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Abstract In this paper, we propose a parallel source separation system de-
signed to extract heart and lung sounds from single-channel mixtures. The
proposed system is based on a non-negative matrix factorization (NMF) ap-
proach and a clustering strategy together with a soft-masking filtering. Fur-
thermore, we propose an offline and online implementation of the framework
which can be applied in many real-time scenarios, such as the extraction of
clinical parameters, remote auscultation, breath sound analysis, etc. Experi-
mental results show that it is possible to achieve fast execution times, which
enable a real-time behavior, combining parallel and high-performance tech-
niques.
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1 Introduction

The classical stethoscope is an acoustic medical device invented in France in
1816 by René Laënnec. Stethoscopes are mainly used for examining cardiac and
respiratory functions of the human body. This process is called auscultation
and it remains an integral and important part of clinical medicine. Inspecting
the sounds of the body in a non-invasive way provides an important source of
clinical information, since cardiac and respiratory sounds potentially contain
useful information about the status of the heart and lungs. Unfortunately,
cardiac sounds interfere with respiratory sounds, and vice versa, what makes
the analysis difficult by using a classical stethoscope. In this regard, removing
the acoustic interference between heart and lungs is a challenging task, since
both sound sources are simultaneously active in time and frequency domain.

In biomedical research, this task is often treated as a blind source sep-
aration problem [9,24,17,6] and has become an important and hot research
topic. Early methods were based on combinations of low-pass filters (LPF)
and high-pass filters (HPF) [13,7] with the aim of extracting heart and lung
sounds. The main drawback of these approaches is the significant informa-
tion that is removed in the filtering process. During the last decades, different
techniques have been used to perform the source separation in single-channel
mixtures.

A common approach to this type of problem is based on independent com-
ponent analysis (ICA) [9,3,19,15], in which the underlying source signals are
constrained to be statistically independent. These systems often use sensors
to obtain signals from different points of the human chest. Unfortunately,
ICA-based methods are not robust in noisy scenarios and do not consider
the non-stationary nature of the heart sound in the modeling of the problem,
what degrades the obtained results. Other methods in the literature based on
nonlocal means (NLM) [26,20] use redundant information of heart sounds to
remove the non-target sounds at different instants. Nevertheless, these systems
entail high computational costs. Some methods perform the separation using
wavelet transform (WT) based filter [16]. In WT based filter approaches, an
adaptive separation of desired signal is achieved through an iterative wavelet
decomposition-reconstruction process based on either hard or soft threshold-
ing of the WT coefficients at each iteration. However, these approaches are
not robust by evaluating real signals due to the thresholding process [25,6].
More recent methods are based on non-negative matrix factorization (NMF)
[17,23,6]. These perform a decomposition process using different constraints
to discriminate both sources.

In this paper, we propose a parallel framework that addresses the separa-
tion of cardiac and respiratory sounds from a single observation mixture. Here,
we have developed an efficient system which decomposes the input mixture by
combining a NMF approach and a clustering strategy together with a soft-
masking filtering. The proposed solution is suitable for different scenarios and
applications. Unlike previous NMF-based methods [6], the main contribution
of this work is the development of a framework that allows to perform the



Parallel source separation system for heart and lung sounds 3

separation for both offline and online approaches, but always with a real-time
applicability. In this sense, our offline solution is suitable for scenarios in which
the source separation is required with a very short delay just after the record-
ing of the audio sample. From a medical point of view, this application could be
interesting for the estimation of clinical parameters based on the separation of
cardiorespiratory sounds. The tested scenarios show that it is possible to reach
this real-time behavior combining parallel and high-performance techniques.
On the other hand, we propose an online variant of the developed system to
perform directly the separation in real time. This online implementation would
enable the development of electronic stethoscopes capable of providing doctors
with clean heart/lung sounds while monitoring patients.

According to the best of our knowledge, there has not yet been presented
a holistic, flexible and free system that addresses this problem on parallel
shared-memory systems. As a proof of concept, some experiments are carried
out on a dataset of real-world audio samples, showing reliable results in terms
of sound separation.

The structure of the article is organized as follows. In Sect. 2, we present
the proposed framework and describe the main function of the stages that
compose it. In Sect. 3, we analyze the complexity of the proposed system.
Sect. 4 describes the online variant of the system. The evaluation setup and the
experimental results are shown in Sect. 5. Finally, conclusions are summarized
in Sect. 6.

2 Framework description

2.1 System overview

In this work, we present a parallel system to separate sounds emitted by the
heart from those emitted by the lungs in single-channel mixtures. In particular,
we propose a practical and versatile framework that can be used for different
real-time applications, such as extraction of clinical parameters, remote aus-
cultation, breath sound analysis, etc. For this purpose, we have developed an
efficient and fast implementation that is able to perform the decomposition
of the input mixture by combining a NMF approach and a clustering strat-
egy. As a result, we propose a software solution that satisfies two essential
requirements: mobility and real time. Therefore, our design takes into account
the low memory resources and low computational power of cheap and hand-
held devices, what can allow an easy implementation in the medical services.
This has been possible using and deeply exploiting the possibilities offered by
parallel architectures.

The block diagram of the proposed framework is depicted in Fig. 1. As
can be observed, the full system has been decomposed into four main stages:
signal representation, signal decomposition, clustering and reconstruction. In
the following subsections, we detail and describe the main function of each
stage.
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Fig. 1 Block diagram of the proposed framework.

2.2 Signal representation

The problem considered in this paper is to separate the signals generated by
the heart and the lung using a single microphone. Therefore, the observed
signal x̃(n) can be expressed as

x̃(n) = s̃(n) + l̃(n), (1)

where s̃(n) is the heart signal and l̃(n) is the lung signal. Considering the
linear problem in Eq. 1, the short-time Fourier transform (STFT) of x̃(n) can
be written as

x(f, t) = s(f, t) + l(f, t),

where x(f, t), s(f, t) and l(f, t) denote the time-frequency spectrograms of
x̃(n), s̃(n) and l̃(n), respectively. Here, f ∈ [1, F ] and t ∈ [1, T ]. Collecting the
F frequency bins and T time frames, we define the magnitude spectrogram
matrices X ∈ RF×T , S ∈ RF×T and L ∈ RF×T , where X = [x1, . . . ,xT ] and
xt = [|x(1, t)|, . . . , |x(F, t)|]T. S and L are defined similarly to X.

2.3 Signal decomposition

2.3.1 NMF-based signal model

Traditional NMF-based approaches perform the source separation by mod-
elling the magnitude spectrogram X of the input mixture as

X ≈ X̂ = WH, (2)

where X̂ ∈ RF×T is the estimated matrix,H ∈ RK×T is the activations matrix,
W ∈ RF×K is the basis matrix and K denotes the number of bases.

The proposed method attempts to separate both heart and lung sounds
using a NMF-based decomposition and clustering the heart and lung bases
obtained in the factorization process. Thus, the estimated heart and lung sig-
nals, Ŝ ∈ RF×T and L̂ ∈ RF×T , can be obtained as
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Ŝ = ẄḦ, L̂ = W̄H̄,

X̂ = Ŝ+ L̂ =
[
Ẅ W̄

]
︸ ︷︷ ︸

W

[
Ḧ
H̄

]
︸︷︷︸
H

,

where K = K̈ + K̄, Ẅ ∈ RF×K̈ and Ḧ ∈ RK̈×T are the bases and activations
matrices related to the heart signal, and W̄ ∈ RF×K̄ and H̄ ∈ RK̄×T are
the bases and activations matrices related to the lung signal/,//////and///T///is//////the
////////////transpose///////////operator.

2.3.2 Factorization process

In this work, we propose a NMF approach to factorize the signal model
parameters in Eq. 2 under the nonnegativity restriction. The estimation of
these parameters is obtained by minimizing the generalized Kullback-Leibler
DKL(X|X̂) divergence [11] and the sparsity constraint DSS(X|X̂) [27]. Thus,
the global cost function to be minimized can be defined as,

D(X|X̂) = DKL(X|X̂) +DSS(X|X̂).

In our approach, D(X|X̂) is minimized by using an iterative approach
based on multiplicative update rules. In this way, we have efficiently imple-
mented the following update rules

W←W ⊙
X

WHHT

OHT
, (3)

H← H⊙
WT X

WH

WTO+ λ
, (4)

where ⊙ represents the Hadamard (element-wise) product, W and H are ini-
tialized as random positive matrices and O ∈ NF×T denotes an all-ones matrix
composed of F rows and T columns.

2.4 Clustering stage

This section presents three techniques for clustering the bases obtained in the
factorization process previously described. This clustering stage is required
to distinguish which bases are related to heart sounds and which to lung
sounds. To that end, the following clustering methods exploit both spectral
and temporal features of the heart and lung sounds.
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2.4.1 Spectral Correlation (SC)

The aim of this clustering method is to compute the spectral similarity between
the bases obtained from NMF decomposition and a dictionary of spectral pat-
terns learned from isolated heart signals. In particular, we propose to measure
this similarity using the cosine distance in order to compute the spectral cor-
relation between the dictionary entries and the obtained bases. In this sense,
the cosine measure as a similarity function can be expressed as

SC(i, j) =
widj

||wi|| ||dj ||
=

∑F
f=1 wi(f) dj(f)√∑F

f=1 w
2
i (f)

√∑F
f=1 d

2
j (f)

,

where wi is the i-th basis of the matrix W and dj is the j-th entry of the
dictionary D. It worth noting that in this definition SC(i, j) ∈ [0, 1]. Concep-
tually, a value of 1 indicates that a basis has a strong similarity to a heart
sound. On the other hand, the closer value to 0, the less the similarity to a
heart sound and the greater the match to a lung sound. Therefore, we propose
the following criterion to determine the nature of each basis,

{
wi ∈ Ẅ if si ≥ U
wi ∈ W̄ if si < U

, (5)

where si = max{SC(i, j)} and U is a predefined threshold.

2.4.2 Roll-Off (RO)

This second clustering method is based on the power spectral density (PSD).
The PSD describes the energy distribution of a signal at different frequencies.
The PSD of the heart and lung sounds are clearly distributed in different
frequency band [8,21,17]. Heart signals concentrate most of their energy in
the frequency range [0 − 260] Hz, while lung signals distribute most of their
energy in the frequency range [260− fs

2 ] Hz [8,6], being fs the sampling rate.
Thus, analyzing the PSD of each basis wi can be useful to determine whether
it represents a heart or lung sound.

As in [18], here we classify a basis wi as a heart sound if at least 85% of
its total energy is concreted in the frequency range [260− fs

2 ] Hz. This can be
expressed by the following criterion,

{
wi ∈ Ẅ if RO(i) ≥ ET (i)
wi ∈ W̄ if RO(i) < ET (i)

, (6)

where
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RO(i) =

T∑
t=1

F0∑
f=1

||wi(f)hi(t)||2

ET (i) = 0.85

T∑
t=1

F∑
f=1

||wi(f)hi(t)||2

with F0 = 260 Hz and F = fs
2 .

2.4.3 Temporal correlation (TC)

Finally, this method allows to cluster the bases according to a temporal mea-
sure applied to the activations H. Here, we propose to compute the temporal
correlation between the heart rate r ∈ RT and the activations H. In this
sense, the estimation of r is carried out using the information included in the
frequency band [0 − 60] Hz of the input spectrogram, where heart and lung
sounds do not overlap. First a binary function is built based on the signal
energy changes and then temporal peaks that may correspond to a heartbeat
are looking for. At the end, a sequence of pulses between 0 and 1 is obtained,
where the value 1 indicates the temporal location of the heart sounds. This
process generates a temporal pattern r which can be considered equivalent to
the heart rate [4].

Afterwards, a preprocessing over each activation hi obtained in the NMF
decomposition is required to compute the temporal correlation with respect
to the estimated heart rate r. Thus, the activations H are preprocessed as,

hi(t) =


1 if hi(t) ≥

∑
T hi(t)

T

0 if hi(t) <
∑

T hi(t)

T

. (7)

In this way, each hi is converted to a sequence of 0 and 1 that can be compared
to the heart rate.

Finally, a correlation coefficient is computed for each i-th component of
the matrix H using Eq. 8,

TC(i) =
1

T − 1

(
T∑

t=1

hi(t)− µhi

σhi

r(t)− µr

σr

)
, (8)

where µhi
and σhi

represent the mean and standard deviation of the i-th
activation of the matrix H, respectively, and µr and σr indicate the mean and
standard deviation of the estimated heart rate r. TC(i) can reach a value in
the range [−1, 1], where −1 denotes that the i-th activation belongs to a lung
sound and 1 indicates that the i-th activation belongs to a heart sound. Thus,
we can define the following criterion
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{
wi ∈ Ẅ if TC(i) ≥ 0
wi ∈ W̄ if TC(i) < 0

. (9)

Once detailed these three clustering methods (SC, RO and TC), note that
in our implementation all of these clustering strategies are jointly used to
classify the bases. We propose to combine all of them to label eachwi following
a conservative strategy, i.e., wi is assigned to the matrix Ẅ when it satisfies at
least the criterion of one of these three methods (Eq. 5, Eq. 6, Eq. 9). Regarding
the evaluation of the clustering process, [6] showed that the best result in terms
of source separation is obtained when the three methods are jointly used.
Moreover, the authors proved that RO obtains superior results comparing to
TC and SC when the clustering is performed using only one method. It is also
important to remark that, while RO and SC can be used for both offline and
online implementations, TC does not allow an online implementation since the
whole input signal is required for computing the heart rate r(t).

2.5 Reconstruction

Finally, the target signals are reconstructed by using a soft-filter strategy.
Firstly, the estimated parameters are used to predict the magnitude of heart
and lung signal spectrograms by

Ŝ = ẄḦ, L̂ = W̄H̄. (10)

Then, the source signals ŝ(n) and l̂(n) are estimated from the mixture
x(n) using a generalized time-frequency mask over the STFT domain. In this
sense, we propose to employ a Wiener filtering in order to ensure that the
reconstruction process is conservative [14]. The Wiener masks can be computed
as the relative energy contribution of each source for each time-frequency bin
with respect to the energy of the original mixture,

V̈ =
|Ŝ|2

|Ŝ|2 + |L̂|2
, V̄ =

|L̂|2

|Ŝ|2 + |L̂|2
. (11)

Afterwards, Eq. 11 are used to obtain the source magnitude spectrograms
Ŝ and L̂.

Ŝ = V̈ ⊙X, L̂ = V̄ ⊙X. (12)

3 Computational costs

In this section, we study the complexity of the proposed system that has been
implemented combining parallel and high-performance techniques with the
goal of achieving an application suitable for multi-core architectures and for
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Algorithm 1 Proposed system algorithm
1: Calculate X to obtain the signal representation in the frequency domain using the STFT.
2: Initialize W and H matrix with random non-negative values.
3: for iter = 1 to Niter do
4: Update W using the Eq. 3.
5: Update H using the Eq. 4.

6: end while
7: for i = 1 to K do
8: Determine if wi ∈ Ẅ or wi ∈ W̄ using Spectral Correlation (see Sec. 2.4.1).
9: Determine if wi ∈ Ẅ or wi ∈ W̄ using Roll-Off (see Sec. 2.4.2).
10: Determine if wi ∈ Ẅ or wi ∈ W̄ using Temporal Correlation (see Sec. 2.4.3).

11: end for
12: Compute Ŝ and L̂ using the Eq. 10.
13: Reconstruct the heart and lung signals in time domain using the inverse of the STFT

of Ŝ and L̂, respectively.

real-time scenarios. Next, we analyze the computational cost of the parallel
proposal for each stage described in Fig. 1 and summarized in Algorithm 1.

First, the time-frequency spectrogram of the observation is computed fol-
lowing a process of segmenting and windowing of the audio signal into frames,
and calculating the fast Fourier transform (FFT) spectrum in each frame. In
our implementation we have used the FFTW package [12]. As studied in [2,
1], the temporal complexity of computing the FFT spectrum of one frame is
given by O(NF log2(NF )), where NF is the number of point used in the FFT.
Thus, the complexity for computing sequentially the spectrogram of the input
signal can be expressed as

O (T (NF log2(NF ))) ,

where T is the number of frames.
Regarding the parallel design, parallel and worksharing constructors of

OpenMP [10] have been exploited. Moreover, some empirical tests have shown
that better performance is obtained when the T FFTs are executed in parallel
than when the T FFTs are run sequentially using the parallel implementation
of the FFTW package, despite the fact that both designs have the same theo-
retical complexity cost. Thus, we have chosen a coarse-grained parallelism for
our implementation. In this sense, the parallel complexity of this stage is given
by

O

(
T

p
(NF log2(NF ))

)
,

where p is the number of processors or cores used.
Attending to the factorization stage (see Sect. 2.3.2), the multiplicative

update rules of Eq. 3 and Eq. 4 have been implemented considering the fol-
lowing parallelization strategies: (1) calling BLAS [5] Level 1, 2 and 3 routines
for vector-vector, vector-matrix and matrix-matrix operations, respectively,
and (2) using OpenMP directives where BLAS routines can not be imple-
mented. Both Eqs. 3 and 4///////leads lead two matrix-matrix products (computed
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by calling BLAS subroutine dgemm) with other auxiliary operations of lower
computational intensity and vector-matrix. Thereby, the theoretical parallel
computational cost can be approximated by

O

(
NiterNFTK

p

)
,

where Niter is the number of iterations of the NMF approach and K denotes
the number of bases used for the factorization process (see Sect. 2.3).

The computational complexity of the clustering stage (see Sect. 2.4) de-
pends on the complexity of each clustering method. Thus, the sequential com-
plexity of each method can be approximated by

Spectral Correlation: O (KNFKD) ,

Roll-off : O
(
KNFT

2 log2 (NFT )
)
,

Temporal Correlation: O (KT ) ,

where KD denotes the number of bases of the dictionary of spectral patterns
learned from isolated heart signals. Finally, combining these methods and con-
sidering the property of sum of the Big O notation, the computational cost of
the sequential version is approximately given by

O
(
KNF

(
KD + T 2 log2(NFT )

))
.

Attending to the parallel version, a fine-grain parallelism design is not
suitable for this stage due to low intensity operations, branch divergence, low
temporal and spacial locality, etc. After some calibration experiments, we have
chosen a coarse-grained parallelism strategy, exploiting the independence of
the values of K bases, using OpenMP directives and BLAS routines where
possible. Therefore, the parallel theoretical computational cost can be approx-
imated by

O

(
KNF

(
KD + T 2 log2(NFT )

)
p

)
.

In the design of the last stage (see Sect. 2.5), two parallelism strategies have
been used exploiting the OpenMP routines. First, a fine-grain parallelism is
applied for computing the Wiener masks (see Eq. 11). Then, as in previous
stages, a coarse-grained parallelism is applied for the signal reconstruction
process (see Eq. 12), so that the reconstruction of the heart and lung signals
is computed simultaneously, each one sequentially (nested parallelism is de-
activated), using the FFTW package. Thus, the computational complexity is
given by

O

(
NFT log2(NF ) +

NFT

p

)
.
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Finally, analyzing the theoretical computational complexity of the whole
system, we can conclude that the signal decomposition and the clustering
stages have a theoretical efficiency close to the maximum, while the recon-
struction stage tends to zero when the number of cores and the size of the
problem grows. However, since this last stage is not particularly expensive
from the computational point of view, a high empirical efficiency can be ex-
pected, as long as the audio duration is high and/or the number of processors
used is suitable for the magnitude of the problem.

4 Proposed online implementation

In this section, we propose an online scheme for our algorithm to separate
heart and lungs sounds in real time. As previously commented, an online
variant would enable the development of electronic stethoscopes that would
perform the separation of cardiorespiratory sounds in real time while patients
are being monitored.

The method proposed in Sect. 2 processes the audio signal as a whole, i.e.
requires the whole audio from start to end. However, an online system has to
process its input frame-by-frame in a serial fashion, i.e. in the order that the
audio stream feeds to the algorithm, without having the whole input available
from the start. Thus, here we propose some slight changes that have to be
carried out over the proposed offline algorithm.

First, the clustering criterion based on the temporal correlation between
the activations and the heart rate can not be considered in the clustering
process. Note that the whole input signal is required for the computation of
the heart rate and for the processing performed in Eq. 7. This is not critical,
since [6] showed that removing this criterion of the clustering process degrades
the separation results less than 1.5 dB in terms of the source-to-distortion ratio
(SDR).

In addition, as ////not//the whole audio is not initially available, the factor-
ization stage must be adapted to perform the separation as the new audio
frames arrive in the system. In this way, we propose to follow the windowing
strategy presented in [22]. San Juan et al. [22] proposed an algorithm that
recalculates efficiently the NMF when a new audio frame is added to the data
matrix. This implementation allows to estimate the bases matrix using a fixed
set of activations. This set is updated as new audio frames arrive (windowing
strategy).

Following these two basic modifications, a real-time implementation of the
proposed framework can be achieved. For the sake of brevity, we propose to
focus the experimentation on the offline proposal.

5 Evaluation and experimental results

This section presents the experimentation carried out in the evaluation of the
proposed system. In this evaluation, we have developed a synthetic database
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using a single-channel real-world audio mixture of heart and lung sounds sam-
pled at 8 KHz and with a duration of 7 s. In this regard, we have replicated
this audio sample to generate a set of audio files with a duration between 7 and
602 s. This set of samples is used to evaluate the performance of the system
in terms of efficiency, speedup and limitations.

Regarding the used testbed, we have focused on the NVIDIA Jetson AGX
Xavier development kit, which is an embedded system-on-chip (SoC) with an
eight-core ARM v8.2 64-bit CPU. Xavier supports different kinds of running
modes (configurable with the NVPModel command tool). In this way, different
power consumption (10 W, 15 W and 30 W), running cores (2, 4, 6 and 8)
and CPU frequencies can be selected using NVPModel. This setup allows to
simulate a wide range of mobile devices such as smartphones, laptops, tablets
and other embedded systems under controlled conditions. As the purpose is
to test our system on up-to-date embedded systems, we have selected two test
modes following the current market trend: Mode 2 (4 cores, 15W) and Mode
7 (8 cores, 30 W).

Concerning the used software, Xavier runs Ubuntu Linux 18.04.1 LTS, the
OpenBlas1 library (release 0.3.9, March 2020), the FFTW2 library (release
3.3.8, May 2018) and the GNU C Compiler 7 with the specification 4.5 of
OpenMP. OpenBLAS is an optimized BLAS library based on GotoBLAS2
1.13 BSD. Note that both packages have been built in our system from source
codes. Finally, it should be remarked that the used data type is “double” (i.e.
IEEE 754 double-precision binary floating-point format).

///In/////our/////////////////experiments,/////we///////have/////////////measured/////the/////////////execution///////time//////and////////////memory
////////////////consumption/////////////measured///as///////////resident/////set/////size/////////(RSS)//////////////depending////on/////the////////////duration
//of//////the////////audio///////////mixture/////for/////////testing//////the/////////////reliability///of//////our////////////proposed////////////////framework.
////////Figure//2////////////////summarizes/////the////////////obtained/////////results.

In our experiments, for testing the reliability of our proposed framework,
we have measured the execution time and the memory consumption depend-
ing on the duration of the audio mixture. The memory consumption is esti-
mated by measuring the resident set size (RSS) using system tools (e.g. calling
system("ps -o rrs | grep ...") at the end of the target application and
before releasing memory). Figure 2 summarizes the obtained results.

Firstly, sequential execution times in Mode 7 are, approximately, reduced
by a half compared to Mode 2, which tallies with the possibility to be doubling
the CPU frequencies (see Fig. 2a). Parallel execution times in Mode 7 are,
approximately, the fourth part of the times in Mode 2, due to the number of
running cores and the CPU frequencies. The ratio between the audio signal
duration and the required processing time of the system for the sequential
approach worst-case scenario is less than 40% and 21% for device operation
Modes 2 and 7, respectively. This means that the system can be used in low-
latency applications, understanding latency as the delay between receiving the
signal and starting to perform the separation. Furthermore, this latency can

1 https://www.openblas.net
2 http://www.fftw.org

https://www.openblas.net
http://www.fftw.org
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Fig. 2 Experimental results as a function of the audio duration measured in seconds and
the operation mode of the NVIDIA AGX Xavier.

be reduced significantly by the parallel approach to less than 14% and 5% for
device operation Modes 2 (four cores) and 7 (eight cores), respectively, in the
worst-case scenario.

The efficiency of the system (see Fig. 2b) increases significantly as the audio
duration grows until 40 s long, when it turns into a slight linear growth. As
expected, when the number of cores increases, the efficiencies slightly decrease.
Therefore, we can assert that our system scales correctly according to the
theoretical complexity estimations when the number of processors and the
size of the problem grow.

As expected, Fig. 2c shows that memory consumption increases as the
length of the audio becomes longer. Furthermore, owing to the parallelization
strategy followed (see Sec. 2.4), memory consumption also grows as the number
of cores used increases, since some data structures are replicated according to
the number of cores.//////////////////Consequently,////we//////can////////affirm///////that,////for/////any/////////length///of////////audio
////the//////////parallel////////////approach////////////requires,///////////////////approximately,/////the//////////amount///of///////////memory///////used////by
////the/////////////sequential////////////approach//////////////multiplied////by/////half/////the//////////number////of///////cores. Consequently,
for any length of audio, we can claim that the parallel approach requires in the
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worst case the amount of memory used by the sequential approach multiplied
by the total number of used processors or cores.

Execution times (s)
Stages Separation Clustering Reconstr. Separation Clustering Reconstr.

Mode 2 (15W)
Dur. (s) 1 core 4 core

7 0.39 2.29 0.01 0.21 0.76 0.01
14 0.80 4.39 0.03 0.33 1.41 0.01
28 1.74 9.26 0.05 0.62 2.83 0.03
42 2.84 10.64 0.06 0.93 2.87 0.03
56 3.77 11.25 0.08 1.16 2.99 0.04

119 8.33 23.10 0.14 2.41 6.06 0.08
182 13.21 44.16 0.23 3.81 11.21 0.12
301 22.55 90.92 0.35 6.37 24.43 0.18
602 46.80 185.87 0.70 13.40 49.32 0.38

Mode 7 (30W)
Dur. (s) 1 core 8 core

7 0.21 1.20 0.01 0.09 0.22 0.00
14 0.43 2.32 0.01 0.12 0.42 0.01
28 0.93 4.54 0.02 0.21 0.71 0.01
42 1.52 5.26 0.03 0.32 0.78 0.01
56 2.02 5.74 0.04 0.41 0.88 0.02

119 4.45 11.60 0.08 0.77 1.69 0.04
182 7.05 22.93 0.12 1.19 3.26 0.07
301 12.10 46.97 0.19 2.24 6.72 0.10
602 25.03 99.11 0.43 3.88 13.57 0.24

Table 1 Execution times measured in seconds for each stage and operating mode.

Table 1 summarize the execution times of each stage for both Mode 2 and
Mode 7. As previously explained in Sect. 3, the computational complexity of
the whole system depends mainly on two stages: the clustering stage, which
represents approximately 77% of the whole system execution time; and the
factorization stage, which represents approximately 22% of the whole time.

According to the efficiency of each stage (see Fig. 3), the factorization
and the clustering stages have achieved high results, close to the theoretical
maximum estimations, especially for audio duration longer than 50 s. The low
values reached by the reconstruction stage do not have a strong impact over
the overall system performance, as described in Sect. 3/////and///it///is///as///////////////reasonably
///as///////////expected. Therefore, it is empirically demonstrated that the obtained results
are similar to the theoretical analysis performed.

6 Conclusion

In this paper, we have proposed a parallel framework that performs the sep-
aration of cardiac and respiratory sounds from a single-channel mixture. Our
system has focused on achieving fast execution times that allows its imple-
mentation in real-time scenarios, reaching reliable results in terms of sound
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Fig. 3 Experimental results as a function of the audio duration measured in seconds, the
operation mode of the NVIDIA AGX Xavier and the stage of the proposed framework.

separation. Under these conditions, we have developed an efficient and parallel
system which decomposes the input mixture by combining a NMF approach
and a clustering strategy together with a soft-masking filtering. In this sense,
two different approaches have been proposed, an offline and an online variant.

The proposed system has been evaluated using a large database. Experi-
mental results show that reliable results for the cardiorespiratory sounds sep-
aration task can be achieved in real time.
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