Verbal width in the Nottingham group and related Lie algebras

Jorge Martínez Carracedo ${ }^{1}$
School of Computing. Ulster University
Consuelo Martínez López ${ }^{2}$
Departamento of Matemáticas. Universidad de Oviedo.

Abstract

In [1, B. Klopsch proved that the Nottingham group over a finite field is verbally elliptic. We prove a similar result for fields of zero characteristic. We also prove that the Virasoro Lie algebra and some its subalgebras are polynomially elliptic.

Keywords: Group; Lower central series; Graded Lie algebra; Nottingham group; Virasoro algebra; Witt algebra; Verbal width; Ellipticity.

1. Introduction

Let $\omega\left(x_{1}, \ldots, x_{k}\right)$ be an element of the free group on k free generators x_{1}, \ldots, x_{k}. We will refer to elements of free groups as words.

Let G be a group. The verbal subgroup $\omega(G)$ is the subgroup of G generated by the verbal set

$$
\omega[G]=\left\{\omega\left(g_{1}, \ldots, g_{k}\right) \mid g_{i} \in G, 1 \leq i \leq k\right\} .
$$

The word ω is said to have finite width in the group G if there exists $d \geq 1$ 5 such that every element g in the verbal subgroup $\omega(G)$ can be expressed as $g=g_{1}^{ \pm 1} \ldots g_{d}^{ \pm 1}$, where $g_{i} \in \omega[G]$.

[^0]If a word ω has finite width in a group G, we say that the group G is ω elliptic. If all words have finite width in the group G, then the group G is called verbally elliptic. verbal width of ω over G is upper bounded by $|G|$ (see [2]).

Martínez and Zelmanov [3] and, independently, Saxl and Wilson [4] proved that for any natural number n, there is a function $N=N(n)$ such that the width of the word $\tau=x^{n}$ in any finite simple group is bounded by N.

An important result related to verbally elliptic groups was proved by P . Stroud [5]: Every finitely generated abelian-by-nilpotent group is verbally elliptic.

Rhemtulla [6] poses the question of the existence of nontrivial words having finite verbal width in every group G. He proved that a word ω in the free group
${ }_{20} \mathcal{F}_{k}$ has finite width in every group G if and only if there exist relatively prime integers i_{1}, \ldots, i_{k} such that $\omega \in x_{1}^{i_{1}} \ldots x_{k}^{i_{k}} \mathcal{F}_{k}^{\prime}$.

Romankov [7] proved that every finitely generated virtually nilpotent group is verbally elliptic. Segal proved in [2] a more general result using the Prüfer rank of a group defined as

$$
r k(G):=\sup \{d(K) \mid K \text { is a finitely generated subgroup of } G\} .
$$

Here, $d(G)$ denotes the minimum possible number of generators of the group G. So in [2] it is proved that every virtually nilpotent group with finite Prüfer rank is verbally elliptic.
J.P. Serre [8] considered the same question for profinite groups and Brian Hartley [9] proved that a word ω has finite width in a profinite group G if and only if the verbal subgroup $\omega(G)$ is closed in G.

Andrei Jaikin-Zapirain ([10) proved that p-adic analytic pro-p-groups are verbally elliptic.

In [11] C. Martinez proved that if Γ is a finitely generated residually-ptorsion group and G is its pro-p-completion, then the group G is verbally elliptic
${ }_{35}$ (understanding that a word ω is an arbitrary element in the free pro- p-group on countably many variables).

For a good survey of what is known about verbal subgroups we refer to the book [2]. In this paper we will prove that the Nottingham group in zero characteristic is verbally elliptic. The same result was proved by B. Klopsch in ${ }^{40}$ [12] for the Nottingham group over a finite field. In the paper we will consider a similar question for Lie algebras, proving that the Virasoro algebra and some of its subalgebras, that are related to the Nottingham group, are polynomially elliptic.

2. Lie algebras

${ }_{45} \quad$ Let ϕ be an associative commutative ring. Consider an absolutely free algebra $\phi\langle X\rangle$ on the set of free generators $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Let $f\left(x_{1}, . ., x_{k}\right) \in \phi\langle X\rangle$. For a ϕ-algebra \mathcal{A} consider the set $f[\mathcal{A}]=\left\{f\left(a_{1}, . ., a_{k}\right) \mid a_{1}, \ldots, a_{k}\right\} \in \mathcal{A}$ and the ϕ-linear span $\operatorname{Span}_{\phi} f[\mathcal{A}]$.

Definition 2.1. (see [11]) A polynomial f has finite width in the algebra \mathcal{A} if there exists $d \geq 1$ such that

$$
\operatorname{Span}_{\Phi} f[\mathcal{A}]=\underbrace{f[\mathcal{A}]+\ldots+f[\mathcal{A}]}_{d} .
$$

In other words, every element $a \in \operatorname{Span}_{\phi} f[\mathcal{A}]$ can be written as

$$
a=f\left(a_{1}^{(1)}, \ldots, a_{k}^{(1)}\right)+\ldots+f\left(a_{1}^{(d)}, \ldots, a_{k}^{(d)}\right)
$$

where $a_{i}^{(j)} \in \mathcal{A}, 1 \leq i \leq k, 1 \leq j \leq d$.
We will define now a stronger notion for multilinear polynomials.
Definition 2.2. A multilinear polynomial $f\left(x_{1}, \ldots, x_{k}\right)$ is strongly elliptic in \mathcal{A} if there exists a finite set of $(k-1)$-tuples, $M \subset \underbrace{\mathcal{A} \times \ldots \times \mathcal{A}}_{k-1}$ such that

$$
f[\mathcal{A}] \subset \sum_{\left(a_{1}, \ldots, a_{k-1}\right) \in M} f\left(\mathcal{A}, a_{1}, \ldots, a_{k-1}\right) .
$$

Lemma 2.1. If a multilinear polynomial $f\left(x_{1}, \ldots, x_{k}\right)$ is strongly elliptic in \mathcal{A} then f has finite width in \mathcal{A}.

Proof. It is enough to consider the expression

$$
\operatorname{Span}_{\Phi} f[\mathcal{A}]=\sum_{\left(a_{1}, \ldots, a_{n-1}\right) \in M} f\left(\mathcal{A}, a_{1}, \ldots, a_{n-1}\right)
$$

and note that the number of terms to the right is always less than or equal to $|M|$.

Fix a field \mathbb{F} of zero characteristic.
The centerless Virasoro algebra, Vir, is the algebra over \mathbb{F} having a basis $\left\{e_{i} \mid i \in \mathbb{Z}\right\}$ with the multiplication $\left[e_{i}, e_{j}\right]=(i-j) e_{i+j}$.

Theorem 2.2. An arbitrary multilinear polynomial is strongly elliptic in Vir.

Proof. Consider $f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ a multilinear element of the free Lie algebra. We have that

$$
f=\sum_{\pi \in S_{n-1}} \alpha_{\pi}\left[x_{0}, x_{\pi(1)}, \ldots, x_{\pi(n-1)}\right], \quad \alpha_{\pi} \in \mathbb{F}
$$

where $\left[x_{0}, x_{1} \cdot x_{2}\right]=\left[\left[x_{0}, x_{1}\right], x_{2}\right]$ and inductively,

$$
\left[x_{0}, x_{1}, \ldots, x_{t+1}\right]=\left[\left[x_{0}, x_{1}, \ldots, x_{t}\right], x_{t+1}\right]
$$

Let M be the finite set given by

$$
M=\left\{\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \mid 0 \leq i_{1}, \ldots, i_{n-1} \leq n\right\} .
$$

We want to prove that

$$
\operatorname{Vir}=\sum_{\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \in M} f\left(\text { Vir }, e_{i_{1}}, \ldots, e_{i_{n-1}}\right)
$$

Notice that for an arbitrary $s \in \mathbb{Z}$, we have that

$$
f\left(e_{s-i_{1}-\ldots-i_{n-1}}, e_{i_{1}}, \ldots, e_{i_{n-1}}\right)=h\left(s, i_{1}, \ldots, i_{n-1}\right) e_{s}
$$

where

$$
\begin{aligned}
& h\left(s, i_{1}, \ldots, i_{n-1}\right)= \\
& =\sum \alpha_{\pi}\left(s-i_{1}-\ldots-i_{n-1}-i_{\pi(1)}\right)\left(s-i_{1}-\ldots-i_{n-1}+i_{\pi(1)}-i_{\pi(2)}\right) \ldots \\
& \ldots\left(s-i_{1}-\ldots-i_{n-1}+i_{\pi(1)}+i_{\pi(2)}+\ldots+i_{\pi(n-2)}-i_{\pi(n-1)}\right)
\end{aligned}
$$

is a homogeneous polynomial in $s, i_{1}, \ldots, i_{n-1}$ of degree $n-1$.
If $f=0$ is an identity in Vir, then there is nothing to prove. So we will assume that $f($ Vir $) \neq(0)$. Then $\operatorname{Span}_{\mathbb{F}} f[$ Vir $]$ is a non-zero ideal of Vir and Vir is simple, what implies that Vir $=\operatorname{Span}_{\mathbb{F}} f[$ Vir $]$.

If there is an integer s such that

$$
e_{s} \notin \sum_{\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \in M} f\left(e_{s-i_{1}-\ldots-i_{n-1}}, e_{i_{1}}, \ldots, e_{i_{n-1}}\right),
$$

then $h\left(s, i_{1}, \ldots, i_{n-1}\right)=0$ for every $(n-1)$-tuple $\left(i_{1}, \ldots, i_{n-1}\right) \in[0, n]^{n-1}$.
But this implies that the polynomial $g\left(x_{1}, \ldots, x_{n-1}\right)=h\left(s, x_{1}, \ldots, x_{n-1}\right)$ (non
65 homogeneous) has degree at most $n-1$ and it is 0 over $[0, n]^{n-1}$. Consequently g is the zero polynomial, or equivalently, $h\left(s, x_{1}, \ldots, x_{n-1}\right)$ is the zero polynomial.

But $e_{s} \in \operatorname{Span}_{\mathbb{F}} f[$ Vir $]$, so there are integers j_{1}, \ldots, j_{n-1} such that

$$
f\left(e_{s-j_{1}-\ldots-j_{n-1}}, e_{j_{1}}, \ldots, e_{j_{n-1}}\right)=\lambda e_{s}
$$

with $\lambda=h\left(s, j_{1}, \ldots, j_{n-1}\right) \neq 0$. This contradiction proves the theorem.

Let $k \geq-1$. Then $\operatorname{Vir}^{(k)}=\sum_{i=k}^{\infty} F e_{i}$ is a subalgebra of Vir.
70 Theorem 2.3. An arbitrary multilinear polynomial is strongly elliptic in Vir $^{(k)}$.
Proof. Let

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\sum_{\pi \in S_{n-1}} \alpha_{\pi}\left[x_{0}, x_{\pi(1)}, \ldots, x_{\pi(n-1)}\right], \quad \alpha_{\pi} \in F
$$

be a multilinear element of the free Lie algebra that is not identical on $\operatorname{Vir}{ }^{(k)}$.

As above,

$$
f\left(e_{s-i_{1}-\ldots-i_{n-1}}, e_{i_{1}}, \ldots, e_{i_{n-1}}\right)=h\left(s, i_{1}, \ldots, i_{n-1}\right) e_{s}
$$

for arbitrary integers $i_{1}, \ldots, i_{n-1}, s \in \mathbb{Z}$.
Consider the finite set $M_{1}=\left\{\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \mid k \leq i_{1}, \ldots, i_{n-1} \leq k+n\right\}$.
We will show that

$$
\operatorname{Vir}^{((k+n)(n-1)+k)} \subseteq \sum_{\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \in M_{1}} f\left(\operatorname{Vir}^{(k)}, e_{i_{1}}, \ldots e_{i_{n-1}}\right)
$$

Indeed, if $s \geq(k+n)(n-1)+k$ and $\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \in M_{1}$ then

$$
s-i_{1}-\cdots-i_{n-1} \geq k
$$

If for all $\left(e_{i_{1}}, \ldots, e_{i_{n-1}}\right) \in M_{1}$ we have

$$
f\left(e_{s-i_{1}-\cdots-i_{n-1}}, e_{i_{1}}, \ldots, e_{i_{n-1}}\right)=h\left(s, i_{1}, \cdots, i_{n-1}\right) e_{s}=0
$$

then arguing as above we conclude that $h\left(s, i_{1}, \cdots, i_{n-1}\right)$ is the zero polynomial.
For every $k \leq j<(k+n)(n-1)+k$ such that $e_{j} \in \operatorname{Span}_{F} f\left[\operatorname{Vir}^{(k)}\right]$ choose elements $a_{0}^{j}, \ldots, a_{n-1}^{j} \in\left\{e_{i} \mid i \geq k\right\}$ such that $e_{j}=f\left(a_{0}^{j}, \ldots, a_{n-1}^{j}\right)$.

Let $M_{2}=M_{1} \cup\left\{\left(a_{1}^{j}, \ldots, a_{n-1}^{j}\right)\right\}$. Then

$$
\operatorname{Span}_{F} f\left[\operatorname{Vir}^{(k)}\right]=\sum_{\left(a_{1}, \ldots, a_{n-1}\right) \in M_{2}} f\left(\operatorname{Vir}^{(k)}, a_{1}, \ldots, a_{n-1}\right)
$$

This completes the proof of the theorem.

The following theorem concerns ideals I of a Lie ring $\operatorname{Vir}^{(k)}, k \geq-1$. It so means that we do not assume, a priori, that I is an F-vector subspace.

Theorem 2.4. An arbitrary nonzero ideal of a Lie ring $\operatorname{Vir}^{(k)}, k \geq-1$, contains $\operatorname{Vir}^{(l)}$ for some $l \geq k$.

Proof. Let $I \neq(0)$ be an ideal of the Lie ring $\operatorname{Vir}^{(k)}$. Let $0 \neq a=\alpha_{1} e_{i_{1}}+$ $\alpha_{2} e_{i_{2}}+\ldots+\alpha_{m} e_{i_{m}} \in I ; 0 \neq \alpha_{i} \in F, 1 \leq i \leq m ; k \leq i_{1}<\cdots<i_{m}$ and m a

If $m \geq 2$ then
$0 \neq\left[a, e_{i_{1}}\right]=\alpha_{2}\left(i_{2}-i_{1}\right) e_{i_{1}+i_{2}}+\alpha_{3}\left(i_{3}-i_{1}\right) e_{i_{1}+i_{3}}+\cdots+\alpha_{m}\left(i_{m}-i_{1}\right) e_{i_{1}+i_{m}} \in I$,
which contradicts minimality of m. Hence $m=1$, the ideal I contains an element $\alpha e_{i}, 0 \neq \alpha \in F, i \geq k$. It is easy to see that in this case $\operatorname{Vir}^{(i+k)}=$ $\left[\alpha e_{i}, \operatorname{Vir}^{(k)}\right] \subseteq I$. This completes the proof of the theorem.

3. Nottingham Group in Characteristic 0

Given a field \mathbb{F}, consider the set of infinite series

$$
N_{\mathbb{F}}(t):=\left\{t+\sum_{k \geq 1} \alpha_{k} t^{k+1} \mid \alpha_{k} \in \mathbb{F} \quad k \in \mathbb{N}\right\}
$$

with the group multiplication

$$
f g:=g(f) ; f, g \in N_{\mathbb{F}}(t)
$$

For a finite field $\mathbb{F}=G F\left(p^{k}\right)$, the group $N_{\mathbb{F}}(t)$ is a finitely generated pro-p group that has been widely studied in the literature.

As always $O\left(t^{n}\right)$ stands for a formal series lying in $t^{n} F[[t]]$.
Lemma 3.1. [13]

1. If $f=t+\alpha t^{n}+O\left(t^{n+1}\right), g=t+\beta t^{n}+O\left(t^{n+1}\right)$, where $\alpha, \beta \in \mathbb{F}, n \geq 2$, then $f g=t+(\alpha+\beta) t^{n}+O\left(t^{n+1}\right)$.
2. If $f=t+\alpha t^{n}+O\left(t^{n+1}\right), 0 \neq \alpha \in \mathbb{F}$, then $f^{-1}=t-\alpha t^{n}+O\left(t^{n+1}\right)$.
3. If $f=t+\alpha t^{n}+O\left(t^{n+1}\right), g=t+\beta t^{m}+O\left(t^{m+1}\right)$, where $\alpha, \beta \in \mathbb{F}, n, m \geq 2$, then $[f, g]=t+\alpha \beta(n-m) t^{n+m-1}+O\left(t^{n+m}\right)$.

Notice that the Nottingham group over a field of characteristic 0 is torsion free.

Lemma 3.2. Let char $\mathbb{F}=0$. Then for an arbitrary integer $n \geq 1$ and an arbitrary element $g \in N_{\mathbb{F}}(t)$ there exists a unique element $h \in N_{\mathbb{F}}(t)$ such that $h^{n}=g$.

105
Proof. It is easy to see that for any $n \geq 2$ there exist polynomials $P_{k}\left(x_{1}, \ldots, x_{k-2}\right)$, $k \geq 3$, such that the n-th power of an element $t+\sum_{i=2}^{\infty} \alpha_{i} t^{i} \in N_{\mathbb{F}}(t)$ is equal to $t+n \alpha_{2} t^{2}+\sum_{k=3}^{\infty}\left(n \alpha_{k}+P_{k}\left(\alpha_{2}, \ldots, \alpha_{k-1}\right)\right) t^{k}$.

Let $g=t+\sum_{i=2}^{\infty} \beta_{i} t^{i}$. Define a sequence

$$
\alpha_{2}=\frac{1}{n} \beta_{2}, \ldots, \alpha_{k}=\frac{1}{n}\left(\beta_{k}-P_{k}\left(\alpha_{2}, \ldots, \alpha_{k-1}\right)\right), k \geq 3 .
$$

Let $h=t+\sum_{i=2}^{\infty} \alpha_{i} t^{i}$. Then $h^{n}=g$. It is easy to see that the element h is the unique element with this property. This completes the proof of the lemma.

For $n \geq 1$ consider

$$
K_{n}:=\left\{t+O\left(t^{n+1}\right)\right\}
$$

In particular, $K_{1}=N_{\mathbb{F}}(t)$. Lemma 3.1 implies that K_{n} is a normal subgroup of $N_{\mathbb{F}}(t)$ and the mapping

$$
\theta: K_{n} \rightarrow \mathbb{F}, \theta\left(t+\alpha t^{n+1}+O\left(t^{n+2}\right)\right)=\alpha
$$

is a homomorphism into the additive group of the field $\mathbb{F}, \operatorname{Ker} \theta=K_{n+1}$. Hence $K_{n} / K_{n+1} \simeq \mathbb{F}$.

For a group G let $\gamma_{n}(G)$ denote the n-th term of the lower central series:

$$
G=\gamma_{1}(G) \geq \gamma_{2}(G) \geq \cdots
$$

$\gamma_{n}(G)=\left[\gamma_{n-1}(G), G\right], n \geq 2$.
Lemma 3.3. ([13]) For every $n \geq 1$, we have that $\gamma_{n}=\gamma_{n}\left(N_{\mathbb{F}}(t)\right)=K_{n}$.

Recall that the Lie ring associated with the lower central series of a group G is the \mathbb{N}-graded abelian group

$$
L(G)=\bigoplus_{n \geq 1} \gamma_{n}(G) / \gamma_{n+1}(G)
$$

with multiplication

$$
\left[a \gamma_{n+1}(G), b \gamma_{m+1}(G)\right]=[a, b] \gamma_{n+m+1}(G)
$$

for $a \in \gamma_{n}(G), b \in \gamma_{m}(G)$.
The isomorphisms $K_{n} / K_{n+1} \simeq \mathbb{F}$ define a structure of \mathbb{F}-vector space on $L\left(N_{\mathbb{F}}(t)\right)$. Lemma 3.1 (3) implies that multiplication on $L\left(N_{\mathbb{F}}(t)\right)$ is \mathbb{F}-bilinear, hence $L\left(N_{\mathbb{F}}(t)\right)$ is a Lie algebra over the field \mathbb{F}.

Again from Lemma 3.1(3) it follows that $L\left(N_{\mathbb{F}}(t)\right) \simeq \operatorname{Vir}^{(1)}$
Definition 3.1. A group G is said to be residually nilpotent if

$$
\cap_{n \geq 1} \gamma_{n}(G)=(1)
$$

Taking the system of subgroups $\gamma_{n}(G), n \geq 1$, for the basis of neighbourhoods of 1 we define a topology on the group G.

If this topology is complete then we say that the group G is pronilpotent.
By Lemma 3.3 the pronilpotent topology on the group $N_{\mathbb{F}}(t)$ coincides with the degree topology. Hence $N_{\mathbb{F}}(t)$ is a pronilpotent group.

Lemma 3.4. Let $g \in K_{n} \backslash K_{n+1}, g=t+\alpha t^{n+1}+O\left(t^{n+2}\right), 0 \neq \alpha \in \mathbb{F}$. Then

1. $K_{2 n+1}=\left[g, K_{n+1}\right]$.
2. For any $s, n<s<2 n$, we have $K_{s}=\left[g, K_{s-n}\right] K_{2 n}$.

Proof. Denote $f_{i}(\beta)=t+\beta t^{i+1}, i \geq 1, \beta \in \mathbb{F}$.
We claim that for an arbitrary $s>n, s \neq 2 n$,

$$
\begin{equation*}
K_{s}=\left[g, K_{s-n}\right] K_{s+1} \tag{C}
\end{equation*}
$$

Indeed, choose an arbitrary element $h=t+\gamma t^{s+1}+O\left(t^{s+2}\right) \in K_{s}$. Let $\beta=\frac{\gamma}{(2 n-s) \alpha}$.

By Lemma 3.1(3)

$$
\left[g, f_{s-n}(\beta)\right]=t+(2 n-s) \alpha \beta t^{s+1}+O\left(t^{s+2}\right)=t+\gamma t^{s+1}+O\left(t^{s+2}\right)
$$

By Lemma 3.1, $\left[g, f_{s-n}(\beta)\right]^{-1} h \in K_{s+1}$, which implies the claim.
Now choose an arbitrary element $h \in K_{2 n+1}$. We will construct a sequence of elements $a_{i} \in K_{n+i}, i \geq 1$, such that

$$
h \in\left[g, a_{1} \cdots a_{i}\right] K_{2 n+1+i} \quad \text { for any } i \geq 1
$$

For $i=1$, by (C), there exists an element $a_{1}=f_{n+1}(\beta) \in K_{n+1}$ such that $h \in\left[g, a_{1}\right] K_{2 n+2}$.

Suppose that elements a_{1}, \ldots, a_{i} satisfying that $h \in\left[g, a_{1} \cdots a_{i}\right] K_{2 n+1+i}$ have been found. Then $\left[g, a_{1} \cdots a_{i}\right]^{-1} h \in K_{2 n+1+i}$.

By (C) there exists an element $a_{i+1} \in K_{n+i+1}$ such that

$$
\left[g, a_{1} \cdots a_{i}\right]^{-1} h=\left[g, a_{i+1}\right] \bmod K_{2 n+i+2}
$$

Hence, $h=\left[g, a_{1} \cdots a_{i}\right]\left[g, a_{i+1}\right] \bmod K_{2 n+i+2}$.
Using Hall identity:

$$
[x, z y]=[x, y][x, z][[x, z], y]
$$

we get $\left[g, a_{1} \cdots a_{i}\right]\left[g, a_{i+1}\right]=\left[g, a_{1} \cdots a_{i} a_{i+1}\right] \bmod K_{2 n+i+2}$.
We have completed the construction of a sequence $a_{1}, a_{2}, \ldots, a_{m}, \ldots$ with the required properties.

Let $a=\lim _{i \rightarrow \infty} a_{1} \cdots a_{i} \in K_{n+1}$. Then $h=[g, a]$.
Let's prove the second assertion. Consider s any number satisfying $n<s<$ $2 n$ and $h^{\prime} \in K_{s}$ Arguing as above and using (C) we find elements $a_{i} \in K_{i}$, $1 \leq i \leq n-1$, such that

$$
h^{\prime}=\left[g, a_{1} \cdots a_{i}\right] \bmod K_{n+i+1}
$$

For the element $a=a_{1} \cdots a_{n-1}$ we have $h^{\prime}=[g, a] \bmod K_{2 n}$. This completes the proof of the lemma.

Corollary 3.5. An arbitrary non-identical normal subgroup of $N_{\mathbb{F}}(t)$ contains a subgroup K_{m} for some $m \geq 1$.

145 Proof. Let H be a non-identical normal subgroup of $N_{\mathbb{F}}(t)$. Let $1 \neq g \in H$, then there is an n such that $g \in K_{n} \backslash K_{n+1}$.

Then, by Lemma $3.4(1) K_{2 n+1}=\left[g, K_{n+1}\right] \subseteq H$. This completes the proof, taking $m=2 n+1$.

Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a non-zero polynomial over \mathbb{F}. Suppose that

$$
p=p_{0}\left(x_{2}, \ldots, x_{m}\right)+x_{1} p_{1}\left(x_{2}, \ldots, x_{m}\right)+x_{1}^{d} p_{d}\left(x_{2}, \ldots, x_{m}\right)
$$

where $p_{d}\left(x_{2}, \ldots, x_{m}\right) \neq 0$. Let $\mathcal{P}=\left\{p\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}\right\}$.

150
Lemma 3.6. $\mathbb{F}=\underbrace{ \pm \mathcal{P} \pm \mathcal{P} \pm \ldots \pm \mathcal{P}}_{2^{d}}$. That is, every element in \mathbb{F} is the sum of 2^{d} elements, each of them lying in \mathcal{P} or $-\mathcal{P}$.

Proof. Introduce d new variables, y_{1}, \ldots, y_{d} and consider the polynomial

$$
\begin{gathered}
\tilde{p}\left(y_{1}, \ldots, y_{d}, x_{2}, \ldots, x_{m}\right)=p\left(y_{1}+\ldots+y_{d}, x_{2}, \ldots, x_{m}\right)- \\
\sum_{i=1}^{d} p\left(y_{1}+\ldots+\hat{y}_{i}+\ldots+y_{d}, x_{2}, \ldots, x_{m}\right)+\sum_{1 \leq i<j \leq n}^{d} p\left(y_{1}+\ldots+\hat{y}_{i}+\ldots+\hat{y}_{j}+y_{d}, x_{2}, \ldots, x_{m}\right)+ \\
\ldots+(-1)^{d-1} \sum_{i=1}^{d} p\left(y_{i}, x_{2}, \ldots, x_{m}\right)+(-1)^{d} p\left(0, x_{2}, \ldots, x_{m}\right)=d!y_{1} \ldots y_{d} p_{d}\left(x_{2}, \ldots, x_{m}\right) .
\end{gathered}
$$

Every element from the field \mathbb{F} is a value of the polynomial

$$
d!y_{1} \ldots y_{d} p_{d}\left(x_{2}, \ldots, x_{m}\right)
$$

which implies the assertion of the lemma.

Theorem 3.7. Let \mathbb{F} be a field of characteristic zero. Then, the Nottingham group $N_{\mathbb{F}}(t)$ is verbally elliptic.
${ }_{155}$ Proof. Let $\omega\left(x_{1}, \ldots, x_{m}\right)$ be an element of the free group \mathcal{F}_{m} on m free generators x_{1}, \ldots, x_{m}.

Let $G=N_{\mathbb{F}}(t)$. Suppose that $\omega[G] \subseteq K_{n}$ and n is maximal with this property.

If $\omega \notin\left[\mathcal{F}_{m}, \mathcal{F}_{m}\right]$ then $\omega(G)=G$. Indeed, if $\omega \notin\left[\mathcal{F}_{m}, \mathcal{F}_{m}\right]$ then

$$
\omega=x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{m}^{n_{m}} \omega^{\prime}
$$

where $\omega^{\prime} \in\left[\mathcal{F}_{m}, \mathcal{F}_{m}\right]$ and some $n_{i} \neq 0$. Suppose that $n_{1} \neq 0$. Choose $x_{2}=1, \ldots$,

Using Lemma 3.2 we can extract roots in $N_{\mathbb{F}}(t)$ so for every $f \in N_{\mathbb{F}}(t)$, $f=g^{n_{1}}=\omega(g, 1, \ldots, 1) \in \omega[G]$.

Hence, without loss of generality, we assume that $\omega \in\left[\mathcal{F}_{m}, \mathcal{F}_{m}\right]$, hence $n \geq 2$.
Choose an element $g \in \omega[G], g \in K_{n} \backslash K_{n+1}$.

There exists a polynomial $p\left(x_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right)$ such that
$\omega\left(t+\sum_{j=1}^{n} \alpha_{1 j} t^{j+1}, t+\sum_{j=1}^{n} \alpha_{2 j} t^{j+1}, \ldots, t+\sum_{j=1}^{n} \alpha_{m j} t^{j+1}\right)=t+p\left(\alpha_{i j}\right) t^{n+1}+O\left(t^{n+2}\right)$.

Acknowledgements

This work has been partially supported by the Goverment of Spain through the project $M T M 2017-83506-C 2-2-P$ and by the Principado de Asturias 180

Let d be the maximum of (total) degrees of monomials from $p\left(x_{i j}\right)$. By Lemmas 3.1(1) and 3.6. an arbitrary element u from $\omega(G)$ is a product of not more than $r=2^{d}$ elements from $\omega[G]^{ \pm 1}$ modulo K_{n+1}. Hence there exist elements $g_{1}, \ldots, g_{r} \in \omega[G]^{ \pm 1}$ such that $u=g_{1} \ldots g_{r}$ modulo K_{n+1}.

By Lemma 3.4(2) there exists an element $b \in G$ such that

$$
\left(g_{1} \ldots g_{r}\right)^{-1} u=[g, b] \quad \bmod \left(K_{2 n}\right)
$$

On the other side, since the element $\left[g, f_{1}(1)\right]$ lies in $K_{n+1} \backslash K_{n+2}$, we can use again Lemma 3.4 (2) to get an element $b_{1} \in K_{n}$ such that

$$
[g, b]^{-1}\left(g_{1} \cdots g_{r}\right)^{-1} u=\left[\left[g, f_{1}(1)\right], b_{1}\right] \quad \bmod \left(K_{2(n+1)}\right)
$$

By Lemma $3.4(1)$ there exists an element $b_{2} \in K_{n+1}$ such that

$$
\left[\left[g, f_{1}(1)\right], b_{1}\right]^{-1}[g, b]^{-1}\left(g_{1} \cdots g_{r}\right)^{-1} u=\left[g, b_{2}\right]
$$

Now, $u=g_{1} \cdots g_{r}[g, b]\left[\left[g, f_{1}(1)\right], b_{1}\right]\left[g, b_{2}\right]$.
A commutator $\left[g, b_{i}\right]$ is a product of two elements $\left(g^{-1}\right.$ and $\left.g^{b_{i}}=b_{i}^{-1} g b_{i}\right)$ of $\omega[G]^{ \pm 1}$. The commutator $\left[\left[g, f_{1}(1)\right], b_{1}\right]$ is a product of four elements from $\omega[G]^{ \pm 1}$. Hence the verbal width in the group $G=N_{\mathbb{F}}(t)$ is at most $r+8$.

This completes the proof of the Theorem.

Authors are grateful to the referee who provided useful comments. through the project $F C-G R U P I N-I D I / 2018 / 000193$.

References

[1] B. Klopsch, Automorphisms of the nottingham group, Journal of Algebra 223 (2000) 37-56.
[2] D. Segal, Words: Notes on verbal width in groups, London Mathematical Society Lecture Notes Series 361 (2009).
[3] C. Martinez, E. I. Zelmanov, Product of powers in finite simple groups, Israel J. Math. 96 (1997) 469-479.
[4] Saxl, J. S. Wilson, A note on powers in simple groups, Math. Proc. Camb. Phil. Soc. 122 (1997) 91-94.
[5] P. Stroud, Topics in the theory of verbal subgroups, PhD Thesis. University of Cambridge (1966).
[6] A. H. Rhemtulla, A problem of bounded expressibility in free products, Academic Press, New York, 64 (1994) 573-584.
[7] V. Romankov, Width of verbal subgroups in solvable groups, Algebra i logika 21 (1982) 60-72.
[8] J. Serre, Cohomologie galoisienne, Springer Verlag (1964).
[9] B. Hartley, Subgroups of finite index in profinite groups, Math. Z. 168 (1979) 71-76.
[10] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p-groups, Rev. Mat. Iberoam. 24 (2008) 617-630.
[11] C. Martinez, Ellipticity of words, Journal of Algebra 500 (2018) 242-252.
[12] B. Klopsch, Normal subgroups in substitution groups of formal power series, Journal of Algebra 228 (2000) 91-106.
[13] D. L. Johnson, The group of formal power series under substitution, Journal of Australian Math. Soc. 45(3) (1988) 296-302.

[^0]: Email addresses: j.martinez-carracedo@ulster.ac.uk (Jorge Martínez Carracedo), cmartinez@uniovi.es (Consuelo Martínez López)
 ${ }^{1}$ Shore Rd, Newtownabbey, BT37 0QB, Northern Ireland (U.K.)
 ${ }^{2}$ C/Federico García Lorca, 18, 33007, Oviedo, Spain

