Given the current 
formulation, there is no possibility of a situation in the execution of the algorithms where a new schedule 
has a 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ) that is smaller than the current bucket 𝜏𝜏, therefore no backtracking is necessary. 

 
4.3 Algorithms 
The solution method consists of the four phases described in sections 4.1 and 4.2 and summarized by the 
diagram in Figure 4. There are a total 6 steps where Step 1 has three possible rules to determine the 
number of operational workstations per stage, Step 5 has two possible rules to assign jobs to workstations 
in stage 2, and Step 6 has two possible rules to search for improved worker assignments. This results in 
12 possible combinations of rules, and the description of each combination is provided in Table 7. 

Figure 4 here 
Table 7 here 

 
4.4 Examples  
The implementation of three of the algorithms for the example described in section 3 are presented in this 
subsection. Figure 5 presents the schedule resulting from G1, G6, and G12 under the SE case. The 
schedules are significantly different (from each other) as they are based on a different number of 
operational workstations. Job sequences are also different across the three schedules except in the case of 



 
 

G1 and G12 where the sequences are similar for stage 1. However, the completion times at each stage for 
each of the jobs is different based on the particular worker assignments. Tables 8 to 10 present the worker 
assignments for G1, G6, and G12 respectively, noting that “--" indicates the worker was fully idle during 
that time bucket. The assignments are significantly different across the three schedules and the workers 
allocated across multiple workstations during the 8 time periods. Only G6 has a case where a worker 
stayed in the same workstation for the duration of the schedule (worker w7). The average tardiness for 
G1, G6, and G12 are 4.1, 3.16, and 5.08 respectively, where G6 generates the best solution out of the 12 
algorithms.   
 
 

Figure 5 here 
 

Tables 8-10 here 
 

5. COMPUTATIONAL EXPERIMENTS 
This section describes the results of two experiment sets designed to evaluate the performance of the 
proposed rules. Similar to the approach used in Yu et al. (2017), the completed analysis evaluates 
algorithm performance for small instances versus an optimal solution, while for large instances it 
evaluates the algorithm’s relative performance. The algorithms were coded in Visual Basic for 
Applications running in Excel. The experiments were conducted on a personal computer with a 2.9GHz 
processor and 12GB of RAM memory using the Windows 10 operating system. All instances are based 
on randomly generated numbers. As in Wang et al. (2016) and Neufeld et al. (2020), this problem is novel 
(includes characteristics not previously addressed in the literature) thus there are no existing methods that 
can be used as benchmark/comparison points, and the experiments focus on characterizing relative 
performance among the proposed versions of the solution approach.  
 
 
5.1 Performance versus the optimal  
This experimental framework is designed to test the ability of the proposed algorithms to find an optimal 
solution. Given the complexity of the problem, these experimental instances were created by inverse 
construction, starting with an optimal solution with a known tardiness of 0 and based on randomly 
generated efficiencies and other characteristics of the instances. The due dates were set equal to each of 
the job’s completion times on stage 2 and the instance’s data (efficiencies, work volumes, due dates) is 
then an input to the algorithms. Since the optimal tardiness value for the instance is known (it is 0), this 
approach is able to determine if the algorithms are able to generate a schedule with the optimal tardiness 
measure. For these experiments, the aggregate efficiency case (AE) is assumed, the duration of the time 
bucket is 8 hours (𝑖𝑖𝑒𝑒. 𝑏𝑏 =  8), the minimum number of workers per station is always 1, (𝑖𝑖𝑒𝑒.𝑤𝑤1𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑤𝑤2𝑚𝑚𝑖𝑖𝑚𝑚 = 1), the efficiency of a worker 𝑔𝑔 for jobs of family ℎ for a stage 𝑖𝑖 is defined by a randomly 
generated value from a uniform distribution; 𝑒𝑒𝑔𝑔,ℎ,𝑖𝑖 = 𝑈𝑈(0.5,1), and there are 2 families (𝑖𝑖𝑒𝑒. 𝑓𝑓 = 2).  
 Three experimental factors are considered at two levels to examine how the characteristics of the 
instances influence the algorithms performance. These are presented in Table 11. The first two factors 
refer to the complexity defined by problem size. The first factor (F1), relates to the number of jobs (𝑚𝑚 = 



 
 

|𝑁𝑁|). The second factor (F2), relates to the number of workers, the maximum number of workers per 
workstation, and the number of parallel stations per stage (Level 1 being a small shop and Level 2, a 
medium shop). Factor F3, relates to the work-content of the jobs and their possible complexity, modeled 
by the divergence of the processing times in the resulting schedule. This is modeled by the range of the 
processing times in the stations. The values of the process time in the stations (in hours) were generated 
using a random uniform distribution, where level 1 indicates that the process times are relatively 
homogeneous, and in level 2, where they are relatively heterogeneous. 
 

Table 11 here 
 

The number of times an optimum solution (with tardiness of 0) is found by all the algorithms and 
by at least one of them is presented in Table 12, for each experimental point. A summary of the results by 
experimental variable is presented in Table 13. All the algorithms found the optimal solution in 13 out of 
the 40 instances, while in 30 out of the 40 instances at least one algorithm found the optimal solution. It is 
noted that the tardiness values are less than an hour for the instances where the optimal solution is not 
found by any of the algorithms. It is argued that as a set, finding the optimal solution in 75% of the cases 
in combination with low tardiness values when the optimal is not found indicate they perform well in 
terms of generating close to optimal solutions under the scope of this set of experiments. Reviewing the 
results from Table 13, and focusing on the number of times at least one of the algorithms finds an optimal 
solution, it is noted that fewer optimal solutions were found at Level 1 of F2 (smaller shop) and Level 2 
of F3 (heterogeneous process times). 
 

Tables 12 and 13 here 
 
5.2 Relative performance 
The second experimental framework is designed to evaluate the relative performance of the algorithms for 
larger problems and where the optimal solution is not known. In these experiments, there are 5 parallel 
workstations for each stage (𝑚𝑚1 = 𝑚𝑚2 = 5). The minimum and maximum number of workers that can be 
assigned per workstation is 1 and 5, respectively, and this applies to both stages (𝑖𝑖𝑒𝑒.𝑤𝑤1𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑖𝑖𝑚𝑚 =
1,  𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 5). There are 𝑓𝑓 families, where the value is set to 4. Pilot experiments with values of 
𝑓𝑓 = 2, 3, and 6, lead to no changes in average tardiness performance for the algorithms. The efficiency of 
a worker 𝑔𝑔 for jobs of family ℎ for a stage 𝑖𝑖 is defined by a randomly generated value from a uniform 
distribution: 𝑒𝑒𝑔𝑔,ℎ,𝑖𝑖 = 𝑈𝑈(0.5,1). The duration of the time bucket is 8 hours (𝑖𝑖𝑒𝑒. 𝑏𝑏 =  8). 

Three experimental factors are considered: two of them at two levels and one at three levels. 
These are presented in Table 15. The first factor (F1) relates to the instance complexity (problem size) 
accounting for the number of jobs and workers (Level 1 representing a medium shop, and Level 2 a large 
shop). The second factor (F2) considers the effect of the balance in the work-content of the jobs; balanced 
across the stages (level 1), unbalanced where there is less work in the first stage of the flowshop (Level 
2),  and unbalanced where there is less work in the second stage of the flowshop (Level 3). The third 
experimental factor (F3) considers the effect of due date tightness on relative performance modeled by a 
tightness ratio; low tightness (Level 1) and high tightness (Level 2).  



 
 

 The implementation of these factors is completed as follows. For each job, the volume of work 
content per stage is defined by a randomly generated value from a uniform distribution 𝑣𝑣𝑗𝑗,1 =
𝑈𝑈(𝑣𝑣𝑑𝑑𝑜𝑜1, 2 × 𝑣𝑣𝑑𝑑𝑜𝑜1) and 𝑣𝑣𝑗𝑗,2 = 𝑈𝑈(𝑣𝑣𝑑𝑑𝑜𝑜2, 2 × 𝑣𝑣𝑑𝑑𝑜𝑜2), where 𝑣𝑣𝑑𝑑𝑜𝑜2 and 𝑣𝑣𝑑𝑑𝑜𝑜2 are defined per F2 (see Table 15). 
The total work content of the shop is 𝑣𝑣𝑑𝑑𝑜𝑜𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚𝑐𝑐 = ∑ [𝑣𝑣𝑗𝑗,1 + 𝑣𝑣𝑗𝑗,2]𝑗𝑗∈𝑁𝑁  and the due date of each job is defined 
by a randomly generated value from a uniform distribution 𝑑𝑑𝑗𝑗 = 𝑣𝑣𝑑𝑑𝑜𝑜1 + 𝑣𝑣𝑑𝑑𝑜𝑜2 + 𝑈𝑈(0, 𝑣𝑣𝑑𝑑𝑜𝑜𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚𝑐𝑐/𝐶𝐶𝑇𝑇), where 
the value of TR (tightness ratio) is defined by experimental factor F3 (see Table 14). The tightness ratio 
values were selected based on pilot experiments as to have approximately 15% and 40% jobs late 
respectively under the first level of both F1 and F2 and based on the AE case assumption. There is a total 
of 12 experimental combinations (2 × 3 × 2), and for each combination 20 problem instances were 
generated. 
 

Table 14 here 
 
5.2.1 Experimental Results in the AE case assumption  
The results when considering the assumption of aggregate efficiency (AE) are presented in Table 15. The 
table presents per experimental level the percentage of instances where each algorithm generated the best 
solution, and in parenthesis, the average tardiness. This discussion focuses on characterizing relative 
performance by the percentage of times an algorithm finds the best solution. The cells in grey indicate the 
best performing algorithm for each level of each experimental factor. The last column of the table 
provides the overall results. Algorithm G6 is the best overall performer and in general, it is observed that 
algorithms G5 to G8 are the best performers across the experiments, all at least finding 20% of the best 
solutions. These four algorithms share as a common element being based on Rule 2 for Step 1, which sets 
the number of operational workstations to the minimum possible for both stages. Note that the 
percentages in each column add to more than 100% given more than one algorithm can determine the best 
solution for an instance (ties). It also noted that algorithms G1 to G4 performed poorly, finding none of 
the best solutions in these experiments. The common element in algorithms G1-G4 is that they are all 
based on Rule 1 for Step 1 which sets the number of operational workstations to the maximum possible in 
both stages. Clearly, this approach does not work well in the AE case. 
 

Table 15 here 
 

The experimental factors play a role in algorithm relative performance. When considering F1 
(shop size), at Level 1 (the medium shop) algorithm G6 is the best performer finding 33% of the best 
solutions, while G10 is the best performer at L2 (the large shop), finding 23% of the best solutions. This 
is the only case where an algorithm outside the G5-G8 group dominates. Algorithm G10 is based on Rule 
3 for Step 1, which sets the largest number of operational workstations in stage one and the minimum in 
the second stage. When considering F2 (workload balance), at Level 1 (balanced workload) algorithm G8 
dominates, at Level 2 (lower workload in stage 1) algorithm G5 dominates, and at Level 3 (lower 
workload in stage 2) algorithm G6 dominates. When considering F3 (due date tightness), algorithm G6 
dominates al Level 1 (low tightness) and G5 at Level 2 (high tightness). In general, the results 
demonstrate that algorithm performance depends on shop characteristics where no single approach 



 
 

outperforms the rest. However, the difference in relative performance when looking at the tardiness 
measure can be small for the top 2-3 algorithms. 
 
5.2.2 Experimental Results in the SE case assumption  
Table 16 presents the results when the slowest efficiency (SE) case assumption is considered, and this 
table presents the same information as Table 15. Algorithm G2 is the best overall performer generating 
31% of the best solutions, followed by G4, which generated 21% of the best solutions. When comparing 
these results to those of the AE case, it is noted that no single or group of algorithms was completely 
outperformed. In other words, all 12 algorithms were able to generate some of the best solutions (no 
algorithm had 0% in the overall column). 
 

Table 16 here 
 

The algorithms’ relative performance is also related to the experimental factors in the SE case. At 
Level 1 of F1 (the medium shop) algorithm G6 is, similarly to in the AE case, the best performer finding 
26% of the best solutions. Generating 46% of the best solutions, algorithm G2 is the best performer at L2 
(the large shop). This is the only factor where one of the algorithms dominates in an experimental level 
for both the AE and SE case (Level 1 of F1).  Similarly to the AE case experiments, three different rules 
dominate across the three levels of F2, but none of the algorithms is the same as those that dominated 
previously. Furthermore, those that dominated in the AE case performed poorly in the SE case. At Level 1 
(balanced workload) algorithm G4 dominates, at Level 2 (lower workload in stage 1) algorithm G10 
dominates, and at Level 3 (lower workload in stage 2) algorithm G2 dominates. The experiments related 
to the Level 3 of F2 are noteworthy as they represent the only condition where an algorithm generates 
more than 50% of the best solutions. The results associated to F2 are also notable as they include the only 
case where the best solution relates to having the maximum number of workstations operational in stage 1 
and the minimum in stage 2. The result is logical as it relates to the experiment level where the higher 
workload is in stage 2. The results for F3 represent the only condition where one algorithm dominates 
across all the experimental levels, moreover by notable differences (the next best performing algorithm is 
several percentage points below). 
 
5.3 Discussion and managerial implications  
The analysis of the results across the two sets of experiments served two objectives: (1) to estimate the 
algorithms’ ability to generate optimal solutions and (2) to determine their relative performance, both 
with the macro objective of identifying the value of implementing these algorithm as practical industrial 
solutions. The results demonstrated that the algorithms, as a set, can generate a relatively large percentage 
of optimal solutions and that the error is small for those where it was not found. However, this conclusion 
is only certain within the small/constrained experimental framework described in section 5.1. The results 
also demonstrated that none of the algorithms is the “best” approach, and instead, multiple algorithms 
should be used in the industrial implementation as their performance is dependent on particular shop 
characteristics.  
Given computational times for algorithms could be significant, the analysis must consider both, which 
algorithms typical perform well and which ones are poor performers in order to determine which 



 
 

algorithms to run (and those not to run) for problem instances as to maintain reasonable running times. In 
the case of the AE assumption, algorithms G5 to G8, which are based on having the minimum number of 
workstations per stage, performed very well, while algorithms G1 to G4, which are based on having the 
maximum number of workstations per stage, were highly ineffective. This clearly indicates that having 
the right number of workstations operational is very relevant in the AE case, and having the workers 
spread out is not an effective strategy.  
In the case of the SE assumption, algorithms G2 and G4 were highly effective, while algorithms G1, G3, 
G5, G7, and G11 were ineffective. A common element in G2 and G4 is that both are based on the 
maximum number of workstations per stage. Therefore, contrary to the AE case, having the workers 
spread out is an effective strategy in the SE case. The five ineffective algorithms share as a common 
component Step 6, where the reassignment is first performed for all buckets and then the exchange of 
workers is performed for all buckets.  
Given the relevance of the AE versus SE assumption in the efficacy of the algorithms, a key managerial 
decision is to determine which of the two assumptions is a more valid representation of their operations. 
Management would also need to evaluate the reconfiguration options for equipment/workstations to 
control the maximum and minimum level of worker reallocations that are possible. This also has an effect 
on performance. Furthermore, management must consider how due dates for jobs are assigned given their 
implications to on-time delivery and the level of worker reassignments it may require. 
 
 
6. CONCLUSIONS AND FUTURE WORK 
The flowshop problem has been the subject of extensive research in many variants which consider diverse 
processing and shop characteristics (Neufeld et al., 2016, Rossit et al., 2018). This research proposes a 
new variant based on an industrial setting that includes flexibility in terms of which workstations are 
operational per stage, the allocation of the workers to the workstations, and the assignment of the workers 
by time buckets to the schedule. All of these characteristics make for a complex problem that requires 
solution approaches with multiple stages. This work described in detail multiple algorithms that address 
the characteristics of the proposed flowshop problem, which includes determining the number of 
workstations to have available and how to reassign workers across the workstations on a time bucket 
basis.  
 This research has several contributions to the body of knowledge in scheduling. First, it considers 
the effect of worker efficiency in the duration of a schedule based on time buckets where the workers can 
be allocated to a different workstation each bucket. No research that considers such characteristic is 
known to the authors, even when this is a real-world characteristic of some systems. There are many real-
world applications where workforce reconfiguration is/could be performed in a per shift basis and where 
the approaches described in this paper could be used. This research is also relevant because it models the 
case where the slowest (or bottleneck) worker is the controlling factor on the time to process a job. It is 
proposed that in a variety of real-world settings with labor intensive team activities, the described 
“slower” worker effect may be relevant and for the most part has been ignored by the scheduling 
literature.  
 There are many promising directions of future work that builds on the concepts of determining 
the operational workstations, assigning flexible workers to workstations per time bucket, and worker 



 
 

efficiency considering the slowest worker of a group. For example, research into generating robust 
schedules based on different levels of efficiency, similar to the scenario model in Wu et al. (2020). 
Furthermore, the production environment that serves as a basis for this work is also evolving to include 
some automation, thus it would be interesting to consider the effect of additional resources where 
efficiency does not change. Another related direction would be to model only one of the stages as a 
parallel machine setting and focus on the theoretical setting that could determine the optimal number of 
workstations to have operational, based on some limited characterization of the problem. Future research 
work on the applied sense would focus on the application of the proposed algorithms to the described 
environment. 
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Table 1. Job related information. 
 

job 𝑣𝑣𝑗𝑗,1 𝑣𝑣𝑗𝑗,2 𝑦𝑦𝑗𝑗 𝑑𝑑𝑗𝑗 
j1 29 16 f1 32 
j2 26 18 f2 35 
j3 36 35 f1 38 
j4 15 18 f2 40 
j5 16 28 f1 44 
j6 36 25 f1 48 

 
 

Table 2. Worker related information. 
 

worker 𝑒𝑒𝑤𝑤,𝑓𝑓1,1 𝑒𝑒𝑤𝑤,𝑓𝑓2,1 𝑒𝑒𝑤𝑤,𝑓𝑓1,2 𝑒𝑒𝑤𝑤,𝑓𝑓2,2 
w1 1.00 0.70 0.70 0.95 
w2 0.70 0.65 0.90 0.85 
w3 0.75 0.90 0.80 1.00 
w4 0.90 0.90 0.90 0.70 
w5 0.80 0.80 0.85 0.80 
w6 0.90 1.00 1.00 0.70 
w7 1.00 0.90 0.70 0.80 

 
 

Table 3. The start, duration and end times of each job for schedule S1-A1 in the AE case assumption. 
 

  stage 1   stage 2  
job start duration end start duration end 
j1 0.000 11.500 11.500 16.000 8.421 24.421 
j2 0.000 7.761 7.761 8.000 18.000 26.000 
j3 11.500 18.000 29.500 29.500 13.304 42.804 
j4 7.761 4.478 12.239 26.000 15.455 41.455 
j5 29.500 8.000 37.500 41.455 12.727 54.182 
j6 12.239 19.487 31.725 42.804 8.929 51.732 

 
  



 
 

Table 4. The completion time, the due date, and the tardiness of each job for schedule S1-A1 in the AE 
case assumption. 

 
job 𝑐𝑐𝑗𝑗 𝑑𝑑𝑗𝑗 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠 
j1 24.421 32 0 
j2 26.000 35 0 
j3 42.804 38 4.804 
j4 41.455 40 1.455 
j5 54.182 44 10.182 
j6 51.732 48 3.732 

 
 

Table 5. The start, duration and end times of each job for schedule S1-A1 in the SE case assumption. 
 

  stage 1   stage 2  
job start duration end start duration end 
j1 0.000 13.500 13.500 16.000 8.889 24.889 
j2 0.000 10.000 10.000 10.000 18.000 28.000 
j3 13.500 18.000 31.500 31.500 13.130 44.630 
j4 10.000 5.769 15.769 28.000 14.500 42.500 
j5 31.500 8.000 39.500 42.500 13.333 55.833 
j6 15.769 32.423 48.192 48.192 14.175 62.368 

 
 

Table 6. The completion time, the due date, and the tardiness of each job for schedule S1-A1 in the SE 
case assumption. 

 
job 𝑐𝑐𝑗𝑗 𝑑𝑑𝑗𝑗 𝜃𝜃𝑗𝑗 
j1 24.889 32 0 
j2 28.000 35 0 
j3 44.630 38 6.630 
j4 42.500 40 2.500 
j5 55.833 44 11.833 
j6 62.368 48 14.368 

 
 

Table 7. Summary of the scheduling rules. 

Algorithm Step 1 Step 5 Step 6 
G1 Rule 1 Rule 1 Rule 1 
G2   Rule 2 
G3  Rule 2 Rule 1 
G4   Rule 2 
G5 Rule 2 Rule 1 Rule 1 
G6   Rule 2 
G7  Rule 2 Rule 1 
G8   Rule 2 
G9 Rule 3 Rule 1 Rule 1 
G10   Rule 2 
G11  Rule 2 Rule 1 
G12   Rule 2 



 
 

Table 8. Worker to workstation assignment per time bucket for G1. 
 

t 1 2 3 4 5 6 7 8 
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 

worker w1 s1-2 s1-2 s1-1 s1-1 s1-1 s2-3 s1-1 -- 
 w2 s1-1 s1-1 s2-2 s2-2 s2-3 s2-2 -- s2-1 
 w3 s1-3 s2-1 s2-1 s2-1 s2-1 s1-1 s2-1 -- 
 w4 s1-3 s1-3 s1-1 s1-1 s2-3 s2-2 s1-1 s2-1 
 w5 s1-3 s1-1 s1-3 s1-3 s2-2 s2-3 -- -- 
 w6 s1-3 s1-1 s2-3 s2-3 s2-3 s2-2 s1-1 s2-1 
 w7 s1-2 s1-2 s1-2 s1-2 s2-1 s1-1 s1-1 -- 

 
 

Table 9. Worker to workstation assignment per time bucket for G6. 
 

t 1 2 3 4 5 6 7 8 
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 

worker w1 s1-2 s1-2 s2-1 s1-2 s1-2 s1-2 s2-1 -- 
 w2 s1-2 s2-2 s2-2 s2-1 s2-2 s2-1 s2-2 s2-2 
 w3 s1-1 s2-1 s2-1 s2-1 s2-1 s2-2 s2-1 -- 
 w4 s1-1 s1-1 s1-1 s1-1 s2-2 s2-1 s2-2 s2-2 
 w5 s1-2 s2-1 s1-2 s1-1 s2-1 s2-1 s2-1 -- 
 w6 s1-1 s1-1 s1-1 s2-2 s2-2 s1-2 s2-2 s2-2 
 w7 s1-2 s1-2 s1-2 s1-2 s1-2 s1-2 -- -- 

 
 

Table 10. Worker to workstation assignment per time bucket for G12. 
 

t 1 2 3 4 5 6 7 8 
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 

worker w1 s1-1 s1-3 s2-1 s1-3 s2-2 s2-1 s1-3 -- 
 w2 s1-3 s1-2 s1-1 s2-1 s2-2 s2-2 s2-1 s2-1 
 w3 s1-2 s1-2 s2-1 s1-1 s2-2 s2-1 s2-2 -- 
 w4 s1-3 s1-1 s1-2 s1-1 s1-2 s2-2 s2-1 s2-1 
 w5 s1-3 s1-1 s1-1 s2-1 s1-3 s2-1 s2-2 -- 
 w6 s1-3 s1-1 s2-2 s2-2 s2-1 s2-2 s2-1 s2-1 
 w7 s1-2 s1-3 s1-3 s1-2 s1-2 s1-3 s1-3 -- 

  



 
 

Table 11. Experimental factors for the optimal solution experiments. 
 

Factor Level 1 Level 2 
F1 𝑚𝑚 =  10 𝑚𝑚 =  20 
F2 𝑤𝑤 =  5 

 𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 2 
𝑚𝑚1 = 𝑚𝑚2 = 2 

𝑤𝑤 =  10 
 𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 3 

𝑚𝑚1 = 𝑚𝑚2 = 3 
F3 𝑈𝑈(5, 6) 𝑈𝑈(0.5, 7) 

 

 
Table 12.  Results per experimental point for the optimal solution experiments. 

 

F1 F2 F3 

Number instances 
were all algorithms 
found the optimum 

(out of 5) 

Number instances 
were the optimal 

solution was found 
by at least one 

algorithm (out of 5) 

Average best 
tardiness for 
unsuccessful 

instances 

L1 
L1 L1 4 5 - 

L2 1 4 0.206 

L2 L1 3 5 - 
L2 1 1 0.075 

L2 
L1 L1 2 3 0.017 

L2 1 2 0.051 

L2 L1 1 5 - 
L2 0 5 - 

Overall  13/40 (32.5%) 30/40 (75%)  
 
 

Table 13. Summary of results for the optimal solution experiments. 
 

Factor F1 F2 F3  
Level L1 L2 L1 L2 L1 L2 Overall 

% instances where all the 
rules found the optimum 45% 20% 40% 25% 50% 15% 32.5% 

% instances where the 
optimal solution was found 

by at least one rule 
75% 75% 70% 80% 90% 60% 75% 

 
 

  



 
 

Table 14. Experimental factors for relative performance experiments. 
 

Factor Level 1 Level 2 Level 3 
F1 𝑚𝑚 =  30,𝑤𝑤 = 12 𝑚𝑚 =  50,𝑤𝑤 = 20 - 
F2 𝑣𝑣𝑑𝑑𝑜𝑜1 = 𝑣𝑣𝑑𝑑𝑜𝑜2 = 15 𝑣𝑣𝑑𝑑𝑜𝑜1 = 10; 𝑣𝑣𝑑𝑑𝑜𝑜2 = 20 𝑣𝑣𝑑𝑑𝑜𝑜1 = 20; 𝑣𝑣𝑑𝑑𝑜𝑜2 = 10 
F3 𝐶𝐶𝑇𝑇 = 1 𝐶𝐶𝑇𝑇 = 2.5 - 

 

 

 

 

Table 15. Results by experimental variable in the AE case assumption. 

 F1 F2 F3 
Overall 

 L1 L2 L1 L2 L3 L1 L2 
G1 0% (14.31) 0% (10.76) 0% (12.18) 0% (12.04) 0% (13.40) 0% (6.75) 0% (18.33) 0% (12.54) 

G2 0% (13.71) 0% (10.41) 0% (11.83) 0% (11.78) 0% (12.56) 0% (6.35) 0% (17.77) 0% (12.06) 

G3 0% (14.99) 0% (11.01) 0% (12.64) 0% (12.24) 0% (14.12) 0% (7.24) 0% (18.76) 0% (13.00) 

G4 0% (14.19) 0% (10.57) 0% (12.00) 0% (11.93) 0% (13.21) 0% (6.64) 0% (18.13) 0% (12.38) 

G5 30% (11.03) 15% (10.05) 18% (10.08) 24% (10.92) 26% (10.62) 18% (5.33) 27% (15.75) 23% (10.54) 

G6 33% (11.04) 15% (10.04) 23% (10.01) 16% (10.93) 34% (10.68) 23% (5.31) 26% (15.77) 24% (10.54) 

G7 25% (11.15) 15% (10.16) 21% (10.10) 23% (10.92) 16% (10.94) 18% (5.29) 22% (16.02) 20% (10.65) 

G8 30% (11.15) 17% (10.1) 31% (10.03) 16% (10.93) 23% (10.91) 22% (5.25) 25% (15.99) 23% (10.62) 

G9 9% (11.99) 11% (9.78) 11% (10.28) 11% (11.2) 8% (11.18) 7% (5.65) 13% (16.12) 10% (10.89) 

G10 12% (11.96) 23% (9.77) 14% (10.25) 20% (11.2) 18% (11.15) 19% (5.61) 15% (16.12) 17% (10.86) 

G11 5% (12.57) 15% (9.99) 8% (10.61) 13% (11.22) 10% (12.00) 8% (6.01) 12% (16.55) 10% (11.28) 

G12 11% (12.33) 20% (9.93) 14% (10.49) 21% (11.07) 9% (11.84) 12% (5.9) 19% (16.36) 15% (11.13) 
 

  



 
 

 

Table 16. Results by experimental variable in the SE case assumption. 

 F1 F2 F3 
Overall 

 L1 L2 L1 L2 L3 L1 L2 

G1 3% (18.23) 8% (15.07) 4% (14.95) 3% (17.61) 9% (17.39) 3% (10.46) 7% (22.84) 5% (16.65) 

G2 17% (17.37) 46% (14.08) 21% (14.35) 14% (16.69) 59% (16.13) 35% (9.61) 28% (21.84) 31% (15.72) 

G3 0% (19.02) 5% (15.55) 4% (15.41) 3% (17.69) 1% (18.76) 1% (11.10) 4% (23.48) 3% (17.29) 

G4 5% (17.85) 38% (14.79) 34% (14.53) 15% (16.84) 15% (17.59) 22% (10.22) 21% (22.42) 21% (16.32) 

G5 14% (16.95) 3% (17.41) 9% (15.21) 5% (17.23) 11% (19.1) 6% (11.47) 11% (22.89) 8% (17.18) 

G6 26% (16.93) 4% (17.11) 25% (14.96) 8% (17.22) 13% (18.87) 12% (11.29) 18% (22.74) 15% (17.02) 

G7 14% (16.94) 7% (17.2) 10% (15.27) 8% (17.04) 14% (18.89) 10% (11.25) 11% (22.88) 10% (17.07) 

G8 23% (16.87) 9% (16.84) 23% (15.02) 10% (16.97) 16% (18.58) 15% (11.1) 18% (22.61) 16% (16.85) 

G9 11% (19.29) 7% (16.4) 4% (14.79) 19% (16.21) 4% (22.53) 7% (11.96) 11% (23.74) 9% (17.85) 

G10 13% (18.69) 5% (15.74) 1% (14.51) 23% (15.83) 3% (21.31) 9% (11.32) 8% (23.11) 9% (17.22) 

G11 13% (19.43) 1% (16.9) 3% (15.27) 18% (16.29) 1% (22.93) 8% (12.21) 7% (24.12) 7% (18.17) 

G12 12% (18.96) 3% (16.29) 4% (14.8) 19% (16.09) 0% (21.98) 7% (11.72) 8% (23.54) 8% (17.63) 

 

  



 
 

 
 

 
 
 

Figure 1. An illustration of the problem environment. 



 
 

 
 
 

Figure 2. Schedule based on job sequences S1 and worker assignments A1 in the AE case assumption. 
 

  



 
 

 

 
 
 

 
Figure 3. Schedules based on job sequences S1 and worker assignments A1 in the AE and SE case 

assumptions. 
  



 
 

 
 

 
 

 
 
 

Figure 4. Flowchart of the solution approach. 
 



 
 

 
 
 

Figure 5. Schedules resulting in the implementation of algorithms G1, G6, and G12 in the SE case. 
 
 
 
 

 


