Verbal width in the Nottingham group and related Lie algebras

Jorge Martínez Carracedo¹

School of Computing. Ulster University. Consuelo Martínez López² Departamento of Matemáticas. Universidad de Oviedo.

Abstract

In [1], B. Klopsch proved that the Nottingham group over a finite field is verbally elliptic. We prove a similar result for fields of zero characteristic. We also prove that the Virasoro Lie algebra and some its subalgebras are polynomially elliptic. *Keywords:* Group; Lower central series; Graded Lie algebra; Nottingham group; Virasoro algebra; Witt algebra; Verbal width; Ellipticity.

1. Introduction

Let $\omega(x_1, ..., x_k)$ be an element of the free group on k free generators $x_1, ..., x_k$. We will refer to elements of free groups as words.

Let G be a group. The verbal subgroup $\omega(G)$ is the subgroup of G generated by the verbal set

$$\omega[G] = \{ \omega(g_1, ..., g_k) \mid g_i \in G, 1 \le i \le k \}.$$

The word ω is said to have finite width in the group G if there exists $d \ge 1$ s such that every element g in the verbal subgroup $\omega(G)$ can be expressed as $g = g_1^{\pm 1} \dots g_d^{\pm 1}$, where $g_i \in \omega[G]$.

Preprint submitted to Journal of Algebra

Email addresses: j.martinez-carracedo@ulster.ac.uk (Jorge Martínez Carracedo), cmartinez@uniovi.es (Consuelo Martínez López)

¹Shore Rd, Newtownabbey, BT37 0QB, Northern Ireland (U.K.)

 $^{^2\}mathrm{C}/\mathrm{Federico}$ García Lorca, 18, 33007, Oviedo, Spain

If a word ω has finite width in a group G, we say that the group G is ω elliptic. If all words have finite width in the group G, then the group G is called verbally elliptic.

10

15

It is clear that every word ω has finite length in a finite group G and the verbal width of ω over G is upper bounded by |G| (see [2]).

Martínez and Zelmanov [3] and, independently, Saxl and Wilson [4] proved that for any natural number n, there is a function N = N(n) such that the width of the word $\tau = x^n$ in any finite simple group is bounded by N.

An important result related to verbally elliptic groups was proved by P. Stroud [5]: Every finitely generated abelian-by-nilpotent group is verbally elliptic.

Rhemtulla [6] poses the question of the existence of nontrivial words having finite verbal width in every group G. He proved that a word ω in the free group **20** \mathcal{F}_k has finite width in every group G if and only if there exist relatively prime integers $i_1, ..., i_k$ such that $\omega \in x_1^{i_1} ... x_k^{i_k} \mathcal{F}'_k$.

Romankov [7] proved that every finitely generated virtually nilpotent group is verbally elliptic. Segal proved in [2] a more general result using the Prüfer rank of a group defined as

 $rk(G) := sup\{d(K) \mid K \text{ is a finitely generated subgroup of } G\}.$

Here, d(G) denotes the minimum possible number of generators of the groupG. So in [2] it is proved that every virtually nilpotent group with finite Prüfer rank is verbally elliptic.

J.P. Serre [8] considered the same question for profinite groups and Brian Hartley [9] proved that a word ω has finite width in a profinite group G if and
³⁰ only if the verbal subgroup ω(G) is closed in G.

Andrei Jaikin-Zapirain ([10]) proved that p-adic analytic pro-p-groups are verbally elliptic.

In [11] C. Martinez proved that if Γ is a finitely generated residually-ptorsion group and G is its pro-p-completion, then the group G is verbally elliptic ³⁵ (understanding that a word ω is an arbitrary element in the free pro-*p*-group on countably many variables).

For a good survey of what is known about verbal subgroups we refer to the book [2]. In this paper we will prove that the Nottingham group in zero characteristic is verbally elliptic. The same result was proved by B. Klopsch in

⁴⁰ [12] for the Nottingham group over a finite field. In the paper we will consider a similar question for Lie algebras, proving that the Virasoro algebra and some of its subalgebras, that are related to the Nottingham group, are polynomially elliptic.

2. Lie algebras

Let ϕ be an associative commutative ring. Consider an absolutely free algebra $\phi\langle X \rangle$ on the set of free generators $X = \{x_1, x_2, \ldots\}$. Let $f(x_1, \ldots, x_k) \in \phi\langle X \rangle$. For a ϕ -algebra \mathcal{A} consider the set $f[\mathcal{A}] = \{f(a_1, \ldots, a_k) | a_1, \ldots, a_k\} \in \mathcal{A}$ and the ϕ -linear span $Span_{\phi}f[\mathcal{A}]$.

Definition 2.1. (see [11]) A polynomial f has finite width in the algebra \mathcal{A} if there exists $d \geq 1$ such that

$$Span_{\Phi}f[\mathcal{A}] = \underbrace{f[\mathcal{A}] + \dots + f[\mathcal{A}]}_{d}.$$

In other words, every element $a \in Span_{\phi}f[\mathcal{A}]$ can be written as

$$a = f(a_1^{(1)}, ..., a_k^{(1)}) + ... + f(a_1^{(d)}, ..., a_k^{(d)}),$$

where $a_i^{(j)} \in \mathcal{A}, \ 1 \le i \le k, \ 1 \le j \le d.$

50

We will define now a stronger notion for multilinear polynomials.

Definition 2.2. A multilinear polynomial $f(x_1, \ldots, x_k)$ is strongly elliptic in \mathcal{A} if there exists a finite set of (k-1)-tuples, $M \subset \underbrace{\mathcal{A} \times \ldots \times \mathcal{A}}_{k-1}$ such that

$$f[\mathcal{A}] \subset \sum_{(a_1,...,a_{k-1}) \in M} f(\mathcal{A}, a_1, ..., a_{k-1}).$$

Lemma 2.1. If a multilinear polynomial $f(x_1, \ldots, x_k)$ is strongly elliptic in \mathcal{A} then f has finite width in \mathcal{A} .

Proof. It is enough to consider the expression

$$Span_{\Phi}f[\mathcal{A}] = \sum_{(a_1,\dots,a_{n-1})\in M} f(\mathcal{A}, a_1, \dots, a_{n-1}),$$

and note that the number of terms to the right is always less than or equal to $\mid M \mid$.

Fix a field \mathbb{F} of zero characteristic.

55

The centerless Virasoro algebra, Vir, is the algebra over \mathbb{F} having a basis $\{e_i \mid i \in \mathbb{Z}\}$ with the multiplication $[e_i, e_j] = (i - j)e_{i+j}$.

Theorem 2.2. An arbitrary multilinear polynomial is strongly elliptic in Vir.

Proof. Consider $f(x_0, x_1, ..., x_{n-1})$ a multilinear element of the free Lie algebra. We have that

$$f = \sum_{\pi \in S_{n-1}} \alpha_{\pi} [x_0, x_{\pi(1)}, ..., x_{\pi(n-1)}], \quad \alpha_{\pi} \in \mathbb{F},$$

where $[x_0, x_1.x_2] = [[x_0, x_1], x_2]$ and inductively,

$$[x_0, x_1, ..., x_{t+1}] = [[x_0, x_1, ..., x_t], x_{t+1}].$$

Let M be the finite set given by

$$M = \{ (e_{i_1}, ..., e_{i_{n-1}}) \mid 0 \le i_1, ..., i_{n-1} \le n \}.$$

We want to prove that

$$Vir = \sum_{(e_{i_1},...,e_{i_{n-1}}) \in M} f(Vir, e_{i_1}, ..., e_{i_{n-1}}).$$

Notice that for an arbitrary $s \in \mathbb{Z}$, we have that

$$f(e_{s-i_1-\ldots-i_{n-1}}, e_{i_1}, \ldots, e_{i_{n-1}}) = h(s, i_1, \ldots, i_{n-1})e_s,$$

where

$$\begin{split} h(s, i_1, \dots, i_{n-1}) &= \\ &= \sum \alpha_{\pi} (s - i_1 - \dots - i_{n-1} - i_{\pi(1)}) (s - i_1 - \dots - i_{n-1} + i_{\pi(1)} - i_{\pi(2)}) \dots \\ &\dots (s - i_1 - \dots - i_{n-1} + i_{\pi(1)} + i_{\pi(2)} + \dots + i_{\pi(n-2)} - i_{\pi(n-1)}), \end{split}$$

is a homogeneous polynomial in $s, i_1, ..., i_{n-1}$ of degree n-1.

If f = 0 is an identity in Vir, then there is nothing to prove. So we will assume that $f(Vir) \neq (0)$. Then $Span_{\mathbb{F}}f[Vir]$ is a non-zero ideal of Vir and Vir is simple, what implies that $Vir = Span_{\mathbb{F}}f[Vir]$.

If there is an integer s such that

$$e_s \notin \sum_{(e_{i_1}, \dots, e_{i_{n-1}}) \in M} f(e_{s-i_1 - \dots - i_{n-1}}, e_{i_1}, \dots, e_{i_{n-1}}),$$

then $h(s, i_1, ..., i_{n-1}) = 0$ for every (n-1)-tuple $(i_1, ..., i_{n-1}) \in [0, n]^{n-1}$.

But this implies that the polynomial $g(x_1, ..., x_{n-1}) = h(s, x_1, ..., x_{n-1})$ (non homogeneous) has degree at most n-1 and it is 0 over $[0, n]^{n-1}$. Consequently gis the zero polynomial, or equivalently, $h(s, x_1, ..., x_{n-1})$ is the zero polynomial.

But $e_s \in Span_{\mathbb{F}}f[Vir]$, so there are integers $j_1, ..., j_{n-1}$ such that

$$f(e_{s-j_1-...-j_{n-1}}, e_{j_1}, ..., e_{j_{n-1}}) = \lambda e_s,$$

with $\lambda = h(s, j_1, ..., j_{n-1}) \neq 0$. This contradiction proves the theorem.

Let $k \geq -1$. Then $Vir^{(k)} = \sum_{i=k}^{\infty} Fe_i$ is a subalgebra of Vir.

Theorem 2.3. An arbitrary multilinear polynomial is strongly elliptic in $Vir^{(k)}$.

Proof. Let

$$f(x_0, x_1, ..., x_{n-1}) = \sum_{\pi \in S_{n-1}} \alpha_{\pi} [x_0, x_{\pi(1)}, ..., x_{\pi(n-1)}], \quad \alpha_{\pi} \in F,$$

be a multilinear element of the free Lie algebra that is not identical on $Vir^{(k)}$.

As above,

$$f(e_{s-i_1-\ldots-i_{n-1}}, e_{i_1}, \ldots, e_{i_{n-1}}) = h(s, i_1, \ldots, i_{n-1})e_{s}$$

for arbitrary integers $i_1, \ldots, i_{n-1}, s \in \mathbb{Z}$.

Consider the finite set $M_1 = \{(e_{i_1}, ..., e_{i_{n-1}}) \mid k \leq i_1, ..., i_{n-1} \leq k+n\}$. We will show that

$$Vir^{((k+n)(n-1)+k)} \subseteq \sum_{(e_{i_1},\dots,e_{i_{n-1}})\in M_1} f(Vir^{(k)},e_{i_1},\dots,e_{i_{n-1}}).$$

Indeed, if $s \ge (k+n)(n-1) + k$ and $(e_{i_1}, ..., e_{i_{n-1}}) \in M_1$ then

$$s - i_1 - \dots - i_{n-1} \ge k.$$

If for all $(e_{i_1}, ..., e_{i_{n-1}}) \in M_1$ we have

$$f(e_{s-i_1-\cdots-i_{n-1}}, e_{i_1}, \dots, e_{i_{n-1}}) = h(s, i_1, \cdots, i_{n-1})e_s = 0,$$

then arguing as above we conclude that $h(s, i_1, \dots, i_{n-1})$ is the zero polynomial.

For every $k \leq j < (k+n)(n-1) + k$ such that $e_j \in Span_F f[Vir^{(k)}]$ choose elements $a_0^j, \ldots, a_{n-1}^j \in \{e_i \mid i \geq k\}$ such that $e_j = f(a_0^j, \ldots, a_{n-1}^j)$.

Let $M_2 = M_1 \cup \{(a_1^j, \dots, a_{n-1}^j)\}$. Then

$$Span_F f[Vir^{(k)}] = \sum_{(a_1,\dots,a_{n-1})\in M_2} f(Vir^{(k)}, a_1,\dots,a_{n-1}).$$

This completes the proof of the theorem.

85

The following theorem concerns ideals I of a Lie ring $Vir^{(k)}$, $k \ge -1$. It nears that we do not assume, a priori, that I is an F-vector subspace.

Theorem 2.4. An arbitrary nonzero ideal of a Lie ring $Vir^{(k)}$, $k \ge -1$, contains $Vir^{(l)}$ for some $l \ge k$.

Proof. Let $I \neq (0)$ be an ideal of the Lie ring $Vir^{(k)}$. Let $0 \neq a = \alpha_1 e_{i_1} + \alpha_2 e_{i_2} + \ldots + \alpha_m e_{i_m} \in I$; $0 \neq \alpha_i \in F$, $1 \leq i \leq m$; $k \leq i_1 < \cdots < i_m$ and m a minimal integer with this property.

If $m \geq 2$ then

$$0 \neq [a, e_{i_1}] = \alpha_2(i_2 - i_1)e_{i_1 + i_2} + \alpha_3(i_3 - i_1)e_{i_1 + i_3} + \dots + \alpha_m(i_m - i_1)e_{i_1 + i_m} \in I$$

which contradicts minimality of m. Hence m = 1, the ideal I contains an element $\alpha e_i, 0 \neq \alpha \in F, i \geq k$. It is easy to see that in this case $Vir^{(i+k)} =$ $[\alpha e_i, Vir^{(k)}] \subseteq I$. This completes the proof of the theorem.

3. Nottingham Group in Characteristic 0

Given a field \mathbb{F} , consider the set of infinite series 90

$$N_{\mathbb{F}}(t) := \{ t + \sum_{k \ge 1} \alpha_k t^{k+1} \mid \alpha_k \in \mathbb{F} \quad k \in \mathbb{N} \}.$$

with the group multiplication

$$fg := g(f); f, g \in N_{\mathbb{F}}(t)$$

For a finite field $\mathbb{F} = GF(p^k)$, the group $N_{\mathbb{F}}(t)$ is a finitely generated pro-p group that has been widely studied in the literature.

As always $O(t^n)$ stands for a formal series lying in $t^n F[[t]]$.

Lemma 3.1. [13]

- 1. If $f = t + \alpha t^n + O(t^{n+1})$, $g = t + \beta t^n + O(t^{n+1})$, where $\alpha, \beta \in \mathbb{F}$, $n \ge 2$, 95 then $fg = t + (\alpha + \beta)t^n + O(t^{n+1}).$
 - 2. If $f = t + \alpha t^n + O(t^{n+1}), 0 \neq \alpha \in \mathbb{F}$, then $f^{-1} = t \alpha t^n + O(t^{n+1})$.
 - 3. If $f = t + \alpha t^n + O(t^{n+1})$, $g = t + \beta t^m + O(t^{m+1})$, where $\alpha, \beta \in \mathbb{F}$, $n, m \ge 2$, then $[f,g] = t + \alpha\beta(n-m)t^{n+m-1} + O(t^{n+m}).$

100

Notice that the Nottingham group over a field of characteristic 0 is torsion free.

Lemma 3.2. Let $char \mathbb{F} = 0$. Then for an arbitrary integer $n \geq 1$ and an arbitrary element $g \in N_{\mathbb{F}}(t)$ there exists a unique element $h \in N_{\mathbb{F}}(t)$ such that $h^n = g.$

Proof. It is easy to see that for any $n \ge 2$ there exist polynomials $P_k(x_1, \ldots, x_{k-2})$, $k \ge 3$, such that the *n*-th power of an element $t + \sum_{i=2}^{\infty} \alpha_i t^i \in N_{\mathbb{F}}(t)$ is equal to $t + n\alpha_2 t^2 + \sum_{k=3}^{\infty} (n\alpha_k + P_k(\alpha_2, \ldots, \alpha_{k-1}))t^k$.

Let $g = t + \sum_{i=2}^{\infty} \beta_i t^i$. Define a sequence

$$\alpha_2 = \frac{1}{n}\beta_2, \dots, \alpha_k = \frac{1}{n}(\beta_k - P_k(\alpha_2, \dots, \alpha_{k-1})), \ k \ge 3.$$

Let $h = t + \sum_{i=2}^{\infty} \alpha_i t^i$. Then $h^n = g$. It is easy to see that the element h is the unique element with this property. This completes the proof of the lemma.

For $n \ge 1$ consider

$$K_n := \{t + O(t^{n+1})\}$$

In particular, $K_1 = N_{\mathbb{F}}(t)$. Lemma 3.1 implies that K_n is a normal subgroup of $N_{\mathbb{F}}(t)$ and the mapping

$$\theta: K_n \to \mathbb{F}, \ \theta(t + \alpha t^{n+1} + O(t^{n+2})) = \alpha$$

is a homomorphism into the additive group of the field \mathbb{F} , $Ker\theta = K_{n+1}$. Hence $K_n/K_{n+1} \simeq \mathbb{F}$.

For a group G let $\gamma_n(G)$ denote the n-th term of the lower central series:

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \cdots,$$

 $\gamma_n(G) = [\gamma_{n-1}(G), G], \ n \ge 2.$

Lemma 3.3. ([13]) For every $n \ge 1$, we have that $\gamma_n = \gamma_n(N_{\mathbb{F}}(t)) = K_n$.

Recall that the Lie ring associated with the lower central series of a group G is the N-graded abelian group

$$L(G) = \bigoplus_{n \ge 1} \gamma_n(G) / \gamma_{n+1}(G)$$

with multiplication

$$[a\gamma_{n+1}(G), b\gamma_{m+1}(G)] = [a, b]\gamma_{n+m+1}(G),$$

115 for $a \in \gamma_n(G)$, $b \in \gamma_m(G)$.

The isomorphisms $K_n/K_{n+1} \simeq \mathbb{F}$ define a structure of \mathbb{F} -vector space on $L(N_{\mathbb{F}}(t))$. Lemma 3.1(3) implies that multiplication on $L(N_{\mathbb{F}}(t))$ is \mathbb{F} -bilinear, hence $L(N_{\mathbb{F}}(t))$ is a Lie algebra over the field \mathbb{F} .

Again from Lemma 3.1(3) it follows that $L(N_{\mathbb{F}}(t)) \simeq Vir^{(1)}$

Definition 3.1. A group G is said to be residually nilpotent if

$$\cap_{n>1}\gamma_n(G) = (1).$$

Taking the system of subgroups $\gamma_n(G)$, $n \ge 1$, for the basis of neighbourhoods of 1 we define a topology on the group G.

If this topology is complete then we say that the group G is pronilpotent.

By Lemma 3.3 the pronilpotent topology on the group $N_{\mathbb{F}}(t)$ coincides with the degree topology. Hence $N_{\mathbb{F}}(t)$ is a pronilpotent group.

Lemma 3.4. Let $g \in K_n \setminus K_{n+1}$, $g = t + \alpha t^{n+1} + O(t^{n+2})$, $0 \neq \alpha \in \mathbb{F}$. Then

- 1. $K_{2n+1} = [g, K_{n+1}].$
- 2. For any s, n < s < 2n, we have $K_s = [g, K_{s-n}]K_{2n}$.

Proof. Denote $f_i(\beta) = t + \beta t^{i+1}, i \ge 1, \beta \in \mathbb{F}$.

We claim that for an arbitrary $s > n, s \neq 2n$,

$$K_s = [g, K_{s-n}]K_{s+1}$$
 (C)

Indeed, choose an arbitrary element $h = t + \gamma t^{s+1} + O(t^{s+2}) \in K_s$. Let

130 $\beta = \frac{\gamma}{(2n-s)\alpha}$.

By Lemma 3.1(3)

$$[g, f_{s-n}(\beta)] = t + (2n-s)\alpha\beta t^{s+1} + O(t^{s+2}) = t + \gamma t^{s+1} + O(t^{s+2}).$$

By Lemma 3.1, $[g, f_{s-n}(\beta)]^{-1}h \in K_{s+1}$, which implies the claim.

Now choose an arbitrary element $h \in K_{2n+1}$. We will construct a sequence of elements $a_i \in K_{n+i}$, $i \ge 1$, such that

$$h \in [g, a_1 \cdots a_i] K_{2n+1+i}$$
 for any $i \ge 1$.

For i = 1, by (C), there exists an element $a_1 = f_{n+1}(\beta) \in K_{n+1}$ such that $h \in [g, a_1] K_{2n+2}$.

Suppose that elements a_1, \ldots, a_i satisfying that $h \in [g, a_1 \cdots a_i] K_{2n+1+i}$ have been found. Then $[g, a_1 \cdots a_i]^{-1} h \in K_{2n+1+i}$.

By (C) there exists an element $a_{i+1} \in K_{n+i+1}$ such that

$$[g, a_1 \cdots a_i]^{-1}h = [g, a_{i+1}] \mod K_{2n+i+2}.$$

Hence, $h = [g, a_1 \cdots a_i][g, a_{i+1}] \mod K_{2n+i+2}$.

Using Hall identity:

$$[x, zy] = [x, y][x, z][[x, z], y]$$

we get $[g, a_1 \cdots a_i][g, a_{i+1}] = [g, a_1 \cdots a_i a_{i+1}] \mod K_{2n+i+2}$.

We have completed the construction of a sequence $a_1, a_2, \ldots, a_m, \ldots$ with the required properties.

140

Let $a = \lim_{i \to \infty} a_1 \cdots a_i \in K_{n+1}$. Then h = [g, a].

Let's prove the second assertion. Consider s any number satisfying n < s < 2n and $h' \in K_s$ Arguing as above and using (C) we find elements $a_i \in K_i$, $1 \le i \le n-1$, such that

$$h' = [g, a_1 \cdots a_i] \mod K_{n+i+1}.$$

For the element $a = a_1 \cdots a_{n-1}$ we have $h' = [g, a] \mod K_{2n}$. This completes the proof of the lemma.

Corollary 3.5. An arbitrary non-identical normal subgroup of $N_{\mathbb{F}}(t)$ contains a subgroup K_m for some $m \ge 1$.

145 Proof. Let H be a non-identical normal subgroup of $N_{\mathbb{F}}(t)$. Let $1 \neq g \in H$, then there is an n such that $g \in K_n \setminus K_{n+1}$.

Then, by Lemma 3.4(1) $K_{2n+1} = [g, K_{n+1}] \subseteq H$. This completes the proof, taking m = 2n + 1.

Let $p(x_1, ..., x_m)$ be a non-zero polynomial over \mathbb{F} . Suppose that

$$p = p_0(x_2, ..., x_m) + x_1 p_1(x_2, ..., x_m) + x_1^d p_d(x_2, ..., x_m),$$

where $p_d(x_2, ..., x_m) \neq 0$. Let $\mathcal{P} = \{ p(\alpha_1, ..., \alpha_m) \mid \alpha_1, ..., \alpha_m \in \mathbb{F} \}.$

Lemma 3.6. $\mathbb{F} = \underbrace{\pm \mathcal{P} \pm \mathcal{P} \pm \dots \pm \mathcal{P}}_{2^d}$. That is, every element in \mathbb{F} is the sum of 2^d elements, each of them lying in \mathcal{P} or $-\mathcal{P}$.

Proof. Introduce d new variables, $y_1, ..., y_d$ and consider the polynomial

$$\tilde{p}(y_1, \dots, y_d, x_2, \dots, x_m) = p(y_1 + \dots + y_d, x_2, \dots, x_m) - \sum_{i=1}^d p(y_1 + \dots + \hat{y}_i + \dots + \hat{y}_i + \dots + \hat{y}_i + \dots + \hat{y}_j + y_d, x_2, \dots, x_m) + \sum_{1 \le i < j \le n}^d p(y_1 + \dots + \hat{y}_i + \dots + \hat{y}_j + y_d, x_2, \dots, x_m) + (-1)^{d-1} \sum_{i=1}^d p(y_i, x_2, \dots, x_m) + (-1)^d p(0, x_2, \dots, x_m) = d! y_1 \dots y_d p_d(x_2, \dots, x_m).$$

Every element from the field \mathbb{F} is a value of the polynomial

$$d!y_1...y_dp_d(x_2,...,x_m)$$

which implies the assertion of the lemma.

Theorem 3.7. Let \mathbb{F} be a field of characteristic zero. Then, the Nottingham group $N_{\mathbb{F}}(t)$ is verbally elliptic.

155 Proof. Let $\omega(x_1, ..., x_m)$ be an element of the free group \mathcal{F}_m on m free generators $x_1, ..., x_m$.

Let $G = N_{\mathbb{F}}(t)$. Suppose that $\omega[G] \subseteq K_n$ and n is maximal with this property.

If $\omega \notin [\mathcal{F}_m, \mathcal{F}_m]$ then $\omega(G) = G$. Indeed, if $\omega \notin [\mathcal{F}_m, \mathcal{F}_m]$ then

$$\omega = x_1^{n_1} x_2^{n_2} \dots x_m^{n_m} \omega',$$

where $\omega' \in [\mathcal{F}_m, \mathcal{F}_m]$ and some $n_i \neq 0$. Suppose that $n_1 \neq 0$. Choose $x_2 = 1,..., x_m = 1$. Then $\omega(x_1, 1, ..., 1) = x_1^{n_1}$.

Using Lemma 3.2 we can extract roots in $N_{\mathbb{F}}(t)$ so for every $f \in N_{\mathbb{F}}(t)$, $f = g^{n_1} = \omega(g, 1, ..., 1) \in \omega[G].$

Hence, without loss of generality, we assume that $\omega \in [\mathcal{F}_m, \mathcal{F}_m]$, hence $n \geq 2$. Choose an element $g \in \omega[G], g \in K_n \setminus K_{n+1}$.

There exists a polynomial $p(x_{ij}, 1 \le i \le m, 1 \le j \le n)$ such that

$$\omega(t + \sum_{j=1}^{n} \alpha_{1j}t^{j+1}, t + \sum_{j=1}^{n} \alpha_{2j}t^{j+1}, \dots, t + \sum_{j=1}^{n} \alpha_{mj}t^{j+1}) = t + p(\alpha_{ij})t^{n+1} + O(t^{n+2})$$

165

Let d be the maximum of (total) degrees of monomials from $p(x_{ij})$. By Lemmas 3.1(1) and 3.6, an arbitrary element u from $\omega(G)$ is a product of not more than $r = 2^d$ elements from $\omega[G]^{\pm 1}$ modulo K_{n+1} . Hence there exist elements $g_1, \ldots, g_r \in \omega[G]^{\pm 1}$ such that $u = g_1 \ldots g_r$ modulo K_{n+1} .

By Lemma 3.4(2) there exists an element $b \in G$ such that

$$(g_1...g_r)^{-1}u = [g,b] \mod(K_{2n}).$$

On the other side, since the element $[g, f_1(1)]$ lies in $K_{n+1} \setminus K_{n+2}$, we can use again Lemma 3.4(2) to get an element $b_1 \in K_n$ such that

$$[g,b]^{-1}(g_1\cdots g_r)^{-1}u = [[g,f_1(1)],b_1] \mod(K_{2(n+1)})$$

By Lemma 3.4(1) there exists an element $b_2 \in K_{n+1}$ such that

$$[[g, f_1(1)], b_1]^{-1}[g, b]^{-1}(g_1 \cdots g_r)^{-1}u = [g, b_2].$$

Now, $u = g_1 \cdots g_r[g, b][[g, f_1(1)], b_1][g, b_2].$

This completes the proof of the Theorem.

A commutator $[g, b_i]$ is a product of two elements $(g^{-1} \text{ and } g^{b_i} = b_i^{-1}gb_i)$ of $\omega[G]^{\pm 1}$. The commutator $[[g, f_1(1)], b_1]$ is a product of four elements from $\omega[G]^{\pm 1}$. Hence the verbal width in the group $G = N_{\mathbb{F}}(t)$ is at most r + 8.

175

Authors are grateful to the referee who provided useful comments.

Acknowledgements

This work has been partially supported by the Government of Spain through the project MTM2017 - 83506 - C2 - 2 - P and by the Principado de Asturias through the project FC - GRUPIN - IDI/2018/000193.

References

- B. Klopsch, Automorphisms of the nottingham group, Journal of Algebra 223 (2000) 37–56.
- [2] D. Segal, Words: Notes on verbal width in groups, London Mathematical Society Lecture Notes Series 361 (2009).
- [3] C. Martinez, E. I. Zelmanov, Product of powers in finite simple groups, Israel J. Math. 96 (1997) 469–479.
- [4] Saxl, J. S. Wilson, A note on powers in simple groups, Math. Proc. Camb. Phil. Soc. 122 (1997) 91–94.
- 190 [5] P. Stroud, Topics in the theory of verbal subgroups, PhD Thesis. University of Cambridge (1966).
 - [6] A. H. Rhemtulla, A problem of bounded expressibility in free products, Academic Press, New York, 64 (1994) 573–584.
 - [7] V. Romankov, Width of verbal subgroups in solvable groups, Algebra i logika 21 (1982) 60–72.
 - [8] J. Serre, Cohomologie galoisienne, Springer Verlag (1964).
 - [9] B. Hartley, Subgroups of finite index in profinite groups, Math. Z. 168 (1979) 71–76.
 - [10] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p-groups, Rev. Mat. Iberoam. 24 (2008) 617–630.
 - [11] C. Martinez, Ellipticity of words, Journal of Algebra 500 (2018) 242–252.
 - B. Klopsch, Normal subgroups in substitution groups of formal power series, Journal of Algebra 228 (2000) 91–106.
 - [13] D. L. Johnson, The group of formal power series under substitution, Journal of Australian Math. Soc. 45(3) (1988) 296–302.

185

195

200

205