This is the accepted version of the article *Game-based learning for engaging citizens in biopolution control*

Authors: Laura Miralles, Eva Garcia-Vazquez, and Eduardo Dopico

This paper was published in Interdisciplinary Science Reviews DOI:10.1080/03080188.2021.1891684

To cite this article: Laura Miralles, Eva Garcia-Vazquez & Eduardo Dopico (2021): Game-based learning for engaging citizens in biopollution control, *Interdisciplinary Science Reviews*, DOI:10.1080/03080188.2021.1891684

To link to this article: https://doi.org/10.1080/03080188.2021.1891684

- 1
- 2

3 Game-based learning for engaging citizens in biopollution control

- 4 Laura Miralles¹, Eva Garcia-Vazquez¹, Eduardo Dopico²
- 5 1: Department of Functional Biology, University of Oviedo, C/ Julián Clavería s/n, 33006
- 6 Oviedo, Spain
- 7 2: Department of Science Education. University of Oviedo. C/. Aniceto Sela, s/n. 33005
- 8 Oviedo, Spain
- 9

10 **Corresponding author:**

- 11 Eduardo Dopico,
- 12 Dept. Education Sciences, University of Oviedo, Spain
- 13 C/ Aniceto Sela, s/n. 33005-Oviedo
- 14 **Phone** +34 985 103 229
- 15 **Email:** <u>dopicoeduardo@uniovi.es</u>
- 16 Orcid: <u>https://orcid.org/0000-0001-6777-5407</u>

18 Abstract

19	Citizens are essential for safeguarding ecosystems from biopollutants, but the
20	communication of scientific discoveries about biological invasions in order to make the
21	population aware of the problem is still a challenge. Here we have assayed an
22	interdisciplinary game-based method of recognizing the invasive pygmy mussel
23	Xenosotrobus securis in volunteers of different age groups, measured their learning gain
24	and engagement, and compared it with that obtained from conventional talk-lecture
25	training methodology. Highly significant positive correlation was found between
26	knowledge gain and awareness, that were both greater in children than in adults. Similar
27	engagement (measured as recruitment for volunteering in an eradication project) was
28	achieved in the two age groups. The results suggest high efficacy of game-based
29	training, especially in young age groups. One year after volunteers' action, environmental
30	DNA surveys and visual inspections confirmed the control of the population in a defined
31	area through time.
32	
33	Keywords: biological invasions, biopollutants, marine conservation, citizen science,
34	volunteers engagement, learning gains, awareness.
35	
36	1. Introduction
37	Marine biopollution concentrated in ports and marinas and the subsequent

38 biological invasions, are an increasing concern for biodiversity conservation

- 39 worlwide (e.g. Molnar et al. 2008; Azzurro et al. 2019). However, while there is
- 40 general public consciousness about the need of conserving the marine environment,

41	most citizens have limited understanding of the real specific problems of marine
42	settings (McKinley and Fletcher 2010). The public is generally unaware of the
43	potential impacts of biological invasions. Find ways of communicating scientific
44	discoveries in this field remains a challenge (Simberloff et al. 2013). Especially
45	nowadays when the problem has become of such a magnitude that the help of citizens
46	is needed for the detection and control of potential biopollutants in marine
47	ecosystems. Scientists cannot be everywhere and citizen support can help to afford
48	the research of bigger areas. Voluntary citizens can provide support in observation
49	tasks, data collection and other much valuable actions, especially when the available
50	resources for scientific research are limited (Costello et al. 2010). In fact, there are
51	successful projects where citizens, scientists and managers work together to face
52	coastal introductions of foreign species, for example the mapping of invasive crabs
53	from US coasts (Delaney et al. 2008), the detection of the sergeant major in the
54	Mediterranean Sea (Azzurro et al. 2013) and the lionfish in the Caribbean (Carballo-
55	Cárdenas and Tobi 2016), to cite a few. Moreover, projects that involve citizens forge
56	new relationships between the volunteers and the marine environment, raising
57	awareness about conservation issues (Cigliano et al. 2015; Couvet and Prevot 2015).
58	A dangerous biopollutant is the Australian/New Zealand native brown pygmy
59	mussel Xenostrobus securis. It has invaded many Asian and European estuaries and
60	lagoons causing serious damages to the native ecosystems in the two last centuries
61	(e.g. Zenetos et al. 2005, Pascual et al. 2010, Adarraga and Martinez 2012, Iwasaki
62	and Yamamoto 2014; Lau et al. 2018). Stopping its expansion is crucial for
63	preserving native biodiversity. Thus the collaboration of citizens is especially needed

64	since much personal workforce is required to monitor and control the species. In the
65	south Bay of Biscay (North Atlantic), the brown pygmy mussel was detected for the
66	first time and at a very low density in the port of Avilés (North Spain) in 2015
67	(Pejovic et al. 2016). It spread out extremely fast on the neighboring areas and
68	invaded the whole estuary (Devloo-Delva et al. 2016). For that reason the help of
69	citizens was essential for an experimental eradication of this biopollutant from the
70	estuary and scientific monitoring of the invasion. After manual removal done by
71	trained volunteers the success of the experience was confirmed by both visual
72	assessment and environmental (eDNA) assays from water samples (Miralles et al.
73	2016).
74	Marine governance is undergoing a significant change, moving towards citizen-
75	driven management and policy strategies (McKinley and Fletcher 2012). The active
76	participation of citizens in research has resulted in the citizen science approach, a
77	participatory research strategy where citizens and scientists work together on research
78	projects and scientific monitoring (Irwin, 1995; Bonney et al. 2014), contributing
79	substantially to the advance of basic and applied science (Theobald et al. 2015).
80	Citizen science projects have broader societal impacts: an extensive collaboration
81	between scientists and citizens (Couvet et al. 2008) generate cross-cultural and multi-
82	generational learning outcomes (Phillips et al. 2012). However, the validity and
83	reliability of the data collected by volunteers in citizen science activities are
84	sometimes controversial (Goffredo et al. 2010; Lukyanenko et al. 2016). Most
85	scientists agree that a good training significantly increases the quality of the data
86	stemming from volunteers (Thiel et al. 2014). Guidelines for good practice in citizen

87	science have been established progressively as long as new collaborations between
88	scientists and citizens are being generated (e.g. Cohn 2008; Haklay 2015; Davies et
89	al. 2016). They focus mainly on working methods and data collection in order to
90	report accurate results (Silvertown 2009). However, it seems very important to
91	involve citizens in marine exploration and conservation through a type of
92	interdisciplinary training that increases not only their skills for a particular task but
93	also their knowledge about marine environment. If volunteers taking part in research
94	projects acquire an effective knowledge about the scientific principles that govern
95	what they do, they can be more efficient and rigorous for marine exploration,
96	promoting conservation efforts and awareness (Johnson et al. 2014).
97	The Society of Conservation Biology finds it urgent to find best methods and
98	tools to engage citizens of different audiences in marine conservation (SCB 2016).
99	Game-based training could be an option (Lean et al. 2006; Griggs et al. 2019).
100	Didactic games are increasingly employed for teaching-learning in biological
101	disciplines (Costa and Galembeck 2017), nevertheless, it has not been sufficiently
102	explored yet. In this study, a game-based approach was followed in the real case of
103	biopollution control of brown pygmy mussel (X. securis). Unambiguous accurate
104	species recognition is required for not damaging the local native mussels Mytilus
105	galloprovincialis and M. edulis that occur together with the invasive on the same
106	mussel beds. We have evaluated the awareness increase from pretest-posttest
107	methodology (Chen et al. 2016), and the engagement achieved following the game.
108	The latter was compared with that obtained from a standard procedure based on
109	public talks and lecture-like group training sessions. Different age groups were

110 targeted to identify possible age-related differences in the efficacy of game learning111 for citizen engagement in biopollution control.

- 112
- 113

2 Material and Methods

114 **2.1** *The case study*

The biological invasion of the brown pigmy mussel was located in the estuary of 115 116 Avilés. (Asturias, northwestern Spain). The first individuals were discovered in 2014 117 (Pejovic et al. 2016) and in 2015 the species had invaded the estuary (Devloo-Delva 118 et al. 2016). The mussel community in the estuary was composed by native *Mytilus* 119 species (*M. edulis* and *M. galloprovincialis*), the cryptogenic *Mytilaster minimus* and 120 the invasive X. securis. 121 With the interdisciplinary collaboration of biologists and educators, this study was 122 carried out in three locations of Asturias: Avilés (invasion hotspot), Salinas (at 3 km

from the invasion) and Oviedo (at 25 km from Avilés). A total of 135 participants

were recruited from groups of different generations with different marine

backgrounds, skills, educational level, experience and incentive (Table 1). For young

- groups, 37 children (ages 6-17) were contacted from Salinas surf school "El Pez
- 127 Escorpión" (*The Scorpion Fish*), and 42 children (ages 15-18) studying in Grades 10
- and 11 (KS 4) from Salinas High School. Adults were recruited from two Lifelong
- 129 Learning programs developed in two Asturian cities: one in Oviedo (with 36 adults
- aged 21-75) and the other in Aviles (with 20 adults aged 31-74).
- 131Table 1. Participants in eradication of exotic mussels

Group N Age Completed pretest-*posttest* Recruitment

El Pez Escorpión	37	(6-17)	83.8%	18.9%
Salinas High School	42	(15-18)	100%	0%
LL-Oviedo	36	(21-75)	100%	19.4%
LL-Aviles	20	(31-74)	95%	20%

133 2.2 Questionnaire

134 We designed a single questionnaire to be used as both pretest and posttest, with 5

135 items arranged like a Likert-type scale (table 2).

136Table 2: Questionnaire

being 1 the lowest level and 4 the maximum, point out	1	2	3	4
Number of known invasive species				
Management actions				
Perception of environmental nuisance caused by invasive species				
Sea frequentation				
Intention to collaborate in the citizen science project				

138	A pilot trial of the test was passed to 40 faculty colleagues. No inconsistencies
139	were found, and the redaction of the questions was revised for better understanding.
140	The test was validated for internal consistency in the sample based on Cronbach α -
141	coefficient. Since there are no correct or incorrect answers, tests of item reliability
142	were not done. The discrimination value of each item was estimated from the
143	homogeneity index HI based on the correlation between the scores obtained by the
144	participants in each element and in the total scale.
145	
146	2.3 Training approach

147	A two-step training program was followed. The total duration of the training was
148	a maximum of 2 hours. Before starting the training an anonymous questionnaire was
149	passed to each participant. In the first step we explained briefly (in 15 minutes) the
150	problem of invasive species in the region, presenting the main species with supporting
151	visual presentation (PowerPoint) containing pictures and key messages. The recently
152	discovered problem of mussel invasion in Aviles estuary was explained more in
153	detail. Photographs of exotic Xenostrobus securis and native Mytilus
154	galloprovincialis individuals were shown and the differences between the two species
155	were explained.
156	The next step was the training for recognizing the invader species in practice. It
157	was based on a cooperative game (Kyriazi et al. 2017). Participants were asked to
158	form a line. A mixture of shells of Xenostrobus securis and Mytilus galloprovincialis
159	was presented. Each participant picked one shell (in blind) and examined it for two
160	minutes. Then, they were asked to move themselves to the group of "Exotics"
161	(Xenostrobus) or "Natives" (Mytilus). Then, the researchers disclosed the actual
162	species by only said how many misidentifications were done. Participants who were
163	wrongly self-assigned to any of the two groups were asked to move to the other group
164	helped by the rest of participants. Through cooperative learning (Tran et al. 2019), all
165	participants worked together to identified the intruder. The game was repeated until
166	all the participants identified correctly the species.
167	When ending the training, the post-test questionnaire was passed, again
168	anonymously. Identification of pre- and post-test matches was done based on birth
169	dates and sex. Contact data (name, telephone and email) of participants interested in

the activity of the control of *Xenostrobus securis* population of Aviles estuary weretaken at the end of the training activity.

172 As a complementary activity, in the field a brief additional training was carried 173 out for refreshing the acquired knowledge, and learning basic safety measures. 174 Detailed instructions about how to remove Xenostrobus securis individuals were 175 given, with a practical demonstration by the researchers. 176 2.4 Statistical analysis 177 178 Pre- and post-tests were analyzed from the score difference for the items 1, 2 and 179 3. Scores were compared among groups using single-factor analysis of variance, for 180 each question separately. The factor considered was the group age (levels young and 181 adult). Levene's test for homogeneity of variance was done, and when the variances 182 were significantly unequal a Welch F test was employed instead of classic F-test for 183 the analysis of variance. Correlation between the variables considered was tested 184 employing Pearson-r values. The statistics was performed using the software PAST 185 version 2.17c (Hammer et al. 2001). 186 187 2.5 Ethics statement 188 This study adheres to the European Code of Conduct for Research Integrity.

189 Informed consent, in writing, was obtained from all the participants to use the

190 collected data for research publication. Parental permit was required for children

191 under legal age (18 in Spain).

192	Before starting the activity all participants signed an informed consent and
193	committed to follow the instructions given by the researchers, including to not to keep
194	or transport out of the sampling area any living or dead X. securis. All participant
195	children were always accompanied by their parent/s or tutor/s. Safety measures were
196	explained before starting the eradication trial. First-aid kits and cell phones with
197	connectivity for emergency calls were available for each participant group. Aviles
198	Port Authority and its Environmental Department were informed and were given
199	permission for the activity. The land accessed is not privately owned nor protected.
200	All removed individuals of X. securis were destroyed as biological waste by the
201	regional service in charge (Consortium of Management of Solid Residues of Asturias,
202	COGERSA; http://www.cogersa.es/metaspace/ portal/14498/18718). All materials
203	employed for manual removal were carried to the closest Clean Point and disposed
204	there together with the plastic containers. Protected species and the rest of native
205	species were not sampled, disturbed or damaged in any case.
206	

207 **3. Results**

Although the exotic and native mussel species are relatively similar to each other (Figure 1), after the game-based training all the participants were able to recognize them correctly.

Figure 1: Shells of *Xenostrobus securis* (left) and *Mytilus galloprovincialis* (right) A maximum of 3 trials were needed for the correct classification of both species by all the participants (Table 3).

Table 3: Number of specimen misidentifications in consecutive game rounds, in

216

%

Group	1 st Round	2 nd Round	3 rd Round
El Pez Escorpión	10.8%	2.7%	None
Salinas High School	11.9%	4.8%	None
LL Oviedo	8.3%	2.8%	None
LL Aviles	10%	None	None

217

218 Most questionnaires (pre- and post-tests) were successfully completed (see Table

219 1). The test provided Cronbach α values of 0.95 or higher in the four samples

analyzed, being therefore internally consistent for the groups analyzed. The HI was

>0.20 for the five items considered.

The knowledge about biological invasions in the region increased after the training sessions in all the groups (Figure 2), with the greatest change in 'El Pez Escorpión' and the lowest in the Lifelong learners of Aviles.

225

226

Figure 2: Learning gains between groups

236	For the correlation between the different variables considered in this study,
237	three of them were statistically significant (Table 4). The intention to volunteering
238	and the real recruitment for eradication of invasive mussels were highly and
239	positively correlated (r=0.998, d.f.=2, P=0.0016), which is coherent and
240	demonstrates the results of this study are reliable. Significant positive correlations
241	were also found between increase of knowledge about biological invasions and,
242	on one hand, increase of more radical management choices (r=0.958, P=0.041),
243	and on the other hand increase of consciousness about the danger posed by
244	biological invasions (r=0.979, P=0.021).
245	
246	Table 4. Pairwise correlation between constructs obtained in this activity of
247	environmental education. Pearson's r-value and P-value of each test are below

and above the diagonal, respectively. Significant values are marked in bold.

	Knowledge	Management	Consciousness	Sea	Volunteering	Recruitment
				frequentation	intention	
Knowledge		0.041866	0.020697	0.17466	0.64177	0.60432
Management	0.95813		0.11248	0.35226	0.40511	0.36983
Consciousness	0.9793	0.88752		0.12877	0.83577	0.79466
Sea	0.82534	0.64774	0.87123		0.93938	0.96036
frequentation						
Volunteering	-0.35823	-0.59489	-0.16423	0.060618		0.0015747
intention						
Recruitment	-0.39568	-0.63017	-0.20534	0.039643	0.99843	
249						

In total 18 participants were effectively recruited for the field activities (see Table1), which represented 12.5% of the total sample. The final recruitment was different in

252	the four groups, being 0 in the high school and around 19-20% in the other three
253	collectives. By ages, 19.6% and 8.9% adults and youngsters were recruited, respectively.
254	The eradication of Xenostrobus securis from Aviles estuary was described in
255	detail in Miralles et al. (2016). The removed mussels (N=774) were all checked from the
256	researchers and mistakes with native mussels were not found. From water samples, the
257	eDNA tool was consistent in all the cases including the samples obtained after
258	Xenostrobus securis eradication and positive PCR amplification was found in all sites
259	where the species was visually detected, and not for the sites where it was not. The
260	posterior visual surveys revealed that only scarce and small individuals recolonized the
261	area one year after the eradication.

- 262
- 263

4. Discussion and conclusion

264 The outcomes of this marine citizen science experience revealed that an 265 interdisciplinary game based training is an efficient tool to promote awareness about 266 biopollutant invasive species. The importance of the two-step training program was 267 based on two pillars: to improve knowledge about marine invasive species, since 268 citizens may have limited understanding of marine environment; and to avoid any 269 damage to the native species during field work, because native biodiversity may 270 protect against settlement of exotic species. Playing this specifically developed game 271 based in different morphological characters of the native and the invasive mussels 272 improved species identification on field, likely because they have seen, played and 273 touched the mussels before field actions. The success of the training was plausible

since the knowledge about biological invasions increased in all groups and,

especially, because volunteers made no species mistakes in the field.

276 This study also revealed a correlation between knowledge gain during the training 277 activities and environmental conscious attitudes. The participation in a citizen science 278 training program resulted in content learning gains, an increase in skills and an 279 increase in reported intention to engage in environmental activities (Crall et al. 2013). 280 Although the declared intention to volunteer while training and the final recruitment 281 of volunteers was well correlated, the fact is that recruitment is one of the hardest 282 components of any citizen science project (Council and Horvath 2016). Research 283 activities driven by similar approach used to involve mainly retired people and 284 lifelong learners (Hughes et al., 2014). In our case, a greater recruitment (and 285 intention to volunteering) was found in adults than in younger audiences. Actually, 286 children that participate in the training during academic time (in High School) did not 287 engage in volunteering, while children participating in their spare time (Surf School) 288 did. Without belittling their ability to actively participate in citizen science initiatives, 289 it should be noted that safety and liability issues of marine-based data collection could 290 be tough when involving children (e.g. Cigliano et al. 2015). 291 Finally, the successful of this citizen science program were verified with two

independent mechanisms: de visu expert observations and negative results obtained
from eDNA. All together they indicated that, if any, the abundance of *Xenostrobus securis* was almost negligible just after eradication, since eDNA monitoring is highly
sensitive (Miralles et al. 2016b). Moreover, one year later, the recolonization at
different tidal levels in a control area was low, almost null. It means that making once

297	a year an eradication activity with citizen scientists could control the invasion of
298	Xenostrobus. securis in Aviles estuary by the same time that raising marine
299	environment awareness. Probably, it could be also possible to apply that approach in
300	other estuaries with similar conditions. In any case, it can be confirmed that in the
301	case study studied here, citizen science is an effective approach to marine and coastal
302	conservation.
303	
304	Funding
305	This study has been supported by the Port of Aviles authorities (contract FUO-
306	EM-261-15), and the Spanish Ministry of Economy and Competitiveness Grant CGL-
307	2016-79209-R.
308	
309	Declaration of competing interest
310	The authors declare no conflict of interest.
311	
312	Acknowledgements
313	This work is a contribution from the Asturias Marine Observatory. The authors
314	express their gratitude to the surf school "El Pez Escorpión" and to the teaching staff
315	from the Salinas High School for his help and support. We would also like to
316	especially thank all the citizen scientists who participated.
317	References
318	Azzurro, E., L. Bolognini, B. Dragičević, D. Drakulović, J. Dulčić, E. Fanelli, F.
319	Grati, J. Kolitari, I. Lipej, E. Magaletti, O. Marković, S. MatićSkoko, B. Mavrič, N.

320	Milone, A. Joksimović, J. Tomanić, A. Scarpato, P. Tutman, D. Vrdoljak, and F.
321	Zappacosta. 2019. "Detecting the occurrence of indigenous and non-indigenous
322	megafauna through fishermen knowledge: A complementary tool to coastal and port
323	surveys". Marine Pollution Bulletin 147: 229-236. doi:
324	10.1016/j.marpolbul.2018.01.016
325	Azzurro, E., E. Broglio, F. Maynou, and M. Bariche. 2013. "Citizen science
326	detects the undetected: the case of Abudefduf saxatilis from the Mediterranean Sea".
327	Management Biological Invasions 4(2): 167–170.
328	http://doi.org/http://dx.doi.org/10.3391/mbi.2013.4.2.10.
329	Bonney, R. J. L. Shirk, T. B. Phillips, A. Wiggins, H. L. Ballard, A. J. Miller-
330	Rushing, and J. K. Parrish. 2014. "Next steps for citizen science". Science 243: 1427-
331	1436. doi: 10.1126/science.1251554
332	Carballo-Cárdenas, E. C., and H. Tobi. 2016. "Citizen science regarding invasive
333	lionfish in Dutch Caribbean MPAs: Drivers and barriers to participation". Ocean
334	Coastal Management 133: 114–127. http://doi.org/10.1016/j.ocecoaman.2016.09.014.
335	Cigliano, J.A., R. Meyer, H. L. Ballard, A. Freitag, T. B. Phillips, and A. Wasser.
336	2015. "Making marine and coastal citizen science matter". Ocean Coastal
337	Management 115: 77-87. doi:10.1016/j.ocecoaman.2015.06.012
338	Chen, M., C. Wu, and M. E. Thompson. 2016. "Mann–Whitney test with
339	empirical likelihood methods for pretest-posttest studies". Journal of Nonparametric
340	Statistics 28(2): 360-374. https://doi.org/10.1080/10485252.2016.1163354
341	Cohn, J. P. 2008. "Citizen science: Can volunteers do real research?" Bioscience
342	58(3): 192-197. https://doi.org/10.1641/B580303

Costa, C., and E. Galembeck. 2017. "Novel study guides for biochemistry
meaningful learning in biology: a design-based research". Journal of Biochemistry
Education 15(2): 75-103. doi:10.16923/reb.v15i0.775
Costello M.J., M. Coll, R. Danovaro, P. Halpin, H. Ojaveer, and P. Miloslavich.
2010. "A Census of Marine Biodiversity Knowledge, Resources, and Future
Challenges". PLoS ONE 5(8), e12110. doi:10.1371/journal.pone.0012110
Council, S. E., and J. E. Horvath. 2016. "Tools for citizen-science recruitment and
student engagement in your research and in your classroom". Journal of Microbiology
and Biology Education 17(1): 38-40. doi: 10.1128/jmbe.v17i1.1018
Couvet, D., and A. C. Prevot. 2015. "Citizen-science programs: Towards
transformative biodiversity governance". Environmental Development 13: 39-45.
doi:10.1016/j.envdev.2014.11.003
Couvet, D., F. Jiguet, R. Julliard, H. Levrel, and A. Teyssedre. 2008. "Enhancing
citizen contributions to biodiversity science and public policy". Interdisciplinary.
Science Reviews 33(1): 95-103. doi: 10.1179/030801808X260031
Crall, A.W., R. Jordan, K. Holfelder, G. J. Newman, J. Graham, and D. M.
Waller. 2013. "The impacts of an invasive species citizen science training program on
participant attitudes, behavior, and science literacy". Public Understanding of Science
22 (6): 745e764. doi: 10.1177/0963662511434894
Davies, S., B. Ribeiro, K. Millar, S. Miller, H. Vironen, D. Charles, L. Griestop,
M. Hasenheit, Z. Kiresiewa, A. C. Hoes, M. M. M. Overbeek, and C. Bianchini.
2016. "Good practice guidelines for stakeholder and citizen participation in
bioeconomy strategies". BioSTEP: European Commission

366	Delaney, D.G., C. D. Sperling, C. S. Adams, and B. Leung. 2008. "Marine
367	invasive species: Validation of citizen science and implications for national
368	monitoring networks". Biological Invasions 10(1): 117-128.
369	http://doi.org/10.1007/s10530-007-9114-0.
370	Devloo-Delva F, L. Miralles, A. Ardura, Y. J. Borrell, I. Pejovic, V.
371	Tsartsianidou, and E. Garcia-Vazquez. 2016. "Detection and characterisation of the
372	biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA
373	Barcoding and eBarcoding". Marine Pollution Bulletin 105: 23-29. doi:
374	10.1016/j.marpolbul.2016.03.008
375	Griggs, A., E. H. Lazzara, E. Palmer, S. Fouquet, T. Leverenz, A. Raushel, and S.
376	Doherty. 2019. "Utilizing Games for Learning: Applications of Game-Based Training
377	and Gamification". Proceedings of the Human Factors and Ergonomics Society
378	Annual Meeting 63(1): 2166-2168. <u>https://doi.org/10.1177/1071181319631361</u>
379	Goffredo, S., F. Pensa, P. Neri, A. Orlandi, M. Scola Gagliardi, A. Velardi, C.
380	Piccinetti, and F. Zaccanti. 2010. "Unite research with what citizens do for fun:
381	"recreational monitoring" of marine biodiversity". Ecological Applications 20: 2170-
382	2187. doi: <u>10.1890/09-1546</u>
383	Haklay, M. 2015. Citizen science and policy: a European perspective. The
384	Wodrow Wilson Center, Washington, DC
385	Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. "PAST: Paleontological
386	statistics software package for education and data analysis". Palaeontologia
387	Electronica 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

388	Hughes, R.N., D. J. Hughes, and I. P. Smith. 2014. Oceanography and Marine
389	Biology: An Annual Review. CRC Press, Boca Raton FL.
390	Irwin, A., 1995. Citizen Science. Routledge, London.
391	Iwasaki, K., and H. Yamamoto. 2014. "Recruitment and population structure of
392	the non-indigenous brackish-water mytilid Xenostrobus securis (Lamark, 1819) in the
393	Kino River, Japan". Aquatic Invasions 9: 479-487. doi:
394	http://dx.doi.org/10.3391/ai.2014.9.4.06
395	Johnson, M.F., C. Hannah, L. Acton, R. Popovici, K. K. Karanth, and E.
396	Weinthal. 2014. "Network environmentalism: Citizen scientists as agents for
397	environmental advocacy". Global Environmental Change 29: 235-245.
398	https://doi.org/10.1016/j.gloenvcha.2014.10.00
399	Kyriazi, Z., R. Lejano, F. Maes, and S. Degraer. 2017. "A cooperative game-
400	theoretic framework for negotiating marine spatial allocation agreements among
401	heterogeneous players". Journal of Environmental Management 187: 444-455. doi:
402	10.1016/j.jenvman.2016.11.011
403	Lean, J., J. Moizer, M. Towler, and C. Abbey. 2006. "Simulations and games. Use
404	and barriers in higher education". Active Learning in Higher Education 7(3): 227-
405	242. doi: 10.1177/1469787406069056

- 406 Lau, S.C., D. L. Brettell, and J. C. Astudillo. 2018. "Rapid assessment of the
- 407 invasive Xenostrobus securis on cultured oysters in Hong Kong". Regional Studies in
- 408 Marine Science 17: 11-16. <u>https://doi.org/10.1016/j.rsma.2017.11.008</u>

409	Lukyanenko, R., J. Parsons, and Y. F. Wiersma. 2016. "Emerging problems of
410	data quality in citizen science". Biological Conservation 30(3): 447-449.
411	doi: 10.1111/cobi.12706
412	McKinley, E., and S. Fletcher. 2010. "Individual responsibility for the oceans? An
413	evaluation of marine citizenship by UK marine practitioners". Ocean Coastal
414	Management 53(7): 379-384. https://doi.org/10.1016/j.ocecoaman.2010.04.012
415	McKinley, E., and S. Fletcher. 2012. "Improving marine environmental health
416	through marine citizenship: a call for debate". Marine Policy 36: 839–843.
417	https://doi.org/10.1016/j.marpol.2011.11.001
418	Miralles, L., E. Dopico, F. Devlo-Delva, and E. Garcia-Vazquez. 2016.
419	"Controlling populations of invasive pygmy mussel (Xenostrobus securis) through
420	citizen science and environmental DNA". Marine Pollution Bulletin 110(1): 127-132.
421	doi: 10.1016/j.marpolbul.2016.06.072
422	Miralles, L., A. Ardura, A. Arias, Y. J. Borrell, L. Clusa, E. Dopico, and A. G.
423	Valiente. 2016. "Barcodes of marine invertebrates from north Iberian ports: Native
424	diversity and resistance to biological invasions". Marine Pollution Bulletin 112(1):
425	183-188. doi: 10.1016/j.marpolbul.2016.08.022
426	Molnar, J.L., R. L. Gamboa, C. Revenga, and M. D. Spalding. 2008. "Assessing
427	the global threat of invasive species to marine biodiversity". Frontiers in Ecology and
428	the Environment 6(9): 485-492. <u>https://doi.org/10.1890/070064</u>
429	Pascual, S., A. Villalba, E. Abollo, M. Garci, A. F. González, M. Nombela, D.
430	Posada, and A. Guerra. 2010. "The mussel Xenostrobus securis: a well-established

- 431 alien invader in the Ria de Vigo (Spain, NE Atlantic)". Biological Invasions 12:
- 432 2091-2103. https://doi.org/10.1007/s10530-009-9611-4
- 433 Pejovic, I., A. Ardura, L. Miralles, A. Arias, Y. J. Borrell, and E. Garcia-Vazquez.
- 434 2016. "DNA barcoding for assessment of exotic molluscs associated with maritime
- 435 ports in northern Iberia". Marine Biology Research 12: 168-176. doi:
- 436 10.1080/17451000.2015.1112016
- 437 Phillips, T.B., R. Bonney, and J. Shirk. 2012. "What is our impact? Toward a
- 438 unified framework for evaluating impacts of citizen science". In Citizen Science:
- 439 Public Collaboration in Environmental Research, edicted by J. L. Dickinson, and R.
- 440 Bonney, R. Ithaca, NY: Cornell University Press
- 441 SCB: Society of Conservation Biology. 2016. https://conbio.org/mini-sites/imcc-
- 442 2016/about/71-questions/ (accessed 09 June 2020).
- 443 Silvertown, J. 2009. "A new dawn for citizen science". Trends in Ecology &

444 Evolution 24(9): 467–471. doi:10.1016/j.tree.2009.03.017

- 445 Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F.
- 446 Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi,
- 447 and M. Vilà. 2013. "Impacts of biological invasions: what's what and the way
- 448 forward". Trends in Ecology & Evololution 28: 58-66. doi:
- 449 10.1016/j.tree.2012.07.013.
- 450 Theobald, E. J., A. K. Ettinger, H. K. Burgess, L. B. DeBey, N. R. Schmidt, N.R.,
- 451 Froehlich, C. Wagner, J. HilleRisLambers, J. Tewksbury, M. A. Harsch, and J. K.
- 452 Parrish. 2015. "Global change and local solutions: Tapping the unrealized potential of

- 453 citizen science for biodiversity research". Biological Conservation 181: 236–244.
- 454 doi:10.1016/j.biocon.2014.10.021
- 455 Thiel, M., M. A. Penna-Díaz, G. Luna-Jorquera, S. Salas, J. Sellanes, and W.
- 456 Stotz. 2014. "Citizen Scientists and Marine Research: Volunteer Participants, Their
- 457 Contributions, and Projection for the Future". Oceanography and Marine Biology:
- 458 An Annual Review 52: 257-314. doi: 10.1201/b17143-6
- 459 Tran, V.D., T. M. L. Nguyen, N. Van De, C. Soryaly, and M. N. Doan. 2019.
- 460 "Does Cooperative Learning May Enhance the Use of Students' Learning
- 461 Strategies?" International Journal of Higher Education 8(4): 79-88.
- 462 doi: <u>https://doi.org/10.5430/ijhe.v8n4p79</u>
- 463 Zenetos, A., M. Cinar, M. Pancucci-Papadopoulou, J. Harmelin, G. Furnari, F.
- 464 Andaloro, N. Bellou, N. Streftaris, and H. Zibrowius, H., 2005. "Annotated list of
- 465 marine alien species in the Mediterranean with records of the worst invasive
- 466 species". Mediterranean Marine Science 6: 63-118.
- 467 doi: <u>https://doi.org/10.12681/mms.186</u>
- 468
- 469

470 **Figure captions:**

- 471 Figure 1: Shells of *Xenostrobus securis* (left) and *Mytilus galloprovincialis* (right)
- 472 Figure 2: Learning gains between groups