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Big data environments have become a standard solution in most public and
private corporations since they allow the acquisition and processing of mas-
sive volumes of heterogeneous data, and also, act as enablers to extract useful
information and insights from this data to optimize internal and external oper-
ations in these businesses. As big data tools evolve and become commodities,
their democratization process helped promote new industries, business mod-
els, companies, and all sorts of new features to improve our way of life. On
the other hand, the demand for flexible and powerful privacy schemes for big
data has also increased, and it is now an active area of research, with different
approaches to the initial problem being taken until now. In this document, we
will review some of the most notorious ones, such as trying to preserve various
mathematical properties in ciphertexts or using neural network-based solutions
for different parts of the encryption process, allowing interesting features in the
cryptographic scheme by construction. Privacy individual and social concerns
of potential misuses of big data, as the primary root cause for this demand, also
pose an opportunity for Cryptography to propose adaptation of standard solu-
tions, as well as new, tailored ones for these environments. The latter should
allow the proposals to tackle the specific needs of each individual big data appli-
cation while addressing privacy issues in a standardized way. Finally, though
it is usually considered that cryptographic schemes for big data environments
are inherently resource intensive by construction, it can be seen that there are
clear opportunities for efficiency improvements in current solutions for differ-
ent tasks that do not require complex algorithms to be applied over encrypted
space. In this document, we discuss and evaluate potential improvements in
some cryptographic schemes for various tasks of different nature, considering
the implications over big data setups, and deriving some open questions and
possible research directions on different fields of interest.
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1 | INTRODUCTION

It is widely acknowledged that the number of areas in which technology is present every day has greatly increased in
the last decades at an impressive pace, and it is expected to continue growing in the next years toward regular aspects of
human life.! If it can easily be seen that the ubiquitous presence of these technologies provide numerous advantages for
society, businesses, and individuals, it also poses a number of challenges difficult to tackle. Among those, there has been
a recent serious social concern in individual privacy and security ones.?*

It is specially noticeable the paradigm shift in the area of big data applications, where the amount of data collected
and operated by businesses has greatly increased from very heterogeneous sources,! as the diagram in Figure 1 outlines.
Classic solutions for processing data and protecting it have been tried to be adapted to overcome the challenges posed by
this shift, with different outcomes.>"’

New challenges can arise though, such as the need for data querying, processing and modeling techniques (eg, machine
learning (ML) algorithms) to be applied over encrypted spaces rather than plaintext ones for enforcing privacy of subjects
behind the data.>!! Implications from these challenges can be derived from the fact that standard current techniques
make use of linear algebra for their operations, and therefore encrypted spaces must preserve the necessary mathe-
matical space properties in each task considered so that the corresponding current technique can be also applied over
ciphertexts.®11:12

Nonetheless, though it is widely believed that cryptographic solutions for big data environments do not pose serious
challenges over complexity, which is commonly taken as potentially large enough for any proposed implementation, the
trade-off between security and complexity can be shown that it is still important,®!3 and most common applications in
big data do not have the aforementioned specific needs, and cryptographic proposals can adapt their complexity without
generally reducing security bounds, improving their usability and applicability accordingly.

The rest of this paper is distributed as follows. Section 2 reviews some of the state-of-art solutions in privacy preserving
encryption (PPE) family of schemes, focusing on the solutions specially tailored to big data needs and characteristics, such
as order-preserving encryption (OPE), or fully homomorphic encryption (FHE) schemes. Section 3 surveys the state-of-art
in neural cryptography, where it is specially noticeable the recent advances in the subfield of adversarial neural computing.
On the other hand, Section 4 describes the experimental work to compare the practical implications of some cryptographic
schemes being applied over several datasets of different size and provide some insights on how these implications could
be extrapolated to big data environments. Finally, Section 5 summarizes some conclusions from the work and outlines
some possible future lines of research.

FIGURE 1 A myriad of services now contribute to the massive

data volumes currently gathered
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2 | PROPERTY PRESERVING ENCRYPTION

One of the most widely accepted advantages of big data tools is the ability to customize them and adapt their workflow to
best suit specific needs of each individual application. The same expectation could apply to the cryptographic schemes that
aim to preserve the security and privacy of the implemented solutions. In practice, tailoring the cryptographic solution to
the big data end task means accounting for the algorithm, or family of algorithms, to be applied over the data to extract
the desired information. Applying different ML techniques or performing searches over the data can be two examples of
these algorithms.

Many techniques, including those cited previously, apply linear algebra to get a suitable result. For that reason, the
application of the same algorithms over encrypted data, and obtaining the same result as in the plaintext one, pose the
need for specific mathematical properties to be preserved in both spaces.

Property Preserving Encryption'* refers a family of encryption schemes in which the encrypted data preserve a specific
property in the encrypted space. Some examples of mathematical properties preserved could be equality,!®> numerical
ordering,'®!7 (in the following section, OPE schemes will be analyzed in detail), or a specific operation (eg, addition,
multiplication).!81?

In PPE proposals, system security is aimed to be preserved in the same way as other cryptographic schemes, but by
preserving a certain mathematical property of interest, some other algorithms can be applied over encrypted space and
therefore preserve privacy of subjects in the dataset.!* Nonetheless, security assessment of PPE solutions must include
the analysis of implications of information leaking to potential attackers, at least any leakage from the preserved property
by design.2%-2!

On the other hand, there are also active research efforts to broaden the scope of conditions in which security analysis
is to be performed.?? They usually show that current proposals can only be applied over the restrictive conditions for
which they were initially designed, but generalizations usually come at the cost of lowering security bounds and proofs
accordingly.??

2.1 | Order-preserving encryption

One of the most widespread applications of big data tools is the democratization of querying tools over larger volumes of
data. This application generalizes previous technical systems that were constrained on the amount of information they
were capable to handle. Therefore, a direct adaptation to big data environments pose the need to preserve ordering of
samples if an encryption scheme is to be used for this task.

An OPE scheme!!7 is one that provided [x] is the encrypted version of x, then for all possible x and y,

[x] > [y]iff x > y. €))

OPE schemes are based on ONE-WAYNESS theorem,?? with two different definitions:

- (r,2)-WOW (Window One-Wayness)?3: it states that no adversary, given z uniformly randomly selected cipher-
texts, is able to limit at least one of the underlying plaintexts to an interval of range r.

- (r,2)-WDOW (Window Distance* One-Wayness)?*: no adversary, given z uniformly randomly selected cipher-
texts, is able to find an interval of range r in which the distance of any pair of plaintexts lies.

The definitions earlier are important since, in a regular database setting, the size for which an attacker could breach the
database by getting all ciphertext in it is calculated (r). Nonetheless, the same definitions do not ensure anything about
the secrecy of internal plaintext partial information.?*

Proof for one-wayness theorems is provided in the work of Boldyreva et al'” for uniformly distributed variables, but the
proof is not valid for nonuniformly distributed ones, as demonstrated in the works of Durak et al?? and Naveed et al.?> The
effects over nonuniform distributions are unwanted leakage to attackers when specific attacks are proposed.?? Figure 2
shows how unwanted leakage can be exploited to obtain fine-grained original information.

*The notion of distance in the cited work?? refers to directed modular distance, ie, the distance from one point “up” to the other point, wrapping up the
space if needed (noncommutative distance).
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FIGURE 2 Example of OPE attack,
where detailed information in some areas
can be found after scaling output, from
Durak et al.?? A, source image; B, 300
random points; C, sort attack output;

D, sort attack with scaling

FIGURE 3 Example of an attack over
road intersections dataset, from

Durak et al.?? A, 2000 plaintext points; B,
2DimSortAtk output
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Furthermore, Figure 3 also shows unwanted leakage of information related to distance-based calculations. An adver-
sarial can reduce the query error by several orders of magnitude in specific attacks by restricting the possible locations
of data points (in the figure, road intersections cannot be placed in the sea), and by joining query results with publicly
available information (eg, administrative borders).??

On the other hand, intra and intervariable correlation can be also exploited to leak more information to attackers, by
using proxy variables also present in the dataset to restrict the ordering ranges of the encrypted variables, and consequently
reducing entropy over the original information. 222

It can be generically shown that, for a security notion of OPE such as indistinguibility under ordered Chosen Plaintext
Attacks (CPA), any OPE can be broken with overwhelming probability if the OPE size has superpolynomial size message
space (for polynomial size message space OPE, security bounds make schemes lose practical utility).?*



RABANAL AND MARTINEZ Wl L EY 50f12

Finally, OPE schemes are shown to be inherently leaky methods, and security bounds have not yet been standardized,
though several proposals have been made in this direction.?* On the other hand, OPE has also proven to be one of the
most promising cryptographic schemes used in encrypted database processing, and even some commercial applications
have been deployed.®?’ It is expected that this field of research continues to evolve, enforcing security guarantees while
retaining application usefulness.

2.2 | Fully homomorphic encryption

One of the consequences of the rise of big data environments was the evolution of previous ML algorithms, specially
those based over neural networks (NN). More powerful networks, such as deep learning (DL) ones, rely on increasing
NN complexity by raising the number of layers (each of them could be seen as single NNs being used sequentially), which
can be trained together, increasing total expressive power of the whole algorithm. The dramatic increase of the uses of DL
techniques, empowered by the evolution of big data tools, have also posed the challenge on how to apply these networks
(inherently nonlinear functions) over encrypted spaces, as in the case of database processing for OPE schemes.

In order to address this challenge, Gentry proposed an FHE scheme.'®!° A scheme is additively and multiplicatively
homomorphic, respectively, if provided [x] is the ciphertext of x, then!®

[x+y]=[x] @ [y] ()

x-yI =[x ® [yl (3)

The FHE schemes fulfill both conditions.!® After this seminal work, which was deemed inefficient to be implemented
in commercial applications,?® many efforts have been made to apply FHE in a more efficient way, some potentially
quantum-resistant.?%3°

A problem with FHE proposals is derived from the vanishing gradient problem.' This means that, for very deep NN,
trainable parameters for deeper layers are less impacted by error backpropagation training, and therefore these layers
cannot be significantly trained after some depth. Regarding cryptographic schemes, the counterpart implication is that
information can be significantly leaked (therefore limiting data privacy) for the cited deeper layers in the same networks.?!
For that reason, leveled homomorphic encryption schemes were proposed instead, in which computation is allowed up
to a predefined depth.3!

On the other hand, FHE schemes inherently leaks much information, since by leaking arithmetic properties such as
addition and multiplication, a lot of derived information can also be available. Furthermore, a deep analysis on the impact
of FHE over nonuniform probability distributions could arise more serious concerns about unwanted leaks over specific
attacks, continuing the work of Berkoff et al in leakage-resilient proposals.?

3 | NEURAL CRYPTOGRAPHY

In this review, it has already been discussed the rise of NNs mainly for ML tasks (eg, classification, regression,
clustering ... ). This popularity is due to the fact that NNs serve in practice as universal function approximators,3® as their
expressive power has been increased by new training algorithms** and layering techniques (ie, DL).3> The same property
can be used for cryptography tasks, leading to the rising trend of neural cryptography.®

An NN?% is, in fact, a two-stage classification or regression scheme, which can be seen in Figure 4 in its most typical
state. First layer represents the different inputs provided to the network, x;. Last layer represents the K outputs of the
system, each represented as y,, and represent the generic Y = f(X;) function to be approximated, where Y € RX. Finally,
a single HIDDEN layer is also represented in the figure, where

Im =0 <(D()m + Z wimxi> . (4)

1

In Equation 4, each hidden NEURON (each z,,) is a nonlinear combination (here represented by o) of training weights
(wim) multiplied by each input. Generically, every neuron is connected to every input, and every output is connected
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FIGURE 4 A simple one layered, feedforward neural network

to every neuron, providing a fully connected feedforward NN (because there are no backward connections). Nonlinear
functions typically used in NNs are sigmoid or hyperbolic tangent functions, due to the fact that their first derivative exists
for working ranges.

The NNs have been successfully applied to different tasks related to cryptography: pseudo-random number generator,
steganography,*® deploying predictive systems,**? learning data-driven privacy schemes,* etc. These exercises have
proven that NNs can be used for different tasks and are flexible enough to be used in a myriad of different ways. It is
specially important the case of FHE-based encryption schemes,*! where the use of nonlinear functions could be seen as
contradictory with FHE schemes as presented in Section 2. Nonetheless, nonlinear functions can be approximated by
polynomials, allowing FHE schemes to be implemented,**> so FHE encryption and deep NNs can be jointly used to
provide ML tasks over encrypted spaces.*

On the other hand, NN-based implementations are computationally complex (typically O(N?)), so long training times
are common in these schemes, even with graphics processing unit (GPU) processors, which reduce these training times
greatly. Furthermore, NNs are usually trained as encoder-decoder schemes together, so decoding network is usually pro-
vided as key to the encryption system. As a result, both training times and key size are infeasible for many nowadays
applications.

An interesting research line is the use of echo state networks (ESNs) for encryption purposes.*® The ESN is a simple
recurring network that, when used as encoding scheme, has been proven to provide confusion and diffusion properties,*®
which can be defined as:

- Confusion: each bit of the ciphertext should depend on several parts of the key, obscuring the connections between
the two.

- Diffusion: if we change a single bit of the plaintext, then (statistically) half of the bits in the ciphertext should change
(and vice versa).

Using ESN as encryption schemes, with some improvements also proposed in the same work,*® could lead to lower
overall system complexity, but it still serves as an intellectual exercise more than a proposal that would be widely
implemented.

Regarding security concerns about the use of neural cryptography in widespread applications, NNs can be seen as black
boxes between inputs and outputs. Obscuring encryption algorithm by using a black box algorithm is usually considered
to lack security guarantees, so the system can be considered insecure from this point of view by design.*” Furthermore,
a discussion on designing ML pipelines compliant with security and privacy standards*® opens the question of how to
design the next generation of predictive techniques with cryptographic solutions embedded, which impacts the use of
neural cryptography as a clear possibility for being part of these techniques.
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3.1 | Adversarial neural cryptography

Abadi et al introduced the use of NNs for encrypting messages,* providing a seminal work on adversarial neural criptog-
raphy. In this work, a scheme of encoding and decoding networks is also proposed, together with an adversarial network,
which provide the inclusion of mathematical terms for eavesdroppers or attackers in the optimization function.*® The
proposed scheme by Abadi et al,* which can be seen in Figure 5, defines the problem in which Alice wants to send an
encrypted message to Bob, which aims to decrypt the message correctly. For that matter, a key is shared between Alice
and Bob as it is standard in cryptographic schemes. On the other hand, Eve aims to also decrypt the ciphertext without
the key, but the training goal for Eve is to be able to correctly decrypt 50% of the bits in the ciphertext (if Eve decrypted
less than 50% of the bits correctly, she could switch all bits to obtain a higher accuracy decryption rate).

It is important to note that, since this first seminal work, a number of proposals have also applied adversarial neural
cryptography to different tasks.3*3 Nonetheless, as stated by Mufioz et al,*’ we are in a very early stage of maturity in this
field, lacking practical implementations of such cryptographic schemes that could be of much use in different applications.

Analyzing adversarial setups for cryptographic schemes, the inclusion of attackers in the optimization model can lead
to interesting results in terms of robustness against these attacks.*® Nonetheless, serious concerns have been raised over
the guarantees provided by these setups over practical attacks, as they will probably be carried out by physical entities, and
statistical robustness provides only limited protection against specific, targeted attacks over individual vulnerabilities.*’

On the other hand, the practical limitations of neural cryptography also apply to adversarial setups, which also pose
some important challenges for future works to overcome, and more research efforts are needed to evolve these first
proposals in the field into mature setups to be widely used.

4 | EXPERIMENTAL RESULTS

As part of this state-of-art review, one of the most widely accepted assumptions when proposing cryptographic schemes for
big data environments is that computational resources are not a restriction to the proposal, which, in practice, considers
them as unlimited. That leads to avoid the trade-off between security and complexity. We aim to illustrate the implications
of this assumption and claim that the impact on efficiency in final designs make some of the solutions very difficult to be
standardized and deployed in practical environments.

4.1 | Datasets

One of the common gaps between academic works and practical implementations is the nature of the datasets in which
proposals are tested. We propose to tackle this problem by using three different datasets from DATA SCIENCE FOR GOOD
series, hosted by KAGGLE corporation.” A brief description of each dataset is as follows.*

- PASSNYC: PASSNYC is a not-for-profit organization for broadening educational opportunities for New York City
talented and underserved students. Dataset aims to identify the potential of each school to improve the chances of
their students receiving places in specialized high schools.

TAll datasets cited in this document can be downloaded from https://www.kaggle.com/datasets, and used under CCO public license. Last access:
August 24, 2019.
*All descriptions provided are summarized from dataset page.


https://www.kaggle.com/datasets

8of12 W ILEY RABANAL AND MARTINEZ

TABLE 1 Properties of used datasets

Selected variables
Dataset  Samples Features Owner Numeric String
PASSNYC 1272 161 PASSNYC % Asian, % Hispanic School name, Full address
Kiva 671205 20 Kiva.org Funded amount, Term (months) Use, Region
CPE 710472 12 Center for Policing Equity Latitude, Longitude Driver race, Driver gender
TABLE 2 Example of each variable used per dataset
Dataset  Variable Examples
PASSNYC % Asian 5%
% Hispanic 60%
School Name P.S. 015 ROBERTO CLEMENTE
Full address 333 E 4TH ST NEW YORK, NY 10009
Kiva Funded amount 575
Term (months) 11
Use To repair their old cycle-van and buy another one to rent out as a source of income
Region Lahore
CPE Latitude 44.973917
Longitude -93.060895
Driver race White
Driver gender Female

- Kiva:Kiva.orgis an online crowdfunding platform to extend financial services to poor and financially excluded people
around the world. Dataset aims to estimate the welfare level of borrowers in different regions and connect it to loan
features.

- CPE: Center for Policing Equity is a public US institution aiming to use Data Science tools to bridge the divide created
by communication problems, suffering and generational mistrust, and forge a path toward public safety, community
trust, and racial equity. Dataset tries to address racial fairness issues in certain areas, so other agencies can deploy
measures to improve this aspect.

In order to fairly compare performance of different algorithms, we chose four different features from each dataset, being
two of them numeric and the other two string based. We chose features that vary in range and precision for numeric
values, and field length and categorical or free text in string-based ones.

On the other hand, for each algorithm to be able to encrypt data, restrictions over variable nature are applied, and
numeric features can be converted to strings if needed. Some other specific details of the setup for all datasets can be
found in Table 1, and some examples of the data used in the analysis are shown in Table 2.

4.2 | Experimental setup

Experiments were carried out on a Intel Core i7-8550U 1.80GHz quad-core desktop workstation. Readily available
Python-based implementation of the following algorithms was used for comparison.

- AES-256: Used as a standard encryption solution in Python-based applications, CRYPTOGRAPHY module imple-
mentation was used in this experiment.

- OPE: Experiments carried out here use PYOPE implementation of Boldyreva et al'” symmetric OPE scheme.

- ESN: pyESN implementation of ESNs was used as base for implementing the work of Ramamurthy et al.*

Due to the O(N?) complexity of NN-based solutions, performance of ESN-based encryption over large datasets is esti-
mated by Monte Carlo method>® and extrapolation to dataset size provided. The ESN original paper proposes some design
improvements that lower complexity to @(Nm?), by parallelizing in blocks of size m, complexity can be lowered in big
data systems. Nonetheless, they were not implemented here because achieving this implementation is system-specific
and can also be applicable to other algorithms, so it was avoided in our implementation for fairness purposes.
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The careful choosing of this setup aims to compare average performance of one example of each cryptographic family of
schemes provided in previous sections, under similar conditions, over real-world datasets. Results from these experiments
will be analyzed in the following section.

4.3 | Results

Experimental results on the described conditions can be found in Figure 6. It can be seen that increasing the complexity
of the algorithms also impacts performance over the different datasets. Preservation of mathematical property of order, as
well as using NNs to encrypt data, have well-known advantages as already described in the document, but the trade-off
between security and complexity is clear from the results.

Average performance over the three datasets is stable for AES and OPE, but estimated performance over Kiva and CPE
datasets of ESN is much poorer than measured for PASSNYC one. This can be derived from the estimation process already
described, but also from the fact that implementation poses overhead problems that have an impact on performance.
Extrapolation to big data environments can also have a severe impact in performance, and theoretical complexity can be
a good bound to set expectations on encryption algorithms.

As a result, carefully choosing the right algorithm for each task in big data environment, taking into account the target
application, the specific needs it entails, and how the information is required to be treated, could imply an efficiency gain
of several orders and magnitude, which, in the end, results in higher system throughput and reliability.

5 | CONCLUSIONS

In this document, a state-of-art review of several trends in Cryptography, which could potentially be applied in big data
environments, is performed. Specific needs of big data applications, such as database processing or ML applied over
encrypted data, can be achieved by the use of PPE or FHE schemes. It has been shown here that some of these schemes
have unexpected information leaks to attackers mainly due to real-world variable probability distributions and variable
correlations. Furthermore, efficient versions of each scheme are cited, but the need for more research effort is needed for
these approaches to be widely implemented and used in commercial applications.

On the other hand, the rise of NN-based solutions for a myriad of applications also brought the attention toward the field
of neural Cryptography. Intellectual efforts have proven successful for applying NNs to different tasks in cryptography,
but most papers do not thrive beyond proving the concept. Nonetheless, the use of adversarial setups, well known in DL
contexts, to jointly model encryption process and attackers to provide robust encryption schemes has attracted a lot of
interest recently, and it is evolving at great pace. Surely, this field of neural cryptography will be empowered by a large
research effort in the near future, as it is a trend that joins the rise of DL techniques with the need for security and privacy
concerns to be tackled more thoroughly.

Additionally, some experiments were performed over large datasets to assess performance of different encryption
algorithms and obtain some insights about extrapolating current academic work to big data environments. Design
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improvements can further be proposed considering tool specifics when moving toward big data setups, it is an open
research question from this point of view. Moreover, considering the trade-off between security and complexity, and also
jointly considering the specific needs of the individual big data application of interest, may also allow tailoring encryption
schemes to optimize the trade-off.

Consequently, it has been shown that several trends in cryptography could be applied to specific needs of big data
applications but at the cost of higher complexity and risks on information leakage to targeted attacks. It leads to some
open research opportunities in various directions, but the promising rise of such applications is specially appealing to
propose new, tailored, and flexible schemes to limit the risks posed by current state-of-art ones and improve efficiency to
meet widespread demands in terms of implementation feasibility.
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