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compounds in aqueous medium using Pd(II) complexes with dihydroxy-

2,20-bipyridine ligands: homogeneous or heterogeneous nano-catalysis?w
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The conjugate addition of arylboronic acids to a,b-unsaturated carbonyl compounds in water

under air has been studied using a series of palladium(II) derivatives containing symmetrically

disubstituted-2,20-bipyridine ligands. Among them, best results were obtained with complex

[PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a), which selectively provides the desired addition products in

good to high yields under mild conditions. Catalytically active palladium nanoparticles are

formed in the course of the reactions. In the presence of sodium dodecyl sulfate (SDS) these

nanoparticles can be stabilized and recycled.

Introduction

The conjugate 1,4-addition of organometallic compounds to

electron-deficient olefins represents one of the most powerful

tools presently available to create new C–C bonds.1 In this

context, since the pioneering work of Miyaura and co-workers

in 1997,2 metal-catalyzed conjugated addition of arylboronic

acids to a,b-unsaturated carbonyl compounds has attracted

considerable attention because of the higher stability of these

reagents towards air and moisture, as well as their improved

functional group tolerance, as compared to the more classical

organocopper, -zinc, -zirconium, -aluminum and -mercury

species (Scheme 1).3 In fact, the maturity gained by this

reaction in such a short period of time is such that, its

asymmetric version, is nowadays considered as the best method

for the enantioselective introduction of aryl and alkenyl

groups at b-position of these electron-deficient olefins.3

From a mechanistic point of view (Scheme 1),3 these

catalytic transformations involve the initial transmetallation

of the aryl group from the arylboronic acid to the metal,

followed by the insertion of the CQC bond of the enone

(or enal) into the metal-carbon bond of intermediate I, to give

a p-oxa-allyl complex II. Final protonolysis of II liberates the

corresponding conjugated addition product with regeneration

of the catalytically active species. To date, these catalytic

reactions have been dominated by Rh(I)-based complexes.2,3

Palladium species are also known to promote the conjugate

addition of arylboronic acids to a,b-unsaturated carbonyl

compounds.4 However, despite the lower cost associated with

this metal, palladium-based catalysts remain comparatively

much less studied due to their propensity to promote the

competitive formation of Heck-type coupling products via

b-hydride elimination pathways (Scheme 2).4,5

Among the different Pd-based systems able to catalyze the

conjugate addition of arylboronic acids to a,b-unsaturated
carbonyl compounds selectively,6 Pd(OAc)2/bipy

7 and the

Scheme 1 The catalytic 1,4-conjugate addition of arylboronic acids

to a,b-unsaturated carbonyl compounds.
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dimeric complex [{Pd(m-OH)(bipy)}2][BF4]2
8 merit to be high-

lighted due to their outstanding activity under mild conditions.

Apparently, the presence of the p-acceptor 2,20-bipyridine

ligand (bipy) coordinated to the active Pd(II) center inhibits

the b-hydride elimination and promotes the protonolysis of

intermediate II.9

Remarkably, in the presence of appropriate surfactants, the

addition reactions promoted by Pd(OAc)2/bipy could also be

conveniently performed in aqueous media.7b This fact represents

a significant advance towards Green Chemistry, since one of

its principles is to circumvent the use of hazardous organic

solvents as they are responsible for a large part of the waste

generated by the chemical processes.10 In this sense, water is one

of the most appealing candidates to replace organic solvents

due its abundance, low-cost, and non-toxic and safe nature.11

Indeed, the use of water as solvent in catalytic and stoichio-

metric organic synthesis has spread throughout the chemical

community at a staggering pace during the last two decades.12

With all these precedents in mind, and as part of our current

research work dealing with the development of catalytic

transformations in environmentally friendly aqueous media,13

we have investigated the conjugated addition of arylboronic

acids to a,b-unsaturated carbonyl compounds in water using

well-defined palladium(II) complexes containing symmetrically

disubstituted-2,20-bipyridine ligands functionalized with hydro-

philic groups. Our goal was to find palladium catalysts able to

promote these addition processes in aqueous medium without

the aid of surfactants.14 As the reader will see, in the course of

these studies we have discovered a new example of hetero-

geneous nanocatalysis involving metallic nanoparticles.

Results and discussion

Introduction of hydrophilic ligands in the coordination sphere

of a transition-metal is probably the most popular method for

the preparation of water-soluble catalysts.15 In this context,

although scarcely employed in homogeneous catalysis, a large

number of 2,20-bipyridine ligands substituted with hydrophilic

groups are known.16 In particular, our initial efforts focused

on the use of the symmetrically substituted dihydroxy-2,20-

bipyridines 1a–d due to their easy access from commercially

available starting materials.17 We also believed that the ability

of the OH groups to establish hydrogen bonds with water

would help the solubilization of the resulting complexes in this

medium. Thus, by reacting an stoichiometric amount of these

dihydroxylated ligands with PdCl2 in refluxing acetone, we

prepared the new complexes 2a–d, which were isolated as air-

stable yellow or brown solids in 50–94% yield (Scheme 3).

Alternatively, compounds 2a–d can be generated in similar

yields starting from the soluble precursor [PdCl2(COD)] (COD=

1,5-cyclooctadiene). In both cases, 2a–d directly precipate in the

reaction media.

Surprisingly, despite the presence of OH groups in their

structure, complexes 2a–d were found to be insoluble in water

at room temperature (only in the case of 2a a solubility of

0.5 mg cm�3 could be measured).18 However, we must note

that at high temperature (80 1C), or under strongly basic

conditions (pH 14),19 we were able to prepare aqueous solutions

of these compounds of up to 10 mg cm�3. Characterization of

complexes 2a–d was straightforward following their analytical

and spectroscopic data, with the 1H and 13C{1H} NMR

spectra recorded in DMSO-d6 showing the expected signals

for the protons and carbons of the 2,20-bipyridyl skeletons

(details are given in the Experimental Section).20 The presence

of the OH units was confirmed by the appearance of a strong

absorption band at ca. 3400 cm�1 in the IR spectra of these

compounds.

To prove the catalytic potential of complexes 2a–d, we

investigated the conjugate addition of phenylboronic acid

(4a) to 2-cyclohexenone (3a) as model reaction. Initial

exploratory experiments were performed at 80 1C in pure

aqueous medium under air, using a 3a :4a molar ratio of 1 :3 and

a palladium loading of 5 mol%. As shown in Table 1, under

these conditions, all the complexes synthesized were able to

provide the desired 3-phenylcyclohexanone (5aa) as the major

reaction product along with variable amounts of the Heck-type

product 6aa and cyclohexanone, the latter resulting from the

reduction of the CQC bond of 3a (entries 1–4).21 However,

marked differences in activity and selectivity were observed

depending on the substitution pattern of the 2,20-bipyridine

Scheme 2 The competitive b-hydride elimination in intermediate II.

Scheme 3 Preparation of complexes 2a–d.

Table 1 Catalytic addition of phenylboronic acid (4a) to 2-cyclo-
hexenone (3a) in water using complexes 2a–da

Entry Catalyst Time Conversionb Yield 5aa
b Yield 6aa

b

1 2a 1 h >99% 98% 1%
2 2b 24 h >99% 95% 4%
3c 2c 5 h 99% 87% 7%
4d 2d 24 h 35% 18% 3%
5e PdCl2 3 h 51% 37% 8%
6f 2a 1 h >99% 98% 1%
7g 2a 1 h >99% 98% 1%

a Reactions performed at 80 1C under air using 0.5 mmol of 3a, 1.5 mmol

of 4a, 0.025 mmol of the corresponding Pd(II) complex 2a–d and 1 cm3 of

water. Unless otherwise stated, formation of trace amounts of cyclo-

hexanone was in all cases observed (up to 1%). b Determined by GC.
c 5% of cyclohexanone was formed. d 14% of cyclohexanone was formed.
e 6% of cyclohexanone was formed. f Reaction performed under N2

atmosphere. g Reaction performed in the presence of 15 mol% of 1a.
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ligand attached to palladium. Thus, higher activities were

observed with complexes 2a and 2c, substituted with the OH

groups in 3,30 and 5,50 positions, as compared to their 4,40 and

6,60-disubstituted counterparts 2b and 2d (entries 1 and 3 vs. 2

and 4). This fact clearly indicates that electronic effects govern the

catalytic activity of these complexes, increasing when

the electronic density on the metal is lower.22 In particular,

the best results were obtained with complex [PdCl2{3,3
0-

(OH)2-2,2
0-bipy}] (2a) which was able to generate selectively

the desired ketone 5aa in 98% GC-yield after only 1 h of

heating (entry 1). As shown in entry 5, under identical reaction

conditions, significantly worse results were obtained using

PdCl2 as catalyst, thus confirming the key role played by the

dihydroxylated bipy ligand in this catalytic reaction.23 It is

also worth of note that no differences in the activity and

selectivity of 2a were observed when the catalytic reactions

were performed under inert atmosphere (entry 6) or in the

presence of an excess of the ligand 1a (entry 7).

A striking feature of all the catalytic reactions listed in

Table 1 is the gradual appearance of a black solid suspension.

The solid material generated in one of these reactions (entry 1)

was isolated by filtration, washed with diethyl ether and acetone,

and studied by means of TEM (Transmission Electron Micro-

scopy) and SEM/EDX (Scanning Electron Microscopy/

Energy-Dispersive X-ray spectroscopy) techniques. The micro-

graphs obtained (Fig. 1) revealed the formation of aggregates

(100–250 nm) of nanoparticles with spherical morphology and

a size range of 6–12 nm. SEM/EDX measurements confirmed

that the solid was mainly composed of elemental palladium

(73.7 wt%).24 The additional presence of carbon (19.2 wt%),

oxygen (3.3 wt%) and nitrogen (1.8 wt%) in the sample also

evidenced that part of the 3,30-dihydroxy-2,20-bipyridine ligand

1a is ‘‘retained’’ by the nanoparticles. At this point, we must

note that decomposition of the Pd(II) complex 2a into Pd(0) is

closely related to the dissociation of the bipy ligand, since a

fluorescence phenomenon was observed when the catalytic

reaction mixture was exposed to UV light (Fig. 2). Green light

emission when irradiated with 365 nm of ultraviolet light is a

hallmark of ligand 1a,17b property that loses when coordinated

to a metal center.

Formation of palladium nanoparticles starting from 2a–d

is rather surprising since in previous studies by Lu and Tsai,

using related Pd(II)-bipy systems, such a fact was not

evidenced.7,8,14 That’s why, in order to determine whether this

property is unique of complexes 2a–d, we decided to prepare

a series of Pd(II) derivatives with different 2,20-bipy ligands

and explore their behaviour under identical reaction con-

ditions. In particular, in addition to the parent compound

[PdCl2(bipy)] (11),
25 we synthetized the hydrophilic derivatives

12–14 by refluxing an equimolar mixture of PdCl2 with the

appropriate 4,40-disubstituted-2,20-bipyridine 8–10 in acetone

for 24 h (Scheme 4). These complexes were isolated as air-

stable yellow-orange solids in 93–95% yield after a simple

filtration of the reaction mixtures since all of them directly

precipitate in the medium. Similarly to 2a–d, the dihydroxy-

methyl-substituted derivative 13 was found to be insoluble in

water at room temperature (a solubility of 5 mg cm�3 was

observed in basic medium at pH 14).19 In contrast, the Pd(II)

complexes 12 and 14, substituted with trimethylammonium

and carboxylic acid groups, respectively, dissolve in water at

neutral pH (10 and 5 mg cm�3 at 20 1C).

Complexes 12–14 were characterized by means of standard

spectroscopic techniques (IR and multinuclear NMR) and

elemental analyses, all data being fully consistent with the

proposed formulations (details are given in the Experimental

Section).26 In addition, the structures of 13 and 14 could be

unambiguously confirmed by means of X-ray diffraction

analyses.z X-ray quality crystals were obtained by slow diffusion

of methanol into saturated solutions of complexes 13–14 in

dimethylsulfoxide. ORTEP views of the molecules are shown

in Fig. 3 and 4, respectively (selected bonding parameters are

listed in the captions).27 The geometry around the Pd atom is

slightly distorted square-planar in both structures, with metal-

centered angles between 80.45(10)1 and 95.50(8)1. The palladium

Fig. 1 TEM (left) and SEM (right) images of the agglomerated nanoparticles isolated from the catalytic reaction described in entry 1 of Table 1.

Fig. 2 The fluorescence behaviour observed in the presence of UV-

light (right; non-irradiated sample on the left).
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atom is displaced for only 0.0002(3) (13) and 0.0064(2) (14) Å

from the plane defined by the Cl(1), Cl(2), N(1) and N(2) atoms.

These data, along with the Pd-N (2.018(3)–2.027(2) Å) and

Pd-Cl (2.2752(8)–2.2967(9) Å) bond distances observed, are

comparable to those previously reported in the literature for

the parent compound [PdCl2(bipy)] (11).
28

As shown in Table 2, complexes 11–14 were active in

the conjugate addition of phenylboronic acid (4a) to 2-cyclo-

hexenone (3a) in water, delivering all of them 3-phenylcyclo-

hexanone (5aa) as the major reaction product. As observed

with the dihydroxylated derivatives 2a–d, minor amounts of

the Heck-type coupling product 6aa and cyclohexanone were

also formed in these reactions and, more importantly, the

apparition of a black precipitate of palladium metal was in all

cases evidenced during the catalytic events. Instability of the

Pd(II)/bipy systems seems to be, therefore, a general trend

under the aqueous catalytic conditions employed. The result

collected in entry 2 deserves some additional comments since

the catalytic behaviour of complex 12, generated in situ from

[PdCl2(NH3)2] and the cationic 2,20-bipyridine ligand 8, has

been recently described by Tsai and co-workers.14 In their

work, in which the addition reaction of 4a to 3a was studied in

the pH range 1–12, there is no feedback on the formation of

palladium black and a very poor yield of 5aa was reached

when the catalytic reaction was conducted at neutral pH (6% vs.

our 72%). In contrast, under extreme acidic conditions (pH 1)

almost quantitative formation of 5aa was observed and the

catalytic system could be recycled several times. Note that, as

shown in entries 5-6 of Table 2, complexes cis-[PdCl2(PTA)2] (15)

and cis-[PdCl2(DAPTA)2] (16) containing the water-soluble

phosphine ligands 1,3,5-triaza-7-phosphatricyclo[3.3.1.1[3,7]]decane

(PTA) and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane

(DAPTA) were almost inoperative in this catalytic transformation.

From this general catalyst screening, and despite its ten-

dency to decompose into elemental palladium, the dihydroxy-

lated derivative [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a) emerged as

the top choice due to its selectivity and efficiency (entry 1 in

Table 1). In this regard, additional studies showed that this

complex (5 mol%) is also able to promote efficiently the

addition of phenylboronic acid (4a) to 2-cyclohexenone (3a)

at room temperature, even when a 1 : 1 molar ratio of the

reactants was employed.29 Under this challenging reaction

conditions, ketone 5aa was quantitatively generated after 5 h,

and could be isolated in analytically pure form (86% yield) by

extraction from the aqueous phase with hexanes and sub-

sequent chromatographic purification (entry 1 in Table 3). It is

also worth mentioning that the activity of complex 2a is

retained at lower catalyst loadings. Thus, using only 3 mol%

of 2a, quantitative formation of 5aa was observed by GC after

8 h of stirring at r.t. (incomplete reactions after 24 h were

observed with palladium loadings of 0.5 and 0.005 mol%).

To further define the scope of this green catalytic system, the

addition of a number of other arylboronic acids to 2-cyclo-

hexenone (3a), 2-cyclopentenone (3b) and 2-cycloheptenone

(3c), was explored using 5 mol% of 2a. Thus, as shown in

Table 3 (entries 2–13), the expected addition products 5ab–5ca

could be selectively prepared in good to excellent yields

(82–99% GC yields; 73–88% isolated yields), regardless of

the electronic nature of the aromatic ring of the boronic acid.

Scheme 4 Preparation of complexes 11–14.

Fig. 3 ORTEP-type view of the structure of compound 13 showing

the crystallographic labelling scheme. Thermal ellipsoids are drawn at

20% probability level. Selected bond distances (Å): Pd–Cl(1)

2.2967(9); Pd–Cl(2) 2.2869(8); Pd–N(1) 2.022(2); Pd–N(2) 2.018(3);

C(11)–O(1) 1.398(5); C(12)–O(2) 1.410(5); Selected bond angles (1):

Cl(1)–Pd–Cl(2) 89.33(3); Cl(1)–Pd–N(1) 95.50(8); Cl(1)–Pd–N(2)

175.85(7); Cl(2)–Pd–N(1) 175.10(8); Cl(2)–Pd–N(2) 94.74(7);

N(1)–Pd–N(2) 80.45(10); C(3)–C(11)–O(1) 113.8(3); C(8)–C(12)–O(2)

113.9(3).

Fig. 4 ORTEP-type view of the structure of compound 14 showing

the crystallographic labelling scheme. Thermal ellipsoids are drawn at

20% probability level. Selected bond distances (Å): Pd–Cl(1)

2.2752(8); Pd–Cl(2) 2.2771(8); Pd–N(1) 2.027(2); Pd–N(2) 2.023(2);

C(11)–O(1) 1.306(3); C(11)–O(2) 1.201(3); C(12)–O(3) 1.312(3);

C(12)–O(4) 1.202(4). Selected bond angles (<): Cl(1)–Pd–Cl(2)

90.01(3); Cl(1)–Pd–N(1) 94.98(7); Cl(1)–Pd–N(2) 174.66(7);

Cl(2)–Pd–N(1) 174.42(7); Cl(2)–Pd–N(2) 94.41(7); N(1)–Pd–N(2)

80.75(9); C(3)–C(11)–O(1) 113.7(2); C(3)–C(11)–O(2) 122.5(2);

O(1)–C(11)–O(2) 123.8(3); C(8)–C(12)–O(3) 113.0(2); C(8)–C(12)–O(4)

123.0(2); O(3)–C(12)–O(4) 124.1(3).

z CCDC-828891 (13) and 828892 (14) contain the supplementary
crystallographic data for this paper.
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Only trace amounts of the corresponding Heck-type products

6ab–6ca were detected by GC in the crude reaction mixtures

(r1%), thus confirming the remarkable selectivity of 2a.

Although all these processes were operative at r.t. employing

equimolar ratios of the reactants, in some cases the use of high

temperature (80 1C) and/or excess of the boronic acid was

required to achieve good conversions. The generality of the

process was further demonstrated by using the acyclic substrates

3d–e (entries 14–15), which also led to the addition products

5da–5ea in high yields.

Again, in all the reactions listed in Table 3 extensive

formation of palladium nanoparticles was observed. This fact

raised the question on the real nature of the catalytically active

species in these aqueous 1,4-addition reactions.30 Thus, in

order to determine whether the process is really homogeneous,

the conjugate addition of phenylboronic acid (4a) to 2-cyclo-

hexenone (3a) promoted by [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a)

was performed in the presence of mercury.31 As shown in

Fig. 5, although the reaction works in the presence of Hg(0), a

remarkably lower conversion was attained after 5 h as com-

pared to that performed in its absence (64% vs. > 99%), thus

suggesting that the palladium nanoparticles play a role in this

catalytic transformation.

In line with this, an interesting observation was made when

the same catalytic reaction was carried out, in the absence

of Hg(0), under more dilute conditions (graphs (b), (c) and (d)

in Fig. 6). The irregularities in the curves at short times

(20–40 min) visually match with the progressive change of

color of the aqueous solution from yellow to orange and

finally to dark green, a color change that is accompanied by

a turbidity. TEM images recorded from a sample collected at

this moment (reaction (c)) confirmed the appearance of the

first nanoparticles (Fig. 7).

Moreover, as shown in Fig. 8, addition of mercury at this

stage almost completely supressed the catalysis. All these facts

strongly support that, only at the early stages of the catalytic

events, molecular Pd(II) species are the real active species and

that, once formed, palladium(0) nanoparticles are the responsible

to drive the catalytic reactions to completion.32

Finally, recycling of the nanoparticles was also investigated

using again the addition of phenylboronic acid (4a) to 2-cyclo-

hexenone (3a) as model reaction. Thus, we observed that the

solid material generated from [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a)

shows, after filtration and washing with diethyl ether and acetone

(Fig. 1), a very poor activity and a low selectivity towards the

formation of the desired 1,4-addition product 5aa. In particular,

40 h of heating at 80 1C were requiered to achieve the complete

consumption of 3a, the catalytic reaction leading to 5aa

in only 40% GC yield, along with 20% of the Heck product

6aa and 39% of the reduced cyclohexanone. This result is not

surprising since agglomeration of metal-nanoparticles is

known to have a negative impact on the activity and selectivity

of several catalytic transformations.33,34

In order to avoid the agglomeration of the catalytically

active Pd nanoparticles, and facilitate their possible recycling,

some experiments were performed in the presence of surfactants.

This type of additives are known to confer an ‘‘electrosteric’’

stabilization to nanoparticles, thus preventing the formation

of bulk metal.35,36 Among the different surfactants employed,37

best results were obtained with sodium dodecyl sulfate (SDS;

0.01M aqueous solution).38 Thus, as shown in Fig. 9, performing

the catalytic addition of phenylboronic acid (4a) to 2-cyclo-

hexenone (3a) with [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a) in this

medium, the aqueous phase containing the stabilized nano-

particles could be effectively reused in at least six consecutive

runs after simple extraction of the reaction product 5aa with

hexanes. Remarkably, compared to the use of pure water, no

differences in activity were observed in SDS(aq) during first

cycle. TEM images recorded from the aqueous phase after

extraction of 5aa confirmed the formation of micelles (size

range 40–150 nm) in which the palladium nanoparticles remain

embedded (Fig. 10). Only after the fifth run agglomeration of

the nanoparticles was observed. Interestingly, we must also

note that the use of SDS-stabilized palladium nanoparticles

generated in the absence of the 3,30-dihydroxy-2,20-bipyridine

ligand 1a led, under the same reaction conditions, to only 9%

conversion after 24 h.39 This fact clearly indicates that the

ligand 1a ‘‘retained’’ by the nanoparticles plays a key role

during the catalytic event.

Conclusions

In summary, we have found that the readily accessible Pd(II)

complex [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a) is an excellent

precatalyst for the selective conjugate addition of arylboronic

acids to a,b-unsaturated carbonyl compounds under challenging

reactions conditions, i.e. in environmentally friendly aqueous

media under air. Moreover, we have demonstrated that such a

catalytic transformation, which usually proceeds under homo-

geneous conditions, is in fact a new example of an hetero-

geneous process involving metallic nanoparticles. Thus, we

have evidenced that only at the early stages of the catalytic

events are molecular Pd(II) species responsible for the catalysis,

with nanoparticles of elemental palladium, generated by decom-

position of [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a), being the true

active species at the end of the catalytic reactions. Interestingly,

in the presence of the surfactant SDS (sodium docecyl sulfate)

these metal nanoparticles can be stabilized by the micelles thus

allowing their effective recycling, a key factor for practical

applications of this heterogeneous catalytic system.40

Table 2 Catalytic addition of phenylboronic acid (4a) to 2-cyclo-
hexenone (3a) in water using complexes 11–14a

Entry Catalyst Time Conversionb Yield 5aa
b Yield 6aa

b

1 11 3 h >99% 91% 7%
2 12 32 h 79% 72% 6%
3 13 5 h >99% 92% 6%
4 14 24 h >99% 86% 11%
5 15 24 h 4% 3% 1%
6 16 24 h 12% 11% 1%

a Reactions performed at 80 1C under air using 0.5 mmol of 3a, 1.5

mmol of 4a, 0.025 mmol of the corresponding Pd(II) complex 11–14

and 1 cm3 of water. Formation of trace amounts of cyclohexanone was

in all cases observed. b Determined by GC.
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Experimental section

General methods

All reagents were obtained from commercial suppliers

and used as received with the exception of the disubstituted

2,20-bipyridine ligands 1a–d,17 8,41 942 and 10,43 and the Pd(II)

complex 11,25 1544 and 1644 which were prepared by following

the methods reported in the literature. Flash chromatography

was performed using Merck silica gel 60 (230-400 mesh).

Infrared spectra were recorded on a Perkin-Elmer 1720-XFT

spectrometer. NMR spectra were recorded on a Bruker DPX-300

instrument at 300 MHz (1H) or 75.4 MHz (13C). The chemical

shift values (d) are given in parts per million and are referred to

the residual peak of the deuterated solvent employed. DEPT

experiments have been carried out for all the compounds

reported. GC measurements were made on a Hewlett-Packard

HP6890 equipment using a Supelco Beta-Dext 120 column.

GC-MS measurements were performed on a Agilent 6890N

equipment coupled to a 5973 mass detector (70eV electron

impact ionization) using a HP-1MS column. Elemental analyses

were provided by the Analytical Service of the Instituto de

Investigaciones Quı́micas (IIQ-CSIC, Seville) and performed

with a Leco-CHNSmicroanalyzer. TEM (Transmission Electron

Microscopy) and SEM/EDX (Scanning Electron Microscopy-

Energy/Dispersive X-ray spectroscopy) measurements were pro-

vided by the Analytical Service of the University of Oviedo and

recorded on MET-JEOL 2000 EX-II and MEB JEOL-6610LV

equipments, respectively.

Synthesis of complexes 2a–d. A suspension of PdCl2 (0.100 g,

0.56 mmol) in acetone (20 cm3) was treated with the appropriate

dihydroxy-2,20-bipyridine ligand 1a–d (0.105 g, 0.56 mmol)

under refluxing conditions for 24 h. Then, the reaction mixture

Table 3 Catalytic addition of arylboronic acids to a,b-unsaturated carbonyl compounds in water using complex 2a: Generality of the processa

Entry Substrate 3 ArB(OH)2 4 Temperature Time Conversionb Yield of 5b Yield of 6b

1 2-cyclohexenone (3a) Ar = Ph (4a) r.t. 5 h >99% 5aa; > 99% (86%) 6aa; o 1%
2 2-cyclohexenone (3a) Ar = 4-C6H4Me (4b) r.t. 24 h 98% 5ab; 97% (78%) 6ab; 1%
3 2-cyclohexenone (3a) Ar = 4-C6H4OMe (4c) r.t. 48 h 99% 5ac; 98% (77%) 6ac; 1%
4 2-cyclohexenone (3a) Ar = 4-C6H4Cl (4d) r.t. 24 h 99% 5ad; 98% (76%) 6ad; 1%
5 2-cyclohexenone (3a) Ar = 4-C6H4Br (4e) 80 1C 1 h >99% 5ae; > 99% (80%) 6ae;o1%
6c 2-cyclohexenone (3a) Ar = 2-C6H4Me (4f) 80 1C 15 h 99% 5af; 98% (77%) 6af; 1%
7 2-cyclopentenone (3b) Ar = Ph (4a) r.t. 4 h 97% 5ba; 96% (80%) 6ba; 1%
8 2-cyclopentenone (3b) Ar = 4-C6H4Me (4b) r.t. 24 h 93% 5bb; > 92% (86%) 6bb;o1%
9c 2-cyclopentenone (3b) Ar = 4-C6H4OMe (4c) r.t. 48 h >99% 5bc; > 98% (90%) 6bc;o1%
10c 2-cyclopentenone (3b) Ar = 4-C6H4Cl (4d) r.t. 24 h >99% 5bd; > 98% (82%) 6bd;o1%
11c 2-cyclopentenone (3b) Ar = 4-C6H4Br (4e) 80 1C 24 h 83% 5be; 82% (73%) 6be; 1%
12c 2-cyclopentenone (3b) Ar = 2-C6H4Me (4f) r.t. 48 h 99% 5bf; 98% (79%) 6bf; 1%
13 2-cycloheptenone (3c) Ar = Ph (4a) r.t. 16 h >99% 5ca; > 98% (88%) 6ca;o1%
14 3-buten-2-one (3d) Ar = Ph (4a) 80 1C 1 h 99% 5da; 83% (69%) 6da; 16%
15 cinnamaldehyde (3e) Ar = Ph (4a) 80 1C 26 h 75% 5ea; 75% (60%) 6ea; not observed

a Reactions performed under air using 0.5 mmol of the corresponding a,b-unsaturated carbonyl compound 3a–e and arylboronic acid 4a–f, 0.025

mmol of complex 2a and 1 cm3 of water. b Determined by GC (isolated yields after chromatographic work-up are given in brackets). c Reaction

performed using 3 equivalents of the arylboronic acid.

Fig. 5 Catalytic addition of phenylboronic acid (4a) to 2-cyclo-

hexenone (3a) using [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a) in the absence

(a) or presence (b) of mercury. Conditions: Reactions performed at r.t

under air using 0.5 mmol of 3a, 0.5 mmol of 4a, 0.025 mmol of 2a and

1 cm3 of water.

Fig. 6 Effect of the concentration in the catalytic addition of phenyl-

boronic acid (4a) to 2-cyclohexenone (3a) using [PdCl2{3,3
0-(OH)2-

2,20-bipy}] (2a). Conditions: Reactions performed at r.t. under air

using 0.5 mmol of 3a, 0.5 mmol of 4a, 0.025 mmol of 2a and 1 (a), 1.25

(b), 2 (c) or 3.3 (d) cm3 of water.
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was allowed to reach the room temperature and the resulting

solid precipitate filtered, washed with acetone (2 � 5 cm3) and

vacuum-dried. Characterization data are as follows: (2a):

Yellow solid; Yield: 94% (0.192 g); IR (KBr): n 709 (s), 798

(s), 1200 (m), 1329 (s), 1445 (s), 1653 (m), 3083 (w), 3446 (s)

cm�1; 1H NMR (DMSO-d6): d 8.22 (m, 4H, H4, H40, H5 and

H50), 8.49 (dd, 3JHH = 4.2 Hz, 4JHH = 2.2 Hz, 2H, H6 and

H60) ppm (signal for OH protons not observed); 13C{1H}

NMR (DMSO-d6): d 125.2 (C5 and C50), 131.0 (C4 and C40),

138.3 (C6 and C60), 146.7 (C2 and C20), 160.1 (C3 and C30) ppm;

Elemental analysis calcd (%) for C10H8Cl2N2O2Pd: C, 32.86;

H, 2.21; N, 7.66; found: C, 32.89; H, 2.14; N, 7.34. (2b):

Yellow solid; Yield: 83% (0.170 g); IR (KBr): n 871 (m),

1038 (m), 1225 (m), 1262 (m), 1349 (m), 1456 (m), 1624 (s),

3051 (m), 3435 (m) cm�1; 1H NMR (DMSO-d6): d 7.09

(dd, 3JHH = 6.6 Hz, 4JHH = 2.6 Hz, 2H, H5 and H50), 7.73

(d, 4JHH = 2.6 Hz, 2H, H3 and H30), 8.73 (dd, 3JHH = 6.6 Hz,

Fig. 7 TEM images of the sample taken from the reaction medium

when the turbidity begins to appear (the sample corresponds to the

reaction denoted as (c) in Fig. 6).

Fig. 8 Catalytic addition of phenylboronic acid (4a) to 2-cyclohexenone

(3a) using [PdCl2{3,3
0-(OH)2-2,2

0-bipy}] (2a) without addition of Hg(0)

(a) and with addition of Hg(0) after 60 min of reaction (b). Conditions:

Reactions performed at r.t. under air using 0.5 mmol of 3a, 0.5 mmol of

4a, 0.025 mmol of 2a and 2 cm3 of water.

Fig. 9 Catalyst recycling by stabilization of the catalytically active

nanoparticles with SDS. GC-yields are in all cases given after 5 h of

reaction.

Fig. 10 TEM images of the micelles generated in the presence of

SDS. Sample taken after the first catalytic cycle.
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2H, H6 and H60), 12.24 (br, 2H, OH) ppm; 13C{1H} NMR

(CDCl3): d 112.3 (C5 and C50), 115.0 (C3 and C30), 150.2

(C6 and C60), 158.8 (C2 and C20), 169.0 (C4 and C40) ppm;

Elemental analysis calcd (%) for C10H8Cl2N2O2Pd: C, 32.86;

H, 2.21; N, 7.66; found: C, 32.90; H, 2.36; N, 7.26. (2c): Beige

solid; Yield: 50% (0.102 g); IR (KBr): n 548 (w), 708 (w), 829 (m),

1063 (m), 1198 (s), 1303 (s), 1482 (s), 1576 (s), 1617 (m), 3064 (w),

3366 (s) cm�1; 1H NMR (DMSO-d6): d 7.61 (dd,
3JHH= 8.8 Hz,

4JHH = 2.6 Hz, 2H, H4 and H40), 8.18 (d, 3JHH = 8.8 Hz, 2H,

H3 and H30), 8.70 (dd, 4JHH = 2.6 Hz, 2H, H6 and H60), 11.33

(br, 2H, OH) ppm; 13C{1H}NMR (CDCl3): d 123.5 (C3 and C30),

126.8 (C4 and C40), 137.6 (C6 and C60), 148.1 (C2 and C20),

154.9 (C5 and C50) ppm; Elemental analysis calcd (%) for

C10H8Cl2N2O2Pd: C, 32.86; H, 2.21; N, 7.66; found: C, 32.88;

H, 2.54; N, 7.65. (2d): Light brown solid; Yield: 82% (0.168 g);

IR (KBr): n 800 (s), 1011 (m), 1021 (m), 1162 (s), 1218 (m),

1293 (m), 1326 (m), 1425 (s), 1480 (s), 1574 (m), 1616 (s), 3099 (w),

3434 (m) cm�1; 1H NMR (CD3NO2): d 6.94 (dd, 3JHH =

8.2 Hz, 4JHH = 3.2 Hz, 2H, H5 and H50), 7.76 (dd, 3JHH =

8.2 Hz, 4JHH = 3.2 Hz, 2H, H3 and H30), 8.04 (dd,
3JHH = 8.2

and 8.2 Hz, 2H, H4 and H40) ppm (signal for OH protons not

observed); Elemental analysis calcd (%) for C10H8Cl2N2O2Pd:

C, 32.86; H, 2.21; N, 7.66; found: C, 33.01; H, 2.15; N, 7.69.

Synthesis of complex 12. Complex 12, isolated as an orange

solid, was prepared as described for 2a–d starting from PdCl2
(0.100 g, 0.56 mmol) and the cationic 2,20-bipyridine ligand 8

(0.258 g, 0.56 mmol). Yield: 94% (0.335 g); IR (KBr): n 843 (m),

904 (w), 1095 (w), 1244 (w), 1419 (s), 1490 (s), 1559 (s), 2967 (m),

3021 (m) cm�1; 1H NMR (DMSO-d6): d 3.22 (s, 18H, CH3),

4.83 (s, 4H, CH2), 8.01 (d, 3JHH = 5.8 Hz, 2H, H5 and H50),

9.21 (d, 3JHH= 5.8 Hz, 2H, H6 and H60), 9.29 (s, 2H, H3 and H30)

ppm; 13C{1H} NMR (DMSO-d6): d 53.2 (CH3), 65.9 (CH2),

128.5 (C5 and C50), 131.7 (C3 and C30), 142.2 (C4 and C40),

150.7 (C6 and C60), 157.0 (C2 and C20) ppm; Elemental analysis

calcd (%) for C18H28N4Br2Cl2Pd: C, 33.91; H, 4.43; N, 8.79;

found: C, 34.09; H, 4.30; N, 8.87.

Synthesis of complex 13. Complex 13, isolated as a yellow

solid, was prepared as described for 2a–d starting from PdCl2
(0.100 g, 0.56 mmol) and 4,40-bis(hydroxymethyl)-2,20-bipyridine

9 (0.121 g, 0.56 mmol). Yield: 93% (0.205 g); IR (KBr):

n 837 (m), 1061 (m), 1420 (s), 1616 (s), 2916 (w), 3062 (m),

3446 (m) cm�1; 1H NMR (DMSO-d6): d 4.75 (d, 3JHH =

5.6 Hz, 4H, CH2), 5.83 (t, 3JHH = 5.6 Hz, 2H, OH), 7.74

(d, 3JHH = 5.9 Hz, 2H, H5 and H50), 8.44 (s, 2H, H3 and H30),

9.03 (d, 3JHH = 5.9 Hz, 2H, H6 and H60) ppm; 13C{1H} NMR

(DMSO-d6): d 62.4 (CH2), 121.6 (C5 and C50), 125.1 (C3 and C30),

150.4 (C4 and C40), 157.0 (C6 and C60), 159.0 (C2 and C20) ppm;

Elemental analysis calcd (%) for C12H12Cl2N2O2Pd: C, 36.62;

H, 3.07; N, 7.12; found: C, 36.55; H, 3.15; N, 7.23.

Synthesis of complex 14. Complex 14, isolated as a yellow

solid, was prepared as described for 2a–d starting from PdCl2
(0.100 g, 0.56 mmol) and 2,20-bipyridine-4,40-dicarboxylic acid

10 (0.137 g, 0.56 mmol). Yield: 95% (0.222 g); IR (KBr):

n 663 (s), 810 (m), 1210 (s), 1262 (m), 1411 (s), 1733 (s), 2521

(w), 2967 (w), 3082 (m), 3201 (m), 3299 (m) cm�1; 1H NMR

(DMSO-d6): d 8.22 (dd, 3JHH = 6.0 Hz, 4JHH = 1.6 Hz,

2H, H5 and H50), 9.02 (d, 4JHH = 1.6 Hz, 2H, H3 and H30),

9.32 (d, 3JHH = 6.0 Hz, 2H, H6 and H60) ppm (signal for

CO2H protons not observed); 13C{1H} NMR (DMSO-d6):

d 124.8 (C5 and C50), 127.8 (C3 and C30), 143.5 (C4 and C40),

152.0 (C6 and C60), 158.0 (C2 and C20), 165.7 (CO2H) ppm;

Elemental analysis calcd (%) for C12H8O4Cl2N2Pd: C, 34.19;

H, 1.91; N, 6.65; found: C, 34.36; H, 2.08; N, 6.90.

General procedure for the catalytic addition of arylboronic acids

to a,b-unsaturated carbonyl compounds promoted by complex 2a.

Under aerobic atmosphere, the corresponding arylboronic acid

4a–f and a,b-unsaturated carbonyl compound 3a–e (0.5 mmol

of each), the palladium complex [PdCl2(3,3
0-(OH)2-2,2

0-bipy)]

(2a; 0.009 g, 0.025 mmol; 5 mol%), and water (1 cm3) were

introduced into a sealed tube and the resulting reaction mixture

stirred at room-temperature (or 80 1C) for the indicated time

(see Table 3). The course of the reaction was monitored by

taking regularly samples of ca. 20 mL which, after extraction

with hexanes (3 cm3), were analyzed by GC. Once the reaction

finished, the crude was extracted with hexanes (5 � 2 cm3) and

purified by flash chromatography (silica gel; hexanes as eluent).

The identity of the resulting carbonyl compounds 5aa–5ea was

assessed by comparison of their 1H and 13C{1H} NMR spectro-

scopic data with those reported in the literature and by their

fragmentation in GC/MSD (details are given in the ESI file).

Nanoparticles recycling. In a sealed tube, 2-cyclohexenone (3a;

48 mL, 0.5 mmol), phenylboronic acid (4a; 0.061 g, 0.5 mmol) and

complex [PdCl2(3,3
0-(OH)2-2,2

0-bipy)] (2a; 0.009 g, 0.025 mmol;

5 mol%) were suspended in 0.01M SDS(aq) (1 cm
3) under aerobic

conditions. The resulting reaction mixture was stirred at room-

temperature for 5 h and controlled by GC to determine the

conversion and yield of the process. Then, the reaction product

was extracted with hexanes (5 � 2 cm3) and traces of the organic

solvent eliminated at reduced pressure. Substrates 3a and 4a

(0.5 mmol of each) were added to the aqueous phase and the

mixture stirred again at room temperature for 5 h.

X-Ray crystal structure determination of compounds 13 and 14.

Crystals suitable for X-ray diffraction analysis were obtained by

slow diffusion of methanol into a saturated solution of the

corresponding complex in dimethylsulfoxide. The most relevant

crystal and refinement data are collected in Table 4.

In both cases data collection was performed on a Oxford

Diffraction Xcalibur Nova single crystal diffractometer, using

Cu-Ka radiation (l = 1.5418 Å). Images were collected at a

65 mm fixed crystal-to-detector distance using the oscillation

method, with 11 oscillation and a variable exposure time per

image of 10–15 s for 13 and 2–6 s for 14. Data collection

strategy was calculated with the program CrysAlis Pro CCD.45

Data reduction and cell refinement were performed with the

program CrysAlis Pro RED.45 An empirical absorption

correction was applied using the SCALE3 ABSPACK algorithm

as implemented in the program CrysAlis Pro RED.45

In all cases the software package WINGX was used for space

group determination, structure solution and refinement.46 Both

structures were solved by direct methods using SIR2004.47

Isotropic least-squares refinement on F2 using SHELXL97

was performed.48 During the final stages of the refinements,

all the positional parameters and the anisotropic temperature

factors of all the non-H atoms were refined. The H atoms were
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found from different Fourier maps and included in a refinement

with isotropic parameters. In the crystal of 13 two DMSO

molecules of solvation per formula unit of the complex were

found. One of them is disordered, with the sulphur atom being

located in two positions with occupancy of 50%. In the crystal

of 14 a DMSO molecule per formula unit of the complex was

also found with the sulphur atom equally disordered. The

function minimized was [SwFo2 � Fc2)/Sw(Fo2)]1/2 where w=

1/[s2(Fo2) + (aP)2 + bP] (a and b values are collected in

Table 4) with s2(Fo2) from counting statistics and P =

(Max (Fo2 + 2Fc2)/3. Atomic scattering factors were taken

from the International Tables for X-ray Crystallography.49

Geometrical calculations were made with PARST.50 The

crystallographic plots were made with PLATON.51
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