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Abstract

One of the strategies to reduce the complexity of N�body simulations is the

computation of the neighbour list. However, this list needs to be updated from

time to time, with a high computational cost. This paper focuses on the use of

quantum computing to accelerate such a computation. Our proposal is based

on a well-known oracular quantum algorithm (Grover). We introduce an e�-

cient quantum circuit to build the oracle that marks pairs of closed bodies, and

we provide three novel algorithms to calculate the neighbour list under seve-

ral hypotheses which take into account a-priori information of the system. We

also describe a decision methodology for the actual use of the proposed quan-

tum algorithms. The performance of the algorithms is tested with a statistical

simulation of the oracle, where a fixed number of pairs of bodies are set as

neighbours. A statistical analysis of the number of oracle queries is carried out.

The obtained results indicate that our algorithms can clearly outperform the

best classical algorithm in terms of oracle queries, when the density of bodies is

low.
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1. Introduction

The N-body problem is widely used in simulations in a large variety of fields,

from material science, statistical physics, to astrophysics [1–3]. However, the

high computational load of N-body simulations is well-known. When the num-

ber of particles, N , is not too large, the interactions can be computed by a

brute-force approach, with complexity order O(N2) [1, 2, 4]. Nevertheless, when

N increases it is necessary to reduce the complexity.

Barnes & Hut defined a hierarchical tree cells scheme to locate the particles

and an algorithm to compute the interactions with a complexity of O(Nlog(N)).

It is widely applied to a large number of long-range interactions ranging from

stellar dynamical applications [5] to material science or molecular dynamics

[1]. Moreover, an adaption of Barnes & Hut’ scheme has also been simplified for

the approximate computation of long-range forces between mutually interacting

bodies with a complexity of O(N) [6].

In the context of short-range interactions, the main approach to get a com-

plexity of O(N) is to define a neighbour list, where the interactions are only

computed among neighbour particles. However, the neighbour list has to be

updated after several time steps and its complexity is O(N2). The frequency

of such computation can be reduced if the neighbourhood radius is optimized

[2, 7].

Our interest is the acceleration of simulations related to N-body systems

with short-range interactions by the fast computation of neighbour lists. This

technique is commonly used in computer simulations in many di↵erent fields,

such as phase equilibria, equilibrium or out-of-equilibrium molecular dynamics,

or soft-matter systems [8]. Particularly in suspensions of macromolecules or

colloids, the interaction among the particles is of a much shorter range than

the radius or typical length, making the use of neighbour lists very convenient.

This has allowed the experimental realization of the paradigmatic hard-sphere
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model, or the attractive square-well with controllable range, in addition to the

Lennard-Jones potential typical of atoms of molecules.

Quantum computing [9] can be considered as a strategy to predictably accel-

erate these computationally expensive simulations. Quantum computing relies

on the basic quantum principles of superposition and entanglement, which make

it suitable for accelerating parallel and distributed applications and also for im-

proving networks and communications.

Previous works exploit the quantum parallelism in many-body system sim-

ulations based on adiabatic quantum computation [10–12]. In contrast, this pa-

per addresses the N-body simulations considering quantum circuit algorithms

to accelerate the computation of neighbour lists. It is designed using Grover’s

Algorithm, the main oracular quantum search algorithm [9].

The aim of this paper is two-fold. Firstly, to propose several comprehen-

sive solutions to the computation of the neighbour list with quantum comput-

ing under di↵erent alternative hypothesis. The algorithms proposed here are

tested with a simplified oracle, where a fixed number of pairs of particles are

set as neighbours. The circuits obtained from this study are freely available

at https://github.com/2forts/qsec. Secondly, to set a decision methodology for

the actual use of the proposed quantum algorithms. And, additionally, to set

a design methodology for the development of quantum algorithms, taking into

account a comprehensive design that supplies both algorithms and related cir-

cuits.

The manuscript is organized as follows. In Section 2 an overview about

quantum computing is established. Section 3 is devoted to describing the three

proposed quantum algorithms for finding pairs of close particles and the se-

lection criteria. Furthermore, details about the oracle design as a reversible

quantum circuit are discussed. In section 4 statistical simulations to test the

proposed algorithms with a simplification of the oracle are carried out. Finally,

the conclusions are presented.
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2. Quantum Computing Background

Quantum computers have been considered a promising technology from its

introduction to our days. These computers benefit from the special and counter-

intuitive properties of quantum mechanics, like superposition. Superposition

allows a qubit (a quantum bit, the basic unit of the quantum computers) to

be in the states |0i and |1i simultaneously. Thanks to this feature, quantum

computers can evaluate a function f(x) at many values of x at once, what is

known as quantum parallelism [9].

Since their introduction, quantum algorithms have outperformed classical

ones in several problems. Grover and Shor algorithms are the two best-known

examples. In fact, most of the current quantum algorithms are based on the

methodology of one of these two [9]. Focusing on Grover’s algorithm, it performs

a search through an unstructured space, achieving a quadratic speedup with

respect to classic search algorithms. Among other quantum properties, Grover’s

algorithm is based on the concepts of superposition and quantum parallelism to

compute several evaluations of a function as one [13]. The algorithm obtains a

solution with a certain probability, being necessary a minimum of iterations of

the algorithm to get the solution with the desired probability. The estimation

of the necessary number of iterations is one of the most important parts in the

algorithm.

Grover’s algorithm needs a black box oracle O as an input. This oracle has

to check if a value x is (or not) a solution to the search problem. Therefore, to

apply Grover’s algorithms to a real problem it is necessary to build an oracle

with the capacity to recognize if a given value is a valid solution to that problem.

It is just as important to use the algorithm in the correct context, as it is to build

an e�cient oracle for it. The circuits paradigm is the most usual methodology to

design and implement quantum algorithms, where an oracle based on the design

of reversible quantum circuits is required. In the literature, it is a common

practice to mathematically define an oracle for the problem. However, without

a real implementation, the algorithm is not functional on a quantum computer
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or simulator.

So, the methodology widely used to design quantum applications involves

the combination of: (1) the design of quantum algorithms based on well-known

quantum procedures (for example, Grover) bearing in mind the statistical com-

putation provided by them and (2) and the use of a particular reversible quan-

tum circuit that implements the specific oracle use in such design. In this work

we provide a whole design of quantum algorithms to compute the neighbour

list.

In the rest of this paper, we introduce a quantum algorithm based on

Grover’s algorithm, showing that it involves fewer queries than classical alterna-

tives. Moreover, we present the complete design of the oracle for our algorithm,

ready for its use in quantum simulators.

3. Quantum algorithms for finding pairs of close particles

In this section, we propose three quantum algorithms that can be used to

find all the pairs of particles that are closer than a given threshold distance. For

this, we will assume, as it is customary in this kind of problem [9, 13], that we

are given a quantum circuit implementing an oracle O such that

O(|xi |0i) =

8
><

>:

|xi |1i if x satisfies certain conditions

|xi |0i otherwise

Notice that this is a completely general situation and can be applied not

only for the case of finding all the pairs of particles that are close (in which case

|xi = |x1i |x2i, with x1 and x2 indices of two particles), but to any setting in

which we have to find all the elements in a set that satisfy a certain condition.

This is closely related to the Coupon Collector Problem [14], that has been

recently studied in a quantum context [15] but with an important di↵erence:

in general, we do not know how many pairs of particles are closer than the

threshold, so we are not able to use the methods presented in that work. Another

important feature is the fact that, for a given particle, the number of close
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particles is upper bounded by a constant independent of the total number of

particles.

The availability of the oracleO allows us to use Grover’s search algorithm [13],

that will be central to our methods. It is important to note that the success

probability of Grover’s algorithm and the number of times it consults the oracle

are completely determined by the number of elements ⌫ in the set and by the

number µ of marked elements (i.e., elements that satisfy the condition). For that

reason, in our algorithms we will consider oracles O = O
µ
⌫ that mark exactly

µ elements from a set of size ⌫. This general setting allows us to consider two

di↵erent situations: we can search among all the pairs of particles at once (i.e.,

⌫ = N
2, and µ is the number of pairs of close particles) or we can fix one of the

particles and search for the close ones (i.e., ⌫ = N , and µ is the number of close

neighbour). This will prove useful in certain situations, as we explain below,

but from the point of view of the analysis of our quantum algorithms we can

consider both cases in just one abstract setting, with the only di↵erence being

the values of the parameters ⌫ and µ.

3.1. Oracle Construction

In this subsection we discuss the construction of a quantum circuit imple-

menting the oracle O for the particular case of marking pairs of particles that

are below a given distance. In this paper, we will consider that all our algo-

rithms use that circuit as an instantiation of the oracle. Therefore, we want to

demonstrate the feasibility of building such an oracle.

A circuit implementing the oracle must return 1 if the distance between two

particles i and j is less than or equal to a threshold value �, and 0 otherwise.

That procedure can be divided into two operations: the computation of the

distances between i and j, and the comparison between that distance and �.

Additionally, as required in two of the proposed algorithms, we will need to

modify the oracle O so that, once found a marked element x0, it is excluded

from being marked by a new oracle O
0:
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O
0(|xi |0i) =

8
><

>:

|xi |1i if x is marked and x 6= x0

|xi |0i otherwise

Focusing on the arithmetic part, the process supports some simplifications.

On the one hand, it is possible to work with the squared distances. Therefore,

the square root of the distances between particles is not necessary. Then, the

distances can be computed using subtractors, adders, and squaring circuits. On

the other hand, the comparison can be computed using a half comparator instead

of a full comparator since it is only necessary to identify if the distance is, or is

not, less than or equal to the threshold. Half comparators involve less resources

than full ones. Focusing now on the modification proposed in the previous

equation, it can be achieved by standard procedures, such as for instance the

use of X gates and a multi-controlled To↵oli gates. We will repeatedly use these

modifications of the original oracles in our algorithms.

It is important to note that this oracle will not provide any quantum ad-

vantage. However, even quantum circuits that does not provide quantum ad-

vantages can be useful as part of larger circuits if they involve an small number

of resources [16]. In our case, the oracle must use the least possible number

of resources to be e�ciently used by our algorithms. In terms of quantum cir-

cuits, resource optimization is commonly measured using the number of involved

qubits. It is also important to avoid the so-called garbage outputs: qubits that

are not part of the result and whose value is not restored to the initial one, so

they cannot be used in other circuits. A reduction in the number of operations

(represented by the so-called quantum cost) is also desirable [17, 18].

Table 3.1 shows some of the most prominent adders, subtractors, squaring

circuits, and half-comparators available in the literature. The table shows their

quantum cost, their number of ancilla inputs, and the number of garbage out-

puts, according to the definitions given by Mohammadi et al. [17]. To carry out

a complete analysis of the available circuits in the state-of-the-art is out of the

scope of this article. However, we have studied a few selection of them in order

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Circuit Quantum Ancilla Garbage

cost inputs outputs

Adders and subtractors

[23] (full subtractors) 6n n 0

[23] (full and half subtractors) 6n� 2 n 0

[24] + [23] 6n n+ 1 0

[20](input carry) (a+ b) 18n� 6 2 0

[20](input carry) (a+ b+ 1) 16n� 4 2 0

[20](no input carry) (a+ b) 16n� 8 1 0

[25] (a+ b) 31n� 15W (n)� 15log(n)� 6 5n/4 0

[26] (a+ b+ 1) 30n� 15W (n)� 15log(n)� 4 5n/4 0

Squaring circuits

[27] 36n 7n 7n

[28] 35n 10n 10n

[29] 36n 7n 13n

[30] 38n 13n 13n

[21] 32n 6n� 3 0

Half comparators

[31] O(n2) 2n 0

[32] 39n+ 9 6n+ 1 0

[18] 18n+ 9 4n� 3 0

[33] 14n 4n� 2 0

[34] 28n 2 0

[20] (a+ b) 32n� 18 3 0

[20] (a+ b+ 1) 30n� 10 3 0

[23] (full and half subtractors) 12n 2n� 3 0

[22] 16n� 8 2 0

Table 1: Evaluation of most optimized circuits which can be used as part of the oracle O

for the general n-digit case, in terms of quantum cost, ancilla inputs and number of garbage

outputs.

to implement a functional oracle. We have followed the methodology described

in [19] to measure and to test these circuits. We have chosen the best circuits

of each category to build the oracle, prioritizing the absence of garbage outputs

and the number of ancilla inputs since their optimization involves less qubits.

In particular, we have built and tested a prototype of the oracle in ProjectQ

simulator using the circuits proposed in [20] (computing a+ b), [21], and [22].

The source code is freely available in https://github.com/2forts/qsec.

3.2. The algorithmic methodology

All our algorithms are based on the use of Grover’s search [13]. This quan-

tum algorithm allows, given an oracle O
µ
⌫ that marks µ elements from a set of
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size ⌫, to find, with high probability, a marked element with O

⇣q
⌫
µ

⌘
consults

to the oracle, compared to the ⌦
⇣

⌫
µ

⌘
that would be needed with a classical

algorithm. This means that there is a quadratic gap between the upper-bound

of the quantum algorithm, and the lower-bound of the classical ones. We will

exploit this quadratic speed-up to obtain algorithms that are asymptotically

faster than any possible classical algorithm that also uses a black-box oracle.

Namely, this allows to beat the ⌦(N2) bound for the search of pairs of closed

particles, in a non-quantum setting. Because of the intrinsic probabilistic na-

ture of quantum computing, our algorithms will provide a right answer with

probability at least 1� w, where w is a chosen input parameter.

We first consider the situation in which the number of marked elements µ is

known. This case will be rarely encountered in practice (when our algorithms

are used to find the pairs of particles that are below a given threshold), but we

present it here anyway for two reasons. First, it is closely related to the Quantum

Coupon Collector Problem, that has recently attracted some attention [15].

Second, it will provide a useful benchmark for the more realistic algorithms we

present later, as an ideal minimal bound on the number of oracle consults.

Since we are assuming that we know µ, we can simply run Grover’s algo-

rithm, checking every time if we have obtained a new marked element, until

all of them have been found. However, since Grover’s algorithm only returns a

marked element with certain probability, there is no upper bound to the num-

ber of required oracle consults. For that reason, we propose first to compute a

number R of Grover iterations that guarantees finding all marked elements with

probability of failure at most w (see the details in Appendix A). The complete

procedure is, then, the one presented in Algorithm 1.
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Algorithm 1.

INPUT:

• An oracle O
µ
⌫ marking a known number of µ elements in

a database of ⌫ elements (0 < µ  ⌫
2 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.

With probability at least 1� w, we will have r = µ.

PROCEDURE:

1. Set L = ;; R =

⇠
log(w

µ )
log(1� 1

2µ )

⇡

2. FOR l from 1 to R do

(a) Run Grover’s algorithm with

l
⇡
4

q
⌫
µ

m
iterations

(b) If a marked element x is found, set L = L [ {x}

(c) If |L| = µ GO TO 3.

3. Return L

In practice, however, µ will be unknown to us. This a↵ects our application

of Grover’s search in two di↵erent ways. On the one hand, we can never be

sure that we have already found all the marked elements and this a↵ects the

stopping conditions (cf. line 2(c) of Algorithm 1). On the other, we do not know

what is the optimal number of iterations in Grover’s algorithm (cf. line 2(a) of

Algorithm 1). Of course, not knowing µ, also prevents us from computing R.

To overcome these di�culties, we adopt a strategy similar to the one pro-

posed in [35]. For the number of iterations in Grover’s search, we select a random

number in {0, . . . , b
p
⌫c � 1}. For the stopping condition, we compute a value

R that will guarantee that if after R executions of Grover’s search no marked

element has been found, then the probability that indeed there are marked el-

ements is below w, an error bound selected by the user. The mathematical
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derivation of R is given in Appendix A. Note that this bound is very conserva-

tive and that, in practice, errors much smaller than w will be usually obtained,

as shown in the numerical simulations that we have conducted (see Section 4).

The complete procedure is described in Algorithm 2. Notice that in line

3(b), after a new element has been found, we modify the oracle so that this

element is not considered again. For that, we use the construction of oracle the

O
0 mentioned above (Subsection 3.1).
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Algorithm 2.

INPUT:

• An oracle O
µ
⌫ marking an unknown number of µ elements

(upper bounded by a known or estimated B) in a database

of ⌫ elements (0  µ  B  3⌫
4 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.

With probability at least 1� w, we will have r = µ.

PROCEDURE:

1. Set L = ;; R =

&
log

⇣
1�(1�w)

1
B

⌘

log( 3
4 )

'
; FOUND = FALSE

2. FOR l from 1 to R do

(a) Choose j uniformly at random from the set

{0, . . . , b
p
⌫c � 1}

(b) Run Grover’s algorithm with j iterations

(c) If a marked element x is found, set FOUND =

TRUE; GO TO 3.

3. IF FOUND = FALSE, OUTPUT L

ELSE

(a) Set L = L [ {x}; FOUND = FALSE

(b) Eliminate x from the list of marked elements by the

oracle

(c) GO TO 2.

Although Algorithm 2 gives an acceptable worst case asymptotic behaviour

(cf. Table 2), the average number of oracle consults can be improved by using

techniques similar to the ones used in [35]. This yield us to introduce a third

algorithm to achieve such an improvement (Algorithm 3). Instead of always
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choosing the number of iterations of Grover’s algorithm in a uniform way (see

line 2(a) in Algorithm 2), we now increase the number of iterations, starting

from 1, by a factor of 6
5 (see Algorithm 3, line 3.(a)). This allows us to

improve the behaviour in the average case, as shown in Table 2. We still need,

however, a stopping condition that guarantees that the probability of missing

some elements is less than w, leading to a worst case behaviour equivalent to

that of Algorithm 2. The details of the analysis can be found in Appendix A.

Table 2 summarises the oracle query complexities of the three algorithms

that we have proposed, where we suppose that, in general, µ is a function of ⌫.

Algorithm Worst case Average case

1 O
�p

⌫µ log(µ)
�

O
�p

⌫µ log(µ)
�

2 O (
p
⌫µ log(B)) O (

p
⌫(log(B) + µ))

3 O (
p
⌫µ log(⌫)) O

�p
⌫(log(⌫) +

p
µ)
�

Table 2: Summary of query complexities (⌫ is the size of the database, µ is the number of

marked elements, B  3⌫
4 is an upper bound on µ)
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Algorithm 3.

INPUT:

• An oracle O
µ
⌫ marking an unknown number of µ elements

(upper bounded by a known or estimated B) in a database

of ⌫ elements (0  µ  B  3⌫
4 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.

With probability at least 1� w, we will have r = µ.

PROCEDURE:

1. Set L = ;; m = 1; � = 6
5 ; R = 1; FOUND = FALSE

2. FOR l from 1 to R do

(a) Choose j uniformly at random from the set

{0, . . . , dme � 1}

(b) Run Grover’s algorithm with j iterations

(c) If a marked element x is found, set FOUND =

TRUE; GO TO 3.

3. IF FOUND = FALSE

(a) IF m =
p
⌫, OUTPUT L.

ELSE,

set m = min{�m,
p
⌫};

FOUND = FALSE.

IF m =
p
⌫, set R =

&
log

⇣
1�(1�w)

1
B

⌘

log( 3
4 )

'

(b) GO TO 2.

ELSE

(a) Set L = L[{x}; m = 1; R = 1; FOUND = FALSE

(b) Eliminate x from the list of marked elements by the

oracle

(c) GO TO 2.
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3.3. The case of particle pairs

The general search methods presented in the previous subsection can be

applied to the problem of determining all the particle pairs that are closer than

a given threshold distance. In this paper, the number of close particles to a

fixed one is upper bounded by a constant independent of the total number of

particles, because of the characteristics of the physical problem (see Section 4).

We will explore two possible instantiations.

The first one is to consider all possible pairs of particles and apply any of

the three algorithms directly. In this case, we will have ⌫ = N
2, where N is

the total number of particles, and µ represents the number of pairs of close

particles. Provided some mild conditions are met (see Appendix B), we obtain

the asymptotic complexities shown in Table 3

Algorithm Worst case Average case

1 O
�
N
p
µ logµ

�
O
�
N
p
µ logµ

�

2 O (Nµ logB) O (N(logB + µ)

3 O (Nµ logN) O
�
N(logN +

p
µ)
�

Table 3: Query complexities in our particular problem, first instantiation: pairs of close

particles (N � 54 is the number of particles, µ is the number of pairs of close particles,

B  27N is an upper bound on µ)

In the second instantiation, we fix one particle and search, with any of the

three proposed algorithms, for all the particles that are close to it. This can

be helpful, as explained in detailed in the next subsection, when only a few of

the particles have changed their positions and, thus, we only need to update

their neighbour lists. If we consider ↵ to be the number of particles with new

positions, then the complexities of the algorithms are those given in Table 4.

For the detailed analysis, which is based on the key fact that the number of

closed particles to a fixed one is upper bounded by a constant independent of

the total number of particles, see Appendix B.

Notice that several of the algorithms o↵er asymptotic complexities which
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Algorithm Worst case Average case

1 O

⇣p
N↵ log↵

⌘
O

⇣p
N↵ log↵

⌘

2 O

⇣p
N↵ log↵

⌘
O

⇣p
N↵ log↵

⌘

3 O

⇣p
N log(N)↵ log↵

⌘
O

⇣p
N log(N)↵ log↵

⌘

Table 4: Query complexities in our particular problem, second instantiation: particles close

to a fixed one (N � 54 is the number of particles, ↵ is the number of particles to search for

close neighbours)

can be, in the average or even in the worst case, better than those of any classi-

cal algorithm (which, necessarily, would have to make N(N�1)
2 or ↵N distance

computations and comparisons). In fact, we will show in Section 4 that for a

range of parameter values found in real-life problems, our algorithms can greatly

reduce the number of oracle queries that need to be performed.

In the next subsection, we explain how the di↵erent choices of algorithm can

be integrated in a decision procedure depending on the problem parameters and

the evolution of the system.

3.4. The decision procedure

As we can see, the second and third algorithms are memory procedures in

which the input oracle must be updated in order to keep track of found elements.

The three algorithms can be combined with di↵erent input parameters in order

to obtain the set of close pairs of N particles in the space. Since the particles

are continuously moving in space, we propose a two-step dynamic programming

strategy: first, looking for close particles among the set of all pairs; later on,

looking for close particles to fixed ones, when the positions of particles change

(i.e., an update methodology). One aspect to be considered is that Algorithm 3

performs uniformly better than Algorithm 2 in the average case. So, if desired,

Algorithm 3 could be a substitute for Algorithm 2 in the alternatives given

below.

First step: initialize the pairs of close particles

16
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At this initial stage, the parameter ⌫ is to be instantiated as N
2, and µ is

the number of close pairs to be found. The choice of the algorithms is as follows:

• If µ is not known, then:

– If µ is believed to be negligible in relation to the total number of

pairs, use Algorithm 2 (O(N) oracle calls in the worst case) with an

estimated upper bound B  27N of µ.

– Else, use Algorithm 3 with an estimated upper bound B  27N of

µ (O(N
p
N) oracle calls in the average case).

• Else (µ is known), then:

– If µ is negligible in relation to the total number of pairs, use Al-

gorithm 1 (in the worst scenario, O(N) oracle calls) or Algorithm 2

(O(N logN) oracle calls in the worst case) with B = µ.

– Else, use Algorithm 1 (O(N
p
N logN) oracle calls in the worst case)

or Algorithm 3 with B = µ (O(N
p
N) oracle calls in the average

case).

Second step: update the set of particles close to fixed ones

At this stage, the parameter ⌫ is to be instantiated as N , the number of

updated particles is ↵, and for a fixed particle, µ represents the number of close

particles to be found.

The alternatives are the following:

1. If ↵ log↵ is close to N , then backtrack to the first step.

2. Else, set S =

⇠
log(w

↵ )
log(w)

⇡
. Then:

(a) If µ is known, then use Algorithm 1 S times for each of the ↵ particles

(O(
p
N
p
↵ log↵) oracle calls in the worst case).

(b) Else, use Algorithm 2 S times for each of the ↵ particles (O(
p
N
p
↵ log↵)

oracle calls in the worst case).
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4. Statistical simulation of the algorithms

In this section, the performance of the first-step algorithms introduced in

Section 3 are tested in practical situations. A key aspect of the simulation is

the oracle O, where the particle configuration should be fed into, and the use of

Grover’s search. For the purpose of testing the actual behaviour of algorithms

1� 3, the oracle is simplified notably, just taking into account the number µ of

pairs of close particles, among the total number of N particles. The simulation

will simply identify such a number of pairs. Since Grover executions in the

algorithms are independent, we can directly simulate (because of the results

in [35]) the running of the Grover steps by sampling from a Bernoulli distribution

with success probability given by

sin2((2j + 1)✓)

where j is the number of Grover iterations, sin2 ✓ = t
⌫ and t is the number of

marked elements (notice that t = µ for Algorithm 1, but in Algorithms 2 and

3 t starts at µ and is decreased in one unit with each found element). This

means that we do not actually run the Grover steps: we simply simulate the

success probability of such runs, instead. In the case of Algorithms 2 and 3 that

is enough, because each successful run of Grover will find a di↵erent element

(we eliminate the obtained ones from the oracle). For Algorithm 1, when the

simulation shows that Grover has found a marked element, we sample uniformly

from the set {1, 2, . . . , µ} to determine the actual element that has been found.

In all cases, three values of µ are considered, µ = 40, 80, and 150. This

implies a mean number of neighbours per particle ranging from 2.3 to 0.08,

which corresponds to some situations found in practice. For instance, in the

canonical hard-sphere system, taking a threshold value for the center to center

distance of 3a, with a the particle radius, these mean number of neighbours are

obtained volume fractions below.

For Algorithm 1, following the analysis of Appendix A, the bounds on the

total number of iterations for di↵erent success probabilities are given in Ta-

bles 5, 6 and 7. These bounds, however, are shown to be very conservative once
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we take into account the actual results found in the simulations. In Tables 8, 9

and 10 we show the minimum, maximum, average and standard deviation of the

number of oracle calls needed until all the pairs are found, across 106 repetitions

of the algorithm. Notice that these values are much lower than those expected

from the asymptotic analysis, even when we take into account the standard

deviation.

Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 7632 15264 30528 61056

0.05 8512 17024 34048 68096

0.01 10560 21120 42240 84480

0.005 11440 22880 45760 91520

0.001 13488 26976 53952 107094

Table 5: Bounds on # of oracle calls for Algorithm 1 when µ = 40

Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 12804 24541 48015 96030

0.05 14124 27071 52965 105930

0.01 17208 32982 64530 129060

0.005 18540 35535 69525 139050

0.001 21612 41423 81045 162090

Table 6: Bounds on # of oracle calls for Algorithm 1 when µ = 80

In Table 11, we show the value of R for Algorithms 2 and 3 for B = 27N .

. Again, these bounds prove to be extremely conservative. We have executed

Algorithms 2 and 3 for 106 times with values of R taken from {5, 10, . . . , 70}.

The full results can be found in the supplementary material. In this section,

we present only the data for the first value of R that successfully finds all the
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Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 19719 37247 72303 144606

0.05 21582 40766 79134 158268

0.01 25920 48960 95040 190080

0.005 27792 52496 101904 203808

0.001 32130 60690 117810 235620

Table 7: Bounds on # of oracle calls for Algorithm 1 when µ = 150

Particles Minimum Maximum Average Standard deviation

125 928 12600 2749.08 790.33

216 1888 24224 5481.58 1575.03

512 3904 44928 10957.61 3150.78

1000 7552 86144 21909.18 6313.69

Table 8: Minimum, maximum, average and standard deviation of the number of iterations for

10
6
repetitions of Algorithm 1 when µ = 40

Particles Minimum Maximum Average Standard deviation

125 1908 20064 4920.50 1243.43

216 3795 33833 9181.87 2318.84

512 7254 61650 17887.36 4516.25

1000 14940 131490 35743.77 9016.89

Table 9: Minimum, maximum, average and standard deviation of the number of iterations for

10
6
repetitions of Algorithm 1 when µ = 80
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Particles Mininum Maximum Average Standard deviation

125 3636 28665 8038.76 1819.60

216 6613 49691 14415.13 3266.95

512 12606 92532 27695.03 6265.49

1000 24354 180774 55391.35 12542.27

Table 10: Minimum, maximum, average and standard deviation of the number of iterations

for 10
6
repetitions of Algorithm 1 when µ = 150

particle pairs in all 106 experiments for a fixed value of µ. Since all these results

can be quickly obtained from simulations alone, for other values of N , ⌫ and

µ, one can repeat experiments similar to the ones presented here in order to

determine, before using an actual quantum computer, which algorithm is most

suitable for the situation and what is the desirable value of R. In Tables 12

through 17 we show those results, including the value of R and the minimum,

maximum, average and standard deviation of the number of oracle calls used

by the algorithms.

We can see that, as it was the case with Algorithm 1, Algorithms 2 and 3,

we achieve an error rate below one in a million for values of R much less than

what Table 11 would lead to expect.

Error bound w R 125 part. R 216 part. R 512 part. R 1000 part.

0.1 37 39 41 44

0.05 39 42 44 46

0.01 45 47 50 52

0.005 47 50 52 54

0.001 53 55 58 60

Table 11: Number of repetitions for di↵erent error bounds in Algorithms 2 and 3 when µ = 40

In Figures 1, 2 and 3, we compare the number of queries needed by the

classical algorithm with the average number of queries made by Algorithms 1,
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Particles R Mininum Maximum Average Standard deviation

125 30 4275 11155 6966.10 679.77

216 30 8783 22207 13987.19 1364.44

512 30 17789 43981 28031.48 2729.62

1000 30 34156 90053 56105.27 5462.89

Table 12: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 2 when µ = 40

Particles R Mininum Maximum Average Standard deviation

125 20 2027 4928 3183.36 260.28

216 20 4255 10959 6742.70 528.98

512 20 8806 22982 13986.88 1067.27

1000 20 19203 43485 28652.95 2151.95

Table 13: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 3 when µ = 40

Particles R Mininum Maximum Average Standard deviation

125 30 8209 17179 12066.42 948.43

216 30 16616 35536 24232.50 1905.19

512 30 33531 69521 48549.50 3805.91

1000 30 66544 139891 97211.92 948.43

Table 14: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 2 when µ = 80
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Particles R Mininum Maximum Average Standard deviation

125 20 2572 5504 3815.21 271.06

216 20 5832 11881 8242.92 552.67

512 20 12368 24762 17312.67 1117.62

1000 20 25475 50528 35718.52 2251.94

Table 15: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 3 when µ = 80

Particles R Mininum Maximum Average Standard deviation

125 35 15946 28345 21269.77 1288.21

216 35 31338 56721 42704.70 2586.14

512 35 63555 112327 85583.67 5176.96

1000 35 127876 226940 171312.89 10360.06

Table 16: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 2 when µ = 150

Particles R Mininum Maximum Average Standard deviation

125 20 3178 6341 4522.74 280.11

216 20 7495 13782 10012.76 572.83

512 20 15898 28518 21342.74 1160.47

1000 20 32971 57502 44433.08 2337.95

Table 17: Minimum, maximum, average and standard deviation of the number of oracle

queries for 10
6
repetitions of Algorithm 3 when µ = 150

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2 and 3. Notice that, while the growth in the case of the classical algorithm is

quadratic, for our algorithms it is linear for fixed values of µ. In fact, for the

lowest values of µ, the average number of queries of all our algorithms is lower

than the number of queries performed by the classical algorithm. For bigger

values of µ (80 and 150), the classical algorithm beats some of the quantum

algorithms for low number of particles (125 and 216) but for the simulations

with 512 and 1000 particles, our algorithms are always better (and the speed-

up increases with the number of particles). In fact, Algorithm 3 was always

better than the classical algorithm for all the cases under study.

These data show that our algorithms can clearly outperform the best classical

algorithm in terms of oracle queries when the density of particles is low (µ is low

or ⌫ is high). Thus, once robust quantum hardware is available, these methods,

especially Algorithm 3, may be of use in practical situations, where the density is

usually low, a situation in which our algorithms show their better performance.

Figure 1: Comparison of the number of oracle queries of the di↵erent algorithms when µ = 40
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Figure 2: Comparison of the number of oracle queries of the di↵erent algorithms when µ = 80

5. Conclusions

The focus of this work has been on the use of quantum computing to ef-

ficiently calculate the neighbour list in the context of N-body simulations. A

quantum algorithm, based on oracle procedures (Grover) has been considered

to carry out the whole proposal. The oracle has been designed with e�cient

reversible circuits that identify if pairs of bodies are neighbours or not. A proto-

type of the oracle has been developed in ProjectQ simulator based on the circuits

proposed in [20–22] and it is available at https://github.com/2forts/qsec. Three

quantum algorithms have been designed to get the pairs of neighbour particles

from the information provided by the oracle. They can be combined in a two-

step procedure for achieving such an objective: first, looking for pairs of close

particles; second, updating the neighbour list of a small number of particles that

move beyond a certain threshold. The actual combination of the algorithms has

been described in a decision procedure, that aims to provide the best algorithm

for each possible situation.

The asymptotic analysis of every algorithm has been justified from a the-
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Figure 3: Comparison of the number of oracle queries of the di↵erent algorithms when µ = 150

oretical point of view. A statistical simulation of the oracle O in combination

with the algorithms has been considered to test their statistical behavior for µ

pairs of close particles, among N particles.

After 106 repetitions of the algorithms, the developed test has evaluated the

minimum, maximum, average, and standard deviation of the number of oracle

calls needed until all the pairs were found. The obtained values have been much

lower than those expected from the asymptotic analysis.

Thus, once robust quantum hardware is available, these methods, especially

Algorithm 3, may be of use in practical situations, where the density is usually

low, a situation in which our algorithms have shown their best performance.

Acknowledgments

This work has been partially supported by the Spanish Ministerio de Cien-

cia and FEDER (Projects No. PGC2018-101555-B-I00, RTI2018-095993-B-

100, RTI2018-098085-B-C44), by UAL/CECEU/FEDER (Projects No. UAL18-

TIC-A020-B and UAL18-FQM-B038-A), by the Ministry of Economy, Industry

26

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



and Competitiveness from Spain/FEDER under grant MTM-2017-83506-C2-2-

P, and by he Regional Ministry of the Principality of Asturias under grants

FC-GRUPIN-IDI/2018/000193 and FC-GRUPIN-IDI/2018/000226.

Appendix A. Mathematical proof of the asymptotic behaviour of the

proposed quantum algorithms

Algorithm 1

Given a database of ⌫ unsorted elements and an oracle that detects µ =

µ(⌫) marked elements, Algorithm 1 provides a method that finds all marked

elements with a bounded probability error, based on a repeatedly use of Grover’s

algorithm. We shall require that, for all ⌫, 0 < µ(⌫). We will also assume that

the sequence µ(⌫) has a limit, when ⌫ ! 1.

Grover’s algorithm provides, with O

✓q
⌫

µ(⌫)

◆
oracle calls, a success proba-

bility greater or equal than �(⌫) := 1 � µ(⌫)
⌫ , i.e., �(⌫) := P (finding a marked

element out of the µ(⌫)) [35, Section 3]. Assuming that µ(⌫)  ⌫
2 , for all ⌫,

we have a uniformly bounded success probability �(⌫) � 1
2 . Because such an

algorithm does not distinguish between marked elements, we have that

Pi(⌫) := P (finding the i�th marked element out of the µ(⌫)) =
�(⌫)

µ(⌫)
� 1

2µ(⌫)

for all i = 1, . . . , µ(⌫), and for all ⌫. We want to independently repeat the search

R = R(⌫) times and estimate the probability P
0(⌫) of not finding all marked

elements. Namely,

P
0(⌫) := P (not finding all marked elements in R(⌫) experiments)

= P (not find. the first elem. in R(⌫) exp. _ . . . _ not find. the µ(⌫)�th elem. in R(⌫) exp.)

 µ(⌫)

✓
1� 1

2µ(⌫)

◆R(⌫)

In order to obtain a bounded algorithm, we require that such a probability

is less than some w < 1, for all ⌫. This yields µ(⌫)
⇣
1� 1

2µ(⌫)

⌘R(⌫)
 w or,
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equivalently,

R(⌫) �
log

⇣
w

µ(⌫)

⌘

log
⇣
1� 1

2µ(⌫)

⌘

Taking R(⌫) as

⇠
log( w

µ(⌫) )
log(1� 1

2µ(⌫) )

⇡
, we have that R(⌫) = O (µ(⌫) log(µ(⌫))), and the

procedure requires an overall number of O
⇣p

⌫µ(⌫) log(µ(⌫))
⌘
oracle calls.

# Marked #Iterations #Orac. calls Total # oracle

elements per it. calls

µ(⌫) O (µ(⌫) log(µ(⌫))) O

✓q
⌫

µ(⌫)

◆
O

⇣p
⌫µ(⌫) log(µ(⌫))

⌘

Table A.18: Summary of Algorithm 1

The main obstacles to a practical application of this methodology are the

requirements on µ(⌫), namely it has to be known and satisfy 0 < µ(⌫)  ⌫
2 ,

for all ⌫. Moreover, the correctness of the asymptotic analysis is conditioned to

the sequence µ(⌫) having a limit. Since µ(⌫) is not always known, Algorithms

2 and 3 give two practical approaches based on Grover’s algorithm with a ran-

dom number of iterations. In both cases, an algorithm with memory and an

appropriate time-out is taken.

Algorithm 2

This algorithm consists in a direct randomisation of the number of Grover’s

iterations of Algorithm 1. The list L keeps track of marked elements already

found (a memory list), and the number R = R(⌫) of times that Grover’s search is

repeated has to be taken so that the algorithm has a bounded success probability.

This time we shall require that, for all ⌫, 0 < µ(⌫)  3⌫
4 , and that the sequence

µ(⌫) has a limit, when ⌫ ! 1.

Let us consider the correctness of the second step in a single iteration of

the algorithm. In such a step, the number of marked elements by the oracle is

0  t  3⌫
4 . When t = 0, the algorithm forces (in the third step) OUTPUT L

with no new elements added to the list L, and the output is right. On the other

hand, when t > 0, because of Lemma 2 and the proof of Theorem 3 in [35], the
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probability of finding a marked element is �(⌫) � 1
4 , with O (

p
⌫) oracle calls,

so the overall probability of finding a marked element is 1 � (1� �(⌫))R(⌫) �

1�
�
3
4

�R(⌫)
.

Since the second step must be independently repeated µ(⌫)+1 times for the

algorithm to succeed (the last iteration is the one forcing the output), the proba-

bility P
0(⌫) of not finding all marked elements is P 0(⌫) := 1�

⇣
1� (1� �(⌫))R(⌫)

⌘µ(⌫)


1�
⇣
1�

�
3
4

�R(⌫)
⌘µ(⌫)

which, in order to obtain a bounded algorithm, is required

to be less than some w < 1, for all ⌫. This yields

R(⌫) �
log

⇣
1� (1� w)

1
µ(⌫)

⌘

log
�
3
4

�

Taking R(⌫) as

2

666

log

✓
1�(1�w)

1
µ(⌫)

◆

log( 3
4 )

3

777
, we have that R(⌫) = O (log(µ(⌫))), and

the procedure requires an overall number of O (
p
⌫µ(⌫) log(µ(⌫))) oracle calls.

Of course, since µ(⌫) is assumed to be unknown, in practice we might know an

upper bound B(⌫) of µ(⌫) (in the worst case we can always choose B(⌫) = 3⌫
4 ).

This allows to take R(⌫) =

2

666

log

✓
1�(1�w)

1
B(⌫)

◆

log( 3
4 )

3

777
= O(log(B(⌫)) and the overall

asymptotic complexity is O (
p
⌫µ(⌫) log(B(⌫))).

#Step 2 #Iterations #Orac. calls Total #

iterations in Step 2 per it. oracle class

µ(⌫) + 1 O (log(B(⌫))) O (
p
⌫) O (

p
⌫µ(⌫) log(B(⌫)))

(output iter.)

Table A.19: Summary of Algorithm 2: worst case

In this algorithm, it is also interesting to analyse the average number of oracle

queries. Since the probability of finding an element in any of the Grover execu-

tions of the loop of step 2 is at least 1
4 , the average number of queries on each

execution of step 2 is less than 4
p
⌫
2 = 2

p
⌫ when there are still marked elements

to be found. We need to add to that the number of queries of the output itera-
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tion (when all elements have already been found) to obtain an average number

of queries which is 2
p
⌫µ(⌫) +O (

p
⌫ log(B(⌫))) = O (

p
⌫(log(B(⌫)) + µ(⌫))).

#Step 2 #Iterations #Orac. calls Total #

iterations in Step 2 per it. oracle class

µ(⌫) + 1 4 or O (log(B(⌫)))
p
⌫
2 or

p
⌫ O (

p
⌫(log(B(⌫)) + µ(⌫)))

(output iter.)

Table A.20: Summary of Algorithm 2: average case

The main obstacles to a practical application of this methodology are: the

requirements on µ(⌫), as it has to satisfy 0 < µ(⌫)  3⌫
4 , for all ⌫; the asymptotic

behaviour of the algorithm, which is worst than in the straightforward approach;

the need of a continuous oracle update. The main advantages are that µ(⌫) is

now not required to be known, and that the sequence µ(⌫) is not required to

have a limit, when ⌫ ! 1.

Algorithm 3

This alternate algorithm is a variation of the previous one, based on [35],

and it consists in two stages. In the first one, the parameter m increases from 1

to
p
⌫ by a factor of �. In each iteration, Grover’s algorithm is only run once.

When the critical stage is reached (i.e., when m =
p
⌫), the algorithm behaves

exactly as the previous one. Since the algorithm never outputs before reaching

the critical stage, the error probability is bounded as above. The di↵erence

here consists on the number of oracle calls. In the worst case, the algorithm

performs the number of calls of the previous algorithm plus the oracle calls of

the noncritical stage, but this latter number is O (
p
⌫ log(⌫)), since O(log(⌫))

iterations are needed to reach the critical stage. So the overall complexity of

the worst case is O (
p
⌫µ(⌫) log(⌫)).

Again, the average number of queries can be substantially lower than that.

Indeed, from Theorem 3 in [35], when there are t > 0 marked elements to

be found, the average number of oracle queries that our algorithm needs to

perform in order to find one of them is O
�p

⌫
t

�
. Hence, the average number of
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#Step 2 #Iter. to reach #Orac. calls Total #

iterations the critical stage per it. oracle class

µ(⌫) + 1 O (log(⌫)) O (
p
⌫) O (

p
⌫µ(⌫) log(⌫))

(output iter.)

#Step 2 #Iter. in Step 2 #Orac. calls Total # oracle class

iterations (critical stage) per it. class

µ(⌫) + 1 O (log(B(⌫))) O (
p
⌫) O (

p
⌫µ(⌫) log(B(⌫)))

(output iter.)

Table A.21: Summary of Algorithm 3: worst case (noncritical and critical stages)

queries is O
⇣Pµ(⌫)

t=1

p
⌫
t

⌘
+O (

p
⌫ log(⌫))+O (

p
⌫ log(B(⌫))) = O

⇣p
⌫µ(⌫)

⌘
+

O (
p
⌫ log(⌫)) = O

⇣p
⌫(log(⌫) +

p
µ(⌫))

⌘
, because B(⌫) = O(⌫) (see Table

A.22).

#Step 2 iterations #Orac. calls per it. Total # oracle class

t = 1, . . . , µ(⌫)
p

⌫
t O

⇣p
⌫µ(⌫)

⌘

1 (output iter.)
p
⌫ log(⌫) (noncritical) O(

p
⌫ log(⌫))

+
p
⌫ log(B(⌫))

Table A.22: Summary of Algorithm 3: average case

The obstacles to a practical application of this algorithm are mostly the ones

of the previous one. However, although its asymptotic number of calls is never

smaller than the algorithm above, its average number of queries can be better in

practice (this has been observed in simulations) . In fact, even though the worst

case query complexity is worse than that of the first algorithm proposed, the

average number of queries is better when log(⌫)+
p
µ(⌫) is o(

p
µ(⌫) log(µ(⌫))).

Summary of complexities

In Table A.23, we provide a table that summarises the complexities of the

three algorithms that we have proposed.
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Algorithm Worst case Average case

1 O

⇣p
⌫µ(⌫) log(µ(⌫))

⌘
O

⇣p
⌫µ(⌫) log(µ(⌫))

⌘

2 O (
p
⌫µ(⌫) log(B(⌫))) O (

p
⌫(log(B(⌫)) + µ(⌫)))

3 O (
p
⌫µ(⌫) log(⌫)) O

⇣p
⌫(log(⌫) +

p
µ(⌫))

⌘

Table A.23: Summary of query complexities (B(⌫)  3⌫
4 is an upper bound of µ(⌫))

Appendix B. Rationale behind the decision procedure

As mentioned in the text, the decision procedure for the determination of

pairs of close particles consists in two steps. First, look for close particles among

the set of all pairs. Second, look for close particles to a fixed one, when the

positions of particles change (i.e., an update methodology). In each case, any of

the three methods above can be potentially used. Next we explain the rationale

behind our proposal.

First step: look directly for pairs of close particles

In this case ⌫ = N
2, and the required bounds on µ(N2) are always satisfied

when the number of particles is N � 54 (for the first algorithm) or N � 36 (for

the second and third ones), because the characteristics of the physical problem

(see Section 4). However, for smaller sizes of the problem and particularly small

values of µ(N2) the algorithms could still work. The assumption that µ(N2)

has a limit, as N
2 ! 1, is realistic since the density is fixed, namely, the

ratio of number of particles to available space is constant. Therefore, the more

particles we have, the more chances of having pairs of close particles, i.e., it

seems realistic assuming that µ(N2) is non-decreasing, and so it has a limit.

The main obstacle for using the first algorithm is the need of a knowledge of the

actual value of µ(N2). The asymptotic number of oracle calls of each algorithm

is given in Table B.24

Depending on the actual µ(N2), we will have di↵erent complexities. For

instance, it has been noticed in practice that sometimes the number of close

pairs of distinct particles is small in relation to the total number of pairs. This
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Algorithm Worst case Average case

1 O

⇣
N
p
µ(N2) log

�
µ(N2)

�⌘
O

⇣
N
p
µ(N2) log

�
µ(N2)

�⌘

2 O
�
Nµ(N2) log

�
B(N2)

��
O
�
N(log

�
B(N2)

�
+ µ(N2)

�

3 O
�
Nµ(N2) log(N)

�
O

⇣
N(log(N) +

p
µ(N2))

⌘

Table B.24: Query complexities in our particular problem

can be translated as the condition µ(N2) = O(1) (since we do not count the

N pairs of a repeated particle), and so the number of oracle calls, in both the

worst and average cases, is simply O(N) for the first two algorithms (observe

that µ(N2) = O(1) allows B(N2) to be taken as O(1)) and O(N log(N)) for

the third one. In this situation it seems reasonable to expect that the three

algorithms might give accurate outputs even for small values of N .

On the other hand, we might simply assume that µ(N2) = O(N) (because

of the uniform bound on the number of closed particles to a fixed one), and so

the algorithms require queries of the orders given in Table B.25. Notice that,

in this case, algorithm 2 (taking the natural choice B(N2) = O(N)) should be

avoided, and one can choose between algorithm 1 (in a conservative setting,

and if the exact value of µ(N2) is known) and algorithm 3 (if only the average

running time is of interest).

Algorithm Worst case Average case µ(N2), B(N2)

1 O(N) O(N)

2 O(N) O(N) O(1)

3 O(N log(N) O(N logN)

1 O(N
p
N log(N))) O(N

p
N log(N)))

2 O(N2 log(N)) O(N2) O(N)

3 O(N2 log(N)) O(N
p
N))

Table B.25: Query complexities when µ(N
2
), B(N

2
) = O(1), or µ(N

2
), B(N

2
) = O(N)

Second step: fix one particle and look for the close ones
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Here we have ⌫ = N and µ(N)  27. If we want to apply the general

setting, the requirement on the minimum number of particles is the same as

above (N � 54 for the first algorithm and N � 36 for the second and third

ones). Also, for the first method, we need to assume that µ(N) has a limit, as

N ! 1. Again, this assumption is realistic, since the more particles we have,

the more chances of having close particles to a given one, i.e., it seems realistic

assuming that µ(N) is non-decreasing, and so it has a limit. Moreover, in this

situation µ(N) = O(1) always. The need of a knowledge of µ(N) is, as above,

the main obstacle for using the first algorithm.

Application of the general setting yields an asymptotic number of oracle

calls that is O

⇣p
N

⌘
for the first two methods, and O(

p
N log(N)) for the

third one. This number of oracle queries has to be multiplied by the number

of “updated” particles, that we will call ↵(N). There is still another missing

factor that must be taken into account. We know that any of the algorithms

provides a uniform success probability 0 < 1 � w < 1. When we repeat the

algorithm ↵(N) times, the lower bound on the success probability becomes

(1 � w)↵(N), which tends to 0, as ↵(N) tends to infinity. To avoid this, we

can repeat the search method S times for each updated particle, so that the

probability that we do not find all the close pairs is bounded from above by
P↵(N)

i=1 P (fail to find the neighbour list of the i-th particle in all the S repetitions) =

↵(N)wS . Then, if we take S =

⇠
log( ✏

↵(N) )
log(w)

⇡
, which is O(log(↵(N))), we can make

the failure probability less than any given ✏, in particular w. Therefore, the total

amount of oracle calls that we need to consider is O
⇣p

N↵(N) log(↵(N))
⌘
for

the first two algorithms and O

⇣p
N log(N)↵(N) log(↵(N))

⌘
for the third one.

Backtracking

A final question to be addressed is when it would be desirable to retake

the first approach instead of updating with the second approach. This would

happen, for instance, when the number of updated particles, ↵(N), verifies

↵(N) log(↵(N)) � N , but the constants hidden by the O notation can make it

interesting even for smaller ↵(N).
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SUPPLEMENTARY MATERIAL

Results for the Algorithm 2 and Algorithm 3 experiments

In this Appendix, we present the full set of results for the experiments per-

formed with Algorithms 2 and 3. In all the cases, we have consider values

of R ranging from 5 to 70, number of particles 125, 216, 512 and 1000, and

µ = 40, 80, 150. The results are shown in Tables C.26 through C.49. In all the

cases, we present the values of R and the number of times that not all particle

pairs were recovered (“Fails”), together with minimum, maximum, average and

standard deviation of the number of oracle queries.

R Fails Mininum Maximum Average Standard deviation

5 718450 40 7418 2939.6492 1717.0896

10 41249 197 9648 5569.0876 852.5619

15 1505 654 9932 6009.2337 671.0525

20 58 1211 10080 6329.9406 669.5504

25 4 4001 10578 6648.2113 674.7998

30 0 4275 11155 6966.1094 679.7743

35 0 4324 11405 7283.0392 684.7065

40 0 4928 11613 7600.7908 690.3017

45 0 5189 12223 7918.7430 695.0099

50 0 5315 12237 8237.5179 699.4031

55 0 5641 12459 8553.4562 704.2803

60 0 5777 12843 8872.4479 708.3241

65 0 6195 12964 9189.5284 712.8600

70 0 6528 13612 9505.8860 718.6782

Table C.26: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 125 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 2824 386 3712 2228.2688 217.8424

10 67 1165 4018 2548.1559 232.4877

15 1 1813 4630 2866.3376 246.8998

20 0 2027 4928 3183.3695 260.2819

25 0 2322 5271 3500.6617 273.3451

30 0 2597 5657 3818.5138 285.3814

35 0 2701 5959 4136.2548 297.1029

40 0 2964 6127 4453.5569 308.5054

45 0 3190 6810 4770.9495 319.0550

50 0 3463 6904 5088.6793 329.8067

55 0 3823 7400 5405.9980 339.7549

60 0 4015 7586 5723.9451 349.8596

65 0 4329 7833 6040.8812 359.2226

70 0 4647 8415 6358.7057 368.9050

Table C.27: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 125 particles and µ = 40

36

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



R Fails Mininum Maximum Average Standard deviation

5 718628 37 15516 5901.4243 3448.7590

10 41357 503 18982 11181.1341 1714.4627

15 1556 1420 20896 12065.4905 1345.8739

20 54 2051 21332 12711.5539 1341.5124

25 2 6818 21172 13349.2033 1353.0338

30 0 8783 22207 13987.1952 1364.4461

35 0 8966 23816 14624.5805 1373.5282

40 0 9563 22670 15264.0114 1382.1603

45 0 10208 23718 15898.3035 1392.8924

50 0 11040 24741 16537.0394 1403.1162

55 0 11684 25428 17174.2995 1412.9613

60 0 12096 26344 17812.5433 1421.5418

65 0 12830 27214 18450.4361 1431.4450

70 0 13201 28141 19089.2051 1441.6392

Table C.28: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 216 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 2377 898 7689 4825.1556 445.2583

10 59 2104 8534 5466.6574 473.8216

15 3 3780 9491 6103.8121 501.5960

20 0 4255 10959 6742.7040 528.9813

25 0 4824 11518 7379.4405 553.3524

30 0 5463 11685 8016.7392 577.5888

35 0 5995 12124 8654.2270 601.4419

40 0 6501 13166 9292.0317 623.7913

45 0 6944 13961 9930.4703 645.1531

50 0 7375 14465 10567.1632 666.4657

55 0 8018 15225 11204.3752 685.5598

60 0 8800 15461 11840.9150 705.6348

65 0 9069 16568 12478.6143 724.6778

70 0 9830 17082 13115.8680 743.3970

Table C.29: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 216 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 718791 160 30868 11825.2023 6914.3259

10 41221 878 38631 22403.9427 3427.6403

15 1517 2051 40597 24178.9512 2702.7087

20 57 4604 39848 25475.3335 2691.4411

25 1 7201 43896 26750.3906 2707.0025

30 0 17789 43981 28031.4853 2729.6234

35 0 18180 44091 29304.0688 2750.3152

40 0 19496 46887 30585.1129 2770.6149

45 0 20388 48264 31859.0301 2788.2287

50 0 21896 49474 33138.2467 2807.0429

55 0 23460 49567 34416.2805 2826.3657

60 0 24140 50592 35691.7640 2850.4040

65 0 24539 51950 36970.7488 2867.3966

70 0 26362 54432 38242.6094 2887.9825

Table C.30: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 512 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 1923 1910 15753 10145.7909 902.9648

10 44 4633 17451 11432.0083 960.5882

15 3 8536 20316 12710.2747 1015.7321

20 0 8806 22982 13986.8836 1067.2772

25 0 10351 22902 15264.6188 1117.9356

30 0 11131 23273 16540.8108 1166.4377

35 0 12455 25087 17819.0396 1212.3312

40 0 13582 26600 19095.3893 1255.3162

45 0 14479 28519 20374.3377 1298.8724

50 0 14841 28812 21648.2902 1342.0320

55 0 16772 30478 22927.2429 1380.5863

60 0 17651 32652 24205.4284 1419.4951

65 0 18730 34298 25486.3516 1457.7054

70 0 19923 34743 26760.8443 1494.1648

Table C.31: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 512 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 718391 166 63409 23683.5436 13833.8447

10 40895 2324 75457 44862.0495 6874.5329

15 1492 5649 77415 48402.0877 5402.9775

20 72 9992 85992 50994.6734 5381.6955

25 2 20000 84930 53551.7566 5423.7290

30 0 34156 90053 56105.2792 5462.8954

35 0 36937 89677 58674.4402 5503.6964

40 0 38349 91133 61227.9910 5542.4209

45 0 40524 97136 63783.1961 5582.8703

50 0 43766 99471 66336.5767 5621.0076

55 0 46921 101023 68902.9617 5656.8642

60 0 46568 104222 71462.3188 5697.8280

65 0 48738 107966 74008.3424 5741.4485

70 0 54323 109460 76582.4883 5770.1841

Table C.32: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 1000 particles and µ = 40
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41 
42 
43 
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R Fails Mininum Maximum Average Standard deviation

5 1635 4265 31542 20964.4723 1823.0690

10 39 13441 35629 23536.2271 1936.5643

15 0 16590 37738 26093.3338 2046.9211

20 0 19203 43485 28652.9518 2151.9537

25 0 21504 46209 31208.2892 2250.5519

30 0 23149 48898 33770.6442 2342.3008

35 0 24765 49575 36319.7148 2434.8336

40 0 27083 56501 38880.8974 2525.8832

45 0 30029 56789 41439.2587 2609.3545

50 0 31775 58314 43996.7575 2693.1135

55 0 33189 61831 46553.6430 2770.0797

60 0 35264 65534 49114.7834 2850.8926

65 0 38689 67909 51672.2018 2926.7659

70 0 39434 71960 54225.1105 2999.7123

Table C.33: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 1000 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 923296 25 13624 3635.9636 2856.8485

10 80365 279 15537 10336.4948 1842.9808

15 2888 624 16060 11098.5778 983.8430

20 98 1196 16695 11430.6496 942.7164

25 5 3176 17785 11750.7350 945.5938

30 0 8209 17179 12066.4249 948.4360

35 0 8317 17552 12385.7663 952.5189

40 0 8636 17778 12701.6750 956.0423

45 0 8748 17962 13021.0638 958.9156

50 0 9394 18442 13336.8252 963.1836

55 0 9767 19120 13654.1344 967.2429

60 0 9806 19565 13972.2885 970.1708

65 0 10307 19695 14291.1269 972.7903

70 0 10502 19788 14607.5681 976.9584

Table C.34: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 125 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 2862 452 4268 2859.8728 231.2177

10 70 1063 4739 3179.8891 244.7497

15 4 2322 5091 3497.5590 258.2530

20 0 2572 5504 3815.2131 271.0638

25 0 2887 5860 4132.6062 283.2911

30 0 3173 6244 4449.8254 295.0987

35 0 3438 6949 4767.5163 306.8322

40 0 3646 6940 5085.1520 317.8033

45 0 3916 7512 5402.9935 327.4926

50 0 4177 7580 5720.4103 338.1065

55 0 4443 7898 6037.9105 348.5818

60 0 4525 8792 6355.0305 357.9535

65 0 5042 8803 6672.3907 367.2009

70 0 5055 9106 6990.2224 376.5325

Table C.35: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 125 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923535 53 26838 7278.0833 5732.9068

10 80164 466 30978 20764.6058 3686.2588

15 2893 1269 33464 22288.0032 1971.9172

20 98 3378 34485 22956.6472 1888.5995

25 4 6163 33952 23589.5022 1897.7596

30 0 16616 35536 24232.5031 1905.1978

35 0 16131 35181 24866.5963 1909.3065

40 0 18018 36800 25505.5612 1916.9934

45 0 17745 37909 26141.1385 1921.6054

50 0 18943 37610 26782.8205 1929.7497

55 0 19437 37705 27416.0201 1936.2964

60 0 20150 38316 28058.5007 1945.9851

65 0 20475 39788 28694.4024 1955.4758

70 0 20119 40084 29329.3894 1956.2711

Table C.36: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 216 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 2392 1059 9052 6325.5507 474.2337

10 72 2573 10293 6967.4328 500.9015

15 0 5310 11499 7605.0946 527.7988

20 0 5832 11881 8242.9234 552.6728

25 0 6322 13802 8880.8130 577.3092

30 0 6792 13112 9517.5153 600.0381

35 0 7086 14341 10155.0858 621.8501

40 0 7719 14952 10793.2809 644.4091

45 0 8440 15185 11430.6318 664.4279

50 0 8552 15962 12067.8135 685.1698

55 0 9246 16926 12704.4590 703.8530

60 0 9872 17237 13343.4304 723.7423

65 0 10533 17705 13979.7554 743.0180

70 0 10967 18852 14618.0132 760.9026

Table C.37: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 216 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923253 187 52725 14611.2056 11490.1537

10 80134 1061 63761 41596.0359 7411.9602

15 2842 2385 67161 44658.7835 3943.5957

20 108 3890 67044 46001.3135 3790.5698

25 2 10629 68236 47280.9809 3798.1814

30 0 33531 69521 48549.5045 3805.9196

35 0 32346 70270 49839.0316 3822.6188

40 0 34265 71939 51111.6997 3840.7633

45 0 36299 73514 52389.4730 3858.2295

50 0 37650 74989 53670.5450 3874.8880

55 0 39547 76226 54943.0548 3881.4406

60 0 39633 76825 56222.5949 3896.9765

65 0 41269 79521 57496.3640 3908.8121

70 0 42185 80082 58775.9391 3928.2244

Table C.38: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 512 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 1950 2115 19522 13470.1575 961.4043

10 54 4566 20804 14756.1635 1014.3651

15 4 11101 22472 16033.6005 1066.0397

20 0 12368 24762 17312.6776 1117.6257

25 0 12699 26817 18589.4395 1166.2992

30 0 14627 28121 19865.9294 1212.8327

35 0 15245 28624 21143.3044 1254.8767

40 0 16422 29459 22422.5002 1298.9550

45 0 17223 31994 23698.2628 1339.9998

50 0 18717 32834 24978.4924 1380.1082

55 0 19943 33593 26254.1776 1418.1368

60 0 20652 35096 27534.4299 1456.9480

65 0 21862 38463 28808.9218 1493.8088

70 0 23100 38009 30084.4850 1529.7581

Table C.39: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 512 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923323 255 104888 29222.7712 2856.8485

10 79935 2390 129834 83289.8695 1842.9808

15 2916 4740 134464 89407.7511 983.8430

20 88 7803 133875 92074.9924 942.7164

25 2 64634 135505 94648.8913 945.5938

30 0 66544 139891 97211.9290 948.4360

35 0 67639 142266 99766.2836 952.5189

40 0 71193 146028 102337.1896 956.0423

45 0 74491 149917 104881.7774 958.9156

50 0 73612 148087 107438.8263 963.1836

55 0 78205 158620 109989.6281 967.2429

60 0 80210 154721 112540.4592 970.1708

65 0 80626 158723 115106.1941 972.7903

70 0 82811 160788 117668.0933 976.9584

Table C.40: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 1000 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 1738 4574 40682 28031.4885 1945.7548

10 56 11198 43337 30607.4803 2048.0667

15 1 19392 46624 33163.4896 2152.5102

20 0 25475 50528 35718.5258 2251.9494

25 0 27591 54305 38278.1468 2346.4738

30 0 30115 56163 40836.8827 2441.6654

35 0 31025 57841 43394.7480 2526.3774

40 0 33172 61129 45955.3550 2610.1783

45 0 36524 62045 48514.9762 2694.3705

50 0 37159 67122 51068.2165 2774.7045

55 0 39510 69679 53620.3119 2851.4596

60 0 43035 73106 56183.0602 2925.0693

65 0 44113 75208 58741.6703 3003.4321

70 0 46962 76631 61300.5532 3071.1791

Table C.41: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 1000 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 991625 23 22017 3936.0119 3539.2533

10 141155 229 26817 18238.5071 4088.6913

15 5007 694 27105 19945.3744 1482.5957

20 178 1326 27614 20312.2466 1286.8417

25 7 3865 27146 20631.0459 1280.5572

30 1 15250 27272 20950.8806 1286.0155

35 0 15946 28345 21269.7710 1288.2153

40 0 15910 28047 21584.3052 1291.9420

45 0 16573 29365 21901.8913 1293.7654

50 0 16521 29823 22219.7388 1296.2946

55 0 17168 29288 22536.5065 1297.8384

60 0 17380 29745 22856.1961 1301.6468

65 0 17835 29883 23171.8584 1303.7534

70 0 17672 30728 23490.2205 1306.3670

Table C.42: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 125 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 2954 342 5015 3567.7794 241.7000

10 77 1533 5699 3887.7511 254.1947

15 2 2880 5828 4205.6119 267.2645

20 0 3178 6341 4522.7434 280.1169

25 0 3603 6610 4840.4259 292.1643

30 0 3749 7134 5157.9179 303.3228

35 0 3966 7528 5475.1769 314.3134

40 0 4304 7636 5792.8299 324.8783

45 0 4590 8200 6110.0810 335.2959

50 0 4791 8346 6427.4647 345.2632

55 0 5012 8680 6745.1640 354.6144

60 0 5358 9359 7062.6664 364.8543

65 0 5557 9307 7380.1786 373.4239

70 0 5895 9825 7697.6120 382.8709

Table C.43: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 125 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 991606 56 44866 7900.6697 7117.2576

10 140843 609 53792 36621.1976 8220.3127

15 5104 1370 54612 40048.2808 2980.3527

20 181 2722 54079 40784.4320 2579.0162

25 6 18818 54880 41431.0001 2574.3050

30 0 31161 55336 42063.5458 2579.5387

35 0 31338 56721 42704.7072 2586.1462

40 0 32303 57387 43336.8190 2587.6622

45 0 33082 57541 43977.8210 2591.9175

50 0 33625 58658 44618.2815 2599.5720

55 0 34127 59394 45255.0186 2604.8972

60 0 34587 60574 45886.6671 2610.6267

65 0 34515 59675 46530.9800 2616.4212

70 0 35837 61274 47168.8694 2618.2031

Table C.44: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 216 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 2329 937 11030 8095.4643 497.3407

10 58 5365 12306 8737.4271 522.6686

15 1 6995 12657 9375.3278 548.0367

20 0 7495 13782 10012.7649 572.8338

25 0 7965 14121 10650.1500 596.2434

30 0 8176 15215 11287.6006 618.6946

35 0 9106 16204 11925.8409 640.3208

40 0 9565 16007 12562.8546 660.9694

45 0 10093 17563 13199.8430 681.4702

50 0 10632 17767 13837.7113 700.9023

55 0 11348 18398 14475.9172 720.4413

60 0 11748 19119 15114.0568 738.7913

65 0 12333 20315 15748.6789 757.0198

70 0 12957 20667 16386.4846 774.5531

Table C.45: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 216 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 991722 171 87389 15787.1779 14214.6269

10 141218 1133 104564 73370.9227 16477.8624

15 5119 2584 106443 80267.4885 5956.5470

20 191 8396 110829 81734.6673 5176.2931

25 5 18438 112943 83029.7071 5154.9605

30 0 61565 112791 84295.9919 5163.6106

35 0 63555 112327 85583.6788 5176.9628

40 0 64111 113811 86853.8841 5194.6757

45 0 66188 115603 88128.6841 5194.7385

50 0 66729 117867 89402.4787 5205.8579

55 0 67905 117424 90693.6458 5219.0534

60 0 69315 119052 91965.4294 5231.4581

65 0 69658 124526 93241.4550 5240.3562

70 0 72515 124582 94512.2240 5245.4772

Table C.46: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 512 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 1875 3230 23859 17501.6378 1012.9452

10 54 8240 25333 18787.8901 1061.4635

15 2 15497 26884 20064.1490 1112.5338

20 0 15898 28518 21342.7490 1160.4791

25 0 17546 30946 22622.6177 1206.2732

30 0 18106 32741 23897.8824 1249.8472

35 0 19230 32645 25176.4913 1293.0121

40 0 20251 34749 26454.0754 1335.0615

45 0 21517 35411 27730.7457 1376.7511

50 0 22288 37427 29007.4129 1415.1234

55 0 24033 38662 30284.7649 1452.5908

60 0 24633 39454 31562.9967 1489.6124

65 0 26049 42284 32839.0674 1528.9651

70 0 26944 42412 34118.9010 1563.3344

Table C.47: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 512 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 991505 414 180395 31684.0844 28523.4480

10 140787 2180 206019 146916.3709 32947.0996

15 5019 5198 219209 160687.7883 11937.5891

20 147 12020 221281 163628.5918 10357.0073

25 6 36939 227243 166217.6099 10331.6578

30 0 117389 227737 168767.3977 10334.1867

35 0 127876 226940 171312.8985 10360.0652

40 0 129330 228330 173867.6444 10383.3829

45 0 132929 237269 176427.3668 10392.6679

50 0 135468 235256 178971.1799 10419.4715

55 0 139009 233572 181569.7748 10439.0855

60 0 141583 238208 184098.0041 10464.7435

65 0 142251 242487 186666.0778 10483.9050

70 0 142234 245575 189222.6928 10520.2681

Table C.48: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 2 with 1000 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 1673 6193 48431 36746.5779 2044.8347

10 42 30478 53071 39321.0275 2147.6401

15 3 31524 55663 41873.6086 2244.5502

20 0 32971 57502 44433.0812 2337.9566

25 0 35685 62610 46991.5814 2431.9973

30 0 37507 63685 49547.2117 2522.8804

35 0 40071 66778 52107.0978 2607.5169

40 0 40262 69429 54662.2551 2687.0371

45 0 44408 74472 57220.2541 2768.7009

50 0 46548 74999 59780.8423 2842.9850

55 0 48635 78220 62337.2892 2925.5149

60 0 48742 84650 64890.8063 2998.5694

65 0 53761 82784 67451.0666 3066.7362

70 0 55717 86997 70007.5573 3139.5400

Table C.49: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 10
6
repetitions of Algorithm 3 with 1000 particles and µ = 150
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