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Abstract: In this article, the effects of an ionic nitriding treatment are analysed, together with de-
liberate variation of different thermal parameters associated with the destabilisation of austenite,
on erosive wear resistance of white cast irons with 25% Cr. The methodology followed in this re-
search was an experimental design, where six factors were analyzed by performing eight experiments.
The thickness of the nitrided layer is much smaller than in white cast iron with lower percentages in
Cr, never reaching 20 microns. The nitriding treatment entails considerable softening of the material
underneath the nitriding layer. This softening behaviour becomes partially inhibited when the desta-
bilisation temperature of austenite is 1100 ◦C and dwell times at such temperature are prolonged.
This temperature seems to play a significant role in the solubilization of non-equilibrium eutectic car-
bides, formed during industrial solidification. The nitriding treatment leads to additional hardening,
which, in these cases, favours a second destabilisation of austenite, with additional precipitation of
secondary carbides and the transformation of retained austenite into martensite. Despite softening of
the material, the nitriding treatment, together with air-cooling after destabilisation of the austenite,
allows a noticeable increase in resistance to erosive wear.

Keywords: erosive wear resistance; white cast irons containing 25% Cr; nitriding; destabilization of
austenite; secondary carbides

1. Introduction

White cast irons highly alloyed with chromium have been widely used in very ag-
gressive settings where a high level of resistance to erosive and abrasive wear is required.
This high resistance is attributed to the presence of eutectic carbides of the type M7C3 [1,2].
The hardness of these carbides can be found in the range of 1200 HV [1]. At the same time,
these carbides are found embedded in a matrix of hard martensite and retained austenite,
which lends the material a greater tenacity than traditional Nihard cast irons [1]. The Cr
dissolved in the matrix constituent also favours resistance to erosive wear and resistance to
oxidation [2]. To improve resistance to wear, it is recommendable to carry out a destabili-
sation treatment of the austenite [3–5]. Austenite is found in a very alloyed state, which
creates difficulties in the spread of C and, so, the times required for this destabilisation
are long. During destabilisation of austenite the precipitation of secondary carbides is
produced, which has a positive effect on resistance to wear [5–11]. At the same time, the Ms
temperature rises, thus reducing the percentage of retained austenite [12]. If the time of
permanence at the destabilisation temperature is high, dissolution of those eutectic carbides
precipitated may be produced simultaneously as a consequence of non-equilibrium solidi-
fication [6,13]. All of these factors could have a very significant influence on the in-service
behaviour of these alloys. White cast irons with 25% chromium show a high resistance
to wear. In these white cast irons, the microstructure of the matrix constituent is very
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significant with regard to resistance to wear. This microstructure basically depends on the
temperature of tempering. Tempering at 500 ◦C and tempering times of around 6 h favour
an increase in wear resistance, since, under these tempering conditions, the presence of
retained austenite is eliminated and the percentage of secondary carbides of the type M7C3
is increased [13,14]. An additional nitriding treatment could produce superficial hardening
and favour an increase in resistance to erosive wear by the formation of sub-nitrides in
the tempered martensite matrix. The presence of Cr, as the main alloying element in these
alloys, could favour an additional hardening through a nitriding treatment [15]. This
hardening could favour greater resistance to wear. However, this treatment is carried
out at temperatures of around 500 ◦C [15], which could mean a softening of the surface
areas of the material, which are not affected by the nitriding.The presence of tempered
martensite would favour the diffusion of N [16], since N diffuses through of octahedral
interstitial sites of the Fe-BCC [17]. The nitride layer could be made up of nitrides of the
type ε-Fe2-3N and of the type γ’-Fe4N [17], which generate elevated distortion in the ferritic
matrix. The thickness of this nitrided layer in white cast irons with 18% Cr is around
60–70 microns [10]. At the same time, nitriding favours the transformation of carbides
M7C3 into carbonitrides [18,19]. In this study, by means of the application of an experi-
mental design, an analysis is made of the joint effect of the variation of different thermal
parameters associated with the destabilisation of austenite and the application of a plasma
nitriding treatment on the resistance and wear of white cast irons with 25% Cr. Erosive
wear is a phenomenon of surface damage that is caused by the impact of solid particles [2].
This type of wear, in the processing of this alloy, combines mechanisms of wear by impact
and mechanisms of abrasive wear [20,21]. Erosion due to impact of hard particles is a
common problem during crushing/grinding operations [22]. This study comes about as a
complement and continuation of a previous study carried out by the authors on this same
question [7]. This analysis includes the effect of the nitriding treatment (temperatures of
500 ◦C) on the part of the material not affected by nitriding.

2. Materials and Methods

Table 1 shows the chemical composition of the white cast iron analysed. The material
used in this research was supplied by the Spanish company, Fundiciones del Estanda, S.A.
(Beasain, Spain), and the chemical composition is that which is indicated by this company.
The research methodology followed was the application of a fractional experimental design,
where six factors were analysed by carrying out eight experiments [23].

Table 1. Chemical composition (% weight).

C Si Mn Cr Mo

2.7 1.2 0.8 25.1 0.5

Table 2 shows the analysed factors and the levels of analysis in each of these factors.
It should be highlighted, with reference to factor B, that the experimental permanence times
at the destabilisation temperature of austenite, were higher than usual. In view of this, the
intention was to analyse the influence of a possible re-dissolution of carbides, precipitated
as a consequence of non-equilibrium solidification, whose kinetics are complementary to
that of secondary carbide precipitation of the type M7C3 during destabilisation of austenite.

In this study, the effect of six factors in eight experiments has been analysed. This en-
tails a loss of information, corresponding to the majority of interactions. In order to be able
to analyse all possible interactions 64 (26 = 64) experiments would need to be carried out.
However, in this case, only eight effects (26−3) have been considered, which means a high
loss of information which, however, is not significant in industrial practice. Table 3 shows
the matrix of experiments. Columns D, E and F have been constructed from the product of
columns A × B, A × C, and B × C. The column ‘confounding patterns’ shows the main
effects and interactions of 2 factors whose effects remain confounded with the main effects.
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Table 2. Factors and levels.

Factors Levels

Code Thermal Parameter Level –1 Level +1

A Temperature of destabilisation of the austenite (◦C) 1000 1100
B Time of permanence at the destabilisation temperature (h) 4 8
C Nitriding no yes
D Means of cooling in tempering air oil
E Temperature of tempering (◦C) 200 500
F Time of permanence in tempering (h) 3 6

Table 3. Matrix of experiments.

Experiment A B C D E F Confounding Patterns

1 –1 –1 –1 +1 +1 +1
A + BD + CE
B + AD + CF
C + AE + BF
D + AB + EF
E + AC + DF
F + BC + DE

AF + BE + CD

2 +1 –1 –1 –1 –1 +1
3 –1 +1 –1 –1 +1 –1
4 +1 +1 –1 +1 –1 –1
5 –1 –1 +1 +1 –1 –1
6 +1 –1 +1 –1 +1 –1
7 –1 +1 +1 –1 –1 +1
8 +1 +1 +1 +1 +1 +1

Table 4 shows the main process parameters with which nitriding was carried out in
experiments 5 to 8.

Table 4. Parameters used in the plasma nitriding process.

Gas Mixture 70%N2 + 30%H2

Gas flux (cm3/min) 500
Temperature (◦C) 540

Pressure (Pa) 400
Time (min) 120

Output voltage (V) 500

The results analysed were the resistance to erosive wear and the hardness of the
material in the area adjacent to the nitrided layer. The test of resistance to erosive wear
was carried out according to norm ASTM G76, by means of compressed air blasting with
corundum particles. These corundum particles had a size of 50 µm. The pressure applied
was 2 bar, and the flow of corundum was 100 g/min. The angle of incidence on the surfaces
of the samples was 30◦. The time used in each experiment was 4 minutes. Three repetitions
per test were carried out.

Given that, the nitriding treatment entails maintaining the material at 540 ◦C for 2 h,
the area not affected by the diffusion of N could be exposed to a kind of second tempering.
This could affect the resistance of the material to wear, once the signs of wear pass through
the nitrided layer. To analyse the influence of the nitriding treatment on the interior area,
adjacent to the nitrided layer, tests were carried out on hardness and micro-hardness at an
approximate distance of 2 mm from the end of the nitrided layer. Tests of micro-hardness
were carried out with localised indentations in the constituent matrix. The load applied in
hardness tests was of 300 N and in tests of micro-hardness, it was of 0.5 N.

The statistical analysis was carried out with the help of the programme Statgraphics
Centurion XVI, version 16.1.18 (Statgraphics Technologies, Inc., The Plains, VA, USA).

For metallographic inspection, the samples were cut further and bakelite was mounted,
followed by mechanical grinding with SiC sandpaper of 240, 320, 400, and 600 grit.
Textile cloths with 6 and 1 micron diamond paste were used during the mechanical polish-
ing. For final observation, the samples were further etched with nital 4 (4 mL nitric acid and
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96 mL ethanol). The microstructures of the samples were analyzed under a NIKON Epiphot
200 optical microscope. The scanning electron microscope employed was a JEOL JSM-5600
(Japan Electron Optics Laboratory, Tokyo, Japan), equipped with the characteristic energy
dispersive X-ray (EDX) microanalysis system.

The phases present on the nitrided surface were determined by X-ray diffraction on a
XRD 3000 T/T diffractometer (SEIFERT, Baker Hughes, Celle, Germany). The radiation
was emitted via a fine-focus Mo tube at a working power of 40 kV × 40 mA and monochro-
matized to the Kα doublet: λ1 = 0.7093616 Å and λ2 = 0.713607 Å. The diffracted intensity
was determined in a 2θ range from 7 to 38◦, with an angular step and counting time of
approximately 0.03◦ and 22 s, respectively

3. Results

Figure 1 shows the initial microstructure, corresponding to the as-cast state. This mi-
crostructure is made up of proeutectic austenite, with mainly dendritic growth, see Figure 1a.
At the same time, an eutectic constituent can be seen, formed mainly by austenite and mixed
carbides of Fe and Cr with stoichiometry M7C3, see Figure 1b,c. In Figure 1d the presence of a
high density of secondary mixed carbides can be observed in the interior of the austenite grain.
Table 5 shows a semi-quantitative analysis of these carbides. All these carbides seem to be of the
type M7C3 and M23C6. Two groups of carbides can be distinguished. The smallest and brightest
(spectrums 2, 3 and 4) are those which present a lower Cr content. These carbides could be
associated with mixed carbides of stoichiometry M23C6 Those which are a little bigger, with a
slightly darker colouring, present a greater quantity of chrome (spectrum 5). These carbides
could be associated with mixed carbides of stoichiometry M7C3. The latter have more similarity
to eutectic carbides (spectrum 1). Both types of carbides, with a greater content of Cr, also
contain Mo (spectrums 1 and 5). Figure 1e shows the presence of eutectic carbides that could be
associated with mixed carbides of stoichiometry M2C, associated with the Mo. These carbides
show a more elongated and narrow morphology than the previous carbides. Due to the high
hardenability of these cast irons, the austenite will be transformed into martensite by simple
air cooling. This slow cooling favours the presence of retained austenite after hardening. High
tempering, at around 500 ◦C, could favour a second destabilisation of the austenite and its later
transformation into martensite after cooling [15].

Table 5. Semi-quantitative analysis of the carbides highlighted in Figure 1. This analysis was carried
out through an energy dispersive X-ray microanalysis (EDX). (% atomic).

Spectrum C Cr Fe Mo Si

1 38 38 23 0.8 -
2 30 9 61 - -
3 40 9 51 - -
4 33 7 60 - -
5 36 37 26 0.7 -
6 27 6 67 0.2 2
7 26 10 48 16 -
8 28 9 47 16 -
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Figure 1. Microstructure as-cast. (a) The dendritic growth of pro-eutectic austenite can be seen. Micrograph obtained by 
optical microscope (magnification of 500×); (b) eutectic carbides M7C3.can be seen. Micrograph obtained by optical micro-
scope (magnification of 1000×); (c) eutectic carbides of the type M7C3 can be seen. Micrograph obtained by scanning elec-
tron microscope (magnification of 1000×); (d) presence of secondary carbides of the type M7C3 and M23C6. Micrographic 
obtained by scanning electron microscopy (magnification of 10,000×); (e) presence of mixed eutectic carbides of the type 
M2C, associated with the Mo (magnification of 1000×). 

  

Figure 1. Microstructure as-cast. (a) The dendritic growth of pro-eutectic austenite can be seen. Micrograph obtained
by optical microscope (magnification of 500×); (b) eutectic carbides M7C3.can be seen. Micrograph obtained by optical
microscope (magnification of 1000×); (c) eutectic carbides of the type M7C3 can be seen. Micrograph obtained by scanning
electron microscope (magnification of 1000×); (d) presence of secondary carbides of the type M7C3 and M23C6. Micrographic
obtained by scanning electron microscopy (magnification of 10,000×); (e) presence of mixed eutectic carbides of the type
M2C, associated with the Mo (magnification of 1000×).

Table 6 shows the results obtained from the wear test. Figure 2 shows the representa-
tion of the effects in a normal probability plot, highlighting those that present a significant
effect on resistance to erosive wear. The C factors (nitriding) and D factors (through cooling
during tempering) show a significant effect, in such a way that if factor C is situated at
level −1 (without nitriding) and D at level +1 (tempered in oil), an increase in wear is
produced, that is to say, these conditions would be those which offer lower resistance to
erosive wear. In previous research, it was concluded that through air-cooling in tempering
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a greater precipitation of secondary carbides of the type M7C3 is produced than if cooling
is carried out in oil. This is due to the fact that slower cooling speeds favour the kinetics of
precipitation by nucleation and growth of carbides in the interval of temperatures between
600 ◦C and 400 ◦C [6]. Also, the significant effect of the interactions of second grade AF
+ BE + CD can be observed. These interactions are analysed in Figure 3. It can be seen
that the interaction which has a more significant effect is CD, given that when factor C is
situated at level +1 (with nitriding) and D at level −1 (air cooling), is when the least wear
is produced.
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Table 6. Weight loss in the erosive wear (mg) test. The effects refer to the confounding pattern highlighted
in the right-hand column. The average values refer to the average value of the 8 experiments.

Experiment
Erosive Wear

Confounding Pattern
mg Effect

1 85.5 81.712 Average
2 83.6 1.62 A + BD + CE
3 83.6 0.72 B + AD + CF
4 84.7 −5.27 C + AE + BF
5 80.9 5.32 D + AB + EF
6 75.4 2.02 E + AC + DF
7 73.6 1.12 F + BC + DE
8 86.4 3.82 AF + BE + CD

Figure 4 shows an example of the morphology of signs of wear. Figure 4a–c shows the
morphology of the signs of wear corresponding to experiment 1, and Figure 4d–f shows the
morphology of the signs of wear corresponding to experiment 7. In all of the 8 experiments,
the depth of profile of the signs of wear never reached more than 2.2 mm.

In all of those samples subjected to a nitriding treatment, experiments 5 to 8, the
thickness of the nitride layer was very small, never reaching 20 microns and resulting in
an average thickness of less than 10 microns in all cases. Figure 5a shows an example of
the thickness of the nitride layer, in this case corresponding to experiments 5. Figure 5b–d
highlight areas, which were analysed through an energy dispersive X-ray microanalysis
(EDX). The EDX analysis was performed on metallographic samples in the polished state,
without etching with a chemical reagent. Table 7 shows the results obtained. It should
be pointed out that the eutectic carbides of the type M7C3 included in the thickness of
the nitrided layer were not affected by N (spectrums 1,4 and 6). However, the constituent
matrix presents increasing quantities of N from the interior of the layer to its outer edge. See
spectra 2, 3 and 6. It must be pointed out that the greater part of the nitrogen is concentrated
on the extreme outer edge of the nitride layer, which entails only a few microns (see the
“mapping” of elements in Figure 5b).

Table 7. Semi-quantitative analysis of phases shown in Figure 5b. This analysis was carried out
through an energy dispersive X-ray microanalysis (EDX). (% atomic).

Spectrum C N Cr Fe

1 32 – 49 19
2 26 2 14 58
3 30 10 42 18
4 32 – 48 20
5 32 30 18 20
6 32 – 50 18

Figure 6 shows the diffractogram obtained on the surface of the sample corresponding
to experiment 8, showing the main phases identified. It must be highlighted that the
presence of CrN and Fe4N has been detected. These precipitates are so fine that they are
not detected by SEM. The presence of fine carbides of the M3C type, precipitated during
the tempering of the martensite, has also been detected.
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Figure 6. Diffractogram of the nitrided surface of sample corresponding to experiment 8.

Table 8. shows the results of the average values obtained on the hardness of the inside
area adjacent to the nitride layer. At the same time, it shows the results of the effects,
referring to the confounding pattern that is shown in the matrix of the experiments.

Figure 7a shows the representation of the effects on a normal probability plot, high-
lighting those that present a significant effect on overall hardness, and Figure 7b shows the
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representation of the effects on a normal probability plot, highlighting those that present
a significant effect on hardness in the constituent matrix (micro-hardness). In both cases,
factor C (nitriding) has a significant effect on hardening, in such a way that, if this factor is
situated in its level-1 (without nitriding), an increase is produced in the overall hardness
and the constituent matrix. So, nitriding treatment entails great softening of the alloy in
inside areas adjacent to the nitrided layer. It must also be pointed out that factors A and
B (A= destabilisation temperature of austenite and B= time of permanence at the desta-
bilisation temperature) have a significant effect on both hardnesses. From this, nitriding
treatment has a less negative effect on hardness in the interior of the nitrided layer when
the destabilisation treatment of austenite is carried out at 1100 ◦C, for prolonged periods
of time, around 8 hours. In a preliminary study, it was confirmed that in these conditions,
greater dissolution was produced of those primary carbides that precipitated as a conse-
quence of a non-balanced solidification, thus increasing the content of C dissolved in the
austenite. This means that, after quenching, the microstructure showed a greater quantity
of retained austenite. Through tempering at 500 ◦C a second destabilisation of austenite
was produced, with the precipitation of new secondary carbides and the transformation
of this austenite into martensite [7]. This appears to reduce the ‘softening’ of the material
during the nitriding treatment.
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Figure 7. Representation of the effects on a normal probability plot. Those factors are highlighted
which have a significant effect on hardness at an approximate distance of 2 mm from the termination
of the nitrided layer. (a) Vickers hardness with a load of 300 N; (b) Vickers hardness with a load of
0.5 N applied to the constituent matrix.
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Table 8. Average hardness measures to an interior distance of 2 mm from the end of the nitride layer.

Experiment
Hardness (HV) Micro-Hardness (HV)

Confounding Pattern
F = 10 N Effect F = 0.5 N Effect

1 699 633.87 645 619.00 Average
2 746 50.2 714 53.5 A + BD + CE
3 710 9.2 706 26.0 B + AD + CF
4 760 −189.7 751 −170.0 C + AE + BF
5 510 0.75 509 −4.5 D + AB + EF
6 562 1.75 556 −3.5 E + AC + DF
7 516 −3.25 509 −23.0 F + BC + DE
8 568 −0.75 562 7.5 AF + BE + CD

4. Conclusions

In this study, through the application of an experimental design, the joint effects are
analysed of an ionic nitriding treatment and the variation of different thermal parameters
associated with the destabilisation of austenite, on the resistance to wear of white cast irons
with 25% Cr. The main conclusions are the following:

1. The thickness of the nitrided layer is much smaller in white cast irons with lower
percentages of Cr, not reaching 20 microns in any of the experiments carried out. N
has been detected forming very fine nitrides of the type CrN and Fe4N.

2. The nitriding treatment entailed a considerable softening of the material, once the
nitrided layer was passed. This softening is ‘reduced’ when the temperature of desta-
bilisation of the austenite is at 1100 ◦C. This temperature accelerates the dissolution
of eutectic carbides, precipitated as a consequence of non-equilibrium solidification.
The nitriding treatment entails an additional tempering which favours a second desta-
bilisation of the austenite with an additional precipitation of secondary carbides and
the transformation of the possible retained austenite into martensite.

3. Despite this, the nitriding treatment, together with air-cooling, after the destabilisation
of austenite, allows a considerable increase in resistance to erosive wear.
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