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Abstract

Let A be an algebra over a field F and let S be a generating set of
A. The length of S indicates the maximal length needed to express an
arbitrary element of A as a linear combination of words in the elements of
S. The length of an algebra A is defined as the maximum of lengths of
its generating sets. In this paper (not necessarily associative) algebras, over
fields of arbitrary characteristic, having length equal to 1 are determined.
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Introduction

In the present paper, we will denote by A a unital (with identity element
1A) not necessarily associative algebra over a field F. Information about
non-associative algebras can be found, for instance, in [16, 19, 21].

Any product of a finite number of elements of a finite subset S ⊂ A is a
word in the letters from S. The length of a word is equal to the number of
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letters different of 1A in the corresponding product. By convention, 1A is a
word in any subset S of length 0.

If S is a generating system of the algebra A, that is, A is the smallest
subalgebra of A containing S, then any element of A can be expressed as a
linear combination of words in elements of S. If we can express all elements
of A using words of length at most k, but we can not use only words of length
at most k − 1, we say that the length of the generating system is k. The
length of a finitely generated algebra A, l(A), is the maximal length of its
finite generating systems.

Notice that the unital algebra A has length equal to 0 if and only if
A = F1A. Otherwise length is a positive integer or infinite.

If A is not unital, we can consider the unital hull of A, Ã = F1A + A,
and clearly l(A) = l(Ã).

A finite-dimensional associative algebra has always finite length and a
finitely generated associative algebra with finite length has finite dimension.
Algebras considered in this paper will be always finite-dimensional.

Guterman and Kudryavtsev in [4, 5] started the study of length of non-
associative algebras. In particular, they showed that any finite-dimensional
non-associative algebra A has finite length, and if dimA = n > 2, then the
length is bounded by l(A) ≤ 2dimA−2.

The length of an algebra is an important invariant for the study of finite-
dimensional algebras. In some sense it measures the multiplicative complex-
ity of the algebra. The knowledge of a universal upper bound for the length
gives the maximal size of products in generators that we need to consider
in order to verify some property. First of all, the length of a subset in a
given algebra determines the complexity of the procedures verifying whether
this set generates the algebra and computing a basis of the algebra from the
generating set. For matrix algebras, properties under consideration include
simultaneous reduction (by similarity) of a set of matrices to a canonical, for
example, (block-)triangular form [3], or unitary similarity [2]. That is, the
length function has applications in computational methods of matrix theory.

Therefore, the study of algebras whose length is close to the minimal
value is of interest. Clearly the minimal non-trivial value of the length is 1.
Matrix algebras of length 1 were described in [13]. The complete classification
of associative algebras of length 1 is also known (see [14]).

A similar question for non-associative algebras had not been addressed
until now, may be because the problem, in a totally general context, seems
somehow wild. It was unclear what kind of tools should be used. In this
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paper we address this question and give a complete description of algebras
of length 1 over an arbitrary field F, mainly using methods of linear algebra
and linearization techniques.

Our main result gives a characterization of algebras of length 1 in terms
of a basis whose multiplication table satisfies some precise conditions.

1. Preliminaries

In order to place the problem in the proper context and to make it easier
to readers we will start with some general definitions and results.

Notation 1.1. Given S ⊆ A, FS (or F(a1, . . . , an), if S = {a1, . . . , an})
denotes the vector space linearly spanned by the elements of S and alg(S)
(or alg(a1, . . . , an), if S = {a1, . . . , an}) will represent the subalgebra of A
generated by S, that is, alg(S) = ∩ B, where B runs over all subalgebras of
A with S ⊆ B.

The set of all words in S with length not greater than i is denoted by S i,

for i ≥ 0 and the set Li(S) stands for FS i. Clearly
⋃
i≥0

Li(S) = alg(S).

Remark 1.2. A subset S ⊂ A is a generating set of A if and only if A =
alg(S).

With these definitions and notations in mind we may now introduce for-
mally the concept of length, both for S and for A, as follows.

Definition 1.3. The length of a finite subset S of A is

l(S) = min {k ∈ Z+ : alg(S) = Lk(S)} .

Definition 1.4. The length of a finitely generated algebra A is

l(A) = max {l(S) : A = alg(S) S finite} .

Given a set S its length evaluation is a standard linear algebraic prob-
lem: the construction of a basis of alg(S). But its computational complexity
comes from the fact that the number of words in each S i grows exponen-
tially. We would like to emphasize that the different behaviour in asso-
ciative and non-associative cases is linked to the different properties of the
sequence {dimLi(S)}, i = 0, 1, . . .. In the associative case this sequence is
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strictly increasing, that is, dimLi(S) < dimLi+1(S), until it stabilizes at
step l(S), that is, Ll(S)(S) = alg(S) and dimLn(S) = dim alg(S) for every
n ≥ l(S). In the non-associative case the sequence {dimLi(S)}, i = 0, 1, . . .
is non-decreasing, that is, dimLi(S) ≤ dimLi+1(S) until it stabilizes. But
in the non-associative case the equality Li(S) = Li+1(S) does not imply that
Li(S) = alg(S). However, for a given n ≥ 1, it is sufficient to have

dimLn(S) = dimLn+1(S) = . . . = dimL2n(S)

to guarantee that the identity dimLn(S) = dimLn+t(S) = dim alg(S) holds
for any t ≥ 1, as it was established in [5, Proposition 2.3]. Consequently, the
equality L1(S) = L2(S) implies that L1(S) = Lt(S) = alg(S) for all t ≥ 2.

Applications of the length function appear, for example, in computational
methods of matrix theory, since the length determines the complexity of
some rational procedures. Al’pin and Ikramov extended the classical Specht
criterion for unitary similarity between two complex n×n matrices to unitary
similarity between two normal matrix sets of cardinality m. In the same way,
the well-known result of Pearcy extending Specht’s theorem can be used as a
finiteness criterion. The complexity of this criterion depends both, on n and
on the length of algebras under their analysis [2, 3].

The problem of computing lengths of the matrix algebra Mn(F), as a
function of the matrix size n, was first addressed by Paz [18] in 1984, and
still remains open. The known bounds are non-linear functions of n, see
[17, 18, 20]. Linear bounds for specific generating sets has been found in
[7–9]. See also references therein.

In the case of arbitrary associative algebras Pappacena [17] provided an
upper bound for the length of any finite-dimensional associative algebra A
as a function of two invariants of A: its dimension and m(A), the maximal
degree of minimal polynomials of elements in the algebra. In [12] a stronger
bound, depending of the same two parameters, was obtained for commutative
algebras. A study of algebraic properties of the length function, namely the
length of the direct sum, can be found in [6].

Let us remember the classification of associative algebras of length 1.

Theorem 1.5 ([14, Theorem 3]). Let F be an arbitrary field and let A be a
finite-dimensional associative unital F-algebra. Then l(A) = 1 if and only if
it is one of the algebras in the following list:

(1) A ∼= F⊕ F;
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(2) A is a field, dimA = 2;

(3) F = F2, A ∼= F⊕ F⊕ F;

(4) dim A/J(A) = 1, J(A) 6= 0, J(A)2 = 0, where J(A) denotes the
Jacobson radical of A;

(5) There exist elements e, f ∈ A such that e2 = e, f 2 = f, ef = fe =
0, e+ f = 1; dim eAe = dim fAf = 1; fAe = 0, eAf 6= 0.

Algebras of different types are not isomorphic. Two algebras B, C of type (4)
(respectively of type (5)) are isomorphic if and only if dim B = dim C.

From now on we will not assume associativity of the considered alge-
bras. Our aim is to determine algebras of length 1, without any additional
assumption.

2. General results

In this section we give some general results about algebras of length 1.
The main result of the section gives a characterization of them that is es-
sential for the rest of results in this paper. Some consequences of this result
are given explicitly. In particular, algebras of length 1 are proved to be
power-associative.

To start, let us remark that l(A) = 1 means that if S is an arbitrary
generating set of A and S̄ = S ∪ {1A}, then S̄ linearly spans A, that is,
A = alg(S) implies A = FS̄. If A is a finitely generated algebra over a field
F and l(A) = 1, then A is finite-dimensional.

Next proposition will play the main role to get our description of algebras
of length 1 in terms of the existence of a basis with a known multiplication
table.

Proposition 2.1. Let A be an F-algebra of dimension n with identity ele-
ment 1A. A has length 1 if and only if ab ∈ F(1A, a, b), for all a, b ∈ A.

Proof. Let A be an F-algebra of length 1. We will prove first that a2 ∈
F(1A, a). If a ∈ F(1A), the result is obvious. Therefore we can assume
w.l.g. that {1A, a} is a linearly independent set, and extend it to a basis
{s1 = a, s2 = 1A, s3, . . . , sn} of A. So a2 = α1a+ α21A + · · ·+ αnsn for some
α1, . . . , αn ∈ F. If a2 /∈ F(1A, a), then there is some αi 6= 0, i > 2. We
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can assume (reordering the basis if needed) that α3 6= 0. This implies that
s3 ∈ alg(s1 = a, s2 = 1A, s4, . . . , sn). Consequently A = alg(S ′) 6= FS ′,
where S ′ = S ′ = S \ {s3}, a contradiction.

If a, b ∈ A, let us consider {1A, a, b}. For {1A, a, b} linearly dependent the
result directly follows from what has been proved above. So we can assume
that {1A, a, b} are linearly independent and extend this set (as we did before)
to a basis {1A, a, b, s4, . . . , sn}. Then ab = λ11A+λ2a+λ3b+λ4s4+ · · ·+λnsn
for some λ1, λ2, λ3, λ4, . . . , λn ∈ F. If there is some λi 6= 0, i ≥ 4 (we
can assume λ4 6= 0), then considering S ′′ = S \ {s4} we have, as before,
A = alg(S ′′) 6= FS ′′, a contradiction.

The converse is clear.

Corollary 2.2. Let A be a finite dimensional algebra with identity element
1A over a field F. If l(A) = 1, then a2 ∈ F(1A, a), for all a ∈ A.

Next results immediately follow from Proposition 2.1.

Corollary 2.3. Every unital algebra of dimension 2 over an arbitrary field
has length 1.

Let us notice that any 2-dimensional unital algebra is associative.
A power-associative algebra over a field F is an algebra in which every

subalgebra generated by a single element is associative. Examples include
associative, Lie, Jordan and alternative algebras.

Since the unital subalgebra generated by an element of an algebra A
with l(A) = 1 has dimension at most 2, it is associative. Now next corollary
immediately follows.

Corollary 2.4. An algebra A of length 1 over a field F is power-associative.

Corollary 2.5. Let B be a subalgebra of a unital finite-dimensional F-algebra
A. If l(A) = 1, then l(B) = 1.

Notice that the above Corollaries 2.2 and 2.5 extend results of Corollary
2.2 and Lemma 2.1 of [13] from associative case.

In general, it is not true that l(B) ≤ l(A) for any B subalgebra of A, even
in the associative case (see [8]).
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3. Characteristic different from 2

In this section we will address the aim of the paper in the case of character-
istic different from 2. So in this section F will denote a field with char(F) 6= 2.

Lemma 3.1. Let A be an F-algebra of dimension n and length 1 with identity
element 1A. Then there is a basis B of A such that b2 ∈ F1A, for every b ∈ B.

Proof. Let {a1 = 1A, a2, . . . , an} be a basis of A. According to Corollary 2.2,
we can write a2i = αi1A+γiai, for some αi, γi ∈ F, for all 2 ≤ i ≤ n. It is easy
to check that the basis B =

{
a1 = 1A, a2 − 1

2
γ21A, . . . , an − 1

2
γn1A

}
satisfies

the required conditions.

Definition 3.2. A basis B = {1A, a2, . . . , an} of a unital algebra A satisfying
that a2i = µi1A for some µi ∈ F, 2 ≤ i ≤ n will be called canonical basis.

Notice that Lemma 3.1 says that an algebra of length 1 has some canonical
basis.

Lemma 3.3. Let A be an F-algebra of length 1 with identity element 1A and
let B = {a1 = 1A, a2, a3, . . . , an} be a canonical basis of A. Then aiaj+ajai ∈
F1A, for every 2 ≤ i 6= j ≤ n.

Proof. Since B is a canonical basis, a2i = µi1A, for some µi ∈ F, 2 ≤ i ≤ n.
By Proposition 2.1, aiaj ∈ F(1A, ai, aj) for every pair of indices i 6= j ∈

{2, . . . , n}. So, there are elements αij, βij, β
∗
ji, αji, βji, β

∗
ij ∈ F, 2 ≤ i < j ≤ n,

such that aiaj = αij1A + βijai + β∗jiaj and ajai = αji1A + βjiaj + β∗ijai.
By Corollary 2.2 we know that for an arbitrary λ ∈ F, (ai + λaj)

2 ∈
F(1A, ai + λaj). Since (ai + λaj)

2 = a2i + λaiaj + λajai + λ2a2j =

= (µi + λ2µj)1A + λ(αij1A + βijai + β∗jiaj) + λ(αji1A + βjiaj + β∗ijai),

we conclude that the coefficient of aj is λ times the coefficient of ai, that is,
λ(β∗ji + βji) = λ2(βij + β∗ij).

Since |F| ≥ 3 and every λ ∈ F is a root of x(β∗ji + βji) = x2(βij + β∗ij),
we conclude that β∗ji + βji = 0 for every distinct i, j ∈ {2, . . . , n}. That is,
aiaj = αij1A + βijai − βjiaj, ajai = αji1A + βjiaj − βijai.

This implies that aiaj +ajai = (αij +αji)1A, and completes the proof.

We will consider first the case dim A = 3, since it behaves in a different
way.
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Proposition 3.4. Let A be a unital F-algebra of dimension 3. If there is a
canonical basis {a1 = 1A, a2, a3} such that a2a3 + a3a2 ∈ F1A then l(A) = 1.

Proof. Let a and b be arbitrary elements of A. If S = {1A, a, b} is a linearly
independent set, then it is a basis of A and so ab ∈ FS = F(1A, a, b).

Otherwise, there are scalars α, β, γ ∈ F, not all of them equal to zero,
such that α1A + βa+ γb = 0.

If γ = 0, then α1A + βa = 0, that is, a ∈ F1A. This implies that
ab ∈ Fb ⊆ F(1A, b).

If γ 6= 0, b ∈ F(1A, a), so ab ∈ F(a, a2). So, in order to prove that
l(A) = 1, we only need to show that a2 ∈ F(1A, a), for every a ∈ A.

Given a = λ11A + λ2a2 + λ3a3 ∈ A, using that B is a canonical basis it
follows that a2 =

= λ1(λ11A+λ2a2+λ3a3)+λ2a2(λ11A+λ2a2+λ3a3)+λ3a3(λ11A+λ2a2+λ3a3)

= 2λ1(λ11A + λ2a2 + λ3a3)− λ211A + λ22a
2
2 + λ23a

2
3 + λ2λ3(a2a3 + a3a2)

= 2λ1a− λ211A + λ22a
2
2 + λ23a

2
3 + λ2λ3(a2a3 + a3a2) ∈ F(1A, a),

since a2a3 + a3a2, a
2
2, a

2
3 ∈ F1A.

Corollary 3.5. Let A be a 3-dimensional F-algebra with identity element
1A. Then l(A) = 1 if and only if there is a canonical basis {a1 = 1A, a2, a3}
of A such that a2a3 + a3a2 ∈ F1A.

Definition 3.6. Let A be a unital F-algebra. A canonical basis of A, B =
{1A, a2, . . . , an} (a2i = µi1A, µi ∈ F) will be called special if there are elements
αij, βi ∈ F, for every 2 ≤ i 6= j ≤ n satisfying aiaj = αij1A + βjai − βiaj.

We have proved in Lemma 3.1 that a unital algebra A of length 1 has
always a canonical basis. Furthermore, Lemma 3.3 gives a way to get a
canonical basis from any basis of A that contains 1A. Next proposition will
show that an arbitrary canonical basis of A is special.

Proposition 3.7. Let A be a unital algebra of length 1. Then an arbitrary
canonical basis B = {1A, a2, . . . , an} is special.

Proof. Assume l(A) = 1. The case dim(A) ≤ 3 is obvious, by Lemma 3.3.
So we will assume dim(A) ≥ 4. Using Lemma 3.3 we know the existence
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of scalars µi, i ∈ {2, . . . , n} and αij, βij for arbitrary distinct indices i, j ∈
{2, . . . , n} such that a2i = µi1A, aiaj = αij1A + βijai − βjiaj.

Consider arbitrary distinct indices i, j, k ∈ {2, . . . , n}. Then for every
µ ∈ F we have

ai(aj + µak) ∈ F(1A, ai, aj + µak).

As we have argued above, from ai(aj + µak) =

= αij1A+βijai−βjiaj +µαik1A+µβikai−µβkiak = α1A+βai +γ(aj +µak),

it follows that the coefficient of ak is equal to µ times the coefficient of aj,
that is, βki = βji, for i, j, k distinct indices. Taking βi = βki for any k 6= i in
{2, . . . , n} we get the result.

We can already prove the main theorem of the paper, that says that
algebras of length 1 are characterized by the existence of an special algebra.

Theorem 3.8. Let A be a unital finite-dimensional F algebra. Then l(A) = 1
if and only if there is a special basis B = {1A, a2, . . . , an} of A.

Proof. We already know the existence of a special basis in any algebra of
length 1, B = {1A, a2, . . . , an} of A. We will keep the notation of Definition
3.6

Take a′, b′ arbitrary elements of A, then there exist λ, µ ∈ F, a, b ∈
F(a2, . . . , an) such that a′ = λ1A + a and b′ = µ1A + b. Therefore,

a′b′ = (λ1A + a)(µ1A + b) = λµ1A + λb+ µa+ ab.

In order to prove that a′b′ ∈ F(1A, a
′, b′), it is sufficient to prove that ab ∈

F(1A, a, b).
So, let a = λ2a2 + · · · + λnan and b = ξ2a2 + · · · + ξnan be arbitrary
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elements of F(a2, . . . , an). Then, there are elements µ1 and µ2 ∈ F such that

ab =
n∑

i,j=2

λiξjaiaj =
n∑

i=2
j 6=i

λiξj(βjai − βiaj) + µ11A

=
n∑

j=2

∑
i 6=j

(βjai)λiξj −
n∑

l=2

∑
h6=l

(βlah)λlξh + µ11A

=
n∑

j=2

βjξj

(∑
i 6=j

λiai

)
−

n∑
l=2

βlλl

(∑
h6=l

ξhah

)
+ µ11A

=
n∑

j=2

βjξj(a− λjaj)−
n∑

l=2

βlλl(b− ξlal) + µ21A

=
n∑

j=2

βjξja−
n∑

j=2

βjξjλjaj −
n∑

l=2

βlλlb+
n∑

l=2

βlλlξlal + µ21A

=

(
n∑

j=2

βjξj

)
a−

(
n∑

j=2

βlλl

)
b+ µ21A ∈ F(1A, a, b),

which completes the proof.

Notice that the previous characterization of unital algebras of length one
easily allows the construction of an algorithm to decide if an arbitrary unital
finite dimensional F-algebra has length one. For that we only need to know
a basis and the corresponding multiplication table and make use of Lemma
3.1, Proposition 3.7 and Theorem 3.8.

So let us assume, without loss of generality, that we know a basis B =
{a1 = 1A, a2, ..., an} of a unital algebra A over F that contains the identity
1A.

The algorithm proceeds as follows:

ALGORITHM

Step 1. For any element ai ∈ B check if a2i ∈ F(1A, ai).

(i) If it fails for some 2 ≤ i ≤ n, then A has length > 1;

(ii) If it is satisfied for any 2 ≤ i ≤ n, then go to Step 2.
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Step 2. Construct, from B, a canonical basis Bc = {b1 = 1A, b2, . . . , bn}
(b2i = µi1A) (we know how to do it by Lemma 3.1).

Step 3. Check if this basis Bc is special, that is, if bibj ∈ F(1A, bi, bj) and
bibj + bjbi ∈ F1A for any 2 ≤ i 6= j ≤ n.

(I) If Bc is special, then l(A) = 1;

(II) If Bc is not special, then l(A) > 1.

Jordan algebras are an important class of non-associative algebras. They
were introduced by P. Jordan, J. von Neumann and E. Wigner to treat with
the formalism of Quantum Mechanics [11]. For results about Jordan algebras
we refer readers to [10], [15] and [21].

Definition 3.9. A Jordan algebra is an algebra A over a field F, char F 6= 2,
satisfying the following 2 identities:

(J.1) xy = yx (commutativity);

(J.2) x2(yx) = (x2y)x (Jordan identity).

Examples of Jordan algebras include the algebra A+, obtained from an
associative algebra A changing the original associative product to the new
product given by x.y = 1

2
(xy+ yx), and A = F1A+V , the Jordan algebra of

a bilinear form, where V is a vector space over F with a symmetric bilinear
form ϕ : V × V → F and the multiplication in A is given by

(α1A + x)(β1A + y) = (αβ + ϕ(x, y))1A + αy + βx,

for all α, β ∈ F and x, y ∈ V .

Theorem 3.10. Let A be a unital algebra with l(A) = 1 and let B =
{1A, a2, . . . , an} be a special basis of A. Then the following conditions are
equivalent:

(1) A is a Jordan algebra;

(2) A is commutative;

(3) αij = αji, βj = 0, for all i 6= j ∈ {2, . . . , n}.

11



Proof. It is clear that (1)⇒ (2).
(2) ⇒ (3). Let A be commutative. Then, for all i 6= j ∈ {2, . . . , n}

aiaj = ajai, that is, βjai − βiaj + αij1A = βiaj − βjai + αji1A. So αij = αji

and βj = 0.
(3) ⇒ (1). If αij = αji and βj = 0, for every i 6= j, then the product

of A with respect to the special basis B = {1A, a2, . . . , an} is given by a2i =
µi1A, aiaj = ajai = αij1A.

Let us denote V = F(a2, . . . , an) and 〈·, ·〉 : V × V → F the symmetric
bilinear form on V given by:

〈ai, ai〉 = µi, 〈ai, aj〉 = 〈aj, ai〉 = αij, if i 6= j.

So A = F1A + V is the Jordan algebra of the bilinear form 〈·, ·〉.

Corollary 3.11. Jordan algebras of a symmetric bilinear form are the only
unital Jordan algebras of length one.

Let us remember that an algebra is called flexible if x(yx) = (xy)x for
every x, y ∈ A. Clearly associative algebras (resp. commutative algebras)
are flexible.

Theorem 3.12. Let A be an algebra of length 1 and let B = {1A, a2, . . . , an}
be an special basis of A. Theorem 3.7. Then A is flexible if and only if the
following conditions are satisfied:

αij = αji, βjµi = βiαij, βhαij + βiαhj = 2βjαih, (F)

for arbitrary distinct i, j, h ∈ {2, . . . , n}.

Proof. If the algebra A is flexible then using the flexible identity and its
linearization we get

ai(ajai) = (aiaj)ai

ai(ajah) + ah(ajai) = (aiaj)ah + (ahaj)ai

for arbitrary i, j, h ∈ {2, . . . , n}.
In particular, taking i, j, h distinct we have:

ai(ajai) = (βiαij − βjµi)1A + (αji + βiβj)ai − βi2aj
(aiaj)ai = (βjµi − βiαij)1A + (αij + βiβj)ai − βi2aj

ai(ajah) + ah(ajai) = (βj(αih + αhi)− βiαhj − βhαji)1A+

+ (αhj + βhβj)ai + (αij + βiβj)ah − 2βiβhaj
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and

(aiaj)ah + (ahaj)ai = (−βj(αih + αhi) + βhαij + βiαhj)1A+

+ (αjh + βhβj)ai + (αji + βiβj)ah − 2βiβhaj

So A flexible implies:

βiαij − βjµi = βjµi − βiαji

αji + βiβj = αij + βiβj

βj(αih + αhi)− βiαhj − βhαji = −βj(αih + αhi) + βhαij + βiαhj

that is αij = αji, βjµi = βiαji and βhαij + βiαhj = 2βjαih for any distinct
i, j, h ∈ {2, 3, . . . , n}.

Conversely, let us assume thatA has an special basis B = {1A = a1, a2, . . . , an}
with a multiplication table:

a2i = µi1A, aiaj = αij1A + βjai − βiaj

satisfying the identities (F). In order to prove that A is flexible we have to
prove that ai(ajah)+ah(ajai) = (aiaj)ah+(ahaj)ai for any i, j, h ∈ {2, . . . , n}.

The proof of the previous implication shows that this is true if i, j, h are
distinct or if i = h 6= j.

When i = j = h the result is trivial since ai.ai
2 = ai

2.ai = µiai.
If i = j 6= h, then ai(aiah) + ah.ai

2 = ai
2.ah + (ahai)ai since

ah.ai
2 = ai

2.ah = µiah

and

ai(aiah) = (βhµi − βiαih)1A + (αih − βiβh)ai + β2
i ah

= (αih − βiβh)ai + β2
i ah

(ahai)ai = (βiαhi − βhµi)1A + β2
i ah + (αhi − βiβh)ai

= ai(aiah)

using the identities (F).
The remaining case, i 6= j = h is similar to the previous one.

Let us notice that the proof of Theorem 3.12 shows that we can take any
special basis of A (l(A) = 1) to check if A is flexible.
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Theorem 3.13. Let A be an F-algebra with 1A and l(A) = 1. Let B =
{1A = a1, a2, . . . , an} be an special basis of A. Then A is associative if and
only if the following conditions are satisfied:

(A1) µi = β2
i , for every i ∈ {2, . . . , n};

(A2) αij = βjβi = αji, for all i 6= j ∈ {2, . . . , n}.

Proof. Let us assume that A is associative. By simplicity, we will consider
first the case dim A = 3. Then A is associative if and only if ai(ajak) =
(aiaj)ak for every {i, j, k} ⊆ {2, 3}. By symmetry we only need to consider
the identities: a2(a2a3) = a22a3 and a2(a3a2) = (a2a3)a2. But a22a3 = µ2a3
and

a2(a2a3) = a2(α231A + β3a2 − β2a3)
= α23a2 + β3µ21A − β2(α231A + β3a2 − β2a3)
= (β3µ2 − β2α23)1A + (α23 − β2β3)a2 + β2

2a3.

So associativity of A implies 0 = β3µ2 − β2α23, α23 = β2β3, µ2 = β2
2 ,

and the first identity follows from the other two: β3µ2 = β3β
2
2 = α23β2.

Consequently associativity of A implies (by symmetry) α23 = α32 = β2β3
and µ2 = β2

2 , µ3 = β2
3 .

Conversely, if the previous identities are satisfied then a2(a2a3) = a22a3
and a3(a3a2) = a23a2. We only need to check that a2(a3a2) = (a2a3)a2 and
a3(a2a3) = (a3a2)a3. This follows immediately from previous result, since
our conditions guarantee that the algebra A is flexible.

So conditions (A1) + (A2) imply associativity of A when dim A = 3.
Now let us consider the general case. If A is associative, dim A = n,

l(A) = 1 and {1A, a2, . . . , an} is an special basis of A, then for all i 6= j ∈
{2, . . . , n} the algebra F(1A, ai, aj) is 3-dimensional and associative. As we
have just seen, this implies that αij = αji = βjβi and µi = β2

i .
Conversely, let us assume that αij = αji = βjβi, for all i 6= j ∈ {2, . . . , n},

and µi = β2
i for any i ∈ {2, . . . , n}. So for any i 6= j in {2, . . . , n} we already

know, using the 3-dimensional case studied above, that ai(akaj) = (aiak)aj
and aj(akai) = (ajak)ai, when k = i or j. Now suppose that i, j, k are 3
distinct elements in {2, . . . , n}. We need to prove that (aiaj)ak = ai(ajak) in
order to get associativity.
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(aiaj)ak = (αij1A + βjai − βiaj)ak
= αijak + βj(αik1A + βkai − βiak)− βi(αjk1A + βkaj − βjak)

= (βjαik − βiαjk)1A + βjβkai − βiβkaj + (αij − βiβj + βiβj)ak

= (βjβiβk − βiβjβk)1A + αjkai − αikaj + αijak

= αjkai − αikaj + αijak.

In the same way

ai(ajak) = αjkai − αikaj + αijak.

So the algebra A is associative.

Remark 3.14. Theorem 3.13 allows to get examples of unital algebras of
length 1 that are not associative. For instance, the algebra F(1A, a, b) with
the product given by a2 = 0, b2 = b, ab = 2(1A) + a + b, ba = −a − b is
non-associative and has length equal to 1.

4. Characteristic 2

In this section we will address the case of characteristic 2. So F will
denote an extension of the field of two elements F2. We will study first, in a
separate way, the case of dimension 3 that behaves in a different way.

In what follows, given a, b arbitrary elements of A, we denote by a ≡
b (mod 1A) (or simply by a ≡ b) if and only if a− b ∈ F1A.

Lemma 4.1. Let A be a unital 3-dimensional F-algebra and {b1 = 1A, b2, b3}
an arbitrary basis of A. Then l(A) = 1 implies that the multiplication table
of A satisfies the following conditions:

b22 ≡ δ2b2, b23 ≡ δ3b3,

b2b3 ≡ β2b2 + β∗3b3, b3b2 ≡β3b3 + β∗2b2, (C2)

where δ2, β2, β
∗
2 , δ3, β3, β

∗
3 ∈ F, and β2 + β∗2 + δ2 = β3 + β∗3 + δ3.

Proof. Suppose that l(A) = 1. By Proposition 2.1, there exist β2, β
∗
3 , β3, β

∗
2 ∈

F such that b2b3 ≡ β2b2 + β∗3b3 and b3b2 ≡ β3b3 + β∗2b2.
By Corollary 2.2, there exist δ2, δ3 ∈ F such that b22 ≡ δ2b2, b

2
3 ≡ δ3b3.
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Corollary 2.2 also gives that

(b2 + b3)
2 = b22 + b2b3 + b3b2 + b23 ≡ δ2b2 + β2b2 + β∗3b3 + β3b3 + β∗2b2 + δ3b3

∈ F2(1A, b2 + b3), which implies β∗3 + β3 + δ3 = β2 + β∗2 + δ2.

Theorem 4.2. Let A be a unital F2-algebra of dimension 3. Then l(A) = 1
if and only if there is a basis B = {a1 = 1A, a2, a3} whose multiplication table
satisfies one of the following 3 conditions:

1. a22 ≡ 0, a23 ≡ 0, a2a3 ≡ 0, a3a2 ≡ 0;

2. a22 ≡ a2, a23 ≡ a3, a2a3 ≡ 0, a3a2 ≡ 0;

3. a22 ≡ 0, a23 ≡ a3, a2a3 ≡ 0, a3a2 ≡ a3.

Proof. Let {1A = b1, b2, b3} be an arbitrary basis of A. If l(A) = 1, then
b2 ∈ F(1A, b) for any b ∈ A. So b2 ≡ 0 or b2 ≡ b. (Notice that 12

A ≡ 0 and
12
A ≡ 1A and it is the only nonzero element that satisfies both conditions).

We will distinguish 3 cases.
Case 1: For every a ∈ A, a2 ≡ 0.
Using Lemma 4.1 we know that there are elements β2, β

∗
2 , β3, β

∗
3 ∈ F2

(notice that δ2 = δ3 = 0) such that b2b3 ≡ β2b2 +β∗2b3, b3b2 ≡ β3b3 +β∗2b2 and
β2 + β∗2 = β3 + β∗3 . Then b2b3 + b3b2 ≡ (β3 + β∗3)b3 + (β2 + β∗2)b2 = β(b2 + b3),
where β = β2+β∗2 = β3+β∗3 . But (b2+b3)

2 ≡ 0 by our assumption, so β = 0.
Then β2 = β∗2 , β3 = β∗3 and so b2b3 ≡ β2b2 + β3b3 ≡ b3b2 and b2b3 + b3b2 ≡ 0.

Taking the basis B1 = {a1 = 1A, a2 = β31A + b2, a3 = β21A + b3} the mul-
tiplication table satisfies a22 ≡ 0, a23 ≡ 0, a2a3 ≡ β3b3 + β2b2 + b2b3 = 0 and
a3a2 ≡ 0.

Case 2. For every a 6≡ 0, a2 ≡ a.
Again Lemma 4.1 implies that there are elements β2, β

∗
2 , β3, β

∗
3 ∈ F2 (no-

tice that δ2 = δ3 = 1) such that β2 + β∗2 = β3 + β∗3 , b22 ≡ b2, b
2
3 ≡ b3,

b2b3 ≡ β2b2 + β∗3b3, b3b2 ≡ β3b3 + β∗2b2.
So b2b3 + b3b2 ≡ (β2 + β∗2)b2 + (β3 + β∗3)b3 = β(b2 + b3), where β =

β2 + β∗2 = β3 + β∗3 . But our assumption implies that (b2 + b3)
2 ≡ b2 + b3 and

(b2 + b3)
2 = b22 + b2b3 + b3b2 + b23 ≡ b2 + b3 + β(b2 + b3).

So β = 0 and β2 = β∗2 , β3 = β∗3 .
That is, the multiplication table is b2b3 ≡ β2b2 + β3b3 ≡ b3b2.
Take a2 = β31A+b2, a3 = β21A+b3 as before. Then B2 = {a1 = 1A, a2, a3}

is a basis of A, a22 ≡ β3b2 + β3b2 + b22 ≡ b2 ≡ a2, a
2
3 ≡ a3, a2a3 = a3a2 ≡

β3b3 + β2b2 + b2b3 ≡ 0.
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Case 3. There are elements b2 6≡ 0, b3 6≡ 0 such that b22 ≡ 0, b23 ≡ b3.
Then {1A, b2, b3} is a basis of A. Again, using Lemma 4.1 we know that there
are elements β2, β

∗
2 , β3, β

∗
3 ∈ F2 (δ2 = 0, δ3 = 1) such that b2b3 ≡ β2b2 + β∗3b3,

b3b2 = β3b3 + β∗2b2, β2 + β∗2 = β3 + β∗3 + 1. If β2 + β∗2 = 0, then β2 = β∗2 ,
β3 = β∗3 + 1. So b2b3 + b3b2 = β2b2 + (β3 + 1)b3 + β3b3 + β2b2 = b3.

Taking a2 = (β3 + 1)1A + b2, a3 = β21A + b3, B3 = {a1 = 1A, a2, a3} is a
basis of A, a22 ≡ b22 ≡ 0, a23 ≡ b23 ≡ b3 ≡ a3,

a2a3 = (β3 + 1)b3 + β2b2 + β2b2 + (β3 + 1)b3 ≡ 0,

a3a2 ≡ β2b2 + (β3 + 1)b3 + β3b3 + β2b2 = b3 ≡ a3.

Clearly algebras satisfying two different conditions are not isomorphic.
For the converse notice that F2-algebras satisfying one of the 3 conditions

above satisfy also (C2).
So it suffices to prove that if an algebra A over F2 has a basis that satisfies

condition (C2) then the algebra has length 1.
Let {a1 = 1A, a2, a3} be a basis of A with the indicated multiplication

table. In order to prove that l(A) = 1 we only need to prove that for
arbitrary elements a = λ2a2+λ3a3, b = µ2a2+µ3a3 in F2(a2, a3), the product
ab ∈ F2(1A, a, b).

The result is clear if at least one of the elements (a or b) is equal to 0. So
we can assume that a, b ∈ {a2, a3, a2 + a3}.

Again the result is clear if a = b since we have proved in the first implica-
tion that (a2 +a3)

2 ∈ F2(1A, a2 +a3) if and only if β∗3 +β3 +δ3 = β2 +β∗2 +δ2.
The case a = a2, b = a3 is given directly by the conditions and the case

a = a2, b = a2 + a3 (similarly a = a3, b = a2 + a3) is clear, since

ab = a2(a2 + a3) ≡ δ2a2 + β2a2 + β∗3a3 = (δ2 + β2 + β∗3)a2 + β∗3(a2 + a3),

that is, a2(a2 + a3) ∈ F2(1A, a2, a2 + a3).

Remark 4.3. Notice that the algebra F2 ⊕ F2 ⊕ F2 that appears mentioned
in Theorem 1.5 as one associative algebra of length 1 appears here as one of
the algebras of type 2.

Theorem 4.4. Let F be a proper extension of F2 and A a unital F-algebra of
dimension 3. Then l(A) = 1 if and only if there is a basis B = {a1 = 1A, a2, a3}
of A whose multiplication table satisfies the following conditions:

(i) a22 ≡ δ2a2, a
2
3 ≡ δ3a3, δ2, δ3 ∈ F2;

17



(ii) a2a3 ≡ β2a2 + β∗3a3, a3a2 ≡ β3a3 + β∗2a2, β2, β∗2 , β3, β∗3 ∈ F and
β2 + β∗2 + δ3 = 0 = β3 + β∗3 + δ2.

Proof. Assume that l(A) = 1. Take {b1 = 1A, b2, b3} a basis of A. By Corol-
lary 2.2 we know that b2i ≡ γibi, i = 2, 3, for some γi ∈ F. If γi 6= 0, taking
ai = γ−1i bi, we get a basis B = {1A, a2, a3} of A satisfying that a22 ≡ δ2a2 and
a23 ≡ δ3a3, δi = 0 or 1, that is, δ2, δ3 ∈ F2.

Furthermore, a2a3 ≡ β2a2 + β∗3a3, and a3a2 ≡ β3a3 + β∗2a2 for some
β2, β3, β

∗
2 , β

∗
3 ∈ F, by Proposition 2.1.

Corollary 2.2 implies that, for all λ ∈ F,

(a2 +λa3)
2 ≡ δ2a2 +λ(β2a2 +β∗3a3 +β3a3 +β∗2a2) +λ2δ3a3 ∈ F(1A, a2 +λa3).

This implies that λ(δ2 + λβ2 + λβ∗2) = λβ∗3 + λβ3 + λ2δ3, that is, λ(β∗3 +
β3 + δ2) = λ2(β2 + β∗2 + δ3).

Since |F| ≥ 4, we can conclude that β∗3 + β3 + δ2 = 0 = β2 + β∗2 + δ3.
Conversely, let us assume the existence of a basis whose multiplication

table satisfies the conditions (i) and (ii), as described in the theorem. By
Proposition 2.1 we only need to prove that for arbitrary elements a, b of
A, ab ∈ F(1A, a, b). Since this claim is obviously true when {1A, a, b} is a
basis, we only have to consider the case in which the 3 elements are linearly
dependent, what reduces to prove that, for an arbitrary element a ∈ A the
element a2 ∈ F(1A, a). Since every element a ∈ A can be expressed as
a = µ1A + a′, where a′ ∈ F(a2, a3), and a2 = µ21A + a′2, the claim is true for
any a ∈ F(1A, a2, a3) if and only if it is true for any a′ ∈ F(a2, a3). So, let us
assume that a = λ2a2+λ3a3. First of all notice that a2a3+a3a2 ≡ δ3a2+δ2a3.
Then

a2 = λ22a
2
2 + λ2λ3(a2a3 + a3a2) + λ23a

2
3 ≡ λ22δ2a2 + λ2λ3(δ2a3 + δ3a2) + λ23δ3a3.

If δ2 = δ3 = δ, we get a2 ≡ (λ22 + λ2λ3)δa2 + (λ2λ3 + λ23)δa3, that is,

a2 ≡ (λ2 + λ3)δ(λ2a2 + λ3a3),

what proves the result in this case.
When δ2 6= δ3, we can assume, without loss of generality, that δ2 = 1

and δ3 = 0. So a2 ≡ λ22a2 + λ2λ3a3 = λ2a, what finishes the proof of the
theorem.

Corollary 4.5. Let F be a proper extension of F2 and A a unital F-algebra of
dimension 3. Then l(A) = 1 if and only if there is a basis B∗ = {a∗1 = 1A, a

∗
2, a
∗
3}

whose multiplication table satisfies one of the following 3 conditions:
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1. a∗2
2 ≡ 0, a∗3

2 ≡ 0, a∗2a
∗
3 ≡ 0, a∗3a

∗
2 ≡ 0;

2. a∗2
2 ≡ a∗2, a

∗
3
2 ≡ a∗3, a

∗
2a
∗
3 ≡ a∗3, a

∗
3a
∗
2 ≡ a∗2;

3. a∗2
2 ≡ 0, a∗3

2 ≡ a∗3, a
∗
2a
∗
3 ≡ 0, a∗3a

∗
2 ≡ a∗3.

Proof. By Theorem 4.4 we know that if A is an algebra of length 1 then
there is a basis B = {a1 = 1A, a2, a3} with a multiplication table given by

a22 ≡ δ2a2, a23 ≡ δ3a3

a2a3 ≡ β2a2 + β∗3a3, a3a2 ≡β3a3 + β∗2a2,

where δ2, β2, β
∗
2 , δ3, β3, β

∗
3 ∈ F, and β2 + β∗2 + δ3 = 0 = β3 + β∗3 + δ2.

We will distinguish 3 cases, when both δ2 and δ3 are either 0 or 1 and
when one of them is 0 and the other is 1.

Case 1. If δ2 = δ3 = 0, b22 ≡ 0, b23 ≡ 0, β2 + β∗2 = 0 = β3 + β∗3 , then
β2 = β∗2 , β3 = β∗3 , then a2a3 ≡ β2a2 + β3a3 ≡ a3a2, then a2a3 + a3a2 ≡ 0.

Taking a∗2 = β31A + a2, a
∗
3 = β21A + a3, the basis B∗1 = {a∗1 = 1A, a

∗
2, a
∗
3}

satisfies condition 1.
Case 2. If δ2 = δ3 = 1, a22 ≡ a2, a

2
3 ≡ a3, β

∗
2 = β2 + 1, β∗3 = β3 + 1, then

a2a3 ≡ β2a2 + (β3 + 1)a3, a3a2 ≡ (β2 + 1)a2 + β3a3.
Consider the basis B∗2 = {a∗1 = 1A, a

∗
2 = a2 + β31A, a

∗
3 = a3 + β21A}. It

satisfies condition 2.
Case 3. If δ2 = 0, δ3 = 1, then β∗2 = β2 + 1, β∗3 = β3. So a22 ≡ 0, a23 ≡ 1,

a2a3 = β2a2 + β3a3, a3a2 = β2a2 + (β3 + 1)a3. Take a∗2 = a2 + β31A and
a∗3 = a3 + β21A. Then the basis B∗3 = {a∗1 = 1A, a

∗
2, a
∗
3} satisfies condition

3.

Finally we will address the case of dimension greater than 3.

Theorem 4.6. Let F be a field of characteristic 2 and A an F-algebra
with dim A ≥ 4. Then l(A) = 1 if and only if there is a basis B∗ =
{a∗1 = 1A, a

∗
2, . . . , a

∗
n} of A whose multiplication table satisfies one of the fol-

lowing two conditions:

(I) a∗i
2 ≡ 0, for i = 2, . . . , n, a∗i a

∗
j ≡ a∗ja

∗
i ≡ βija

∗
i + βjia

∗
j ,

(II) a∗i
2 ≡ a∗i , for i = 2, . . . , n, a∗i a

∗
j ≡ βija

∗
i + (1 + βji)a

∗
j .

Notice that in the last case a∗i a
∗
j + a∗ja

∗
i ≡ a∗i + a∗j .
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Proof. Assume l(A) = 1 and consider {1A, b2, . . . , bn} a basis of A. Then
b2i ≡ δibi, for some δi ∈ F, 2 ≤ i ≤ n, by Corollary 2.2.

Arguing as in Theorem 4.4, we can assume that δi ∈ {0, 1}, for all 2 ≤
i ≤ n.

Furthermore, by Proposition 2.1, bibj ∈ F(1A, bi, bj), for all 2 ≤ i 6= j ≤ n.
So bibj ≡ βijbi + β∗jibj, for some βij, β

∗
ji ∈ F. Using again Proposition 2.1, we

know that for all distinct i, j, k ∈ {2, . . . , n}, the following conditions hold:

(i) bi(bj +bk) ≡ βijbi+β
∗
jibj +βikbi+β

∗
kibk ∈ F(1A, bi, bj +bk), which implies

β∗ji = β∗ki. Let us define β∗i = β∗ji for any j 6= i ∈ {2, . . . , n};

(ii) (bj +bk)bi ≡ βjibj +β∗ijbi+βkibk+β∗ikbi ∈ F(1A, bj +bk, bi), which implies
βji = βki. Let us define βi = βji for any j 6= i ∈ {2, . . . , n};

(iii) (bi + bj)(bi + bk) ≡ δibi + βkbi + β∗i bk + βibj + β∗j bi + βkbj + β∗j bk ∈
F(1A, bi + bj, bi + bk) which implies δi + βk + β∗j = βi + βk + β∗i + β∗j .
Then, by (i) and (ii), we can conclude that βi + β∗i = δi.

Therefore, bibj ≡ βjbi + (βi + δi)bj and bjbi ≡ βibj + (βj + δj)bi, for all
i, j ∈ {2, . . . , n} such that i 6= j.

Claim. We can assume that δ2 = · · · = δn.
Indeed, if either all scalars are 0 or all scalars are 1, there is nothing to

prove. Suppose that r − 1 scalars are 0 and n − r are 1. Without loss of
generality (reordering elements), we can assume that δ2 = · · · = δr = 0 and
δr+1 = · · · = δn = 1.

Observe that

(bs + br+1)
2 ≡ δsbs + βr+1bs + β∗sbr+1 + βsbr+1 + β∗r+1bs + δr+1br+1

= (βr+1 + β∗r+1)bs + (βs + β∗s + 1)br+1 = δr+1bs + (δs + 1)br+1 = bs + br+1,

for all 2 ≤ s ≤ r.
Thus, B = {1A, a2 = b2 + br+1, . . . , ar = br + br+1, ar+1 = br+1, . . . , an = bn}

is a basis of A such that a2i ≡ ai.
In any case, we can consider a basis B∗ = {a∗1 = 1A, a

∗
2, . . . , a

∗
n} of A such

that a∗i
2 ≡ δa∗i , for all 2 ≤ i ≤ n, where δ ∈ {0, 1}. Clearly, δ = 0 gives

statement (1), and δ = 1 gives statement (2).
Conversely, suppose that there is a basis B∗ = {a∗1 = 1A, a

∗
2, . . . , a

∗
n} that

satisfies either (I) or (II). Let a = λ11A+· · ·+λnan∗ and b = γ11A+· · ·+γna∗n
be arbitrary elements of A. Then
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Case 1: If a∗i
2 ≡ 0, for i = 2, . . . , n, a∗i a

∗
j ≡ a∗ja

∗
i ≡ βja

∗
i + βia

∗
j , for all

i 6= j = 2, . . . , n, then

ab ≡ (γ2β2 + · · ·+ γnβn)a+ (λ2β2 + · · ·+ λnβn)b ∈ F(1A, a, b).

Case 2: If a∗i
2 ≡ a∗i , for i = 2, . . . , n, a∗i a

∗
j ≡ βjai + (1 + βi)aj, for all

i 6= j = 2, . . . , n, then

ab ≡ (γ2β2 + · · ·+ γnβn)a+ (λ2 + · · ·+λn +λ2β2 + · · ·+λnβn)b ∈ F(1A, a, b).

In both cases, we can conclude that l(A) = 1, by Proposition 2.1, which
completes our proof.

Remark 4.7. If a = λ11A + λ2a2 + · · ·+ λnan is an arbitrary element of an
algebra A satisfying Theorem 4.6 (I) then a2 ≡ 0. Similarly, if A satisfies
Theorem 4.6 (II) then a2 ≡ (λ2 + · · · + λn)a. So Theorem 4.6 is a kind
of classification theorem in the line of Theorem 1.5. The same applies to
Theorem 4.2 and Corollary 4.5.

Conclusion

We have given a complete characterization of algebras of length 1, without
additional conditions neither on the algebra nor on the characteristic of the
field.

In case of characteristic 2 we have obtained a kind of classification similar
to the one obtained in the associative case (see Theorem 1.5).

In case of char(F) 6= 2, our result characterizes algebras of length one
through the existence of a particular basis (an special basis). Of course there
are classification problems that remain opened and that probably only could
be addressed under additional conditions on the algebra.

However our result allows the construction of an easy algorithm to decide
if a given algebra, with some known basis and the corresponding multiplica-
tion table, has length one.
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