Aggregation theory revisited
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Abstract—The field of aggregation theory aims at formalizing
in a mathematical way the process of combining several inputs
into a single output, typically both the inputs and the output being
elements of a poset. Although the field in itself only dates from
the second half of the last century, one could easily trace back
further in time prominent examples of aggregation functions.
For instance, means were already studied by Cauchy in the
early 1820s. Although the most popular aggregation processes
have historically been those dealing with real numbers, the
interest of practitioners in different types of data is not to
be neglected. Some prominent examples are the aggregation of
strings, which is nowadays a popular topic for computer scientists
and bioinformaticians, and the aggregation of rankings, which
has been studied in social choice theory since the eighteenth
century. In this paper, we propose to abandon the current order-
based understanding of an aggregation process and embrace a
new geometrically-oriented sense upon which a new theory of
aggregation could be developed.

Index Terms—Data aggregation; Monotonicity; Betweenness
relation; Beset.

I. INTRODUCTION

The notion of a mean or averaging function has for a long
time been considered in mathematics and can be traced back
to Ancient Greece [1]. The first modern definition is usually
attributed to Cauchy in 1821 [2] and just requires the output to
be bounded by the minimum and the maximum of the inputs.
More recently, the intuitive property of monotonicity, which
requires that an increase in the inputs must imply an increase
in the output, has been added to the definition that is currently
considered standard [3].

Although aggregation was initially considered to be an
operation on the real numbers, aggregation on bounded posets
has received increasing attention in recent times [4], [5].
Unsurprisingly, the standard definition of an aggregation func-
tion on a bounded poset builds again upon the property of
monotonicity, while incorporating the property of preservation
of the bounds.

As intuitive and general as this definition may sound, the
notion of monotonicity has recently withstood great criticism
from the scientific community. One only needs to think of the
mode in order to find an example of ‘aggregation function’
that, actually, is not an aggregation function, since it is
not monotone. Again in the setting in which the considered
bounded poset is a compact real interval, the property of weak
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monotonicity has been introduced in order to accommodate
the mode and other non-monotone functions [6], such as
Lehmer means [7] and Gini means [8]. One could note
that weak monotonicity generalizes both monotonicity and
shift-invariance. A further generalization of the property of
weak monotonicity has also been studied under the name of
directional monotonicity [9].

In the setting of multidimensional data, monotonicity has
also been proved to be problematic. In particular, monotonic-
ity combined with the property of orthogonal equivariance
restricts idempotent functions to the family of weighted cen-
troids [10]. This result still holds even when replacing mono-
tonicity and orthogonal equivariance by the weaker property
of orthomonotonicity [11]. Another intuitive generalization of
the property of monotonicity in the setting of multidimensional
data is that of componentwise monotonicity [10]. Unfortu-
nately, this definition also carries an undesirable behaviour
since it inevitably leads to componentwise functions in which
all components are treated independently. A taxonomy of
monotonicity properties for the aggregation of multidimen-
sional data can be found in [12].

The property of monotonicity, understood in an admittedly
different (but still related) sense, has also been considered
in the field of social choice theory for the aggregation of
rankings. To the best of our knowledge, the first formalization
of this property can be traced back to the seminal work by
Arrow [13] under the name of ‘positive association of social
and individual values’: “If an alternative social state = rises
or does not fall in the ordering of each individual without
any other change in those orderings and if  was preferred to
another alternative y before the change in individual orderings,
then z is still preferred to y.” However, although always
desirable, this monotonicity property has also been proved not
to be satisfied by some prominent aggregation methods, as
discussed by, for instance, Smith [14] and Fishburn [15].

In other domains addressing the problem of data aggrega-
tion, the property of monotonicity has been totally ignored,
probably due to the absence of a natural order on most of
the considered structures. For instance, the median procedure
for the aggregation of binary relations has been a popular
topic [16], [17], [18] with no mention of the property of
monotonicity. Admittedly, the set of binary relations is a
bounded poset where set inclusion acts as the order rela-
tion and, interestingly, the aforementioned median procedure
turns out to be monotone with respect to this order relation.
Nevertheless, when one restricts the attention to specific
families of binary relations (which definitely represents the
most interesting setting), this poset structure might be lost
(e.g., there exists no pair of different rankings included in one
another). This probably explains why the study of the property
of monotonicity has been historically ignored. The aggregation



of strings, featuring the median string [19] and the closest
string [20] problems, is also a quite prominent example of
aggregation problem that has been commonly addressed with
no mention of the property of monotonicity.

From a more practical point of view, one could think of
the aggregation of compositional data. Two liquids of known
compositions are mixed (with known mixing ratio) into a new
liquid. This new liquid has an associated composition that can
be understood as the result of aggregating the compositions
of the two original liquids. Unfortunately, this would never be
considered an aggregation process since the set of all possible
compositions is not naturally ordered (letting aside the Lorenz
order [21] and related notions [22] that are obviously not
suitable for the purpose of this aggregation process).

In this paper, we follow the direction started in [23] and
aim at generalizing the property of monotonicity by moving
away from its order-theoretical origin and embracing a new
geometrically-oriented meaning arising from the preservation
of a betweenness relation. The remainder of the paper is struc-
tured as follows. In Section II, we recall some relevant notions
concerning the standard aggregation on bounded posets. In
Section III, we introduce the notion of an aggregation function
on a set equipped with a betweenness relation (beset, for
short) that generalizes the standard definition of an aggregation
function on a bounded poset. Section IV is devoted to the
aggregation of compositional data and the aggregation of
binary strings, which are shown to be examples of aggregation
functions on a beset. Two examples of commonly-studied ag-
gregation processes that do not fit within this newly-introduced
definition of an aggregation function are given in Section V.
We end with a discussion on the perspectives arising from this
work in Section VI.

II. THE STANDARD FOR AGGREGATION

Means are one of the most common and ancient notions in
mathematics [3]. Their early usage was originally restricted
to real numbers and just required the output to be bounded
by the minimum and the maximum of the inputs. Nowadays,
means are additionally required to be monotone and have been
generalized in order to deal with any poset, not just the real
line [24]. The term averaging function is recently gaining
popularity for referring to a mean.

Definition 1: Consider a poset (X,<) and n € N. A
function A : X™ — X on (X, <) is called an (n-ary) mean
or averaging function on (X, <) if

(i) it is idempotent, i.e., A(x,...,xz) =z, for any z € X;
(ii) it is monotone', i.e., for any x,y € X", the fact that’
x <, y implies that A(x) < A(y).

We recall that, for a monotone function, both idempotence
and being bounded from below by the minimum and from
above by the maximum are equivalent.

The term ‘monotone’ actually refers to two types of behaviour: monotone
increasing (isotone) and monotone decreasing (antitone). However, for histor-
ical reasons, we adhere to the term ‘monotone’ for referring to ‘monotone
increasing’ throughout this paper.

2For any poset (X, <), we denote by <,, the product order on X™, i.e.,
for any x,y € X™, we write x <,, y if z; <y; forall i € {1,...,m}.

Driven by the existence of interesting functions that are
not idempotent yet monotone, averaging functions have been
further generalized by replacing the property of idempotence
by the property of preservation of the bounds, resulting in
the introduction of the notion of an aggregation function [25],
[26]. Note that we now need to deal with a bounded poset,
typically a compact real interval.

Definition 2: Consider a bounded poset (X, <,0,1) and n €
N. A function A : X™ — X is called an (n-ary) aggregation
function on (X, <,0,1) if

(i) it satisfies the boundary conditions, i.e., A(0,...,0) =0
and A(1,...,1)=1;
(i1) it is monotone.

Although the study of aggregation and averaging functions
carries an impressive body of mathematical knowledge, it is
quite unfortunate that most studies within the field of aggrega-
tion theory are confined to the aggregation of numerical values,
i.e., usually a subinterval of the real line (typically [0, 1], R
or R itself) or of values in a linearly ordered (linguistic) scale.
Admittedly, the field of application is embarrassingly narrow
and the aggregation of many common types of mathematical
object, such as rankings, strings and compositional data vec-
tors, does not fit within the current theory of aggregation. In
the upcoming section, we propose a natural definition of an
aggregation function beyond the current restriction to the poset
framework.

III. AGGREGATION ON BESETS

Given a poset, the notion of an element that is in between
two other elements has attracted the attention of many re-
searchers and has been formalized by a mathematical object
called betweenness relation [27], [28]. This mathematical ob-
ject has also been studied given many other types of structures,
e.g., metric spaces [29] and road systems [30]. Although many
alternative axiomatic definitions have been provided (see, for
instance, any of the aforementioned papers), throughout this
paper we restrict to the following one, which has already been
considered within the context of data aggregation [23].

Definition 3: A ternary relation B on a non-empty set X is
called a betweenness relation if it satisfies the following three
properties:

(1) Symmetry in the end points: for any z,y, z € X, it holds
that
(r,y,2) € B& (z,y,2) € B.

(ii) Closure: for any z,y,z € X, it holds that
((:my,z) € BA(z,z,y) € B) Sy==z.
(iii) End-point transitivity: for any o, x,y, z € X, it holds that
((o,x,y) € BA(o,y,2) € B) = (0,2,2z) € B.

A set X equipped with a betweenness relation B is called a
beset and denoted by (X, B).
On any set a trivial betweenness relation may be defined.
Example 1: The minimal betweenness relation on a set X
is the ternary relation By on X defined as

Bo:{(x,y,z)€X3|:c:y\/y:z}.



Obviously, it is contained in any possible betweenness relation
on X.

Nevertheless, one almost surely wants to define a richer
betweenness relation than the minimal betweenness relation.
Perhaps the two most prominent examples of sets on which
a natural betweennes relation could be defined are posets
and metric spaces. However, the family of sets on which a
natural betweennes relation can be defined is much richer and
includes many other structures such as real vector spaces and
topological spaces. For further details, we refer to [30].

Example 2: The betweenness relation induced by the order
relation < of a poset (X, <) is the ternary relation B< on X
defined as

Bc=ByU{(z,y,2) e X’ |(z<y<z)V(z<y<a)}.

Example 3: The betweenness relation induced by the dis-
tance metric d of a metric space (X, d) is the ternary relation
By on X defined as

By = {(z,y,2) € X* | d(z,2) = d(z,y) +d(y,2)} .

The product betweenness relation defined on a product set
deserves special attention. It will play an important role in the
definition of an aggregation function on a beset.

Example 4: Given a betweenness relation B on a set X and
n € N, the product betweenness relation on X™ induced by
B is the ternary relation B(™) defined as

(Vie{l,...,n}) }
(%4, 95, 2:) € B) '

Remark 1: Consider a poset (X, <). Note that the between-
ness relation B(<n) on X™ does not need to coincide with the
betweenness relation B<, . Consider, for instance, X to be
the interval [0, 1] and < to be the usual order relation on R.
Consider x = (0,1), y = (0.5,0.5) and z = (1,0). It follows
that (x,y,z) € B(<2), but (x,y,z) ¢ B<,.

As in the case of posets, one could be interested in the
notion of bounds of a beset.

Definition 4: Given a beset (X, B), a non-empty subset S
of X is called a set of bounds of (X, B) if, for any y € S and
any z,z € X\S, it holds that (x,y,z) ¢ B. We thus refer to
(X, B,S) as a bounded beset.

Obviously, X is always a set of bounds of any beset (X, B).
However, one could note that proper subsets of X may also be
a set of bounds of (X, B). For instance, given the betweenness
relation B< induced by the order relation < of a bounded
poset (X,<,0,1), as in Example 2, one could easily verify
that {0, 1} is also a set of bounds of (X, B<).

The definition of an aggregation function on a poset could
thus be naturally generalized in order to deal with besets.

Definition 5: Consider a bounded beset (X, B,S) and n €
N. A function A : X™ — X is called an (n-ary) aggregation
function on (X, B, S) if

(i) it satisfies the boundary conditions, i.e., A(o,...,0) = o,
for any o € S;

(ii) it is monotone, i.e., for any 0 € S and any x,y € X",
the fact that ((0, c e, 0), X, y) e B™ implies that
(A(o,...,0),A(x),A(y)) € B.

B0 = {<x,y,z> e (xmy?

Note that, if S = X, then an aggregation function is
obviously idempotent. Moreover, if we would allow S to be
the empty set, then any function A : X™ — X would satisfy
the definition above (hence, in case X = [0,1], we would
obtain the set of all fusion functions [9]).

The first example of aggregation on besets is that of classical
aggregation on posets. Since every poset is a beset, a manda-
tory requirement for this new definition of an aggregation
function is that it needs to coincide with the standard definition
of an aggregation function when restricted to posets.

Theorem 1: Consider a bounded poset (X, <,0,1), the
associated bounded beset (X,B<,{0,1}) and n € N. A
function A : X™ — X is an (n-ary) aggregation function
on (X,<,0,1) in the sense of Definition 2 if and only if it
is an (n-ary) aggregation function on (X, B<,{0,1}) in the
sense of Definition 5.

Proof. Note that the boundary conditions coincide in
both definitions. Thus, we only prove that the monotonicity
properties are equivalent.

On the one hand, suppose that A is an (n-ary) aggrega-
tion function on (X,<,0,1) in the sense of Definition 2.
Consider any o € {0,1} and any x,y € X" such that
((0, e o),x7y) € B(<”). If 0 = 0, then it follows that:

((O,...,O),x,y) € B(S"),

which implies
(0770) SnXSnyv

and, thus,

0=A(0,...,0) < A(x) < A(y),
and, finally,

(A(0,...,0), A(x), A(y)) € B<.
If o = 1, then it follows that:

((1,...,1),x,y) € BY,

which implies
y<ax<n(1,..,1),

and, thus,

and, finally,

(A(1,...,1), A(x), A(y)) € B<.

Thus, A is an (n-ary) aggregation function on (X, B<, {0,1})
in the sense of Definition 5.

On the other hand, suppose that A is an (n-ary) ag-
gregation function on (X, B<,{0,1}) in the sense of Def-
inition 5. Consider any x,y € X" such that x <,
y. Since 0 is the smallest element of X, it holds that
(0,...,0) <, x, and, thus, ((0,...,0),x,y) € B(<").
Since A is an aggregation function on (X, B<,{0,1}), it
follows that (A(0,...,0),A(x),A(y)) € B<. Again, since
A(0,...,0) = 0 is the smallest element of X, we conclude
that 0 < A(x) < A(y). Thus, A is an (n-ary) aggregation
function on (X, <,0,1) in the sense of Definition 2. O



IV. EXAMPLES OF AGGREGATION FUNCTIONS ON BESETS
A. Aggregation of compositional data

Think of two liquids of which the ratios of their different
compounds are known. If one mixes both liquids in a one-
to-one ratio, then the composition of the resulting liquid is
known to be given by the componentwise arithmetic mean of
the compositions of both original liquids. The result of this
mixture should be understood as the result of an aggregation
process, however, no intuitive order? could be used for defining
the monotonicity property. In this subsection, we prove that the
aforementioned process is a clear example of aggregation on
the (bounded be)set of compositional data vectors.

Vectors of positive real numbers adding up to one are
hereinafter referred to as compositional data vectors. Due
to their natural interpretation as the proportions of different
compounds in a mixture, they are common in many fields of
application [31], [32]. Usually, the set of all k-dimensional
compositional data vectors is referred to as the k-dimensional
simplex and is defined as

Sp={xe [071]’“‘ Siox() =1}

For the case k = 3, the simplex can be naturally represented
by an equilateral triangle where the length of each of the
medians* equals one. Every point inside the equilateral triangle
corresponds to a point of the simplex. The coordinates of any
point are obtained by the projection of the given point to
each of the medians. Figure 1 illustrates the coordinates of
the compositional data vector (0.55,0.32,0.13).

,0.32,0.13)

Fig. 1. Graphical representation of the 3-dimensional simplex.

A natural betweenness relation Bs, on Sj is defined as
follows:

_ (Vje{l,...,k})
Bs, = {(X7Y7Z) € (S)? (min(x(j),z(j)) <y(j) < max(x(j)Vz(j)))} .

3Admitteclly, the Lorenz order [21], which is related to the notion of
(stochastic) dominance [22] and commonly used in the field of economics
for measuring the concentration of wealth, could be used. Unfortunately, the
Lorenz order carries an undesirable behaviour since it assumes symmetry
among the different compounds (and it actually is a preorder on the set of
compositional data vectors).

4A median of a triangle is a line segment joining a vertex to the midpoint
of the opposite side.

Figure 2 illustrates the points that are in between two composi-
tional data vectors according to the betweenness relation Bg, .
Note that B, is just a reduction of B(<k) to triplets of points
in the simplex. B

Fig. 2. Tllustration of the compositional data vectors (highlighted in grey) that
are strictly in between the compositional data vectors that are highlighted in
red according to the betweenness relation Bs;.

The aggregation of compositional data vectors appears
naturally in many fields of application. Formally, we can
aggregate n compositional data vectors Xi,...,x, € Sk,
resulting in a new compositional data vector, by using the
function C,y, : (Sg)™ — Sk defined by

Curlx1s- %)) = S wixi(4). (1)
=1

forany j € {1,...,k}, where w = (w1, ...,w,) is a suitable
weighing vector (in the case of the liquids, regarding the
mixing ratio associated with each of the different liquids in
the mixture).

As an illustrative example, consider the compositional data
vectors x; = (0.55,0.32,0.13),x2 = (0.03,0.72,0.25) € S3
representing the composition of two liquids in terms of three
compounds. If we mix both liquids in a one-to-one ratio, the
resulting mixture will have the following composition:

C1,1y(x1,%2) = (0.29,0.52,0.19) .

In case different quantities are used for each of the liquids,
a weighted arithmetic mean, instead of the usual arithmetic
mean, needs to be considered. For instance, in case we mix
the previous two liquids in such a way that the quantity of x;
is the triple of the quantity of x5, the following compositional
data vector would be obtained:

Ca,1y(x1,%2) = (0.42,0.42,0.16) .

As intuitive as this sounds, this function is not an aggregation
function in the most classical sense. Hereinafter, we prove that
it is an aggregation function on a bounded beset.

It is easy to verify that the standard basis of R¥, denoted by
E = {e;}¥_,. is a set of bounds of the beset (Sk, Bs, ), there-
fore, (Sk, Bs,, E) is a bounded beset. The function defined by
Eq. (1), for any weighing vector w = (wy, ..., w,), is easily
proved to be an aggregation function on (S, Bs, ,E):



(i) Consider any e, € E. It follows that

Cuwler,....e)(0) =Y wil=1.
1=1

Similarly, for any j # £, it holds that

Cw(er,...,e)(j) =Y wi0=0.
=1

Thus, we conclude that

Cw(eg, ce. 7G)g) =€y.

(i) Consider any () € E and any
(X1,--3Xn), (¥Y1,---,¥n) €  (Sp)™ such that
((eg,...,94)7(x1,...,xn),(yh...,yn)) € Bgz).
It follows that y;(¢) < x;(¢{) < e!) = 1 and
0=-eu(j) <x:(j) <yi(j), for any j # £. Thus, it holds
that

Cw(¥1, -y ¥yn)(0) < Cu(x1,...,%x5,)(¢)
S Cw(eg, ey eg)(ﬁ) s
and that
Cwl(er...,e0)(J) < Cw(x1,.-.,%Xn)(J)
S Cw(yla .. ,Yn)(J) )
for any j # £. We conclude that
(Cw(efw . '>e€)7CW(X17~ .. 7Xn)>Cw(Y17- .. 7)’n)) € Bsk .

B. Aggregation of binary strings

Think of several Boolean values to be combined. For
instance, consider either the logical ‘and’ or the logical ‘or’
operation. Similarly, one could consider the ‘mode’ operation,
which yields a unique aggregate in case an odd number of
Boolean values is considered. One could immediately see that
the more 0’s are changed into 1’s, the greater the obtained
value for all of these operations. Analogously, the more 1’s
are changed into 0’s, the lower the obtained value. These
three operations are indeed monotone w.r.t. the order relation
<={(0,0),(0,1),(1,1)} according to the standard definition
of monotonicity of an aggregation function on a bounded
poset. However, one might doubt whether this order-based
monotonicity is actually meaningful when the symbols 0 and 1
are substituted by the words ‘FALSE’ and “TRUE’, or, going to
a more extreme case, by an alternative colour-based encoding
‘red’ and ‘green’. This monotonicity property could actually
be equivalently defined without assuming any notion of order.

Consider the beset (X, By, X), where ¥ = {a, b} is a binary
alphabet and By is the betweenness relation on 3 induced by
the Hamming distance function’, i.e.,

By = {(CC,y,Z) € (2)3 | H(CC’Z) :H(I,y)—l-H(y,Z)} .

Note that By = By in this setting. Interestingly, a function
A : ¥" — ¥ is monotone if, for any x,y € X", it holds

SGiven a finite alphabet - and a natural number n, the Hamming distance
function H : ¥™ x ¥"™ — R is defined as follows: H(x,y) equals the
number of positions at which the lists x and y differ [33].

that H(x, (a,...,a)) = H(x,y) + H(y, (a,...,a)) implies
A(y) € {A(x),a} and that H(x, (b,...,b)) = H(x,y) +
H(y, (b,...,b)) implies A(y) € {A(x),b}. This definition
coincides with the order-based definition of monotonicity,
while it does not assume that a < b or, conversely, that b < a.

This problem can also be considered in an extended form
in which, rather than aggregating elements (belonging to the
binary alphabet), we aim at aggregating lists of elements.
Hereinafter, any list of £ elements in ¥ (and thus an element in
¥%) is referred to as a string of length k. Prominent operations
on strings are the bitwise extensions of the aforementioned
logical ‘and’, logical ‘or’ and ‘mode’ (the latter one assuming
k is an odd number).

Again, without assuming any order relation, neither on ¥
nor on ¥*, we can still define the monotonicity of a function
on the bounded beset (X¥, By, ¥F), where By is now the
following betweenness relation on X*:

By = {(X7Y7Z) € (Ek)3 ‘ H(sz) = H(xvy)+H(Y7Z)}'

Note that By # By in case k& > 1. Figure 3 illustrates
an example of the strings that are in between ‘aab’ and

‘bba’ according to the betweenness relation By for the binary
alphabet ¥ = {a, b}.

bab bbb

aab abb baa bb

')

aa aba

Fig. 3. Illustration of the strings (highlighted in grey) that are strictly
in between the strings aab and bba (highlighted in red) according to the
betweenness relation By for the binary alphabet 3 = {a, b}.

Any among the three bitwise extensions of the logical ‘and’,
logical ‘or’® and ‘mode’ is easily proved to be an aggregation
function on (X*, By, ¥*) due to their idempotence and bit-
wise nature.

V. PROMINENT MONOTONICITY FAILURES

In this section, we analyse two common examples of aggre-
gation processes that do not fulfill the property of monotonicity
as defined in Section III: the aggregation of m-ary strings
and the aggregation of rankings. Note that, in both settings,
it is common that the aggregation of n objects might not be
uniquely defined. In order to ease the remainder of the paper,
we will restrict to illustrative examples in which the result of
the aggregation is unique.

6 Assuming again ¢ = 0 and b = 1.



A. Aggregation of m-ary strings

As discussed in Subsection IV-B, the bitwise extensions
of the logical ‘and’, the logical ‘or’ and the ‘mode’ are all
examples of aggregation functions for binary strings in the
sense of Definition 5. However, when m-ary strings (lists of
elements in an alphabet of cardinality m > 2) are considered,
the monotonicity property might no longer be satisfied as
we see in the following example. Consider the alphabet
% = {a, b, c}, then the positionwise’ extension of the ‘mode’
is no longer an aggregation function on (X*, By, ¥*). For
instance, consider £k = 1 and n = 7, then one could see that
((a7 a? a’ a? b? b’ b)? (a" a7 c? C? b? b? b)’ (07 C) C? C’ C? c? C)) E Bj("{?)’
whereas (a,b,c) ¢ By.

B. Aggregation of rankings

The aggregation of rankings is a popular topic that
has been addressed in many scientific disciplines including
medicine [34], consumer preference analysis [35], computer
science [36] and, mainly, social choice theory [37], [38].

Formally, a ranking (without ties) is a strict total order
relation > on a set € = {aj1,...,ax} of k elements, i.e.,
the asymmetric part of a total order relation > on %. The
set of all rankings on % is denoted by L(%). The most
common notion of distance on rankings is measured by means
of the Kendall distance function K between rankings [39].
This distance function assigns to each couple of rankings the
number of pairwise disagreements between them, i.e., for any
two rankings >; and >, the Kendall distance is defined as

K(=1,>2) = #{(ai,, i,) € €2 | @i, »1 @iy Nai, =2 i, } .

The Kendall distance function induces a natural betweenness
relation By on L£(%), which is defined as follows:

Br = {(>1,>2,=3) € L(E)? | K(~1,>3) = K(>1,>2) + K(>2,>3)}.

Figure 4 illustrates the rankings that are in between the
rankings a = b > ¢ > d and d = b > a > c according
to the betweenness relation By for the set ¢ = {a, b, ¢, d}.

Probably the most prominent method for the aggregation of
rankings is that of Kemeny [40], which selects as the aggregate
of a list of rankings Z = (>=;)i~, € L(%¥)", the ranking
=€ L(%) that minimizes the sum of Kendall distances to %,
ie.,

argmin » K(>;>).
=€L(F) 1:21

Unfortunately, the method of Kemeny is not an aggregation
function on (L£(%), Bk, L(%)). For instance, consider ¢ =
{a,b,c} and the lists of n = 11 rankings %, %' and %"
shown in Table I. The result of aggregating %, %' and %" by
means of the method of Kemeny is a > b > ¢, b > ¢ > a and
¢ > a > b, respectively. One could verify that (%, %', Z") €
Bgl), whereas (a > b>c,b>c>a,c>a>b) ¢ Bg.

7When talking about m-ary strings we rather use the term ‘positionwise’
instead of ‘bitwise’.

[b=a=c>=d] [a=c=b>d]

[b=c=a>d] [crarbrd| [brard=c] [arc-d-b] [a=d=brc]
[c=brard]| [brcrd-a] [brdrarc] [c-a>d-b] [ard-c-b]| [drza=b=c]
[e=b=d=a] [brd-c-a]| [crd=a-b] [debrare] [d-a>cb]
[e=d=b>a] [d=b-c+a] d>=cra>b

Fig. 4. Illustration of the rankings (highlighted in grey) that are strictly in
between the rankings a >~ b > ¢ > d and d > b > a > c (highlighted in
red) according to the betweenness relation B .

X 1z A"
a-b>=c| c-a>=b|c-a>b
a>-b>=c|cr-a>=b | c>a=b
a=b=c|la-b>=c|c=a>b
a-b>=c|a-b>=c| cra>b
b-a>c|b-c>a|cr-a>b
b-a>=c|b-c>=a | cra>b
b>=ar-c|br-c-a|c>arb
b-a>c|brc>a|c-a>b
c-a>=b | c-a>=b|cr-a>b
c-a>b|cr-a>=b|cra>b
b-c>a | b-c>a | c-a>b

TABLE 1

LISTS %, %' AND %'’ OF RANKINGS ON ¢ = {a, b, c}.

VI. DISCUSSION

In this paper, we have presented a generalization of the
definition of an aggregation function that goes beyond the
current restriction to posets. Unfortunately, we have found two
prominent examples of aggregation processes that do not fit
within this newly-introduced definition. In particular, they fail
to fulfill the property of monotonicity. A weaker version of
the property of monotonicity embracing these two examples
could be thought of. Instead of requiring that if the elements
to be aggregated ‘move towards’ any bound, then the result of
the aggregation also ‘moves towards’ this very same bound,
we could soften this requirement as follows: if the result of
the aggregation is a bound and the elements to be aggregated
‘move towards’ this bound, then the result of the aggregation
should not change.

Definition 6: Consider a bounded beset (X, B,S) and
n € N. A function A : X™ — X is called quasimonotone
if for any o € S and any x,y € X", the facts that
((o,...,0),x,y) € B™ and Ao,...,0) = A(y) jointly
imply that A(o,...,0) = A(x).

It is straightforward to see that the positionwise mode for the
aggregation of strings satisfies quasimonotonicity, even when
dealing with alphabets of cardinality greater than two. Addi-



tionally, it is easily verified that the method of Kemeny for the
aggregation of rankings also satisfies quasimonotonicity. The
proof could be sketched as follows. Consider a list of rankings

(>1,...,7n) € L(E)™ to be aggregated and suppose =* is
the unique Kemeny ranking, i.e.,
== argminz K(>4,>).
-cL(%) =

Consider (=,...,=1) € L(€)™ such that®

S K( =) =Y K(-i-") -1
=1 =1

and

((=*,... 1) (1

Note that, for any >=>*, it holds that

=), (s ,>~n)) € B

n n n
S K(m) €Y K(mim) =1, K(=i,-)+1
i=1 i=1 i=1
Thus, >* remains being the unique Kemeny ranking for (>}
y- -, ). Proceeding in an iterative manner, the property of
quasimonotonicity is easily verified to hold.

Although the property of quasimonotonicity seems to be
quite intuitive when dealing with the aggregation of m-ary
strings or the aggregation of rankings, it may turn out to be
too weak when moving to other settings, e.g., the classical ag-
gregation of real numbers. More precisely, given the bounded
beset ([a,b],<,{a,b}), any function f : [a,b]" — [a,b]
verifying that (1) f(x) = a if and only if x = (a,...,a) and
(2) f(x) = b if and only if x = (b,...,b), is quasimonotone.

We end by concluding that, similarly to non-symmetric
functions (such as weighted arithmetic means) and non-
idempotent functions (such as copulas), non-monotone func-
tions should also be accommodated within the field of aggre-
gation theory. In this direction, penalty-based functions have
been deeply studied for the aggregation of real numbers [41],
[42] and, more generally, for the aggregation on besets [23].
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