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Abstract
Compositional data naturally appear in many fields of application. For in-
stance, in chemistry, the relative contributions of different chemical sub-
stances to a product are typically described in terms of a compositional data
vector. Although the aggregation of compositional data frequently arises
in practice, the functions formalizing this process do not fit the standard
order-based aggregation framework. This is due to the fact that there is no
intuitive order that carries the semantics of the set of compositional data
vectors (referred to as the standard simplex). In this paper, we consider the
more general betweenness-based aggregation framework that yields a natural
definition of an aggregation function for compositional data. The weighted
centroid is proved to fit within this definition and discussed to be linked to
a very tangible interpretation. Other functions for the aggregation of com-
positional data are presented and their fit within the proposed definition is
discussed.
Keywords: Aggregation; Compositional data; Beset; Centroid.

1. Introduction

This paper is devoted to the specific problem of aggregating compositional
data. A tangible illustration of the problem is given by the act of mixing
liquids with known compositions, say coffee and milk, resulting in milk coffee.
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If both liquids are mixed in a one-to-one proportion, the composition of milk
coffee will be given by the componentwise arithmetic mean (often referred to
as the centroid in multivariate statistics) of the compositions of both coffee
and milk. In case of a different mixing ratio, a componentwise weighted
arithmetic mean is to be considered, the vector of weights being dependent
on the considered mixing ratio.

The statistical analysis of compositional data owes its formalization as a
scientific discipline to seminal works by Aitchison [1, 2] in the 1980s. Never-
theless, it is admittedly true that a basic statistical analysis of compositional
data had already been performed by practitioners as can be derived from
Aitchison’s introduction in [1] where three examples of preceding articles in
geology dealing with compositional data are given [11, 22, 34]. Additional
to the field of geology, the study of compositional data naturally arises in
almost all fields of application, e.g., the fields of geochemistry [31] and mi-
crobiology [18].

Probably due to its natural interpretation, the aggregation of composi-
tional data is dominated by countless papers just considering the compo-
nentwise arithmetic mean (see, e.g., [14]). However, one could sporadically
find some other componentwise functions, some of them being enumerated
by Rock [31]. Unfortunately, the structure of compositional data is way more
complex than just a mere restriction to vectors of unit sum. This was already
pointed out by Pearson [28] back in 1897 and further explored by Chayes [10]
in 1960 when describing some difficulties with the measurement of correlation
for compositional data (actually, for vectors of constant sum). For this very
reason, most componentwise functions are to be disregarded as encouraged
by Aitchison [3]: “A composition provides information only about the rela-
tive, not the absolute, values of its components. No component therefore can
be considered in isolation. [...] Any statistical analysis must recognize the
multivariate nature of the composition and treat it as whole, not as a set of
univariate measurements.” Interestingly, the componentwise geometric mean
has been proposed as a natural aggregation function by Aitchison. It must
be admitted though that, since the componentwise geometric mean does not
respect the unit-sum constraint, the resulting vector needs to be rescaled
by its sum – thus treating the composition as a whole and not as a set of
univariate measurements.

As can be seen, there are many issues to address here and the topic has
not yet received attention within the aggregation theory community. Thus,
in this paper we shall further explore the aggregation of compositional data
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and its interaction with the venerated property of monotonicity. Hopefully,
this exploration will also be of interest to practitioners, who will benefit from
a careful mathematical study of most existing functions for the aggregation
of compositional data. The remainder of this paper is structured as follows.
Section 2 is devoted to the description of the structure of compositional data
(typically referred to as the simplex). In Section 3, we connect the field of
aggregation theory with the analysis of compositional data. In particular, we
describe what an aggregation function for compositional data should be and
introduce a natural example of such an aggregation function: the weighted
centroid. In Section 4, we discuss a typical transformation for compositional
data vectors and study a specific function related to such transformation.
Finally, we discuss how to obtain aggregation functions from convex-hull
internal and componentwisely monotone functions in Section 5. We end
with some concluding remarks in Section 6.

2. The structure of compositional data: The simplex

2.1. Definition
In this paper, we are dealing with compositional data of the type de-

scribed in the introductory example to Aitchinson’s seminal paper [1] (taken
from [34]).
Example 1. The chemical compositions of 32 basalt specimens from the
Isle of Skye (Scotland) are given in the form of the proportion of ten major
oxides. An example of such type of composition is the following:

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO
0.4631 0.1418 0.1232 0.1274 0.0962 0.0251 0.0034 0.0153 0.0016 0.0018
In this paper, we will treat this composition as a vector
x = (0.4631, 0.1418, 0.1232, 0.1274, 0.0962, 0.0251, 0.0034, 0.0153, 0.0016, 0.0018) .
For any j ∈ {1, . . . , k}, the j-th component of the composition x will be
denoted by x(j). When a list of n compositions is studied, we will make use
of superindices, as in x(1), . . . ,x(n).

It is assumed that the sum of all components should be equal to one
(in the above example it is not the case either due to the use of numerical
approximation or to the absence of some residually-significant oxides). The
set of all possible compositions is called the simplex and will be the object
of interest throughout this paper.
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The standard simplex is the most prominent type of simplex in which
the vertices are the standard unit vectors. Since throughout this paper we
are only interested in the standard simplex, we will just refer to the simplex
meaning the standard simplex. Formally, for fixed k ∈ N, the simplex is
defined as1

Sk =

x ∈ [0, 1]k
∣∣∣∣∣∣

k∑
j=1

x(j) = 1
 .

The simplex admits a representation in three dimensions whenever k ≤ 4.
In particular, S1 is a point, S2 is a line segment, S3 is a triangle and S4 is a
tetrahedron. In order to illustrate some notions later on in this paper, we will
often consider the two-dimensional representation of S3 on the right-hand side
of Figure 1 instead of its more cumbersome three-dimensional representation
on the left-hand side of the figure.

As an illustrative example, we refer to Figure 1 for visualizing the co-
ordinates of the compositional data vector (0.55, 0.32, 0.13). In the two-
dimensional representation, the (barycentric) coordinates of any point are
obtained by projecting the given point to each of the medians of the tri-
angle2. Note that barycentric coordinates are also called areal coordinates
because of an equivalent representation in which the coordinates represent
the areas of the three triangles obtained when drawing a line from the point
to each of the three vertices.

2.2. The simplex as a poset
An order relation ≤ on a set X is a binary relation that is reflexive

(x ≤ x, for any x ∈ X), antisymmetric (x ≤ y and y ≤ x imply x = y,
for any x, y ∈ X) and transitive (x ≤ y and y ≤ z imply x ≤ z, for any

1It is important to note that we index the summation starting from 1 and ending at k
(and not from 0 to k−1) and that we do not omit the last component (and thus we do not
require the sum of all components to be smaller than one). There do exist some variations
in notation in the literature that possibly explain the differences in the understanding of
the terms “n-simplex” and “n-dimensional simplex”, where n is sometimes understood
as k and othertimes as k − 1. Although there is little doubt that the dimension of the
simplex Sk is k − 1 if understood as a subset of Rk, it is also true that k easily refers to
the number of components of any vector belonging to the simplex. This latter number
matters most when dealing with compositional data, thus the reason why this notation
has been considered here.

2A median of a triangle is a line segment joining a vertex to the midpoint of the opposite
side.
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Figure 1: Graphical representation of S3 in three dimensions (left) and in two dimensions
(right). The point (0.55, 0.32, 0.13) is marked within both representations.

x, y, z ∈ X). A set X equipped with an order relation ≤ is called a partially
ordered set (poset, for short) and is denoted by (X,≤). A poset (X,≤) is
called bounded if it has both a lower bound (an element 0 ∈ X such that
0 ≤ x, for any x ∈ X) and an upper bound (an element 1 ∈ X such that
x ≤ 1, for any x ∈ X), thus leading to the notation (X,≤, 0, 1).

By construction, the simplex is incompatible with the product order re-
lation ≤k on Rk, defined by x ≤k y if x(j) ≤ y(j) for all j ∈ {1, . . . , k}.
In particular, one cannot find two compositional data vectors that are com-
parable with regard to this order relation. This is due to the fact that if
one compositional data vector is smaller than another one in at least one
of its components, then it must be greater in at least another component.
Formally, there do not exist x,y ∈ Sk such that x ≤k y for x 6= y. Thus,
(X,≤k) is not an interesting poset; it actually is an anti-chain.

Aside from the product order relation, one could think of another nat-
ural order relation that fits well with the simplex, the majorization order
relation [6], which has been largely considered in the field of economics for
measuring the notion of inequality [8, 12, 17, 25]. Formally, a vector y ∈ Sk
majorizes another vector x ∈ Sk (denoted x ≤M y) if, for any j ∈ {1, . . . , k},
it holds that

j∑
i=1

x(σx(i)) ≤
j∑
i=1

y(σy(i)) ,
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where σx and σy are the permutations that sort in descending order the
components of x and y, respectively. Note that there exists a natural gen-
eralization of the majorization order relation for probability distributions
called the Lorenz order relation that can be easily derived from the Lorenz
curves [25]. If the set on which the probability distribution is defined is finite,
then the majorization order relation and the Lorenz order relation coincide.

Unfortunately, as these latter order relations are conceived for dealing
with the notion of inequality in economics, all components are presumed to
possibly be rearranged. This means that, for instance, both (0.25, 0.25, 0.5)
and (0.5, 0.25, 0.25) carry the same meaning. Thus, ≤M actually defines a
preorder relation3 on Sk rather than an order relation. We end by noting that
( 1
k
, . . . , 1

k
) is the unique lower bound of (Sk,≤M) (i.e., the vector associated

with the least possible degree of inequality), whereas all vectors formed by
a single one and many zeros are upper bounds of (Sk,≤M) (i.e., the vectors
associated with the greatest possible degree of inequality).

Example 2. Consider the chemical composition in Example 1, denoted by
x(1), and the chemical composition below, denoted by x(2).

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO
0.8 0.1 0.09 0.005 0.004 0.0002 0.0002 0.0002 0.0002 0.0002

The proportion of SiO2 is smaller in x(1) (0.4631) than in x(2) (0.8), whereas
the proportion of Al2O3 is greater in x(1) (0.1418) than in x(2) (0.1). Thus,
it holds that x(1) 6≤10 x(2) and x(2) 6≤10 x(1). However, it does hold that
x(1) ≤M x(2) since x(2) is more unequal than x(1). Note that the composition
x(2)′ below in which the porportions of the first two compounds are switched
would have led to exactly the same results.

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO
0.1 0.8 0.09 0.005 0.004 0.0002 0.0002 0.0002 0.0002 0.0002

2.3. The simplex as a beset
A betweenness relation B on a set X is a ternary relation that satisfies

the following properties: symmetry in the end-points ((x, y, z) ∈ B holds if

3A preorder relation is a binary relation that is reflexive and transitive.
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and only if (z, y, x) ∈ B, for any x, y, z ∈ B), closure (both (x, y, z) ∈ B and
(x, z, y) ∈ B hold if and only if y = z, for any x, y, z ∈ X) and end-point
transitivity ((o, x, y) ∈ B and (o, y, z) ∈ B imply that (o, x, z) ∈ B, for any
o, x, y, z ∈ X). A set X equipped with a betweenness relation B is called a
beset [29] and denoted by (X,B). A non-empty subset S of X is called a set
of bounds of a beset (X,B) if none of its elements is in-between two elements
that do not belong to the set of bounds (for any y ∈ S and any x, z ∈ X\S,
it holds that (x, y, z) 6∈ B). The triplet (X,B, S) is thus referred to as a
bounded beset.

A betweenness relation can be understood as a family of order rela-
tions [37]. This connection between order relations and betweenness relations
is key for defining an interesting betweenness relation BSk

on Sk, defined as
follows:

BSk
=
{

(x,y, z) ∈ (Sk)3
∣∣∣∣∣ (∀j ∈ {1, . . . , k})(

min
(
x(j), z(j)

)
≤ y(j) ≤ max

(
x(j), z(j)

))} .

This betweenness relation is illustrated in Figure 2. Note that, in the right-
hand side of the figure, we represent the triplets of the betweenness relation
for which one of the two end-points is fixed to be a standard unit vector. In-
terestingly, whenever an end-point is fixed, the betweenness relation induces
a natural order relation representing how close the other two points are to
the fixed end-point [37]. In the setting of compositional data, this carries the
very appealing meaning of getting closer to being a pure substance (i.e., a
vertex of the simplex). This interpretation will be used further on to define
a natural property for the aggregation of compositional data (monotonicity).

Example 3. Consider the chemical compositions in Example 2 and the
chemical composition below, denoted by x(3).

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO
1 0 0 0 0 0 0 0 0 0

Note that x(1)(1) ≤ x(2)(1) ≤ x(3)(1) and x(3)(j) ≤ x(2)(j) ≤ x(1)(j) for
any other j ∈ {2, . . . , k}. Thus, it holds that (x(1),x(2),x(3)) ∈ BS10 , which
implies that x(2) is closer to being pure SiO2 than x(3) is. Note that, in
case x(2)′ instead of x(2) would have been considered, it would hold that
(x(1),x(2)′,x(3)) 6∈ BS10 .
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Figure 2: Illustration of the compositional data vectors (highlighted in grey) that are
strictly in-between the two compositional data vectors that are highlighted in red according
to the betweenness relation BS3 .

It is easy to verify that the standard basis of Rk, denoted by E = {e(j)}kj=1
and formed by all standard unit vectors formed by a one and many zeros,
i.e., of the form (0, . . . , 0, 1, 0, . . . , 0), is a set of bounds of the beset (Sk, BSk

).
Therefore, (Sk, BSk

,E) is a bounded beset.

3. Aggregation functions for compositional data

3.1. Classical order-based aggregation theory for compositional data
The study of aggregation processes is the core topic of aggregation theory

and is formalized by the notion of an aggregation function [9, 19]. Until
recently, it has been typically assumed that aggregation is a process that
operates on a bounded poset, typically a compact real interval.

Definition 4. Consider a bounded poset (X,≤, 0, 1) and n ∈ N. A function
A : Xn → X is called an (n-ary) aggregation function on (X,≤, 0, 1) if

(i) it satisfies the boundary conditions, i.e., A(0, . . . , 0) = 0 andA(1, . . . , 1) =
1;

(ii) it is increasing, i.e., for any (x(1), . . . , x(n)), (y(1), . . . , y(n)) ∈ Xn such
that x(i) ≤ y(i) for any i ∈ {1, . . . , n}, it holds that A(x(1), . . . , x(n)) ≤
A(y(1), . . . , y(n)).

8



The above definition has been proven to fit many different scenarios from
the most basic ones such as the aggregation of real numbers to more involved
ones such as the aggregation of labels of an ordinal linguistic scale [7] and
the aggregation of elements of a bounded lattice [23].

However, this definition clearly does not fit the aggregation of composi-
tional data when considering the poset (Sk,≤M). More specifically, let k = 3,
(1, 0, 0) and (0, 0, 1) obviously carry a very different meaning (although they
are equivalent in terms of ≤M). Moreover, think of the most natural function
A : (Sk)3 → Sk for aggregating compositional data vectors by computing the
centroid, i.e., the arithmetic mean in each of their components:

A(x(1),x(2),x(3)) = 1
3x(1) + 1

3x(2) + 1
3x(3) .

This function cannot be considered an aggregation function on (Sk,≤M) since
it is not increasing:

(1, 0, 0) ≤M (1, 0, 0) ,
(1, 0, 0) ≤M (0, 1, 0) ,
(1, 0, 0) ≤M (0, 0, 1) ,

A
(
(1, 0, 0), (1, 0, 0), (1, 0, 0)

)
= (1, 0, 0) 6≤M (1

3 ,
1
3 ,

1
3) = A

(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
.

3.2. Betweenness-based aggregation theory
In a recent work by some of the present authors [29], a natural extension

of the notion of an aggregation function to besets was proposed.

Definition 5. Consider a bounded beset (X,B, S) and n ∈ N. A function
A : Xn → X is called an (n-ary) aggregation function on (X,B, S) if

(i) it satisfies the boundary conditions, i.e., A(o, . . . , o) = o, for any o ∈ S;

(ii) it is monotone, i.e., for any o ∈ S and any (x(1), . . . , x(n)), (y(1), . . . , y(n)) ∈
Xn, the fact that

(
o, x(i), y(i)

)
∈ B for any i ∈ {1, . . . , n} implies that(

A(o, . . . , o), A(x(1), . . . , x(n)), A(y(1), . . . , y(n))
)
∈ B.4

4Note that, due to the boundary conditions, monotonicity can be rewritten as, for any
o ∈ S and any (x(1), . . . , x(n)), (y(1), . . . , y(n)) ∈ Xn, the fact that

(
o, x(i), y(i)) ∈ B for

any i ∈ {1, . . . , n} implies that
(
o, A(x(1), . . . , x(n)), A(y(1), . . . , y(n))

)
∈ B.
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If one considers the bounded beset (Sk, BSk
,E), the requirements above

can be intuitively described as: (i) the aggregation of n times the same pure
substance should result in the same pure substance; (ii) the closer all the
compositions to be aggregated are to being the same pure substance, the
closer the result of the aggregation should be to being this pure substance.

Probably the most natural interpretation of aggregation for compositional
data arises from mixing liquids with known compositions. We can then
understand the composition of the resulting liquid as the aggregation of n
compositional data vectors x(1), . . . ,x(n) ∈ Sk. This aggregation results in
a new compositional data vector and can be formalized using the function
Cw : (Sk)n → Sk defined by

Cw(x(1), . . . ,x(n))(j) =
n∑
i=1

wix(i)(j) , (1)

for any j ∈ {1, . . . , k}, where w = (w1, . . . , wn) is a suitable weighing vector
(in the case of the liquids, reflecting the mixing ratio associated with each
of the different liquids in the mixture). The above function is well known in
the field of multivariate statistics and is referred to as the weighted centroid.
The special case in which w = ( 1

n
, . . . , 1

n
) is called the centroid.

Example 6. As an illustrative example, consider the compositional data
vector x(1) = (0.55, 0.32, 0.13) used in Figure 1 and the pure substance
x(2) = (1, 0, 0) representing the composition of two liquids in terms of three
compounds. In case both liquids are mixed in a one-to-one ratio, the resulting
mixture will have the following composition:

C( 1
2 ,

1
2 )(x(1),x(2)) = (0.775, 0.16, 0.065) .

In case different quantities of each of the liquids are mixed, a weighted cen-
troid rather than the centroid is to be used. For instance, consider mixing
both liquids such that the quantity of x(1) is the quadruple of the quantity
of x(2). The associated weighing vector will thus be (4

5 ,
1
5), as follows:

C( 4
5 ,

1
5 )(x(1),x(2)) = (0.64, 0.256, 0.104) .

The weighted centroid is easily proved to be an aggregation function in
the sense of Definition 5.

Proposition 7. The function Cw : (Sk)n → Sk defined by Eq. (1) is an
aggregation function on (Sk, BSk

,E).
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Proof. We first prove that Cw satisfies the boundary conditions. Consider
any e(`) ∈ E. Since e(`)(`) = 1, it follows that

Cw(e(`), . . . , e(`))(`) =
n∑
i=1

wi 1 = 1 .

Similarly, for any j 6= `, since e(`)(j) = 0, it holds that

Cw(e(`), . . . , e(`))(j) =
n∑
i=1

wi 0 = 0 .

We conclude that
Cw(e(`), . . . , e(`)) = e(`) ,

and, thus, Cw satisfies the boundary conditions.
We now prove that Cw is monotone. Consider any e(`) ∈ E and any

(x(1), . . . ,x(n)), (y(1), . . . ,y(n)) ∈ (Sk)n such that
(
e(`),x(i),y(i)

)
∈ BSk

, for
any i ∈ {1, . . . , n}. Since e(`)(`) = 1, it follows that y(i)(`) ≤ x(i)(`) ≤
e(`)(`) = 1. Similarly, since e(`)(j) = 0 for any j 6= `, it holds that 0 =
e(`)(j) ≤ x(i)(j) ≤ y(i)(j) for any j 6= `. Thus, since the weighted centroid
is defined componentwisely and due to the increasingness of the weighted
arithmetic mean as a univariate function, it holds that

Cw(y(1), . . . ,y(n))(`) ≤ Cw(x(1), . . . ,x(n))(`) ≤ Cw(e(`), . . . , e(`))(`) ,

and that, for any j 6= `,

Cw(e(`), . . . , e(`))(j) ≤ Cw(x(1), . . . ,x(n))(j) ≤ Cw(y(1), . . . ,y(n))(j) .

We conclude that(
Cw(e(`), . . . , e(`)),Cw(x(1), . . . ,x(n)),Cw(y(1), . . . ,y(n))

)
∈ BSk

,

and, thus, Cw is monotone.

4. Interaction with a popular transformation for compositional data

When dealing with compositional data, it is quite common to apply some
transformations to the elements of the simplex in order to (1) deal with an
easier structure, and (2) properly study correlations between the components.
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There exist several such transformations, but here, we will only pay attention
to the most prominent and simplest one: the additive logistic transforma-
tion [4]. As mentioned by Aitchison in [2] (page 113), this transformation
was already “in use in other areas of statistical activity” at the time of his
seminal book and can be traced back to the problem of transferring patterns
of variability from the real line to the positive real line [26].

Let S+
k be the positive simplex, defined as

S+
k =

x ∈ ]0, 1[k
∣∣∣∣∣∣

k∑
j=1

x(j) = 1
 .

Given a compositional data vector x ∈ S+
k , one may obtain an element

y ∈ Rk−1 (assuming k > 1) by applying the transformation φ : S+
k → Rk−1

defined as follows:

φ(x)(j) = y(j) = ln
(

x(j)
x(k)

)
, for any j ∈ {1, . . . , k − 1} .

Similarly, given an element y ∈ Rk−1, one may obtain a compositional data
vector x ∈ S+

k by applying the inverse transformation φ−1 : Rk−1 → S+
k

defined as follows:

φ−1(y)(j) = x(j) = ey(j)

ey(1) + . . .+ ey(k−1) + 1 , for any j ∈ {1, . . . , k − 1} ,

φ−1(y)(k) = x(k) = 1
ey(1) + . . .+ ey(k−1) + 1 .

Note that the transformation φ is not well-defined on the boundaries of the
simplex, thus the reason why the positive simplex is considered here.

The aim of this section is to explore the following statement of Aitchi-
son [4]: “Transform each composition to it logratio vector, after reformulating
your problem about compositions in terms of the corresponding logratio vec-
tors, then apply the appropriate, standard multivariate procedures to the
logratio vectors.”

In particular, we consider the function that transforms the compositional
data vectors in logratio vectors, next applies the centroid, and, finally, returns
to compositional data vectors. Such a function Aφ : (S+

k )n → S+
k is defined

as follows:
Aφ

(
x(1), . . . ,x(n)

)
= φ−1

(
1
n

n∑
i=1

φ
(
x(i)

))
. (2)
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The resemblance of the above expression with a classical (univariate) quasi-
arithmetic mean is obvious [20]. Actually, as explained by Aitchison [3],
linear algebra shows that this function can be equivalently expressed as the
result of applying the geometric mean componentwisely and then dividing
by the total sum of the vector of geometric means assuring the function to
stay within the simplex.

Interestingly, as can be seen in Figure 3 (as in Fig. 1 in [3]), the function
defined in Eq. (2) might yield a better representative of a dataset of com-
positional data vectors than the centroid in case of curved datasets (which
apparently are not untypical datasets in geochemical studies).

• •

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•
• ••

•
•••

×

◦

Figure 3: Figure constructed from the same data as Fig. 1 in [3]. Illustration of a “not
untypical data set of 3-part compositions”. The point marked with the symbol × represents
the centroid, whereas the point marked with the symbol ◦ represents the result of applying
the function in Eq. (2).

Unfortunately, it turns out that Aφ is not monotone (see Footnote 4), as
can be understood from the following example.
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Example 8. Consider x(1) = (0.4, 0.15, 0.45) and x(2) = (0.05, 0.5, 0.45). It
holds that Aφ

(
x(1),x(2)

)
= (0.1634, 0.3165, 0.5201). Consider now x(1)′ =

(0.41, 0.145, 0.445). We can easily verify that
(
x(1),x(1)′, (1, 0, 0)

)
∈ BS3 and

it obviously holds that
(
x(2),x(2), (1, 0, 0)

)
∈ BS3 . However, sinceAφ

(
x(1),x(2)′

)
=

(0.1665, 0.3131, 0.5204), we have that5(
Aφ

(
x(1),x(2)

)
, Aφ

(
x(1)′,x(2)

)
, (1, 0, 0)

)
6∈ BS3 .

We end the section by noting that, since Aφ is not monotone on the
positive simplex, there is no point in trying to extend the function Aφ to the
simplex in order to find an aggregation function on (Sk, BSk

,E).

5. Aggregation functions for multidimensional data

In this section, we discuss three classical properties of aggregation func-
tions for multidimensional data. Firstly, convex-hull internality assures that
the aggregate remains within the simplex. Secondly, componentwise mono-
tonicity – in combination with convex-hull internality – assures that we have
an aggregation function in the sense of Definition 5. Thirdly, we point out
that the addition of orthogonal equivariance restricts the family of aggrega-
tion functions for multidimensional data to the weighted centroid.

5.1. On convex-hull internality
Researchers in the field of multivariate statistics have extensively studied

how to generalize classical aggregation functions to higher dimensions. For
instance, as has already been mentioned, a weighted arithmetic mean can
be componentwisely extended to higher dimensions, thus defining a weighted
centroid [16]. Similarly, one could also think of extending the median to
higher dimensions componentwisely. Interestingly, this componentwise me-
dian is not the only extension of the median to higher dimensions that has
called the attention of the scientific community [32]. Just to name a few, one
could find other examples such as the spatial median [36], Tukey’s halfspace
median [35], the convex hull peeling median [13], Oja’s simplex median [27],
the simplicial depth median [24] and the orthomedian [21].

5Note that Aφ is not explicitly defined for vertices of the simplex. Due to the idem-
potence of Aφ on the positive simplex, it seems natural to extend this property to the
simplex and define Aφ((1, 0, 0), (1, 0, 0)) = (1, 0, 0).
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An interesting property for functions aiming at combining several points
of Rk into a single one is that of convex-hull internality [15]. This property
requires the result of aggregating the points x(1), . . . ,x(n) ∈ Rk to belong to
their convex hull, i.e., the set

CH
(
x(1), . . . ,x(n)

)
=
{

x =
n∑
i=1

λix(i) ∈ Rk | (λ1, . . . , λn) ∈ Sn
}
.

Definition 9. A function A : (Rk)n → Rk is called convex-hull inter-
nal if, for any

(
x(1), . . . ,x(n)

)
∈ (Rk)n, it holds that A

(
x(1), . . . ,x(n)

)
∈

CH
(
x(1), . . . ,x(n)

)
.

Remark 10. Any convex-hull internal function A : (Rk)n → Rk is idempotent,
i.e., A (x, . . . ,x) = x for any x ∈ Rk.

Typical examples of convex-hull internal functions are the aforementioned
weighted centroid and the spatial median. Some other generalizations of the
univariate median are also known to be convex-hull internal (e.g., the convex
hull peeling median [13]), whereas some other ones are known to fail this
intuitive property (e.g., the componentwise median in case k ≥ 3).

The property of convex-hull internality is of relevance to the aggregation
of compositional data because, since the simplex is a convex set, any convex
combination of vectors of unit sum will still be a vector of unit sum. More
precisely, all convex-hull internal functions for the aggregation of multidimen-
sional data can be used for the aggregation of compositional data although
– unlike with the weighted centroid – an intuitive physical meaning could be
lacking.

Proposition 11. Consider a convex-hull internal function A : (Rk)n → Rk.
For any

(
x(1), . . . ,x(n)

)
∈ (Sk)n, it holds that A

(
x(1), . . . ,x(n)

)
∈ Sk.

Proof. Consider
(
x(1), . . . ,x(n)

)
∈ (Sk)n. Since A : (Rk)n → Rk is convex

hull internal, it follows that A
(
x(1), . . . ,x(n)

)
belongs to the convex hull

of x(1), . . . ,x(n). Since all x(1), . . . ,x(n) belong to Sk, the convex hull of
x(1), . . . ,x(n) needs to be a subset of the convex hull of Sk. Finally, since
Sk is already a convex set, it coincides with its convex hull and, thus, we
conclude that A

(
x(1), . . . ,x(n)

)
∈ Sk.
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5.2. On componentwise monotonicity
Another interesting property is that of componentwise monotonicity [15,

30]. This property assures that, whenever the values in one of the components
are increased, the aggregated value for this same component increases.

Definition 12. A function A : (Rk)n → Rk is called componentwisely mono-
tone if, for any j ∈ {1, . . . , k} and any

(
x(1), . . . ,x(n)

)
,
(
y(1), . . . ,y(n)

)
∈

(Rk)n satisfying that x(i)(j) ≤ y(i)(j) for any i ∈ {1, . . . , n}, it holds that
A
(
x(1), . . . ,x(n)

)
(j) ≤ A

(
y(1), . . . ,y(n)

)
(j).

Interestingly, componentwise monotonicity of a function A : (Rk)n → Rk

is equivalent to A being a componentwise extension of some k monotone
functions A1, . . . , Ak : Rn → Rn (see Proposition 15 in [15]).

It is easy to prove that any convex-hull internal and componentwisely
monotone function is an aggregation function on (Sk, BSk

,E).

Proposition 13. If a function A : (Rk)n → Rk is convex-hull internal and
componentwisely monotone, then it is an aggregation function on (Sk, BSk

,E).

Proof. From Proposition 11, we conclude that A is well defined for aggre-
gating compositional data. The boundary conditions follow directly from
the convex-hull internality of A (since convex-hull internality implies idem-
potence). We now prove that A is monotone. Consider any e(`) ∈ E and any
(x(1), . . . ,x(n)), (y(1), . . . ,y(n)) ∈ (Sk)n such that

(
e(`),x(i),y(i)

)
∈ BSk

, for
any i ∈ {1, . . . , n}. Since e(`)(`) = 1, it follows that y(i)(`) ≤ x(i)(`) ≤
e(`)(`) = 1. Similarly, since e(`)(j) = 0 for any j 6= `, it holds that
0 = e(`)(j) ≤ x(i)(j) ≤ y(i)(j) for any j 6= `. Due to the componentwise
monotonicity of A, it holds that

A(y(1), . . . ,y(n))(`) ≤ A(x(1), . . . ,x(n))(`) ≤ A(e(`), . . . , e(`))(`) ,

and that, for any j 6= `,

A(e(`), . . . , e(`))(j) ≤ A(x(1), . . . ,x(n))(j) ≤ A(y(1), . . . ,y(n))(j) .

We conclude that(
A(e(`), . . . , e(`)), A(x(1), . . . ,x(n)), A(y(1), . . . ,y(n))

)
∈ BSk

,

and, thus, A is monotone.
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Note that Proposition 7 could well have come as a corollary of the propo-
sition above. Weighted centroid aside, the componentwise median is a promi-
nent example of convex-hull internal and componentwisely monotone func-
tion in case k ≤ 2. Unfortunately, the componentwise median is easily proven
not to be convex-hull internal if k ≥ 3.

5.3. On orthogonal equivariance
The field of multivariate statistics is overpopulated with functions A :

(Rk)n → Rk that are convex-hull internal and orthogonally equivariant6.
Examples of such functions are the centroid, most generalizations of the
median [32] (e.g., the spatial median [36], Tukey’s halfspace median [35], the
convex hull peeling median [13], Oja’s simplex median [27], the simplicial
depth median [24] and the orthomedian [21]) and the Euclidean center [33].
We end the section by noting that only a weighted centroid among such
functions is an aggregation function for multidimensional data. This result is
not surprising since orthogonal transformations are not natural when dealing
with compositional data, where the coordinate system is associated with the
different components.

Proposition 14. A convex-hull internal and orthogonally equivariant func-
tion A : (Rk)n → Rk is an aggregation function on (Sk, BSk

,E) if and only if
it is a weighted centroid.

Proof. It was proven in Proposition 7 that a weighted centroid is an aggrega-
tion function on (Sk, BSk

,E). We now prove the converse implication. First,
one should note that monotonicity for compositional data in the sense of
Definition 5 is equivalent to ≤k-nondecreasingness as presented in [15], but
for a different orthant. From the orthogonal equivariance of A, it follows that
A is ≤k-nondecreasing. From Proposition 29 in [15] (and since orthogonal
equivariance implies equivariance to reflections), it follows that A is compo-
nentwisely monotone (referred to as componentwisely nondecreasing in [15]).
Thus, it holds that A is convex-hull internal, orthogonally equivariant and
componentwisely monotone. From [16], we conclude that A necessarily is a
weighted centroid.

6A function A : (Rk)n → Rk is called orthogonally equivariant if
A
(
Ox(1), . . . , Ox(n)) = OA

(
x(1), . . . , x(n)) for every orthogonal matrix O (i.e., for every

matrix such that O−1 = OT ).
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6. Conclusions

The field of aggregation theory builds upon the notion of a poset, however,
the set of compositional data vectors has been shown not to fit within this
order-based framework. Following the natural generalization of aggregation
functions to besets proposed in [29], we have discussed an intuitive definition
for an aggregation function for compositional data.

The weighted centroid, which is inherently linked to the process of mix-
ing, has been proved to be an example of such aggregation function. Unfor-
tunately, a prominent function based on the geometric mean suggested by
Aitchison for describing the location of a set of compositional data vectors
has been shown not to fit the proposed definition of an aggregation function.

Finally, we have discussed how functions from the field of multivariate
statistics could be used for aggregating compositional data. We have pre-
sented a sufficient condition (Proposition 13) for a function to be an aggrega-
tion function for compositional data. Unfortunately, in case k ≥ 3, we have
not identified any function satisfying this sufficient condition other than the
weighted centroid. For this very reason, we conjecture that the weighted cen-
troid could possibly be the unique convex-hull internal and componentwisely
monotone function in case k ≥ 3. This would not come as a surprise if one
bears in mind that the weighted centroid is the unique such function that
additionally is orthogonally equivariant [16].

We end by noting that the results presented here are given for the specific
case of compositional data and for the particular betweenness relation that
we understand is the most meaningful when dealing with this kind of data.
However, when we are dealing with other types of data that can also be
represented as a simplex (see, e.g., [5]), other betweenness relations might be
of interest. For instance, for the case of probability distributions defined on a
finite chain, it might be more meaningful to consider a betweenness relation
induced by the stochastic dominance order.
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