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Abstract: The content of fats, oils, and greases (FOG) in wastewater, as a result of food preparation,
both in homes and in different commercial and industrial activities, is a growing problem. In addition
to the blockages generated in the sanitary networks, it also represents a difficulty for the performance
of wastewater treatment plants (WWTP), increasing energy and maintenance costs and worsening
the performance of downstream treatment processes. The pretreatment stage of these facilities is
responsible for removing most of the FOG to avoid these problems. However, so far, optimization
has been limited to the correct design and initial installation dimensioning. Proper management of
this initial stage is left to the experience of the operators to adjust the process when changes occur
in the characteristics of the wastewater inlet. The main difficulty is the large number of factors
influencing these changes. In this work, a prediction model of the FOG content in the inlet water is
presented. The model is capable of correctly predicting 98.45% of the cases in training and 72.73% in
testing, with a relative error of 10%. It was developed using random forest (RF) and the good results
obtained (R2 = 0.9348 and RMSE = 0.089 in test) will make it possible to improve operations in this
initial stage. The good features of this machine learning algorithm had not been used, so far, in the
modeling of pretreatment parameters. This novel approach will result in a global improvement in
the performance of this type of facility allowing early adoption of adjustments to the pretreatment
process to remove the maximum amount of FOG.

Keywords: wastewater; pre-treatment; FOG; random forest

1. Introduction

Fats, oils, and greases (FOG) are some of the components of urban wastewater and
the result of food preparation both in homes and in various commercial and industrial
settings. FOG is a growing concern for municipalities and sewage plant operators, due to
its tendency to cause severe blockages in pipes and sewers [1–3].

FOG characteristics can vary greatly depending on the types of fat, oil, and grease and
their sources of collection [4]. FOGs can appear as liquids or solids and are characterized
by a greasy texture and lower density than water, which is why they float on the surface.
Furthermore, FOG can form emulsions in aqueous media in the presence of soap or other
emulsifying agents. FOG is composed of fatty acids, triacylglycerol, and lipid-soluble
hydrocarbons, with FFA (free fatty acids) being the most important components due to
their chemical reactivity. The presence of a large amount of FFA results in a characteristically
low pH [1,5].

Upstream of the treatment plants, the FOG with other types of waste generate the
so-called “fatbergs” [2] that cause different problems in the pipes to the treatment plants [6].
Due to all the problems generated by the FOG, different prevention systems have been
developed with different approaches, from educational campaigns to promote good man-
agement practices, the installation of grease trapping systems (GTSs), or the performance of
periodic inspections to avoid improper disposal [7,8]. Numerous initiatives and programs

Water 2021, 13, 1237. https://doi.org/10.3390/w13091237 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4672-9879
https://orcid.org/0000-0002-0754-7426
https://orcid.org/0000-0002-1411-6288
https://orcid.org/0000-0003-0887-4901
https://doi.org/10.3390/w13091237
https://doi.org/10.3390/w13091237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13091237
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13091237?type=check_update&version=1


Water 2021, 13, 1237 2 of 17

of this type have been implemented in various countries, although in general they are at
the local level or pilot-scale and have not been extended nationally or internationally [2,5].
An example is in municipal management in Sweden and Norway, whereby installing GTSs
in most restaurants, the number of problems and blockages due to accumulations of FOG
significantly reduced [6].

Once in the treatment plants, the FOG that is not eliminated in the degreasing process
can cause blockages and other problems in their infrastructures (pipes, pumps, tanks,
digesters, sensors). This increases both the time and money required for cleaning and
maintenance. The EU-RecOil project estimated that 25% of wastewater treatment costs can
be attributed to the FOG component [9]. On the other hand, if they are not removed, FOGs
consume oxygen from water and worsen the results of subsequent biological treatments,
reducing the quality of the treated water. All these problems require additional capacity
and energy in wastewater treatment plants, increasing operating and maintenance costs of
the facilities [2]. As a consequence, different methods are used to remove and recycle these
fats, oils, and greases at the beginning of the purification processes [10–13].

Compared to other research work carried out in relation to FOG, usually focused on
studying their physical and chemical characteristics, the processes of subsequent use or
recycling, or their effect on the biological treatments of wastewater, among other examples,
the focus of this study is to improve the operability of WWTPs. The mechanical separation
of FOGs in pretreatment has received less attention from researchers compared to their
energy use [5,14], reducing environmental impact in landfills [4,15,16] or their influence
on downstream treatments in WWTP [11]. The objective of this work is to improve the
removal of FOG in the pretreatment stage, which will have an impact on the improvement
of the performance of the subsequent stages and the general operation of the wastewater
treatment plant.

Treatment plants have to manage significant changes in the flow rate and characteris-
tics (composition, temperature, etc.) of the incoming wastewater [17,18]. More specifically,
many factors influence the amount, proportion, and characteristics of the FOG content of
the inlet wastewater from such facilities:

• Weather changes, i.e., rain, more or less intense, ambient temperature, number of
previous days without rain with consequent reduction of the inflow, among others,
modify the quantity and characteristics of FOG reaching the WWTP. Predicting these
weather events and their influence on different management infrastructures water has
been studied in numerous works [19–22];

• The part of FOG from domestic activities is altered by holidays, vacation periods,
the different seasons of the year, or the weather itself [3];

• The features of commercial sources of FOG (size, density, and geographical distribu-
tion) such as restaurants, and the use of grease trapping systems, for example [1,8];

• Another important source of FOG is industrial activities, such as food processing or
slaughterhouse factories [13,23,24];

• The presence of other types of residues mixed with FOG present in the wastewater,
such as gross solids (especially wet wipes), grit, and others [25].

Another important challenge of this work involved the selection and subsequent pro-
cessing of the input variables to have an adequate number of training and testing patterns.
Current WWTPs collect a large amount of data, often unused for facility management,
so it is necessary to make an initial effort of exploration, visualization, and selection of
relevant information [17,26].

This paper is divided into three main sections. Section 2 describes the characteristics
of the WWTP being studied, the acquisition and processing of data, and the mathematical
techniques used in the development of the model. Collecting data from different sources
and different frequencies, to have enough training and test patterns and subsequent
processing to ensure quality and representativeness have been one of the initial challenges
of this work. Next, in Section 3, the results obtained are presented and discussed, both
in the model training process and in its validation. These results indicate that the FOG
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prediction model developed has enough accuracy to provide valuable information that
will improve the operation of the WWTP. Finally, the main contributions of the study are
highlighted in Section 4.

2. Materials and Methods
2.1. Case Study

The Villapérez Wastewater Treatment Plant is located in the northeast of the city of
Oviedo (Spain) and occupies an area of nearly 21 hectares (Figure 1). It provides service
to an approximate population of 723,000 equivalent inhabitants. Wastewater arrives at
Villapérez through a unitary network of collectors that has an approximate length of 75 km.
This network includes 44 spillways. Collector diameters range from 600 mm to 2000 mm
with sections in gravity and impulsion.
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Figure 1. Plan view of the Villapérez wastewater treatment plant (WWTP) (Asturias, Spain).

The Villapérez WWTP collects both urban and industrial wastewater. One of the main
industries that discharge to Villapérez is a dairy facility with a production capacity of
500,000,000 million liters of milk per year and that discharges an average flow of 200 m3/h
into the sanitation network. Therefore, the representativeness of this WWTP is given by
being a medium-sized facility, which receives urban wastewater from a relatively large
area and which must also treat industrial discharges with high FOG content such as
dairy industries.

As can be seen in Figure 1, the wastewater treatment in Villapérez WWTP begins with
a pretreatment stage in which the larger solids, sands, and fats are removed. Subsequently,
water is taken to primary settling by gravity. Then, water goes to biological treatment
where organic matter, nitrogen, and phosphorus are removed. This treatment involves
passing the water through several anoxic chambers, anaerobic and aerobic. The next stage
is secondary settling, which is carried out via gravity. Finally, the tertiary treatment stage
consists of a physical-chemical treatment, lamellar settling, and filtration.

The pre-treatment has the capacity to treat an inflow of 8.5 m3/s and starts with two,
thick wells, equipped with a 500 L clamshell bucket. The plant then has four roughing
channels, each of which includes an automatic cleaning screen with a 60 mm clearance
and a self-cleaning fines screen with a 3 mm clearance and an inclination of 50◦. After
the roughing stage, the water reaches the facilities for separating FOG and sands from
raw water, which consist of 5 rectangular grit traps with a unit useful volume of 449.8 m3.
To properly separate the FOG, they are first emulsified, and for this, the grit traps are
aerated: 2/3 of the length of the grit remover using coarse bubble aerators, and 1/3 of the
grit remover using fine bubble diffusers. Once the fat has been emulsified, it is collected by
a scraper that cyclically runs the entire length of the sand trap.
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After this separation, the emulsified FOG is sent to a fat concentrator by means of
chains and scrapers that separate water from fat (Figure 2). These concentrators have a
flow rate of 30 m3/h and a power of 0.18 kW. The Villapérez WWTP removes an average
of 5.25 tons of FOG per month, which is approximately 63 tons per year, or in other words,
a container is filled every 9 days.
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The main design parameters of the treatment plant are included in Table 1.

Table 1. Design parameters of wastewater treatment plant of Villapérez (Asturias, Spain).

Parameter Design Value

Maximum inflow (rainy weather) 8.50 m3/s
Maximum inflow (dry weather) 2.89 m3/s

Five-day biological oxygen demand (BOD5) 418.00 mg/L
Chemical oxygen demand (QOD) 652.00 mg/L

Total suspended solids (TSS) 329.00 mg/L
Total Kjeldahl nitrogen (N-NTK) 47.40 mg/L

Total phosphorus (Pt) 6.50 mg/L

2.2. Data

All data used in this work were collected in the period from 1 March 2017 to 24 June
2019 and come from different sources:

• Data related to wastewater were obtained through the Supervisory Control and Data
Acquisition software (SCADA) of the WWTP. This system registers 226 parameters
every 9 min from measuring equipment and sensors distributed all over the treatment
plant. From this set of data, the data associated with the measurement of input
parameters in the raw water during the pre-treatment stage were used. The parameters
measured in the raw water are the input flow rate, pH, raw water temperature,
conductivity, and ammonia. The data associated with these variables are identified by
the time and date of the data measurement.

• FOG data were collected from the container removal delivery notes, which contained
the actual data of the waste total weight inside each container. The number of contain-
ers in the study period was 89. Their filling time was used as time intervals to group
the data of the SCADA system.
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• Climate data comes from the Spanish State Agency for Meteorology website (Agencia
Estatal de Meteorología, Aemet) and the pluviometry data (instantaneous and accu-
mulated rainfall) is obtained from those recorded by the plant’s weather station. All of
them are also grouped considering the intervals in which the containers are filled.
From these data, a new calculated variable from the instantaneous precipitation is also
created, corresponding to the number of previous days without rain.

Statistical data for the variables initially considered in the study are presented in
Table 2. As indicated above, the reference is the time interval from when an empty container
is placed to when it is removed. When each container is removed, it is weighed, and the data
is recorded on the corresponding delivery note. For the elaboration of the training patterns,
some variables have been calculated. The data corresponding to each of these periods was
summarized by calculating for each variable its minimum, mean and maximum value,
as shown in Table 2.

Table 2. Statistical description of the variables.

Variable Description Unit Mean Standard
Deviation Min Max

FOG Fats, oils, and greases ton 3.01 0.26 2.32 3.52
Interval Time interval h 228.91 660.09 1.28 6289.76
PDwR Previous days without rain day 2.06 3.61 0.00 19.55

MxDwR Maximum previous days without
rain in the time interval day 4.42 4.09 0.07 20.68

Vol Water volume m3 731,056.32 817,413.43 3946.58 4,886,022.43
PrecipTotal Total precipitation m3 13.88 26.27 0.00 203.40
PrecipMax Maximum precipitation m3 1.09 1.95 0.00 12.00

pH pH 7.21 0.32 6.22 7.99
pHMax Maximum pH 8.20 0.64 7.01 11.65

MedTemperature Wastewater medium temperature ◦C 17.98 3.05 10.95 22.55

MaxTemperature Wastewater maximum
temperature

◦C 19.59 2.76 12.68 25.62

MedConductivity Medium conductivity µS/cm 996.72 212.72 380.80 1439.72
MaxConductivity Maximum conductivity µS/cm 1995.47 541.84 757.62 3768.84
MedAmmonium Medium ammonium mg/L 27.61 12.36 9.06 68.31
MaxAmmonium Maximum ammonium mg/L 38.33 17.41 15.82 88.22

MedFlow Medium flow m3/h 4193.95 1896.00 2446.96 12,608.21
MaxFlow Maximunm flow m3/h 9216.91 3958.30 3446.37 17,885.11
MinFlow Minimun flow m3/h 1779.97 1004.17 975.59 6803.43

TempExtMed Medium Ambient Temperature ◦C 13.14 4.41 3.30 22.20
TempExtMax Maximunm Ambient Temperature ◦C 17.50 5.12 4.60 28.20
TempExtMin Minimun Ambient Temperature ◦C 9.75 4.51 −0.20 17.60

MedPDwR Medium previous days without
rain in the time interval day 2.12 3.10 0.01 19.52

A preliminary analysis by principal component analysis (PCA) [27] was carried out
in order to study the initial data set. The graph in Figure 3 shows the contribution of the
different variables to the dimensions of the PCA projection.

Some aspects that can be highlighted from this graph are:

• As might be expected, the temperature variables (ambient temperature, wastewater
temperature) appear grouped.

• Conductivity is related to the number of days without rain. This is because wastewater,
both urban and industrial, is not diluted by rainwater.

• Obviously, the flow variables are related to the level of precipitation, that is, the more
rain, the higher the inlet flow.

• Finally, it can be seen how the amount of FOG (fat variable) is related to ammonium,
and therefore this is an important parameter to consider in the modeling. This relation-
ship may be due to industrial discharges since they provide both fat and nitrogen.
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Figure 4 shows the contribution of each of the variables in the complete dataset. It can
be seen that the FOG variable is one of the variables that least contributes to variability and
this is because it has a fairly steady behavior. The dotted reference line in red corresponds
to the expected value if the contributions were uniform.
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Finally, a PCA plot (Figure 5) was performed in order to detect outliers and groups
of cases with similar characteristics. After analyzing the within clusters summed squares
(WCSS) and using the elbow method (a heuristic used in determining the number of
clusters in a data set [28]), 4 was the optimal number of groups we decided to take.
For group identification, hierarchical clustering [29] has been chosen, using complete
linkage clustering [30] as the agglomeration method.
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Four groups can be observed (Figure 5) with the following characteristics:

• Cluster 1 includes those cases with a maximum flow value greater than 10,000 m3/h;
• Cluster 2 part of the cases with a maximum flow greater than 10,000 m3/h and also

with average ammonium above 33 mg/L are included in this group;
• Cluster 3 consists of data with an average temperature greater than 20 ◦C;
• Cluster 4 is defined by an average flow greater than 7052 m3/h and includes 100% of

the cases in this cluster.

Figure 6 shows the same projection of the data of the previous figure (Figure 5),
but representing the variables average temperature (MedTemperature), average flow (Med-
Flow), and average ammonia (MedAmmonium) in the same way. Comparing both graphs,
it is possible to observe that the cases with the highest average temperature are in the
area of cluster 3. In the graph at the bottom left, it can be seen how the points with the
lowest average flow (MedFlow) values correspond to the cases of cluster 2 and 3. Finally,
the points with the highest average ammonium values (MedAmmonium) correspond to
cluster 2.
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2.3. Methods

In this study, random forest (RF) analysis, a machine-learning approach for feature
selection from highly multivariate datasets, was used to develop a forecast model of
FOG content in the inlet wastewater. The RF algorithm reaches the final prediction from
the majority voting of the decisions made with multiple decision trees constructed with
randomly permuted features and observations via recursive partitioning [31]. RF method
has been applied in a wide range of research areas due to its numerous advantages [32] and
in recent years it has gained great importance in water resource-related research. Random
forests have been used to address numerous research problems in WWTPs, such as:
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• Estimating different parameters of water quality or processes as chemical oxygen
demand (COD) [33], total suspended solids (TSS) [34], stream nitrogen (N) and phos-
phorus (P) concentrations [35], or influent flow of WWTPs [36];

• To monitor different treatment processes such as to make predictions of ‘settleability’
of activated sludge [37], or nitrogen removal systems [38];

• To generate models of energy cost [39] or pumping systems [40] in WWTPs;
• To obtain other improvements in plant control [41] or reliability of small wastewater

treatment plants [42].

The main advantage of the random forest algorithm over other techniques is its great
generalizability [42,43], which is why it has been used in a growing number of works
related to water management [32] such as those indicated above. In addition, RF is able
to provide better information compared to other methods on the importance of each
input variable [36]. Good accuracy achieved by the RF models and the ability to more
easily interpret the results over other methods were the main reasons for their use in this
case study.

The model presented in this paper was developed using R [44] and the packages
caret [45] and randomForest [46].

3. Results and Discussion

The representativeness of training datasets is very important to the effectiveness and
overall performance of an RF model [47]. In this study, 90% of the data in the original
dataset are selected randomly to generate a training dataset, while the other 10% are used
to form the corresponding testing dataset in order to have a sample as representative as
possible. In addition to configuring the data set, the training process requires adjusting
several parameters. The number of trees (ntree) and the number of variables randomly
sampled as candidates at each split (mtree) are the two most important parameters because
they have a big effect on the final accuracy of an RF model [48,49]. To adjust these parame-
ters, the cross-validation algorithm was used with a division into three folds and repeating
the training ten times [50].

After the training process, different parameters to evaluate model results have been
taken into consideration:

• Root mean square error (RMSE) is a frequently used measure of the differences
between values predicted by a model and the values observed. The smaller the value,
the better the model’s performance.

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(1)

• Mean absolute error (MAE) is also a common measure to forecast a model’s error.

MAE =
∑N

i=1|yi − ŷi|
N

(2)

The determination coefficient (R2) is the proportion of the variance in the dependent
variable that is predictable from the independent variables and it is a statistical measure of
how well a model approximates the real data points. A bigger value indicates a better fit
between prediction and actual value.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (3)

The model developed for FOG content prediction in the inlet waters to the wastewater
treatment plant presents the following values (Table 3) and the three indicators show very
good performance.
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Table 3. Model performance indicators.

RMSE MAE R2

Training 0.037 0.025 0.9888

Testing 0.089 0.066 0.9348

Figure 7 compares the performance of the model in training and test with an estimate
using the mean value of content in FOG. It can be seen that with a relative error of 10%,
the model is capable of correctly predicting 98.45% of the cases in training and 72.73% in
testing, while under these same conditions the mean FOG value would only be correct in
24.17% of the cases.
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Initially, 22 variables were introduced for the generation of the model, 11 of them were
discarded during the training process since they were not used in any of the splits. The
relative importance (Table 4) of the model variables can be calculated with samples not
selected in the cross-validation sub-samples used to construct a tree [51].

Table 4. Variable relative importance.

Standardized Overall Absolute Overall

MedAmmonium 100.00 9.002

MaxAmmonium 81.046 7.606

PrecipMax 47.079 5.103

MedConductivity 23.024 3.331

MxDwR 17.963 2.958

PDwR 17.678 2.937

pH 15.501 2.777

TempExtMed 9.171 2.311

MedTemperature 6.309 2.100

MedFlow 4.074 1.935

MedPDwR 0.00 1.635
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One of the most significant advantages of the RF method is its evaluation of the
importance of the variables used in the training process [52]. The interpretation made of
the importance of these variables in the development of the model is described below:

• In this case, the two most relevant variables are the average (MedAmmonium) and
maximum (MaxAmmonium) ammonium values. This could be due to the large
amount of ammonium and FOG contained in the discharges from the dairy facility
served by the Villapérez WWTP as was mentioned in the case study description;

• The third most significant variable is maximum precipitation (PrecipMax). Greater
precipitation implies a greater inflow into the WWTP, with more dissolved FOG, which
makes it difficult to remove it in the pretreatment process;

• Urban wastewater has a steady conductivity, so it is possible to associate the variations
and relevance of this variable with industrial discharges;

• The relevance of the following variables related to the number of previous days
without rain (MxDwR, PDwR, and MedPDwR) can be explained in a similar way to
precipitation, that is, as there is less inflow to be treated, the FOG is less dissolved and
it is possible to remove it in a greater proportion;

• pH: urban wastewater has a relatively steady pH, so variations in this indicator can
be associated with industrial discharges;

• The average temperature (TempExtMed) provides information on the seasonal situa-
tion at the time of analysis. A higher temperature makes it easier to emulsify the FOG
and therefore its removal is more effective;

• The relevance of the average flow variable (MedFlow) can be explained in the same
way as the precipitation or the number of previous days without rain mentioned above;

In Figure 8, the behavior of the training data is represented. It can be observed that
the predicted data precisely fit the real ones and how the errors have a steady behavior,
which reinforces the quality of the model.
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Similarly, in Figure 9, it is possible to observe the performance of the RF model with
the test data. The model is capable of adequately predicting the trend of the behavior of
the arrival of FOG, which will provide relevant information when making decisions in
plant operations.
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The sensitivity analysis of the FOG model developed assesses the change produced in
the output in response to the variation of one (Figure 10) or two of the inputs (Figure 11).
In this way, it is possible to identify from which value of a variable a trend change in the
FOG content is expected.
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As can be seen in Figure 10, the behavior of the variables is consistent and fits what is
expected. Despite the fact that the y-axis (FOG) has small variation ranges, the expected
trends can be seen. For example, it is possible to observe that increasing the average and
maximum ammonium (MedAmmonium and MaxAmmonium) increases the amount of
FOG (Figure 10 (7, 8)). Some studies have modeled the amount of ammonium in wastewater,
indicating greater uncertainty in the estimation during periods of rain, but without referring
to the content of FOG [53]. Also, when it has been raining recently, that is, a number of
days without rain (PDwR) close to zero, an initial washing effect is produced in the pipes
and sewers that increases the arrival of FOG while when this variable increases the amount
of FOG is little influenced. This behavior, with an initial increase of all types of waste such
as FOG at the beginning of the rain episodes, with a subsequent dilution, has also been
observed in other research works [54]. Along with this, the changes in pH are in agreement
with the results of other studies, where the pH values on rainy days are numerically
higher [55].

Figure 11 shows how the variation of two variables affects the FOG content in the
inlet water. As already indicated, it is confirmed that the presence of ammonium is not
influenced by the variation in precipitation, since it is mainly due to discharges derived
from industrial activities (Figure 11 (2, 3)). On the contrary, it can be observed how the
variation of ammonium affects the conductivity values (Figure 11 (4, 5)).

Tests have been carried out with other predictive methods of regression machine
learning, such as multivariate adaptive regression splines (MARS) [56] or support vector
machine (SVM) [57]. However, when performing the corresponding sensitivity analyzes,
it has been seen that the model generated with RF presents greater stability since it better
adjusts to the behavior expected by the target variable. In this case, the other techniques
extrapolate the data worse, generating anomalous values in areas where the dataset has a
low information density. Many of these advantages of RF, such as the ability to identify
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non-linear relationships between the predictor and the dependent variables [58], not overfit-
ting [59], the handling of highly correlated variables [60], or the possibility of ordering the
relative importance of the variables [61] have been previously identified by several authors
in other fields. In addition, as other researchers indicate, the potential of this algorithm in
the field of water resources has been very little exploited [32]. Even less has it been used in
the field of the pretreatment stage of a WWTP which, as previously mentioned, has not
received much research attention so far, which constitutes one of the novelties of this work.
No other scientific publication has been found in which a similar prediction model has
been presented, so it has not been possible to compare the results.

The ability to anticipate trends in incoming wastewater provided by the model will
allow the pretreatment process to be adjusted to optimize FOG removal. This process
does not detect if there is an increase in the FOG content, so it is not adjusted until that
increase is detected in the downstream stages. For example, when large production peaks
occur FOG air injection is varied to optimize emulsification. Reducing the time for the
early adoption of this type of measure, thanks to the information provided by the model
presented in this work, will certainly improve the removal of the FOG content and will
positively affect all the treatment processes of the WWTP.

4. Conclusions

Like other fractions of urban wastewater withdrawn in the pretreatment stage of
wastewater treatment plants, the optimization of FOG removal has received relatively
little attention from researchers beyond its subsequent use or its influence on subsequent
wastewater treatment processes. However, its influence on these later stages of wastewater
treatment can be important to improve both the overall performance of WWTP and their
operability. With this objective, in this work, a prediction model of the FOG content in the
inlet waters of the treatment plant has been developed. The ability to provide operators
with advanced information of changes in the wastewater entering the WWTP, taking into
account various factors (chemical composition, meteorological changes, seasonal changes,
etc.) had not been addressed so far in any other research.

The model is based on data collected for more than two years at the plant of Villapérez
(Oviedo, Spain) and the well-known random forest algorithm, but which had not been used
for this purpose so far. The results obtained, evaluated using several common indicators,
reflect the good performance of the model both in the training (RMSE = 0.037, MAE = 0.025
and R2 = 0.9888) and test (RMSE = 0.089, MAE = 0.066 and R2 = 0.9348) stages. Thanks to
the features of the RF technique, the most relevant variables used in the model have been
interpreted, such as ammonia or changes in precipitation. As expected, the influence on
changes in the FOG content of industrial discharges is highlighted in the case study.

Better information will enable operators to better decision-making, allowing opti-
mization of the removal of FOG in pretreatment processes. It will result in a reduction
of the content of FOG subsequent processes and a reduction of energy consumption and
maintenance costs of the plant.

Future research could apply similar RF models to other WWTPs with different char-
acteristics to verify their good performance. On the other hand, WWTPs receive other
important wastes, such as gross solids or grit, whose prediction could be integrated into a
more complete model of the incoming wastewater features.
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