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RESUMEN (en español) 

 
 
 Comprender el funcionamiento del cerebro es uno de los grandes retos para la 
ciencia, y diferentes disciplinas participan en esta formidable tarea. En este escenario, 
las interacciones entre Matemáticas y Neurociencia son abundantes y fructíferas. 
  
En esta tesis estamos interesados en el estudio del comportamiento de neuronas 
aisladas entendidas como sistemas dinámicos. Nuestros modelos neuronales se 
establecerán en términos de ecuaciones diferenciales ordinarias, y la Teoría de 
Bifurcaciones jugará un papel fundamental.  
 
A mediados del siglo pasado, Hodgkin y Huxley propusieron un modelo para explicar 
y reproducir el comportamiento neuronal. Sus estudios les hicieron merecedores del 
Premio Nobel de Fisiología y Medicina en 1963. El modelo de Hodgkin y Huxley es 
extremadamente realista, pero su estudio presenta complicaciones. Por ello, 
aparecieron diversos modelos simplificados. Uno de ellos fue el modelo de 
Hindmarsh-Rose, que desempeña el papel protagonista en este trabajo. 
  
El modelo de Hindmarsh-Rose es un sistema tridimensional de tipo fast-slow, es 
decir, presenta diferentes escalas temporales; en particular, dos variables rápidas y 
una lenta. La evolución de la variable lenta está controlada por un pequeño parámetro 
de manera que, cuando se anula, la variable se detiene. Los sistemas fast-slow son 
habituales en muchos campos y en contextos muy diferentes. La teoría de Fenichel 
permite obtener información relevante, aunque parcial, sobre las órbitas, aproximando 
la dinámica del sistema global por la del subsistema rápido, esto es, el sistema 
resultante de anular el pequeño parámetro.  
 
Una de las características más notables del modelo de Hindmarsh-Rose es su 
realismo. Entre otros comportamientos, es capaz de reproducir el fenómeno del 
bursting, una señal neuronal en la que se alternan ráfagas de potenciales de acción o 
spikes y períodos de reposo. El bursting es un comportamiento habitual en las 
neuronas, de gran importancia en la codificación de la información. Uno de los 
mecanismos más relevantes en relación con el bursting es la ganancia de spikes 
(spike-adding).  
 
Existen diferentes tipos de spike-adding. En 1991, Terman describió dos procesos, 
uno de ellos continuo, que más tarde se relacionó con las soluciones de tipo canard, y 
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otro caótico, relacionado con una transición de patrones irregulares antes de obtener 
el nuevo spike. Diferentes estudios han identificado los elementos relevantes en estos 
procesos, incluyendo curvas de bifurcación de period-doubling y fold de ciclos límite. 
Eligiendo un plano paramétrico adecuado, puede observarse cómo estas curvas de 
bifurcación nacen de degeneraciones homoclínicas de codimensión dos: orbit flips, 
inclination flips y puntos de Belyakov. Por ello, la estructura de bifurcación 
homoclínica se considera el centro organizador de los fenómenos de bursting.   
 
En los artículos que constituyen el corazón de esta tesis, se abordan diferentes    
aspectos de la dinámica del modelo de Hindmarsh-Rose. Con anterioridad, el modelo 
había sido estudiado en un escenario biparamétrico, pero fijando el valor del pequeño 
parámetro. Nosotros analizamos diagramas de bifurcación tridimensionales que 
revelan un intrincado esqueleto homoclínico que explica las características clave de 
los fenómenos de bursting. Estas características incluyen la simplificación de los 
mapas de bursting cuando el pequeño parámetro crece, y también buena parte de los 
mecanismos de spike-adding. También se incluye un trabajo adicional sobre un 
modelo de un cardiomiocito.  
 
Nuestras contribuciones originales están incluidas en el Capítulo 4. El Capítulo 1 está 
dedicado a los modelos neuronales y el Capítulo 2 presenta los resultados de sistemas 
dinámicos que son esenciales para la discusión posterior. En el Capítulo 3 se discuten 
los antecedentes de nuestra investigación. El Capítulo 5 consiste en las conclusiones y 
una breve propuesta de futuras líneas de investigación.  
 

  
 
 
 
 
 
 
 
 
 
 
 

 
RESUMEN (en Inglés) 

 
 
Understanding the functioning of the brain is one of the great challenges in science and there are 
many different fields involved in that enormous task. In this scenario, interactions between 
Mathematics and Neuroscience are abundant and fruitful. 
 
In this Thesis we are interested in the study of the behaviour of isolated neurons as dynamical 
systems. Our neuron models will be established in terms of ordinary differential equations, and 
Bifurcation Theory will play a fundamental role.  
 
In the middle of the last century, Hodgkin and Huxley proposed a model to explain and 
reproduce neural behaviour. Their studies earned them the Nobel Prize in Physiology and 
Medicine in 1963. The Hodgkin and Huxley model is highly realistic, but its study presents 
complications. Due to this, different simplifications appeared. One of them was the Hindmarsh-
Rose model, which plays the starring role in this work.  



                                                                

 
 

 

The Hindmarsh-Rose model is a three-dimensional system of fast-slow type, that is, it presents 
different time-scales; in particular, two fast variables and one slow variable . The evolution of 
the slow variable is controled by a small parameter in such a way that, when it vanishes, this 
variable stops. Fast-slow systems are common in many fields and in very diverse contexts. 
Fenichel Theory allows the obtaining of relevant, albeit partial, information about the orbits, 
approximating the dynamics of the global system by that of the fast subsystem, that is, the 
system resulting from canceling the small parameter.  
 
One of the most notable characteristics of the Hindmarsh-Rose model is its realism. Among 
other behaviours, it is capable of reproducing bursting phenomenon, a neural signal in which 
bursts of action potentials or spikes and resting periods alternate. Bursting is a typical behaviour 
of neurons, of great importance in the coding of information. One of the most relevant 
mechanisms in relation to bursting is the gaining of spikes (spike-adding).  
 
There are different types of spike-adding. In 1991, Terman described two processes, one of 
them continuous, which was later related to canard solutions, and the other chaotic, related to a 
transition of irregular patterns before obtaining the extra spike. Different studies have identified 
relevant elements in these processes, including period-doubling and fold bifurcations of limit 
cycles. Considering a suitable parametric plane, it can be observed how these bifurcation curves 
arise from homoclinic degeneracies of codimension two: orbit flips, inclination flips and 
Belyakov points. Because of this, the homoclinic bifurcation structure is understood as the 
organizing center of bursting phenomena.  
 
In the papers that constitute the heart of this Thesis, different aspects of the dynamics of the 
Hindmarsh-Rose model are addressed. Previously, the model had been studied by moving two 
of its parameters, but fixing the value of the small one. We analyse three-dimensional 
bifurcation diagrams that reveal an intrincate homoclinic skeleton that explains the key 
characteristics of bursting phenomena. These features include the simplification of the bursting 
map as the small parameter increases, and also a good deal of the spike-adding mechanisms. 
Additional work includes a study on a cardiac myocyte cell model. 
 
Our original contributions are included in Chapter 4. Chapter 1 presents the neuron models and 
Chapter 2 compiles the results of dynamical systems that are essential for further discussion. In 
Chapter 3 the background to our research is discussed. Chapter 5 consists of the conclusions and 
a brief proposal for future research. 
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Introduction

Understanding the functioning of the brain is one of the great challenges in science and
there are many different fields involved in that enormous task. In this scenario, interac-
tions between Mathematics and Neuroscience are abundant and fruitful.

In this Thesis we are interested in the study of the behaviour of isolated neurons as
dynamical systems. Our neuron models will be established in terms of ordinary differential
equations, and Bifurcation Theory will play a fundamental role.

In the middle of the last century, Hodgkin and Huxley proposed a model to explain
and reproduce neural behaviour. Their studies earned them the Nobel Prize in Physiology
and Medicine in 1963. The Hodgkin and Huxley model is highly realistic, but its study
presents complications. Due to this, different simplifications appeared. One of them was
the Hindmarsh-Rose model, which plays the starring role in this work.

The Hindmarsh-Rose model is a three-dimensional system of fast-slow type, that is,
it presents different time-scales; in particular, two fast variables and one slow variable.
The evolution of the slow variable is controled by a small parameter in such a way that,
when it vanishes, this variable stops. Fast-slow systems are common in many fields and
in very diverse contexts. Fenichel Theory allows the obtaining of relevant, albeit partial,
information about the orbits, approximating the dynamics of the global system by that
of the fast subsystem, that is, the system resulting from canceling the small parameter.

One of the most notable characteristics of the Hindmarsh-Rose model is its realism.
Among other behaviours, it is capable of reproducing bursting phenomenon, a neural
signal in which bursts of action potentials or spikes and resting periods alternate. Bursting
is a typical behaviour of neurons, of great importance in the coding of information. One
of the most relevant mechanisms in relation to bursting is the gaining of spikes (spike-
adding).

There are different types of spike-adding. In 1991, Terman described two processes, one
of them continuous, which was later related to canard solutions, and the other chaotic,
related to a transition of irregular patterns before obtaining the extra spike. Different
studies have identified relevant elements in these processes, including period-doubling
and fold bifurcations of limit cycles. Considering a suitable parametric plane, it can be
observed how these bifurcation curves arise from homoclinic degeneracies of codimension
two: orbit flips, inclination flips and Belyakov points. Because of this, the homoclinic

15



16 INTRODUCTION

bifurcation structure is understood as the organizing center of bursting phenomena.
In the papers that constitute the heart of this Thesis, different aspects of the dy-

namics of the Hindmarsh-Rose model are addressed. Previously, the model had been
studied by moving two of its parameters, but fixing the value of the small one. We anal-
yse three-dimensional bifurcation diagrams that reveal an intrincate homoclinic skeleton
that explains the key characteristics of bursting phenomena. These features include the
simplification of the bursting map as the small parameter increases, and also a good deal
of the spike-adding mechanisms. Additional work includes a study on a cardiac myocyte
cell model. Our original contributions are included in Chapter 4. Chapter 1 presents the
neuron models and Chapter 2 compiles the results of dynamical systems that are essential
for further discussion. In Chapter 3 the background to our research is discussed. Chapter
5 consists of the conclusions and a brief proposal for future research.



Chapter 1

Mathematical models in
Neuroscience

1.1 Biological foundations

The transmission of information in the brain is possible due to the activity of neurons,
their basic functional units. Understanding the biological basis of their activity permits to
abstract their fundamental properties and obtain dynamical models. The development of
models allows Neuroscience to have a broader perspective, considering neurons not only
from a biological perspective, but also from a mathematical point of view.

We will begin by reviewing the neuronal morphology and the physiology of action
potential, its basic unit of communication. This biology background can be found in
[20] and [27], among many others. Next we will see how the Hodgkin-Huxley model
can be derived from the previous information. The Hodgkin-Huxley model [23] is an
example of a complex system with a direct biophysical interpretation which reproduces
biological phenomena in a very realistic way. Lastly, we will present the derivation of the
Hindmarsh-Rose model [21], [22]. The Hindmarsh-Rose model is an example of a fairly
simple model that allows isolating the mathematical mechanisms responsible of certain
biological behaviours. It also permits to perform a detailed analysis.

A neuron is an electrically excitable cell that can transmit signals over long distances.
The human brain has approximately 100 billion neurons and a significantly bigger amount
of neuroglia, the cells that support and protect the neurons.

Morphology

The anatomy of neurons changes depending on the type they belong to, but typically
they have three parts: the body or soma, the dendrites and the axon. The soma is the
metabolic center of the neuron and contains its genetic material. It also synthesises the
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18 CHAPTER 1. MATHEMATICAL MODELS IN NEUROSCIENCE

majority of the proteins that the neurons need to produce. Different protusions extend
from the soma: the axon and the dendrites. The axon is a long, thin prolongation that
propagates electric signals (known as action potentials or spikes) towards other neurons.
The dendrites are shorter, branching extensions that receive signals from other neurons.
In Figure 1.1 the basic scheme of a neuron is shown.

Figure 1.1: Schematic view of a neuron. Reproduced from [35].

Brief review of electricity

Due to the importance of electrical activity in neuronal communications, we must review
some basic concepts related to electrical phenomena. Electrical phenomena occur when
charges of opposite signs separate or can move independently. Electric charge is defined as
the property of matter that causes it to experiment a force when kept in an electromagnetic
field. It is measured in coulombs and represented by q. Any net flow of charges is a
current. It is measured in amperes and represented by I. The amount of the flow of
charges between two points is determined by the potential difference between the points
and the conductance of the environment. The potential difference is represented by V and
is measured in volts, being one volt the work required to move a charge of one coulomb
without resistance from one point to other. Conductance, represented by G, is measured
in siemens and measures the ease with which the electric current moves from one point to
another in a certain medium. The reciprocal of the conductance is the resistance, which
is measured in ohms and represented by R. Capacitance, represented by C, is the ratio of
electric charge acumulated on a conductor to a difference in electric potential (C = q/V )
and it is measured in farads. Later we will use these concepts to describe changes in the
neuronal membrane and for the formulation of models.

Neural membrane and ion channels

Membranes enclose the body of neurons and consist of a bilayer of lipid molecules (which is
an electrical insulator) with different types of protein structures embedded in it, including
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ion channels. Figure 1.2 provides a schematic representation. Ion channels are proteins
that allow the flow of specific ions across the membrane. Ion channels are often regulated,
that is, wheter they are open or close depends on the stimuli they receive. They can
have activation and inactivation gates or only the first type. Activation gates open the
channels, and inactivation gates block them them. There are also non-regulated channels,
which are continuously open, like the leak channels, which are crossed mainly by chloride
ions, Cl−. Membrane is permeable to a great variety of ions, sodium ion (Na+) and
potassium ion (K+) being the most relevant. Both sodium and potassium channels are
voltage-dependent.

Figure 1.2: Schematic view of the membrane on a neuron. Obtained from [20]

Membrane potential

In resting state, neurons have a relative excess of positive charges in the outside (thus a
relative excess of negative charge in the inside). This situation gives rise to an electrical
potential difference, known as membrane potential. Specifically, the membrane potential
Vm is defined as

Vm = Vint − Vext
Vint being the potential inside the cell and Vext the potential outside. The potential across
the membrane when the neuron is in resting state (not producing signals) is known as
the resting potential. By convention the potential outside the neuron is defined as 0. As
a result, the resting potential takes negative values, ranging from -70 to -60 mV. The
charge separation across the membrane is maintained due to passive transport and active
transport. Passive transport does not require energy, and it takes place as a result of
concentration gradients. Active transport requires the cell to expend energy to move
a substance against its concentration gradient. An example of active transport is the
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sodium–potassium pump, which uses energy to move sodium and potassium ions against
their gradient.

Nernst potential

There are two forces that drive each diffusible ionic species through the membrane: con-
centration (chemical) gradient and electric potential gradient. Concentration of ionic
species tends to balance, thus ions of a certain type leave the cell if their outer concen-
tration is less than the inner concentration. When ions leave the cell, they carry their
charge to the outside. The positive and negative charges accumulate outside and inside
the membrane, respectively. This creates an electric potential gradient across the cell
membrane, which reduces the flow of the ionic species. Eventually, there is a balance of
the two forces (chemical and electrical) and the net cross-membrane current is null. The
value of the potential for which this equilibrium is reached is known as Nernst potential,
and is given by the Nernst equation:

Eion =
RT

zF
ln

[Ion]ext
[Ion]int

(volts)

where [Ion]int is the concentration of the ionic species inside the cell and [Ion]ext is the
ionic concentration outside the cell; R is the universal gas constant (8315 mJ/(K ·Mol); T
is the temperature measured in Kelvin; F is the Faraday constant (96480 coulombs/Mol);
z is the charge of the ion (for example, z = −1 for Cl− and z = 2 for Ca2+).

Action potential

Every time there is a net flow of ions through the cell membrane the polarization changes.
An increase of the polarization is known as hyperpolarization, while a reduction is known
as depolarization. Typically, hyperpolarization does not cause voltage-dependent ion
channels to open. On the other hand, depolarization may lead to their opening if the
intensity is appropriate, inducing an abrupt change in the membrane voltage. Namely,
there is a rapid rise and fall of the membrane potential. This phenomenon is known as
action potential or spike and is represented in Figure 1.3. Spikes are often referred to
all-or-none responses: either there is a full response or there is no response at all.

Spikes are the basic units in neural communication, since more complex behaviours
can be explained from them. There is a pletora of electrical phenomena regarding neural
communication, but the following behaviours are specially relevant:

� Quiescence: where the neuron does not produces a response and the membrane
potential remains constant.

� Spiking: continuous repetition of spikes.
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Figure 1.3: Representation of the action potential and its phases. Reproduced from [29].

� Bursting: alternation between a silent phase (quiescence) and an active phase (spik-
ing). Bursting can be regular or irregular (chaotic). It is possible for a neuron to
respond to a certain stimulus with a single train of spikes. This train of spikes is
called a burst.

Sodium and potassium voltage-dependent channels

Sodium and potassium voltage-dependent channels present similarities and differences.
A greater depolarization increases their probability of opening, as well as the speed with
which they open. On the other hand, they differ in their velocity and in their response to a
long-lasting depolarization. When there is a depolarization, sodium channels open faster
than potassium channels. Sodium channels present activation and inactivation gates,
while potassium channels only have activation gates. When a prolonged depolarization
occurs, the inactivation gates of sodium channels cause the flow of sodium ions through
the channel to stop. This is not the case for potassium channels, which continue to
allow ionic flow when the depolarization is prolonged. Inactivation is only reversed with
hyperpolarization, and requires a certain amount of time to take place.

Phases of the action potential

When the neuron receives an appropriate stimulus, the sodium channels of the cell mem-
brane open first, causing an increase in sodium intracellular concentration. The membrane
potential grows, reaching high, positive values (close to ENa). After that, potassium chan-
nels open (they respond slower than their sodium counterparts) and, at a certain point,
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sodium channels inactivate (making the ocurrence of another action potential impossi-
ble for a period of time, known as absolute refractory period). Potassium channels stay
open, so, consequently, the permeability of the membrane to potassium is much higher
than to sodium. The membrane potential decreases, reaching negative values close to
EK . Sodium channels go from inactivated to closed, while potassium channels stay open.
Membrane potential is still hyperpolarized. Lastly, membrane potential takes resting val-
ues and potassium channels close. At this point a new spike may occur, but ion channels
would need a bigger stimulus to open. This period of time is known as relative refractory
period.

Equivalent circuit

An useful and common way to describe the activity of the membrane potential is with an
electrical analogue, considering an equivalent circuit that models the main features of the
membrane behaviour.

As already mentioned, the cell membrane consist of a phospholipid bilayer with certain
proteins (ion channels) that may let different ionic species to cross the membrane. The
phospholipid bilayer does not allow the pass of ionic currents, and, thus, we have a
thin conductor (the membrane) separating two electrolytic media (the cytoplasm and the
exterior space). Therefore, the cell membrane acts like a capacitor in an electric circuit.
When a generator is connected to a battery in an electrical circuit, a movement of charges
from the positive end of the battery to one of the capacitor plates appears, causing positive
charges to shift from the other side by magnetism. This movement of charges is known
as capacitive current Ic associated with the capacitor.

The membrane permeability depends on the number of open channels. Therefore, ion
channels act like conductors in an electrical circuit. There exist concentration gradients
across the membrane, maintained by biological mechanisms like the sodium-potassium
pump. The fact that ion channels are embedded in concentration gradients makes them
act like conductors connected in series with a battery of voltage equal to the Nernst
potential of the corresponding ion. Figure 1.4 shows the equivalent ciurcuit of the neuron
considering chloride, sodium and potassium ion channels. The current associated to
each ion channel is represented by Iion. Chloride channels were included since they were
considered in the Hodgkin and Huxley model, which we will present in the next section.
An external injected Iext current is also considered. This external current can represent
a current artifiacially injected in an in vitro experiment, or it could be a current received
from other neuron.
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Figure 1.4: Equivalent circuit of the activity of the membrane potential. Obtained from
[23].

1.2 Hodgkin-Huxley model

Neuroscience is heavily influenced by the Hodgkin and Huxley model, one of the most
successful models regarding complex biological phenomena. In the mid twientieth century,
Hodgkin and Huxley investigated the functioning of ionic currents during the generation of
action potentials. They used the voltage-clamp technique for studing the spike-generation
mechanisms in the squid Loligo, which has axons of giant size (1mm) compared to other
species. They published their results in a series of five papers, the latter one presenting
the model named after them [23]. In 1963, Hodgkin and Huxley received the Nobel prize
because of their investigation in the subject.

Modeling activity of the neuron membrane as the equivalent electric circuit shown in
the previous section allows the application of different physics laws to provide a mathe-
matical description.

According to Kirchoff’s first law, the sum of currents in a network of conductors
meeting at a point is equal to zero. Equivalently,

Ic +
∑

Iion = Iext.

Hodgkin and Huxley considered potassium (K+) and sodium (Na+) ion channels, as well
as leak channels, which are permanently open and allow mainly chrolide ions to pass
though the membrane. We refer to the current passing through leak channels as IL.
Hence, we have

Ic + IK + INa + IL = Iext.

Recall that V = q
C

, C being the capacitance (in our case, the membrane capacitance).
On the other hand, the current is the rate at which electric charge flows through a point
on the electric circuit, thus q̇ = Ic. This allow us to write the capacitive current Ic as CV̇ .
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Regarding ionic currents, we have the relationship Iion = gion · (V − Eion), being
gion the conductance for the corresponding ion channel. The term V − Eion is known as
driving force. It is important to recall that, while leak channels are not voltage-dependent,
both sodium and potassium channels are, so their conductances are not constant but
functions of V . The approximation of these functions is necessary in order to develop
the model. Some relevant considerations regarding the conductances gion(V ) are the
following. First, it is possible to measure the maximum conductance ĝion for a given ionic
species. Moreover, we have that 0 ≤ gion ≤ ĝion, so we can think of gion as the product
ĝionpion, being pion = pion(V ) the probability of the corresponding channel being open.
Lastly, we should recall that potassium channels have activation gates, that determine
whether potassium ion can cross the membrane or not; sodium channels have activation
and inactivation gates, and both of them must be in permissive position to let sodium ions
cross the membrane. Hence, pK = na, where n is the probability of potassium activation
gates being open at a certain membrane voltage and a the number of activation gates per
channel; pNa = mb ·hc, where m is the probability of sodium activation gates being open at
a certain voltage value, b the number of activation gates per channel, h the probability of
sodium inactivation gates being in permissive position at a certain membrane voltage value
and c the number of inactivation gates per channel. Hodgkin and Huxley experiments
conclude that a = 4, b = 3 and c = 1. Thus, we have

IK = ĝKn
4(V − EK)

INa = ĝNam
3h(V − ENa)

and we can write the equation corresponding to the evolution of membrane voltage as

CV̇ = Iext − ĝKn4(V − EK)︸ ︷︷ ︸
IK

− ĝNam3h(V − ENa)︸ ︷︷ ︸
INa

− gL(V − EL)︸ ︷︷ ︸
IL

The dynamics of the different activation and inactivation gates can be described in the
following way. Consider the proportion m of open activation gates for sodium. Thus,
1−m is the proportion of closed gates. Let αm(V ) and βm(V ) be the voltage-dependent
rate constants at which sodium activation gates go from closed state to open state and
vice versa. Then,

ṁ = αm(V )(1−m)− βm(V )m

Following the same reasoning,

ṅ = αn(V )(1− n)− βn(V )n

ḣ = αh(V )(1− h)− βh(V )h

The functions α∗(V ) and β∗(V ), where ∗ ∈ {n,m, h}, have been obtained experimentally
and are related to equations that describe the movement of a charged particle in an electric
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field. The interested reader can found them in [23]. It is common to define

∗∞(V ) =
α∗(V )

α∗(V ) + β∗(V )
, τ∗(V ) =

1

α∗(V ) + β∗(V )

The functions ∗∞, τ∗ (with ∗ ∈ {n,m, h}) can be approximated by Boltzmann and Gaus-
sian functions. They are depicted in Figure 1.5.

Figure 1.5: Auxiliary functions of the Hodgkin-Huxley model. Reproduced from [27].

Finally, we obtain the Hodgkin-Huxley model:




CV̇ = Iext − ĝKn4(V − EK)− ĝNam3h(V − ENa)− gL(V − EL)

ṅ = (n∞(V )− n)/τn(V )

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

1.3 Hindmarsh-Rose model

1.3.1 The Hindmarsh-Rose model of 1982

In 1979 Hindmarsh and Rose began a collaboration with the goal of finding a model for
the study of the synchronization between the activity of two snail neurons, leading to their
1982 model [21]. When dealing with couplings, one tries to consider equations for single
neurons as simple as possible to make numerical simulations more efficient. Therefore the
Hodgkin-Huxley model was not a nice option. However, this is not the only advantage
of simple models, since they allow to discover the minimal dynamical ingredients which
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are required to reproduce a given phenomenon. Their choice was to consider a system of
equations of the form {

ẋ = a(y − f(x) + I(t))

ẏ = b(g(x)− y)
(1.1)

where x represents the membrane potential, y represents a recovery variable, I(t) is the
applied current at time t, either external or cumpling, and the constants a and b are time
rates.

This formalism had been previously used by FitzHugh, who studied the Hodgkin
and Huxley model and proposed a simplification known as FitzHugh-Nagumo model [17]
(Nagumo independently proposed an electric circuit model [38], whose dynamics is equiv-
alent to that of the FitzHugh’s equations). In the FitzHugh-Nagumo model the function
f is cubic and the function g is linear, but the model does not achieve a very realis-
tic description of the action potential. Namely, the model does not predict the relative
long interval of quiescence compared with the firing duration and the frequency-current
relationship is not adequate.

To avoid this shortcoming, Hindmarsh and Rose used the voltage clamp technique to
determine the appropiate form of the functions f and g. The voltage clamp is a classic
method developted in the middle of the last century to measure ion currents across the
membrane of nerve cells, fixing the value of the membrane potential.

The process employed to deduce the model was the following. It was assumed that the
model was governed by equations (1.1). The voltage was clamped to an initial potential
xi, thus y(t) shifts to g(xi), its equilibrium value. After that, the cell was clamped to a
new potential xc. The time at which this new clamp occurs will be considered time t = 0
in the sequel. The applied current I(t) with t ≥ 0 is given by

Ixc(t) = f(xc)− y(t)

from equations (1.1) with ẋ = 0 (since the voltage is clamped). The function y(t) satisfies
the differential equation {

ẏ = b(g(xc)− y)

y(0) = g(xi).

It is easy to check that
y(t) = g(xc)− (g(xc)− g(xi))e

−bt

and thus
Ixc(t) = f(xc)− g(xc) + (g(xc)− g(xi))e

−bt.

A rescaling was done so xi = 0 and it was assumed that the origin (0, 0) is an equi-
librium point of the system when I = 0. In particular, f(0) = 0, g(0) = 0. With these
considerations

y(t) = g(xc)(1− e−bt)
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Figure 1.6: Activity produced by a biological neuron (a) and the Hindmarsh-Rose model
of 1982 with parameters a = 5.4, b = 30, c = 0.00017, d = 0.001, e = 0.01, h =
0.1, q = 0.024, r = 0.088, s = 0.046. The applied current is set as a constant
I = 0.008. Extracted from [21].

and
Ixc(t) = f(xc)− g(xc)(1− e−bt)

In particular, the initial and steady-state values of the clamping current are

Ixc(0) = f(xc), Ixc(∞) = f(xc)− g(xc).

For each value of xc a value of Ixc(0) and a value of Ixc(∞) are obtained. The pairs
(xc, Ixc(0) give rise to a curve that can be approximated by a cubic function. On the other
hand, the curve formed by the pairs (xc, Ixc(∞)) can be approximated by an exponential
function. With this substitutions, the model became

{
ẋ = −a(cx3 + dx2 + ex+ h− y − I)

ẏ = b(cx3 + dx2 + ex+ h− qerx − y).
(1.2)

Figure 1.6 shows a comparison between an actual action potential and an action po-
tential predicted with the model with the following parameters values: a = 5.4, b =
30, c = 0.00017, d = 0.001, e = 0.01, h = 0.1, q = 0.024, r = 0.088, s =
0.046. The applied current is set as a constant I = 0.008. It is apparent that the model
gives a realistic relationship between the duration of the spike and the duration of the
quiescence period.

The phase portrait provides a mathematical explanation of this phenomenon. In
Figure 1.7 we can see the nullclines of the system (ẋ = 0, ẏ = 0), as well as a limit cycle
corresponding to periodic spiking. Three points of the limit cycle are marked: A, B, and
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Figure 1.7: Limit cycle of the Hindmarsh-Rose of 1982 superimposed with the nullclines
of the system. The values of the parameters are the same as in Figure 1.6 except I, which
is set at 0.033. The nullcline ẋ = 0 (ẏ = 0) is represented in red (blue). The limit cycle
is depicted in black, and the equilibrium of the system is shown in purple. Point B (C)
is the point at which the variable x has the highest (lowest) value. Point A has been
selected so the fragment of the limit cycle going from C to A is constrained in the narrow
channel formed by the nullclines.

C. Point B (C) is the point at which the variable x has the highest (lowest) value. Point
A has been selected so the fragment of the limit cycle going from C to A is constrained
in the narrow channel formed by the nullclines.

Because of the values of variable x, the limit cycle is split between an action poten-
tial phase (when it travels from point A to C, passing through B) and a resting phase
(when it travels from C to A). Because the closeness to both nullclines, the orbit moves
slowly during the resting phase, giving rise to the long interval of quiescence (see Figure
1.6). This phenomenon is known as narrow channel property. In Figure 1.8, the solution
corresponding to the limit cycle of Figure 1.7 is represented in (t, x). The points corre-
sponding to A, B and C in the limit cycle are labeled, to make the relationship between
the different phases of the action potential and the phase portrait of the orbit more clear.

1.3.2 Hindmarsh-Rose model of 1984

Shortly after the publication of their 1982 model, Hindmarsh and Rose proposed a mod-
ification to mimic and explain certain physiological behaviours [22]. Namely, it was dis-
covered that a cell in the brain of the pond snail Lymnaea jumped from silent to bursting
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Figure 1.8: Representation in (t, x) of the solution corresponding to the limit cycle of
Figure 1.7. The points (t, x) corresponding to the points A, B and C of the limit cycle
are indicated.

when it recieved a short depolarizing stimulus. Similar responses had been observed in
other molluscan burst cells. The transition from a silent state to a repetitive firing cor-
responds dynamically to a phase point traveling from an stable equilibrium point to a
stable limit cycle. From Poincaré-Bendixson Theorem it is known that at least an addi-
tional equilibrium point must exist inside the stable limit cycle. In the simplest case (only
one equilibrium point surrounded by the stable limit cycle), this equilibrium should be
an unstable spiral. In addition, a third equilibrium point is required to provide a stable
manifold separating the basins of attraction.

Hindmarsh and Rose observed that a small change in the nullclines could create the
required additional equilibrium points, since they were already very close to each other
in the recovery side of the phase plane. It is easy to observe that choosing one nullcline
to be cubic and the other one to be parabolic could lead to an appropiate deformation,
so Hindmarsh and Rose proposed the following equations.:

{
ẋ = y − ax3 − bx2 + I

ẏ = c− dx2 − y (1.3)

A typical choice of the parameters to get three equilibrioum points is a = 1, b = 3, c =
1, d = 5. Figure 1.9 shows a limit cycle and the nullclines of the system 1.3 for I = 0.
The nullcline ẋ = 0 (ẏ = 0) is depicted in red (blue). The limit cycle is represented in
black, and the three equilibria are marked in purple. Point B (C) is the point at which
the variable x has the highest (lowest) value. Point A has been selected so the fragment of
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Figure 1.9: Nullclines of the system 1.3 superimposed with a limit cycle. The nullcline
ẋ = 0 (ẏ = 0) is represented in red (blue). The limit cycle is depicted in black, and the
equilibria are shown in purple. Point B (C) is the point at which the variable x has the
highest (lowest) value. Point A has been selected so the fragment of the limit cycle going
from C to A is constrained between both nullclines.

the limit cycle going from C to A is constrained between the nullclines. As in the model
of 1982, when the limit cycle travels from A to C, the system mimics the active phase
of the action potential, and when it travels from C to A, the system exhibits a resting
period. In Figure 1.10 we show the corresponding solution in (t, x) coordinates, labeling
the points A, B and C associated with thei analogues in the limit cycle.

This new system allows the coexistence of an attracting equilibrium point and an
attracting limit cycle, but in order to terminate the firing phase (corresponding to the
phase point moving along the stable limit cycle) a third variable is required. This new
variable, z, mimics the effect of a slow current that adjusts the applied current I to a
factual applied current I − z. The parameter ε takes positive values very close to 0. As
the variable z increases, the effective applied current I − z lowers its value, forcing the
system to terminate the firing. The equation for z was chosen to be:

ż = ε(s(x− x1)− z)

where x1 is the x-coordinate of the attractor equilibrium point for the planar system 1.3.
In conclusion, the model became





ẋ = y − ax3 − bx2 + I − z
ẏ = c− dx2 − y
ż = ε(s(x− x1)− z)

(1.4)
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Figure 1.10: Representation in (t, x) of the solution corresponding to the limit cycle of
Figure 1.9. The points (t, x) associated with A, B and C are labeled.

The different time scales of the variables play an important role in the behaviour of the
system. Loosely speaking, as long as ε is small enough we can think the slow variable z
as a parameter of the planar system 1.3; in other words, the dynamics of the full system
can be partially understood by looking the dynamics of the frozen system with ε = 0. A
formalization of this idea will be given in Section 2.2.
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Chapter 2

Essentials from dynamical systems

Bifurcation theory plays a key role when studying how a model behaves when parameters
change. We will assume the reader is familiar with the basics of this topic, such as the
concepts of topological equivalence or codimension, and also that saddle-node, period-
doubling and Hopf bifurcations are known. This material is covered in [31], among many
others.

Our investigation is strongly related to homoclinic bifurcations and some of their
degeneracies (orbit flips, inclination flips and Belyakov points). In Section 2.1 we review
the aspects of the topic that are relevant to our work. Our main references are [25] and
[31].

In Section 2.2 we present the classification of bursting patterns proposed by Izhikevich
[27], which relies heavily on Bifurcation theory and Fenichel theory [15]. We review the
patterns that can be found in the Hindmarsh-Rose model, namely fold/homoclinic and
fold/Hopf bursting.

2.1 Homoclinic bifurcations

We will consider a smooth family of vector fields

x′ = fµ(x) (2.1)

with x ∈ Rn and µ ∈ Rk. Denote by ϕt the corresponding flow and assume x0 is an
equilibrium of the system. We recall the following

Definition 2.1.1. An orbit Γ0 starting at a point x ∈ Rn is said to be homoclinic to x0
if ϕtx→ x0 as t→ ±∞.

In Figure 2.1 (2.2) a homoclinic orbit in a two-dimensional (three-dimensional) system
is shown.

33
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Figure 2.1: An example of a homoclinic orbit in the plane. Modified from [31].

Remark. It is clear that Γ0 ⊂ W s(x0) ∩W u(x0), where W s(x0) and W u(x0) denote the
stable and unstable manifolds at x0, respectively.

Homoclinic orbits are not structurally stable. Generically, the existence of a homoclinic
orbit is a codimension-one phenomenon, that is, generic for one-parameter families. In
the sequel, we will consider a smooth family of vector fields fµ on Rn with µ ∈ Rk and
assume that there exist µ0 ∈ Rk and p0 ∈ Rn such that p0 is a hyperbolic equilibrium
point of saddle type of fµ0 . Without loss of generality we can assume that µ0 = 0 and
p0 = 0. We will denote by pµ the saddle hyperbolic equilibrium that persists close to 0
for µ small enough. Let ν1, . . . , νn be the eigenvalues of Df0(0) ordered by increasing real
part:

Re(ν1) ≤ Re(ν2) ≤ . . .Re(νk) < 0 < Re(νk+1) ≤ . . .Re(νn)

Following [25], we introduce the following notions:

Definition 2.1.2. The eigenvalues with positive (resp. negative) real part that are closest
to the imaginary axis are called the unstable (resp. stable) leading eigenvalues, and their
corresponding eigenspaces are called the unstable (resp. stable) leading eigenspaces.

Definition 2.1.3. The saddle quantity σ of a hyperbolic equilibrium is the sum of the real
parts of its leading stable and unstable eigenvalues:

σ = Re(νk) + Re(νk+1)

As we will see, the saddle quantity plays an important role regarding the dynamics
that can appear when perturbing a system with a homoclinic orbit. We will present first
the Andronov-Leontovich theorem, which adresses the planar case. Next we will review
the three-dimensional case.
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Figure 2.2: An example of a homoclinic orbit in the three-dimensional space. Modified
from [31].

2.1.1 Planar case: Andronov-Leontovich theorem

Assume n = 2 and k = 1 for the smooth family of vector fields fµ on Rn with µ ∈ Rk we
are considering. For µ = 0 there is a hyperbolic saddle at 0 with associated eigenvalues
λs and λu with λs < 0 < λu, and Γ0 is a homoclinic orbit to 0. The so-called saddle
quantity is given by σ = λu + λs. For |µ| small enough, we can consider a cross section Σ
at a point in Γ0 and define the signed distance ∆(µ) between the points W s(pµ) ∩Σ and
W u(pµ) ∩ Σ. The following theorem describes the possible generic dynamics that can be
found near a homoclinic orbit.

Theorem 1. Suppose σ 6= 0 and ∆′(0) 6= 0. Then, all systems with σ < 0 (resp. σ > 0)
have topologically equivalent bifurcation diagrams in a neighborhood U0 of Γ0 ∪ 0 for |µ|
small enough as presented in Figure 2.3 (resp. Figure 2.4).

When µ = 0 the system posseses a homoclinic orbit connecting the equilibrium at the
origin to itself. For |µ| small enough, a saddle equilibrium point exists close to the origin
for the system x′ = fµ(x), while the homoclinic orbit no longer exists, since it splits up
or down. Since we have assumed ∆′(µ) 6= 0, the distance function ∆(µ) can be seen as
a parameter. If the saddle quantity is negative (σ0 < 0), then the homoclinic orbit that
exists for µ = 0 is attracting from the inside, and a unique and stable limit cycle Lµ ⊂ U0

exists for µ > 0. For µ < 0 there are no periodic orbits in U0. If the saddle quantity
is positive (σ > 0), then the homoclinic orbit Γ0 that the system posseses for µ = 0 is
repelling from the inside, and a unique and repelling limit cycle Lµ ⊂ U0 exists for µ < 0.
For µ > 0 there are no periodic orbits in U0.
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Figure 2.3: Homoclinic bifurcation in the planar case with σ < 0. Modified from [31].

Figure 2.4: Homoclinic bifurcation in the planar case with σ > 0. Modified from [31].

2.1.2 Three-dimensional case

We assume that x ∈ R3 and µ ∈ R in (2.1). Again, without loss of generality we can
assume that µ0 = 0 and p0 = 0. Up to time reversal, we suppose that dim(W s(0)) = 1
(and thus dim(W u(0)) = 2), since it is the case found in the Hindmarsh-Rose model.

As in the planar case, we can consider a cross section Σ at a point in Γ0 and define
the signed distance ∆(µ) between the point W s(pµ) ∩ Σ and the curve W u(pµ) ∩ Σ. We
assume that ∆′(µ) 6= 0.

Before presenting the possible codimension-one homoclinic orbits, we must introduce
the notions of strong unstable manifold and center stable manifold for the case of real
eigenvalues. Assume that Df0(0) has real eigenvalues λs, λu and λuu with λs < 0 < λu <
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λuu. The strong unstable manifold W uu(0) is a one-dimensional invariant manifold whose
tangent space at 0 is given by the eigenspace corresponding to the eigenvalue λuu (the so
called strong unstable direction). It is common to use a double arrow to represent it. On
the other hand, the center stable manifold W cs(0) is a two-dimensional invariant manifold
whose tangent space at 0 is given by the eigenspace corresponding to the eigenvalues λu
and λs.

There exist four classes of codimension-one homoclinic orbits.

Case 1 Eigenvalues of Df0(0) are λs, λu and λuu, with λs < 0 < λu < λuu and σ0 =
λs + λu > 0.

Case 2 Eigenvalues of Df0(0) are λs, λu and λuu, with λs < 0 < λu < λuu and σ0 =
λs + λu < 0. Moreover,

(H1) Γ0 6⊂ W uu(0).

(H2) W cs(0) intersects W u(0) transversally along Γ0.

Case 3 Eigenvalues of Df0(0) are λs < 0 and ρu ± ωui, with ρu > 0, ωu 6= 0 and
σ0 = λs + ρu > 0.

Case 4 Eigenvalues of Df0(0) are λs < 0 and ρu ± ωui, with ρu > 0, ωu 6= 0 and
σ0 = λs + ρu < 0.

Conditions λs + λu 6= 0 and λs + ρu 6= 0 are non-resonance hypotheses. Condition
(H1) implies that Γ0 is tangent to the weak unstable direction, that is, the direction given
by the eigenspace associated with the leading unstable eigenvalue λu. Condition (H2) is
a “non-inclination” property.

In Case 1 and Case 3, a single unstable (repelling) periodic orbit is born from the
homoclinic connection for parameter values on one side of the µ = 0. In Case 2, a saddle
periodic orbit emerges from the homoclinic orbit. Its stable manifold is orientable or not,
depending on the orientability of W u(0). In Case 4, there exist infinitely many saddle
type periodic orbits in any neighbourhood of the homoclinic orbit. In fact, as argued in
Ref. [45], there exist infinitely many horseshoes in any neighbourhood of the homoclinic
orbit Γ0. When the connection is destroyed, finitely many of the horseshoes persist and an
infinite number of periodic solutions exist. The appearance or disappearance of horseshoes
is accompanied by unfoldings of homoclinic tangencies of saddle type periodic orbits and
hence, strange repellers should emerge [13], [14], [34]. More comprehensive explanations
about these bifurcation results can be found in Refs [25] and [42].

The bifurcations described in the previous paragraph are all of codimension one. Be-
sides this, because they play a key role in the study of the Hindmarsh-Rose model, we are
interested in some codimension two homoclinic bifurcations. In the sequel, we consider
a parameter space of dimension k: µ ∈ Rk, with k > 1 and we assume that the family
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Figure 2.5: In a codimension-one homoclinic orbit, W u(0) can be orientable (a) or twisted
(b). Moreover, W cs(0) is transverse to W u(0) along Gamma0 and the homoclinic orbit
does not leave the origin along the strong direction W uu(0), depicted with a double
arrow. The violation of one of these two conditions lead to an inclination flip or orbit flip
configuration. Modified from [37].

fµ unfolds Γ0 generically. We say that Γ0 is generically unfolded with respect to µ if
Dµ∆(0) 6= 0. Under this generic assumption, there always exists a hypersurface H in the
parameter space such that 0 ∈ H and fµ has a homoclinic orbit asymptotic to pµ for all
µ ∈ H. There are three codimension-two homoclinic bifurcations we are interested in:
inclination flip, orbit flip and Belyakov bifurcations. We describe the cases below.

Inclination Flip (IF) Eigenvalues are real with λs < λu < λuu and (H1) is satisfied,
but not (H2), that is, we assume that the intersection between W cs(0) and W u(0)
is non-transversal along Γ0.

Orbit Flip (OF) Eigenvalues are real with λs < λu < λuu and (H2) is satisfied, but not
(H1), that is, we assume that Γ0 ⊂ W uu(0).

Belyakov Point Assume that the equilibrium point is a saddle-node with eigenvalues
λs and λu with λs < 0 < λu. The eigenvalue λu has geometric multiplicity one and
algebraic multiplicity two.

Figure 2.6 illustrated the possible configurations of an inclination flip and Figure 2.7
shows the configuration of an orbit flip. Compare with the configuration of a codimension-
one homoclinic orbit depicted in Figure 2.5.
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Figure 2.6: In an inclination flip configuration there is a loss of the transversality of the
intersection of W cs(0) and W u(0). The inclination flip represented in (a) corresponds to
the case λuu < 2λu (see condition (I2)), and (b) corresponds to the case λuu > 2λu (see
condition (I3)). Modified from [37].

To characterize the different types of inclination and orbit flip bifurcations we need to
introduce the following ratios between eigenvalues

α = −λuu
λs

, β = −λu
λs

(2.2)

Note that α > β.

Figure 2.7: In an orbit flip configuration the homoclinic orbit leaves the origin along the
non-dominant (strong) direction, denoted by a double arrow. Modified from [37].



40 CHAPTER 2. ESSENTIALS FROM DYNAMICAL SYSTEMS
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Figure 2.8: Types of inclination and orbit flips. Values of the ratios α and β are given in
(2.2).

Bifurcation diagrams corresponding to IF and OF bifurcation points are quite similar
and they can be described simultaneously. First, we observe that the hypersurface H
of homoclinic bifurcation splits in two regions separated by a manifold of codimension-
two homoclinic bifurcations. The orientation of the unstable invariant manifold at the
equilibrium point reverses when such manifold is crossed.

For either IF or OF bifurcations there are three cases (see Fig. 2.8):

Inclination Flip Orbit Flip
Case A β > 1 β > 1
Case B α > 1 and 1

2
< β < 1 β < 1 and α > 1

Case C α < 1 or β < 1
2

α < 1

In Case A no extra bifurcations occur. Case B leads to homoclinic-doubling , involv-
ing the following one-side curves emanating from the origin: a period-doubling bifurcation
and a 2-homoclinic bifurcation on the twisted side and a saddle-node bifurcation on the
orientable side. A 2-homoclinic orbit is a homoclinic orbit that follows twice the primary
homoclinic orbit before closing up. Case C is the only case detected in our exploration
of the HR model. Homoclinic flip bifurcations in Case C require additional generic
assumptions. Namely, for inclination flips we assume:

(I1) β 6= 1
2
α.

(I2) If β > 1
2
α (region C1 in the left panel of Fig. 2.8), the homoclinic orbit does not lie

in the unique smooth leading unstable manifold.

(I3) If β < 1
2
α (region C2 in the left panel of Fig. 2.8), there is a quadratic tangency

between W cs(0) and W u(0) along the homoclinic orbit.
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On the other hand, for orbit flips in Case C we assume:

(O1) W cs(0) intersects W u(0) transversally along Γ0.

Hypothesis (I2) (resp. (I3)) makes sense in the region C1 (resp. C2) depicted in Fig.
2.8. Since these two cases make no difference in the unfoldings we will not devote any
further attention to them. The essential distinction has to do with the way in which the
unstable manifold approach the origin when it is followed along the homoclinic orbit by
the forward flow (see Figure 2.6).

There are two possible bifurcation diagrams in case C. In both cases, horseshoes exist
in a region of the parameter space. Depending on how they are formed, cases C (in) and
C (out) are distinguished (see Fig. 2.9). In both, infinitely many one-sided curves of
N -homoclinic orbits emerge for each N ≥ 2 from the flip point on the branch of primary
homoclinic orbits (labelled hom in Fig. 2.9). These are homoclinic orbits which follow
N times the primary one before closing up. Also in both cases, the bifurcation diagram
exhibits an infinite fan of bifurcation curves corresponding to period doublings and folds of
periodic orbits. The horseshoe dynamics appear in between that cascade and the infinite
fans of N -homoclinic orbits. In case C (in), shift dynamics and the homoclinic cascade
are separated by the curve hom, whereas, in case C (out), the homoclinic cascade, the
shift dynamics and the fan of bifurcations of periodic orbits are located on the same side
of the curve hom (see Fig. 2.9). A complete description of the bifurcation diagrams can
be found in Refs. [37], [24] and [25].

fold

PD
fold

PD

hom(2)
hom

type C (out)
fold

PD
fold

PD

hom(2)

hom

type C (in)

Figure 2.9: Theoretical two-parameter unfolding of the codimension-two OF and IF ho-
moclinic bifurcations of type C (in) and C (out) describing the fans of period doubling
and fold bifurcations of periodic orbits. Bifurcation diagrams for Belyakov bifurcations
are similar, but folds and period doublings accumulate from both sides of the primary
homoclinic bifurcation (see details in Ref. [32]). A fan of 2-homoclinic orbits (labelled
hom(2)) is also depicted.
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Figure 2.10: Theoretical two-parameter unfolding of the codimension-two Belyakov bi-
furcation. The bifurcation curves rooted at the Belakov point are fold (labeled as t

(1)
n ),

period-doubling (labeled as f
(1)
n ) and homoclinic bifurcations curves (labeled h(1) in the

case of the primary homoclinic bifurcation curve and h
(2)
n in the case of secondary (double)

homoclinic bifurcation curves. Obtained from [32].

Regarding Belyakov bifurcations we remark that the hypersurface H of homoclinic
bifurcation splits in two regions separated by a manifold of codimension-two homoclinic
bifurcations. Saddles change from saddle-node type to saddle-focus type when such mani-
fold is crossed. Additional generic conditions include global assumptions on the behaviour
of the invariant manifolds (see Refs. [25] and [32] for a complete description).

If λs + ρu < 0, a unique unstable limit cycle bifurcates from the homoclinic orbit (see
Ref.[32]). Otherwise, the two-parameter bifurcation diagram is quite similar to those in
Fig. 2.9. Infinitely many one-sided curves of N -homoclinic orbits emerge for each N ≥ 2
from the Belyakov point and they are tangent at the flip point to the branch of primary
homoclinic orbits corresponding to saddle-focus. The bifurcation diagram also exhibits
infinite fans of bifurcation curves corresponding to period doublings and folds of periodic
orbits, but, on the contrary to what is shown in Fig. 2.9, they accumulate on the branch
of saddle-focus homoclinic orbits from both sides (see Figure 2.10).

2.2 Classification of bursting patterns

As already explained in Chapter 1, bursting is one of the typical behaviors exhibited
by biological neurons and it is believed to play a fundamental role in the transmission
of messages along the neural network. A bursting orbit switches between active and
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Figure 2.11: There are two key bifurcations in the fast subsystem of a bursting model.
Extracted from [27].

resting states. When active, neuron produces trains of spikes. On the contrary, when
resting, it does not fire, but stays stationary. Usually, this phenomenon appears because
of successive changes where control of the dynamics is taken, alternatively, by fast and
slow ionic currents. The former ones are responsible of the firing phase whereas slow ionic
currents modulate the neuron activity. In a parallel manner, there are many dynamical
systems which are able to display bursting behaviors because equations themselves include
two different time scales, one fast and the other slow. Usually, trains of spikes emerge
when system is running rapidly, but the passage through quiescence evolves slowly. Just
now, we need to understand how an orbit switches from a spiking phase to an stationary
one and vice versa, see Figure 2.11.

We consider systems where variables are grouped into slow and fast, and equations
can be written as {

ẋ = f(x, y) fast subsystem
ẏ = ε g(x, y) slow subsystem

(2.3)

with x ∈ Rm, y ∈ Rn and 0 ≤ ε � 1. Roughly speaking, bursting can be explained
based on the coexistence of two attracting invariant manifolds and orbits making alternate
passages near one or another. These manifolds arise as perturbations of families consisting
of either attracting equilibria or attracting periodic orbits in the fast subsystem given by
ε = 0, where variable y acts as a parameter. At this stage, Fenichel Theory regarding the
persistence of normally hyperbolic invariant manifolds plays an essential role (see [15]).

As a preliminary classification, we can refer to point-cycle and cycle-cycle bursters. We
say point-cycle when the the quiescent state is an equilibrium point and the spiking state
is a limit cycle. When the quiescent state is a small amplitude (subthreshold) oscillation,
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then the burster is said to be cycle–cycle.

When n = 1 we expect to find jumping mechanisms linked to codimension-one bifur-
cations that cause the loss of stability in a certain family of attractors. Hence dynamics
is forced to travel to another area of the phase space as one basin of attraction is replaced
by another one. After that switching, parameter is followed in the reverse direction along
the new family of attractors until another loss of stability arises that allows the cycle to be
restarted once more again. In [27], Izhikevich proposes a classification of bursters for the
case in which the fast subsystem is planar. Namely, he distinguishes 16 different classes
of point-cycle planar bursters (see Figure 2.12) and 8 cycle-cycle planar bursters. For
our later interests we only need to understand 2 of the 16 types of point-cycle bursters:
the cases fold/hom and fold/Hopf, since they are the ones that can be found in the
Hindmarsh-Rose model.

2.2.1 Fold/homoclinic bursting

When the resting state along a bursting orbit is terminated due to a saddle-node bifur-
cation of equilibria and the active phase is terminated due to a homoclinic bifurcation,
the bursting is said fold/homoclinic (or fold/hom) bursting. Figure 2.13 shows a typical
configuration of a fold/hom burster. The upper part shows an orbit of the full system
(in blue) moving near the manifolds of equilibria (Meq) and limit cycles (Mlc) of the fast
subsystem.

As already mentioned , this phenomenon occurs because up to bifurcations, Meq and
Mlc are normally hyperbolic invariant manifolds. Thus, as follows from Fenichel theory, as
long as they are normally hyperbolic, they are persistent. In fact, the perturbed manifolds
M ε

eq and M ε
lc are the ones that the bursting orbit of the full system follows. However,

to keep the visuazalition clear, only the manifolds of the fast subsystem are represented.
The key bifurcations of the fast subsystem with respect to the slow variable are marked.
In the bottom part of the figure we can see the different phase portraits that the fast
system presents along different bursting phases.

The typical configuration of a fold/hom bursting system can be summarized as follows.
Prior to the active phase, the fast subsystem possesses two attractors: the left, stable
equilibrium point and the limit cycle on the right. Besides the stable equilibrium point,
there are two additional equilibria: one unstable equilibrium inside the stable limit cycle
(that must exist since the fast subsystem has dimension two and Poincaré-Bendixson
theorem holds) and a saddle equilibrium point whose unstable manifold separates both
attraction basins.

As the slow variable takes different values, the nullcline of the fast subsystem corre-
sponding to the membrane potential moves upwards, and thus the distance between the
stable equilibrium and the saddle point becomes smaller. At a certain point they collide
and disappear through a saddle-node bifurcation. When this bifurcation occurs, the orbit
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Figure 2.12: Classification of point-cycle bursting patters. Extracted from [28].
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of the full system jumps to the spiking manifold M ε
lc that is close to the manifold of limit

cycles Mlc depicted in Figure 2.13. The orbit of the full system turns around the spiking
manifold, and each turn corresponds to one spike of the burst. Due to the variation of
the slow variable, the nullclines of the system go back to their original position, mak-
ing the stable and saddle equilibria to appear again. In other words, the fast subsystem
undergoes the saddle-node bifurcation in the reverse direction. The slow variable also
makes the distance between the saddle point and the limit cycle to become smaller, until
they collide in a homoclinic bifurcation, causing the limit cycle to disappear. When this
happens the active phase of bursting ends, and the dynamics of the fast subsystem goes
back to Meq.

Figure 2.13: Fold/homoclinic bursting. In the upper part, an orbit of the global system
follows the manifolds of equilibria and limit cycles, Meq and Mlc. The lower part shows
different phase portraits of the fast subsystem, corresponding to different values of the
slow variable, which acts as a parameter of the fast subsystem. Reproduced from [28].

Fold/homoclinic bursting can be found in many neuron models, such as the Hindmarsh-
Rose or the Sherman model of pancreatic β-cells [40]. Figure 2.14 shows a recording of a
pancreatic β-cell producing bursting patterns that can be considered of fold/homoclinic
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Figure 2.14: Putative fold/hom bursting in a pancreatic β-cell. Reproduced from [30].

Figure 2.15: Putative fold/hom bursting in a cell located in the pre-Botzinger complex of
rat brain stem. Reproduced from [27].

type, as the bursting activity shown in Figure 2.15, which corresponds to a cell located in
the pre-Botzinger complex of the rat brain stem. This bursting pattern is said square/wave
bursting due to the shape of the oscillations.

2.2.2 Fold/Hopf bursting

When the resting phase of the bursting terminates due to a saddle-node bifurcation and
the active phase ends due to a Hopf bifurcation, the bursting is said of fold/Hopf type. The
beginning of the bursting is similar to the already explained fold/homoclinic bursting. The
system has three equilibria: a stable one, a saddle and a repeller (which is surrounded by a
stable limit cycle). The global system initially follows the stable equilibria manifold. The
active phase begins after a saddle-node bifurcation in the fast subsystem makes the stable
equilibrium point to dissapear. Then the system starts following the spiking manifold.
What terminates the active phase is however different: as the slow variable moves, the



48 CHAPTER 2. ESSENTIALS FROM DYNAMICAL SYSTEMS

fast system undergoes a Hopf bifurcation. That is, the limit cycle becomes smaller and
smaller until it shrinks into the equilibrium inside it. This equilibrium inherits its stability.
The full system follows this branch of stable equilibria a small amount of time, since it
quickly disappears due to an additional saddle-node bifurcation. After that, the system
goes back to the original stable equilibrium of the left. The slow variable variation causes
these bifurcations to reverse, taking the system to its original configuration. Figure 2.16
shows the typical configuration of a fold/Hopf burster.

Figure 2.16: Fold/Hopf bursting configuration. In the upper part, an orbit of the global
system follows the manifolds of equilibria, Meq, and limit cycles, Mlc. The lower part
shows the different phase portraits of the fast subsystem. Reproduced from [28].



Chapter 3

A brief review of prior research

Literature regarding bursting phenomena in the Hindmarsh-Rose model (and other neuron
models) is plentiful. In this chapter we will review the main works studying the organizing
centers of bursting behaviour, in particular those discussing the relationship between the
bifurcation diagram of the system with the spike-adding process. Our main references are
[6], [8], [18], [19], [33], [43] and [44]. We must also cite [41], which presents a comprehensive
study of the dynamics of the Hindmarsh-Rose model.

We will fix the following parameter values in the Hindmarsh-Rose model (1.4):

a = 1, c = 1, d = 5, s = 4, x0 = −1.6, ε = 0.01

leaving b and I as bifurcation parameters.
As already explained, from a mathematical perspective, we say that a fast-slow system

exhibits regular bursting when there exist a stable periodic orbit of the full system which,
in the resting phase, passes close to one of the branches of stable equilibrium points of the
fast subsystem, and, in the active phase, passes close to the family of stable periodic orbits
of the fast subsystem. Each turn around the manifold of periodic orbits corresponds to a
spike. If it happens that, after moving parameters, a burst gains an extra spike, it is said
that the full system has undergone through a process of spike-adding. Since the number
of spikes and their timing are key pieces for neural communication, the understanding of
the underlying mechanisms in the spike-adding processes becomes crucial.

Particular attention has been paid to the spike-adding processes of fold/homoclinic
bursting, because it is exhibited by many biological neurons, like, for instance, the pan-
creatic beta cells.

In [44], Terman studied a class of ODE’s that models the electrical activity of pan-
creatic beta cells. The systems were assumed to be of fast-slow type, and their fast
subsystem to be similar to the fast subsystem of fold/homoclinic bursters later described
by Izhikevich. It is shown that these systems give rise to both bursting and continuous
spiking solutions, for different values of the parameters. A dynamical analysis of the

49
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spike-adding processes is also presented. Two types were distinguished: continuous and
chaotic spike-adding. Figures 3.1 and 3.2 provide illustrations of these two cases in the
Hindmarsh-Rose model. The continuous spike-adding process is shown in Figure 3.1. Dif-
ferent bursting solutions are represented in (t, x) coordinates, corresponding to different
values of the parameter b and I = 2.25. In panel A, the bursting solution has clearly
2 spikes. In panel B, we can see that after the second spike, the membrane potential
does not inmediately decay to resting values, like in the previous case; instead, it stays
close to stationary at intermediate values before going back to resting values. In panel
C, the plateau region after the first two spikes still exists, but it is continued by a third,
extra spike. After this extra spike, the membrane potential quickly returns to the resting
value. Finally, panel D shows bursting of three spikes. We can see that the second and
third spikes are slightly more distant than the first and second ones. The plateau region
has notably shrunk. Terman [44] noted that this plateau phase corresponds to the orbit
following the unstable branch of equilibria of the fast subsystem. An important feature
of this transition is that the period of the orbit increases notably when the spike-adding
starts (panels B and C), and it decreases to approximately their original values when is
complete.

On the other hand, chaotic spike-adding is related to the existence of a Smale horse-
shoe, and it is characterized by the appearance of irregular bursting patterns like those
shown in Figure 3.2. The plotted orbits correspond to I = 2.7 and different values of b.
When moving b, the orbit increases its number of spikes from 2 (panel A) to 3 (panel C).
However, for intermediate values of b the system exhibits irregular patterns (panel B).

Both spike-adding processes are part of the phenomena studied in several works fo-
cusing in the Hindmarsh-Rose model. In [18], the author studies the different dynamical
behaviours exhibited by the model moving I and ε (varying one parameter each time).
Complex structures arise, including chaotic behaviour and the so-called block-structured
dynamics. Bifurcation diagrams and Lyapunov spectra are employed to perform the
analysis. The bifurcation diagrams are constructed using inter-spike intervals (the time
intervals between consecutive spikes). For each value of the parameter, the equations of
the model are numerically integrated and a time series solution is obtained. The bifur-
cation diagram is the result of plotting the different values of the inter-spike intervals as
dots for each value of the parameter. It is widely accepted that it is in the structure of
the inter-spike intervals where neurons encode the information, so IBDs are a standard
visualization of neuron models in the literature. Figure 3.3 shows an inter-spike bifurca-
tion diagram (IBD). We take b = 2.7 and for this particular example, x0 = −1. We leave
I as the bifurcation parameter. The values of the parameters has been selected so both
continuous and chaotic spike-adding processes are shown. Continuous spike-adding cor-
responds to the transition between blocks of consecutive number of spikes, while chaotic
spike-adding occurs within the chaotic windows (in which the maximal Lyapunov expo-
nent of the system is positive). Similar structures as the one shown in Figure 3.3 have
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Figure 3.1: Continuous spike-adding process in the Hindmarsh-Rose model with I =
2.25. Panels A,B,C and D correspond to b = 3, 2.91581, 2.915, 2.84106, respectively. A
comparison between panels B and C shows that a small change in the parameters may
cause visible changes in the solutions (a new spike appears), since the transition occurs
in a narrow interval of b. Note the plateau phase in panel B after the second spike. The
solutions have been obtained by simulation using Matlab.

been observed in other models, namely, the Chay model for a nerve cell [11], analised in
[18], the modified Hodgkin-Huxley model of thermally sensitive neurons [10], studied in
[16], and the Sherman model for a pancreatic cell [39], investigated in [36].

For high values of I (right hand side of the diagram) there is only one inter-spike
interval, since the system exhibits spiking behaviour. As I decreases, a cascade of period-
doubling bifurcation takes place, leading to the appearance of orbits with a high number
of spikes after the system undergoes through a chaotic window. The periodic orbit with
12 spikes emerges abruptly after a fold bifurcation of periodic orbits that ends the chaotic
window. As I takes lower values, another cascade of period-doubling bifurcation is en-
countered, giving rise to another chaotic region, narrower than the previous one. Again,
this second chaotic region ends with a fold bifurcation and an orbit with 11 spikes emerges.
For low values of the parameter I (left hand side of the diagram) the bursting regime is
block-structured: each block corresponds to an interval of values of I that are associated
to bursting with a certain number of spikes.
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Figure 3.2: Chaotic spike-adding process in the Hindmarsh-Rose model with I = 2.7.
Panels A, B and C correspond to b = 3.12, 3 and 3.056, respectively. Panel B shows
irregular bursting patterns associated with chaotic behaviour.
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Figure 3.3: Inter-spike bifurcation diagram.
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Different dynamical behaviours of the Hindmarsh-Rose model, and their transitions,
were also studied in [26] by varying the parameter I and fixing b = 3 and ε = 0.0021. We
will focus in their analysis of the continuous spike-adding, since their results are specially
related with our own work. They employed continuation methods, which transform the
task of performing a bifurcation analysis into the problem of finding roots of certain
functions, a problem that can be solved systematically. A continuation of periodic orbits
with respect to the parameter I was provided and a selection of them was shown in
different states of the process of gaining an extra spike, superimposing these orbits over
their corresponding fast-slow skeleton (equilibrium points and limit cycles). The fast
system not only possesses the Z-shaped curve of equilibria and the manifold of limit cycles
that are mentioned in Izhikevich’s classification: it also presents a secondary manifold of
limit cycles near the right knee of the equilibria curve. This secondary manifold has a
relevant role in the spike-adding process.

According to their analysis, the birth of bursting orbits and the continuous spike-
adding process occurs in the following way (see Figure 3.4). The system admits a unique
equilibrium point, which is stable for I = 0. Increasing I causes the equilibrium to lose
its stability at I = 1.2895, due to a subcritical Hopf bifurcation. An unstable limit cycle
emerges from the Hopf bifurcation point and turns stable due to a fold bifurcation SN1a.
This stable limit cycle is a bursting orbit of one spike. The bursting orbit then undergoes
two folds bifurcations, SN1b and SN2a which are very close to each other and give rise
to a hysteresis phenomenon (the continuation curve is Z-shaped). In this process, the
orbit develops an extra spike, evolving into a bursting orbit of two spikes. The birth
of the new spike is a continuous process (including in the picture the unstable orbits)
related to canard phenomena [9] [12] [46] (see Figure 3.5). As the orbit undergoes the
fold bifurcation SN1b, it starts following the middle branch of unstable equilibrium points
of the fast subsystem (headless canard in the literature), which causes an increase in
the period (see panel B in Figure 3.1). The time spent following the unstable branch
corresponds to the plateau phase of the solution. The orbit, now unstable, extends more
and more along the unstable branch of equilibria until it reaches the secondary limit
cycle manifold and makes a turn around it (the orbit is now a canard with head, the
head corresponding to the extra spike). This happens when the orbit undergoes the fold
bifurcation SN2a. After that, the orbit spents less time following the unstable branch of
equilibria of the fast subsystem while keeping the extra spike, until it becomes a bursting
orbit with two spikes. As I increases, a sequence of pairs of fold bifurcations takes place,
leading to more hysteresis phenomena in which the orbit gains more spikes. In particular,
the evolution from n to n + 1 spikes occurs during the hysteresis delimited by two fold
bifurcations, SNnb and SNn+1,a. Due to the hysteresis phenomena, there is a coexistence
of bursting orbits of n and n+1 spikes in a small current interval for each n. These results
are summarized in Figure 3.4, where the continuation of equilibria and periodic orbits is
represented, and in Figure 3.5, where different orbits in the process of going from 4 to 5



54 CHAPTER 3. A BRIEF REVIEW OF PRIOR RESEARCH

spikes are shown.

Figure 3.4: Continuation of a periodic bursting orbit undergoing continuous spike-adding.
Continuous blue line indicates stable equilibrium points and dashed red line indicantes
unstable equilibrium points. Continuous black line stands for stable limit cycle and dashed
black line is for unstable limit cycles. The blue point is a subcritical Hopf bifurcation.

The mechanism underlying the continuous spike-adding (through canard transitions
[9] [12] [46]) was already predicted by Terman [44], but an important difference is that in
[44] it was suggested that the solution remains stable during the whole process, while in
the Hindmarsh-Rose model this is not always the case.

The results regarding the continuous spike-adding process were extended in [33], where
the authors consider b as the bifurcation parameter. The spike-adding process is the same
as described in [26], with the difference that they also identify period-doubling bifurcations
during the continuation of periodic bursting orbits gaining an extra spike. In Figure 3.6
we show a continuation of periodic orbits with respect to b. We chose an interval of b
corresponding to the evolution from 2 to 3 spikes. Continuous line denotes stable solutions
and dashed line denotes unstable solutions. Blue points are fold bifurcation of limit cycles,
while red points stand for period-doubling bifurcation. The presence of period-doubling
bifurcations creates two bistability regions, although one of them is indistinguishable,
since the right fold and the right period-doubling are very close to each other. The other
bistability region is visible and is delimited by the left fold and the left period-doubling,
and its width is less than if there were no period-doubling points.

The dynamics of the Hindmarsh-Rose model have been also investigated considering
two parameters of bifurcation. This allows a better understanding of the phenomena
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Figure 3.5: Different orbits undergoing the continuous spike-adding process from 4 to 5
spikes, which occurs at I = 1.85414, where the continuation curve suffers a very sharp
hysteresis. The corresponding fast-slow skeleton is also represented. Continuous blue line
denotes stable equilibria, dashed red line denotes unstable equilibria and continuous black
line is for the maxima and minima x-values of limit cycles.

founded in previous studies where only one parameter of bifurcation was considered.
Only in relation with our interest, we can cite [6], [8],[19], [33] and [43].

In [19] the author analysed the model in the parametric plane (I, ε). Combining a
linear stability analysis (screening the eigenvalues of the jacobian of the system at the
unique equilibrium point) and a nonlinear analysis (calculating the Lyapunov spectrum),
they determined the different behaviours avaliable. There are regions where the dynamics
falls to an equilibrium point (quiescence), regions where there exist simple limit cycles
(spiking), and regions characterised by bistability. Moreover, areas displaying complex
phenomena (periodic bursting and chaotic firing of spikes) are delimited. Inter-spike
intervals are used to define different measures that allow screening the plane (I, ε) and
building color maps that make the different behaviours distinguishable. This information,
combined with the information of the Lyapunov spectrum, permits identifying chaotic
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Figure 3.6: Continuation of a periodic bursting orbit undergoing continuous spike-adding.
Continuous line corresponds to stable solutions and dashed line refer to unstable solutions.
Blue points indicate a fold bifurcation of limit cycles, while red points stands for period-
doubling bifurcation.

lobes in the system, and a band structure formed by strips of similar periodicity. Straight
cuts of this structure would yield inter-spike bifurcation diagrams similar to the one shown
in 3.3 (the chaotic regions in the IBD corresponding to the chaotic lobes and the blocks
of the same number of spikes corresponding to the bands).

Regarding parameter-sweeping techniques, we must cite [8], where the authors per-
form different screenings in the (b, I) plane employing the software TIDES, a numerical
integrator based in the Taylor method (see [1] and [2]). They use common indicators
in neuroscience-related works, such as the duty cycle and the spike-counting, and the
calculation of the Lyapunov spectrum, standard in the nonlinear-related studies. Both
approaches yield coherent results, and the method used allows a great accuracy. The
plane (x0, I) was also studied, revealing a structure characterised by diagonal bands of
the same periodicity, surrounded by a region characterised by quiescence.

In [43] authors analysed the dynamics of the model in the (b, I) plane, fixing ε =
0.01. They complement brute-force methods (performing extensive simulations) with
continuation techniques. The use of extensive simulations allow to identify the typical
dynamical behaviours for each value of (b, I). More than that, when periodic bursting is
founded, the number of spikes per burst is identified. A color code is used so different
number of spikes are represented in different colors (see Figure 3.7). We will refer to
these color maps as spike-counting maps. Continuation methods allow to follow the
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different codimension-one bifurcation curves and to locate codimension-two bifurcation
points in the (b, I)-plane. Combining the results, it is possible to see how bifurcations are
related with the spike-adding phenomenon. In a similar way to the case of the parametric
plane (I, ε) studied in [19], the bursting region is divided in bands of different number
of spikes, with consecutive bands differing in 1 spike. Chaotic bulbs also exist in this
region, as in the case of [19]. Figure 3.7 shows a spike-counting map superimposed with
the corresponding bifurcation diagram. Yellow curves are fold bifurcations of periodic
orbits and red curves represent period-doubling bifurcations. The black, C-shaped curve
is a homoclinic bifurcation curve. Green is used for orbit flips and magenta for inclination
flips.
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Figure 3.7: Spike-counting map for ε = 0.01 superimposed with the bifurcation diagram.
Modified from [6].

The bursting structure is induced by fold and period-doubling bifurcation curves.
Namely, the chaotic bulbs are delimited by fold and period-doubling bifurcation curves,
and the bursting bands are bordered by fold bifurcation curves. There exist cascades of
period-doubling curves inside the chaotic bulbs, causing the high number of spikes and
the chaotic behaviour. Period-doubling curves also appear inside the periodic bursting
bands, delimiting bistability regions that the spike-counting map does not show. Recall
that an horizontal cut of a bursting map would correspond to the situation illustrated in
Figure 3.6, where a visible bistability region is located between the left fold and the left
period-doubling.

The existence of the fold and period-doubling bifurcation curves is explained by the
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presence of homoclinic degenaracies that act as organizing centers of the bursting struc-
ture. In Figure 3.7, we see how the fold and period-doubling curves are born from the
codimension-two homoclinic points: orbit flips, inclination flips and Belyakov points (the
last ones are located near the apparent ends of the curve, not visible in the figure due to
the diagram limits). According to our numerical studies, orbit and inclination flips are of
type C, thus their existence ensures the presence of an infinite number of period-doubling
and fold bifurcation curves. The role of the codimension-two homoclinic degeneracies as
organizing centers has been studied in [6], where the authors analize how the fold and
period-doubling curves emanating from them form chaotic regions, both macroscopic (the
dark brown bulbs in Figure 3.7) and microscopic, where stable periodic bursting solutions
coexist with chaotic ones. Reference [33] provides a detailed analysis of the situation of
the different homoclinic curves and their degeneracies in the (b, I) plane, with ε = 0.01
fixed.

It is compulsory to make some remarks regarding the situation of the homoclinic curve
that cannot be inferred from the bifurcation diagram shown in Figure 3.7. The main one is
that actually there exist one homoclinic bifurcation curve for each spike-adding transition
(there is one curve for the transition from 1 to 2 spikes, another curve for the transition
from 2 to 3 spikes, and so on). The apparent ends of each homoclinic bifurcation curve are
actually very sharp turns. References [33] and [43] show how the homoclinic orbits gain an
extra spike after the lower turn. The gaining of the spike is due to canard phenomena, as
in the case of stable orbits of small period, already studied. Thus, part of each homoclinic
curve corresponds to solutions of n spikes, and other part corresponds to solutions of
n+ 1 spikes. We refer to them as hom(n, n+ 1) curves. We must remark that the results
regarding the structure of the homoclinic bifurcation curves shown in [43] and [33] are
partial. Namely, the numerical continuations in these previous works do not show what
happens to the curve after the sharp turns. In fact, only the lower turn was investigated.
Our numerical findings allow to give a more complete picture, as we will see in the next
chapter.

Another relevant fact about the homoclinic bifurcation curves is that they are very
close in the parameter space, so it is not possible to distinguish them if represented in the
same plot. In Figure 3.7 the homoclinic bifurcation curve corresponding to the transition
from 1 to 2 spikes is represented. It is the bigger one, since, as [33] shows, the size of
each hom(n, n+ 1) curve decreases as n increases. Different codimension-two homoclinic
points exist in each homoclinic bifurcation curve. Consequently, fold and period-doubling
curves corresponding to different transitions emanate from different homoclinic bifurcation
curves.

There exist Belyakov points in the homoclinic bifurcation curves for the first two tran-
sitions, and they lie very close to each other in the parameter space. However, homoclinic
bifurcation curves hom(n, n+1) with n ≥ 3 do not present Belyakov points (for ε = 0.01).
In particular, this implies that the homoclinic bifurcation curves associated with these
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transitions only correspond to the case of real eigenvalues, thus their solutions do not
present the oscillations related with the imaginary eigenvalues case.

All the bifurcation curves (as far as they have been studied) present an inclination flip
point close to I = 3.9. Different inclination flips corresponding to different homoclinic
bifurcation curves lie very close to each other. Thus, as it happens with Belyakov points,
inclination flips corresponding to different homoclinic curves are not distinguishable in
the parameter space. However, the orbit flips that exist for each transition are clearly
separated from each other, as Figure 3.7 shows.

Each fold bifurcation curve separating a pair of bands of n and n + 1 spikes is born
from a different homoclinic bifurcation curve hom(n, n+ 1). In particular, they are born
from the very sharp turn in the lower part. While it has not been possible to detect
a codimension-two point in this position, in [33] it is conjectured that there exist an
inclination flip located there, and the authors give geometrical arguments supporting the
conjecture.

In [6], [8] [43] and other spike-counting maps, corresponding to different values of ε,
have been obtained. For instance, in [6] the case ε = 0.001 is shown. In [43] different
diagrams are presented, with ε ranging from 0.001 to 0.28. The band structure of the
spike-counting maps, as well as the presence of chaotic bulbs, persists when ε changes.
However, the structure undergoes noticeable changes. First, as ε decreases, there is an
increase in the number of spikes per burst that is exhibited by periodic bursting solutions.
Second, smaller values of ε correspond to a higher number of chaotic bulbs. Lastly, the
band-structured region corresponding to bursting behaviour gets smaller as ε increases.
We must remark that case ε = 0.01 is the only one that have been studied in regards
to the bifurcation diagram. Therefore, the changes that the spike-counting maps suffer
when ε varies have not been explained previously to our work. It should be pointed out
that the parameter ε has a special relevance, since it is the parameter responsible to the
fast-slow dynamics, and thus, is the one that places the system close or far to the singular
limit.

For that reason, the analysis of the evolution of the dynamics when ε varies was the
first goal of this thesis. In particular, we were interested in the evolution of the bifurcation
diagram when ε brings the system far from the singular limit, and to explain the changes
in the spike-counting maps in the context of the bifurcations of the system. Our second
goal was to deepen into the relationship between the bifurcation diagram and the spike-
adding processes in the case 0 < ε� 1. While many works have approached this subject,
a global scheme putting together the different findings was missing. For instance, we were
interested in determining in which parametric regions the different spike-adding processes
take place, and how the distance to the homoclinic influences them. Our work in these
matters resulted in the papers presented in the next chapter.
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Chapter 4

Contributions

4.1 Paper I

This paper [4] investigates the Hindmarsh-Rose model from a novel perspective, taking
a first step in the analysis of the bifurcation diagram as the small parameter ε takes
different values and moves far from the singular limit. We have considered b, I and
ε as parameters and have studied the dynamics of the system. Our main interest is
the evolution of the homoclinic bifurcation curves corresponding to bursting of 1 and
2 spikes in the plane (b, I) as ε takes different values. Different homoclinic bifurcation
curves in the (b, I) plane were computed, corresponding to values of ε ranging from 0.005
to 0.08. The results show evident changes in the shape of the homoclinic bifurcation
curves as ε increases. We have also computed a three-parameter continuation curve
of inclination flips, which disappears at ε = 0.0197 due to a folding mechanism. We
provided two-parameter sweepings in the (b, I) plane for different values of ε using the
spike-adding technique, and observed a correlation between the changes of the homoclinic
bifurcation curves and the deformation of the spike-counting map. Orbits of the system
for different values of ε (0.01, 0.03, 0.05, 0.3) were shown, which allows to illustrate how
the border between the two different bursting regimes exhibited by the Hindmarsh-Rose
model (fold/homoclinic and fold/Hopf) blurs when ε grows. In the case ε = 0.3 the
system keeps some features of the slow-fast dynamics but the spiking process becomes
akin to the funnel structures around focus equilibria in Rössler-like systems.
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1. Introduction

It is out of discussion that to understand such a complex mech-
anism as the brain, and in general any living neural network, it is 
compulsory to know first the working of its basic building blocks: 
the neurons. Since the seminal contribution of Hodgkin and Hux-
ley [1], neurons are commonly viewed as dynamical systems. Ele-
ments of bifurcation theory play an essential role in this context 
and help to understand neuronal activity.

The range of activity types that a neuron can exhibit is quite 
broad and includes quiescence (the state of not firing), tonic spik-
ing, bursting and irregular (or chaotic) spiking. Each of these be-
haviors has its counterpart in the language of dynamical systems, 
either as stable periodic or chaotic orbits. Even the process of 
spike-adding can be linked to specific codimension-two homoclinic 
bifurcations (Orbit-Flip and Inclination-Flip points) and also to the 
so called canard explosions [2,3].

Hindmarsh–Rose (HR in the sequel) equations⎧⎨
⎩

x′ = y − ax3 + bx2 + I − z,
y′ = c − dx2 − y,

z′ = ε(s(x − x0) − z)
(1)

were introduced in [4] as a reduction of the Hodgkin–Huxley 
model. The HR model is simpler but it captures the main dynam-

* Corresponding author at: Departamento de Matemática Aplicada and IUMA, 
University of Zaragoza, E-50009 Zaragoza, Spain.

E-mail addresses: rbarrio@unizar.es (R. Barrio), mesa@uniovi.es (S. Ibáñez), 
lpcuadrado@gmail.com (L. Pérez).

ical behaviors which are displayed by real neurons: quiescence, 
tonic spiking, bursting and irregular spiking (see [5–13]). The sys-
tem possesses two time scales: x and y evolve as fast variables 
while z does it as a slow variable (so, it is a slow-fast dynamical 
system). The x variable should be treated as the voltage across the 
cell membrane, while the y and z variables would describe kinet-
ics of some ionic currents. The small parameter ε controls the time 
scale of z and x0 controls the rest potential of the system.

Different choices of the parameters have been considered in the 
literature (see [11] for an excellent review of the dynamics of the 
model). Following [2,11,12] we assume that

a = 1, c = 1, d = 5, s = 4, and x0 = −1.6. (2)

With this choice, (1) becomes a family dependent only on param-
eters (b, I, ε). These parameters will be our primary bifurcation 
parameters.

In this paper we pay attention to the changes in the global pic-
ture as ε varies. From a realistic point of view it is clear that only 
small values of ε are of interest: typically ε � 1. We include a 
preliminary study about the singular limit of some relevant bifur-
cations. Nevertheless, in contrast with other approaches, we want 
to emphasize that the understanding of the bifurcation diagram for 
higher values of the slow time scale should be a crucial ingredient 
to get a whole picture of the dynamics and also it helps to under-
stand what happens for ε < 1 (and not only ε � 1).

The article is arranged as follows: In Section 2 we compute 
the singular limit of the Hopf bifurcations as ε ↘ 0. Moreover, we 
show with numerical evidences that a singular limit also exists for 
the homoclinic bifurcation curves. We compare our results with 

http://dx.doi.org/10.1016/j.physleta.2016.12.027
0375-9601/© 2016 Elsevier B.V. All rights reserved.
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those in [14–16] where similar singular limits were studied in a 
different model. In section 3 we investigate how the homoclinic 
bifurcation curves change as ε increases from small (slow-fast dy-
namics) to large values. We will see that, although the geometry 
of the bifurcation curves changes rapidly, many common features 
seem to persist. Section 4 is devoted to show how the global pic-
ture of spike-adding, bursting and chaotic behavior, bounded inside 
a loop formed by the Hopf bifurcation curves, evolves with ε. We 
will describe how this evolution seems to be linked to the changes 
along the homoclinic bifurcation curves. A summary is presented 
in Section 5. All continuations of bifurcation curves have been done 
with the free software AUTO [17,18].

2. Singular limits: Hopf bifurcation and homoclinic bifurcation

It easily follows (fixing all parameters but (b, I, ε)) that the 
equilibrium points of (1) are given by

y = 1 − 5x2, z = 4(x + 1.6), (3)

with x any real root of

P (x) = I − 5.4 − 4x + (b − 5)x2 − x3. (4)

The Jacobian at a given equilibrium point is given by⎛
⎝

−3x2 + 2bx 1 −1
−10x −1 0

4ε 0 −ε

⎞
⎠ , (5)

with characteristic polynomial

Q (λ) = λ3 + q2(x,b, ε)λ2 + q1(x,b, ε)λ + q0(x,b, ε),

where

q2(x,b, ε) = 3x2 − 2bx + 1 + ε,

q1(x,b, ε) = 3x2 + (10 − 2b)x + ε(3x2 − 2bx + 5),

q0(x,b, ε) = ε
(
3x2 + (10 − 2b)x + 4

)
.

Necessary conditions for an Andronov–Hopf (AH) bifurcation 
are

P (x) = 0
C(x,b, ε) = q2(x,b, ε)q1(x,b, ε) − q0(x,b, ε) = 0
q1(x,b, ε) > 0.

The above conditions characterize a collection of surfaces on the 
space of parameters whose limit when ε ↘ 0 is given by

I − 5.4 − 4x + (b − 5)x2 − x3 = 0, (6)

(3x2 − 2bx + 1)
(
3x2 + (10 − 2b)x

) = 0, (7)

3x2 + (10 − 2b)x ≥ 0. (8)

Although the condition q1(x, b, ε) > 0 is stated in terms of a strict 
inequality, we must consider the possibility of a non strict inequal-
ity at the limit when ε ↘ 0. The set S of points satisfying the 
above conditions consists of three curves as depicted (dashed blue) 
in Fig. 1. AH bifurcations curves for ε = 0.005 are also shown. 
Note that not the whole set S becomes the singular limit for 
AH bifurcations curves. When x = 2(b − 5)/3, (7) is satisfied and 
substituting in (6) we get the equation for the graph G of a poly-
nomial I(b) of degree 3. On the other hand, (8) is also satisfied 
because 3x2 + (10 − 2b)x = 0. It follows that G is the singular 
limit for a surface in the 3-parameter space satisfying P (x) = 0
and C(x, b, ε) = 0, but only a part of it satisfies q1(x, b, ε) > 0. We 
note that the bifurcation diagram of the HR-model does not dis-
play a U-shaped Hopf bifurcation curve as that observed for other 
excitable systems (see [14–16,19]).

Fig. 1 also shows four homoclinic bifurcation curves (green and 
black) for different values of ε. The lowest value (black) is for 

Fig. 1. Some features of the bifurcation diagram for the Hindmarsh–Rose model. 
Dashed blue curves show the set S of curves satisfying (6), (7) and (8), which con-
tains the singular limit (ε = 0) of AH bifurcations in the full system. AH bifurcations 
(solid red) are shown for ε = 0.005. Note that not the whole set S is part of the sin-
gular limit. Homoclinic bifurcations (solid green and black) are shown for different 
values of ε (the lowest value (black) corresponds to ε = 0.005). In the magnifica-
tion the first primary homoclinic bifurcations curves are shown for different values 
of ε. As the small parameter ε increases, the number of “visible” foldings (with re-
spect to b) of the homoclinic curve changes. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

ε = 0.005. In this case (for small values of ε), as for the sys-
tems considered in [14–16,19], homoclinic bifurcation curves are 
C-shaped. Numerical simulations show that there is a singular limit 
for the homoclinic bifurcations. Nevertheless, unlike the model 
studied in [15], a characterization of such singular limit involves 
extra difficulties and we pose this question as an open question for 
the next future. Anyway, it must be noticed that, as in [2,15], ac-
cording to the numerical simulations, the homoclinic bifurcations 
curves do not terminate at a point approaching the set S . On the 
contrary, at both “ends” there is a sharp turning of the curve. How-
ever, this will make clear in the next section.

3. Homoclinic bifurcations

Of course, as already argued, an essential piece to get the whole 
picture of the dynamics emerging in the HR-model is to under-
stand the role of the singular limit as the source of a puzzling 
bifurcation diagram. Nevertheless, to have a deeper knowledge of 
the model, it is also crucial to study a wider range of time scales 
of the slow variable z. In this approach, the latest goal should be to 
find organizing centers located not necessarily close to the singular 
limit and to understand how the bifurcations evolve as ε decreases. 
Hence, from a different perspective, this approach could be helpful 
to give some insight into the global picture that we already know 
to be very entangled for ε � 1.

Since this paper focuses mainly on the role played by the ho-
moclinic bifurcation, we study how they evolve as ε varies (in this 
paper we just show the first primary homoclinic orbits, related 
with the first spike-adding process [2]). The numerical results dis-
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Fig. 2. Homoclinic orbits for parameter values in each of the two branches arising 
close to the lower and upper “endings or turning-points” of the homoclinic bifur-
cation curve for ε = 0.01. The selected value of b is the same in both cases of 
each branch, but the values of I corresponding to each homoclinic orbit (red and 
blue in each case) are slightly different as they correspond to different orbits of the 
double-cover homoclinic. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

played in Fig. 1 show that the shape of the homoclinic bifurcations 
curves changes as ε increases. At this scale we clearly see three 
different shapes that we classify according to the number of “visi-
ble” folds in parameter b (the reason to say “visible” will be clear 
later). For ε small enough there is only one visible folding; these 
are the C-shaped curves already mentioned in Section 2 (the “stan-
dard” shape for slow-fast-systems [14–16,19]). For intermediate 
values there are two visible folding points in b, and as ε increases 
both visible foldings disappear. Moreover, an extra (and different) 
folding occurs at each “end” of the different branches of the ho-
moclinic curves, giving a very sharp turn and so the curve doubles 
back on itself giving rise to a double-cover homoclinic curve (as 
shown in [2] for one value of ε). Fig. 2 shows two different homo-
clinic orbits obtained for parameter values at different branches at 
the lower and upper sharp folds (the value b is the same in both 
cases but the values of I are slightly different). The shape and rel-
ative position of the lower fold seems to be similar in all cases 
we have explored. On the contrary, the upper fold moves significa-
tively in the biparametric plot as ε increases, as Fig. 1 shows.

4. Spike-adding and homoclinic bifurcations

From the observations of the previous section a clear question 
is: which consequences (if any) have the change of shape of the 
first primary homoclinic bifurcations curves?

First we remark that several recent works [2,5,6,11,12] were 
specifically focused on detailed studies of global bifurcations of 
tonic spiking and bursting orbits giving rise to chaotic dynamics 
in the HR model. In [2,6], the appearance of Orbit-Flip (OF) and 
Inclination-Flip (IF) codimension-two points in the primary homo-
clinic bifurcation curve was linked to the spike-adding process for 
square-wave (or fold/hom) bursting. Also, in [6] it was shown how 
these points give rise to the different macro-chaotic regions and a 
global scheme was proposed.

In order to observe in more detail the changes depending 
on the small parameter we show in Fig. 3 a three-parametric 
plot (ε on the vertical axis) with the first primary homoclinic 
bifurcation curves (blue lines) at different values of ε and a 
three-parameter continuation of the curve (green line) of the 
codimension-two Inclination-Flip points. The IF points play a rel-
evant role for small values of ε, as shown in [2,6], because they 
are organizing centers of the pencils of period-doubling and fold 
bifurcations emanating from the OF points. All these points pro-
vide a complete picture of the spike-adding process, but when ε
grows the IF points disappear, and so now the global structure 
has changed. It is interesting to remark that the disappearance of 
the IF points seems to take place in a codimension-three “fold” of 
IF points close to the parameter values b = 2.525, I = 4.348 and 
ε = 0.0197. The curve of codimension-two IF points also disap-
pears when ε decreases in one side of the curve, but this fact may 
be related with numerical precision problems (in Fig. 4 we present 

Fig. 3. A three-parametric plot (ε on the vertical axis) with the first primary homo-
clinic bifurcation curves (blue lines) at different values of ε and a three-parameter 
continuation of the curve (green line) of the codimension-two Inclination-Flip 
points. (For interpretation of the colors in this figure, the reader is referred to the 
web version of this article.)

all the IF points detected by AUTO for the corresponding ε values). 
All these facts are part of the current research of the authors.

In order to observe the changes originated from the disappear-
ance of the IF points we use another very interesting approach, the 
spike-counting (SC) method, that works well for a neuron model 
when a bursting solution follows closely the slow motion mani-
folds of the fast subsystem and makes pronounced rapid jumps 
between them, thus defining the number of spikes per bursts in 
the voltage traces. Indeed, the spike number within a burst is that 
of the complete revolutions of the bursting orbit around the spik-
ing manifold Mlc. In the spike-counting technique [5,12], a fixed 
number of spikes per burst is an indication of regular bursting, 
while unpredictably varying numbers are associated with chaotic 
bursting. Fig. 4 represents bi-parameter sweeps of the HR model 
in the (b, I)-plane for ε = 0.01, 0.03 and 0.05, that are done with 
the spike-counting approach. The parameter plane is clearly de-
marcated into regions corresponding to quiescence (convergence 
to an equilibrium point), periodic tonic spiking, chaotic and reg-
ular bursting. The obtained maps are color-coded, so, the spike 
numbers are associated with specific colors. The resulting diagram 
can be easily read and interpreted: the region shown in a dark 
blue color is for stable spiking activity which can be treated as 
bursting with a single spike. The diagram reveals a global organiza-
tion of spike-adding bifurcations occurring on borderlines between 
the corresponding stripes in the blue hue, which all correspond to 
square-wave bursting on the model. Stripes of gradually changing 
colors correspond to bursting with incrementally varying num-
bers of spikes due to a spike-adding cascade. Bursting becomes 
chaotic near the transitions to tonic spiking in a chain of “onion 
bulb scales”- shaped regions [6]. Decreasing the value of ε, which 
determines the dynamics of the slow z-variable, does not change 
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Fig. 4. Bi-parametric plot (plane (b, I)) of the HR-model at three values of ε, where the different colors indicate the number of spikes per period (spike-counting technique) 
and, superimposed, the bifurcation curves that demarcate the borderlines of the regions of colors ranging from blue to red and corresponding to spike numbers (vertical 
bar). Curves shown in pink, red and black correspond to period-doubling, Andronov–Hopf (AH) and primary homoclinic (Hom) bifurcations. The green dot corresponds to an 
Inclination-Flip codimension-two bifurcation point. Right column corresponds to a magnification of the bursting region. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

qualitatively the structure of the parameter plane but compresses 
it. Therefore, for simplicity we do not consider values of ε < 0.01.

Detailed bifurcation analysis were presented in [6,12]. In this 
paper, as before, we just focus our attention into the AH and ho-
moclinic bifurcations when different values of the small parameter 
ε are used. The AH-bifurcation curves do not change their shape, 
but, as shown in the previous section, the shape of the homo-
clinic bifurcation curve changes, passing from 1-fold (C-shape) in 
the b parameter to 2 (Z-shape) and later to 0. These changes origi-
nate also changes in the spike-adding process and in the chaotic 
regions. In all three cases, the spike-adding process follows the 
scheme shown in [2,6], but in the C-shape there is no spike-adding 
process in the upper branch, while in the other cases the spike-
adding process continues and in the case of no “visible” folds 

the spike-adding is continued by a spike-deleting process. Also, 
the chaotic “onion bulbs” are present in the lower branch for the 
C-shape, whereas in the other two cases they are present along 
all the homoclinic bifurcation curve. Moreover, the change in the 
number of “visible” folds is located in the range of values of the 
parameter ε where the disappearance of the IF points (green dots) 
occurs. To study its relation with the change of the global pic-
ture we present also the first period-doubling curve (pink curve) 
that delimits the spiking region and we observe how, as the IF is 
no more present, the curve goes far away for high values of ε, 
whereas for small values the IF point attracts all these bifurcation 
curves.

The influence of the fact that the bifurcation curves end at 
the IF, or not, gives rise to another important feature. In Fig. 5
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Fig. 5. Evolution of the orbits (stable periodic orbits (blue) and chaotic ones (red)) for different values of the parameter ε. On the left SC bi-parametric plots (plane (b, I)) 
showing the position of the different orbits and the change with ε in the spike-adding process and chaotic regions (in dark red). Regions with Fold/Hom and Fold/Hopf burst-
ing behavior are shown (in case ε = 0.01 the regions are quite delineated, but in the other cases the change is more gradual without a clear boundary). (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)
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we present on the left the SC sweeping technique for four val-
ues of ε, in this case considering also a value clearly far from 
small (ε = 0.3). The case ε = 0.01 is clearly slow-fast, with the 
chaotic and periodic orbits with spikes around the fast spiking 
manifold Mlc. Moreover, if we observe the SC diagram there are 
two clearly defined areas in the bursting region (shown by the 
continuous straight red line that it is delined by the IF point and 
the bifurcation curves ending to it) of fold/hom (or square-wave) 
and fold/Hopf (or plateau-like) bursting behavior. The difference of 
the orbits is evident from the right figures. On the contrary, in-
creasing the value of ε, as the IF point is no more present there 
is not a clear boundary. For ε = 0.03 and 0.05 we observe that 
now there is also fold/hom and fold/Hopf bursting behavior, but 
now we cannot give a precise limit of each behavior (so we have 
plotted a discontinuous red line with an interrogant on the area 
where the change seems to occur). This fact has clear biological 
interest as now there is a small change when varying the parame-
ter as the geometry of the orbits is quite similar (when ε is small 
in the area of changing from fold/hom to fold/Hopf the difference 
is quite big). We also remark that, when ε grows, the dynamics of 
the system maintains some of the slow-fast features (spike-adding, 
chaotic stripes, ...) but now the spiking process is more and more 
similar to the funnel structures created around focus equilibria in 
Rössler-like systems (see [20]).

For large values of ε (ε = 0.3) we observe that the structure is 
not the same, and now the spike-adding process is not observed, 
being present a classical period-doubling phenomena giving rise 
to a small chaotic area, that is, now the system is not a slow-
fast system, it is just another 3D dynamical system with oscillatory 
behavior around focus equilibria. The other three values of ε main-
tains some slow-fast dynamics.

A deep analysis of the changes from the limit case (ε ↘ 0) to 
the case ε = O(1) is part of our current research [21].

5. Conclusions

In this article, we present new approaches to study the dynam-
ics arising in the HR model. Andronov–Hopf and homoclinic bifur-
cations play an essential role in the understanding of the whole 
picture. We have computed the singular limit of the Andronov–
Hopf bifurcations in the family and checked that for each ε > 0
small, one of the Hopf bifurcation curves forms a loop which 
bounds all the rich variety of behaviors displayed by the sys-
tem. This differs from other models considered in the literature 
where the Andronov–Hopf bifurcation curve (for fixed ε) adopts an 
U-shape as it tends to the singular limit (see [15]). On the other 
hand, although it is well known that homoclinic bifurcations of 
codimension-one or higher are key pieces in the organization of 
the bifurcations diagrams, this paper shows that this role extends 
from the singular limit up to, at least moderately, large values of ε. 
The variations in the shape of a principal homoclinic bifurcation 
curve were explored starting close to its singular limit and increas-
ing the values of ε to get images of the behavior far from the slow-
fast scenario. It becomes evident that close to the singular limit it 
adopts a C-shape with a unique principal “visible” folding point. As 
ε increases, the Inclination-Flip codimension-two points disappear, 
generating a smooth change from fold/hom and fold/Hopf bursting 
behavior. Moreover, although spike-adding and chaotic regions are 
present, the way in which new regions with differenced dynamics 
emerge is clearly different. The different shapes of the homoclinic 
bifurcation curves seem to be related to these changes in the dy-
namics.

As already mentioned, our current research is addressed to get 
a deeper insight in the manner in which the whole bifurcation 
diagram evolves as ε moves in a long interval. This should also 
gives us some enlightenment in the understanding of the slow-fast 

mechanisms that explain the fascinating variety of neuronal ac-
tivities. Regarding this point, it will be necessary to complete the 
study of singular limits, particularly, for the case of homoclinic bi-
furcation curves. Moreover, new codimension-two organizing cen-
ters need to be detected. For instance, it is still far from being clear 
which are the bifurcations existing at the terminal points of homo-
clinic bifurcation curves.
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4.2 Paper II

In the present article [5] we delve into the homoclinic structure of the Hindmarsh-Rose in
the (b, I, ε) parameter space, completing the results obtained in paper I. An exhaustive
study of the homoclinic bifurcation structure and its degeneracies is presented.

In particular, the homoclinic structures corresponding to the case of 1 to 2 spikes, 2
to 3 and 11 to 12 are considered. We investigate what happens with these structures with
the system is far from the fast-slow scenario. The well-known software AUTO was used
to compute sufficient homoclinic curves in the (b, I) plane for different values of ε so that
the homoclinic surfaces could be visualised.

We have found numerical evidences showing that the homoclinic bifurcation curves
in the (b, I) plane are isolas, with the exterior face corresponding to n spikes and the
interior face to n+ 1. For that reason we use the notation hom(n,n+1). The computation
of hom(n,n+1) curves reveals that, in the cases n > 1, for small values of ε, there is not
a unique isola but two, and when ε increases these two isolas joint each other forming a
unique close curve. We have also observed that there is a correlation between the ε-level
reached by each surface hom(n,n+1) in the (b, I, ε) parameter space and the existence of
bursting of n spikes for the corresponding value of ε.

Special attention has been paid to the codimension-two degeneracies (namely orbit
flips, inclination flips and Belyakov points). We have studied how the codimension-two
points move on the homoclinic bifurcation curves in the (b, I) plane as ε increases, and
how they disappear due to different mechanisms. These mechanisms include codimension-
three phenomena, where different codimension-two curves in the (b, I, ε) parametric space
collide; folding processes, which constitute the so-called 2+1 codimension phenomena; and
the shrinking in the size of the homoclinic curves, which prevents homoclinic bifurcations
whose corresponding equilibria have associated real eigenvalues (a necessary condition for
the existence of orbit and inclination flips and Belyakov points).

It is found that the disappearance of codimension-two points due to a folding processes
leads to relevant changes in the bifurcation diagram. In particular, it is illustrated how two
different period-doubling curves, each arising from a different inclination flip point, joint
each other forming a unique curve after the two inclination flips collide. This evolution in
the arrangement of the codimension-one bifurcation curves may explain the deformation
of the spike-counting map that occurs when ε increases.

Our findings allow us to propose a theorical scheme of the global homoclinic structure
that organises the bursting dynamics of the model.
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ABSTRACT

Bursting phenomena are found in a wide variety of fast–slow systems. In this article, we consider the Hindmarsh–Rose neuron model, where,
as it is known in the literature, there are homoclinic bifurcations involved in the bursting dynamics. However, the global homoclinic structure
is far from being fully understood. Working in a three-parameter space, the results of our numerical analysis show a complex atlas of bifurca-
tions, which extends from the singular limit to regions where a fast–slow perspective no longer applies. Based on this information, we propose
a global theoretical description. Surfaces of codimension-one homoclinic bifurcations are exponentially close to each other in the fast–slow
regime. Remarkably, explained by the specific properties of these surfaces, we show how the Hindmarsh–Rose model exhibits isolas of homo-
clinic bifurcations when appropriate two-dimensional slices are considered in the three-parameter space. On the other hand, these homoclinic
bifurcation surfaces contain curves corresponding to parameter values where additional degeneracies are exhibited. These codimension-two
bifurcation curves organize the bifurcations associated with the spike-adding process and they behave like the “spines-of-a-book,” gathering
“pages” of bifurcations of periodic orbits. Depending on how the parameter space is explored, homoclinic phenomena may be absent or far
away, but their organizing role in the bursting dynamics is beyond doubt, since the involved bifurcations are generated in them. This is shown
in the global analysis and in the proposed theoretical scheme.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138919

As a fundamental element in the study of nervous system dynam-
ics, the analysis of behaviors and changes in isolated neurons is a
first step in the theoretical/experimental research in mathemat-
ical/computational neuroscience. In addition, it is common to
find synchronization in neuronal networks showing dynamical
states that include different bursting regimes. From the phys-
iological point of view, bursting is characterized by trains of
spikes alternating with quiescent periods. Studying the different
changes in the bursts fired by an isolated neuron will help pro-
vide detailed mathematical mechanisms to explain them. This
work aims to understand the hidden mechanisms behind the pro-
cesses that lead neurons to add (or subtract) spikes in a signal:
the homoclinic bifurcations (in the case of fold/hom bursters).
Their relationship with the processes of creation of new spikes
has been discussed earlier in the literature, but the global picture
is not yet fully understood. We work with the Hindmarsh–Rose
(HR) neuron model, one of the most popular neuronal dynamics
models. To perform the analysis, we use continuation techniques

and brute-force methods to locate and describe the changes.
When exploring a three-dimensional space of parameters, we
discover a complex structure of bifurcations that allows us to pro-
pose a new global structure, which we call, due to its geometry,
homoclinic “mille-feuille” + “spines-of-the-book.” This skeleton
of homoclinic bifurcations allows an explanation of the different
phenomena observed in the literature, such as the influence of
homoclinic bifurcations, even when not observed, the disappear-
ance of bursting dynamics with a large number of spikes when the
small parameter in the models grows (in fast–slow dynamics), and
the spike-adding process.

I. INTRODUCTION

Fast–slow dynamics is a quite common phenomenon in the-
oretical and practical models in many disciplines where different
time scales are present. Computational/mathematical neuroscience
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is one of the fields where these models are more abundant. In
neuroscience, to understand how an incredibly sophisticated sys-
tem such as the brain per se functions dynamically, it is imperative
to study the dynamics of its constitutive elements—neurons. Since
Hodgkin and Huxley developed the first model of action potentials
in the membrane,1 the design of mathematical models for neurons
has arisen as a trending topic in science for a few decades, and a
lot of models and variations describing different kinds of neuron
cells in numerous animals have been proposed in the literature.
What all these systems have in common is the existence of fast–slow
dynamics,2 that is also quite usual in a lot of other practical applica-
tions, like in chemical reactions3 and laser dynamics.4 In all these
models, one of the key magnitudes is the time that a neuron, or
other dynamical system, is active, and this is related to the number
of oscillations (spikes) in the fast subregime.

In order to help in the analysis of neuron models simulated
realistically within the Hodgkin–Huxley framework,1 a common
approach is to use some simplified models. In particular, the 3D
Hindmarsh–Rose (HR) model5 reproduces fairly well the basic oscil-
latory activities routinely observed in isolated biological cells and in
neural networks. It fulfills the two basic conditions of being compu-
tationally simple but, at the same time, able to reproduce the main
behavior (the rich firing patterns) exhibited by the real biological
neuron. The HR model is described by three nonlinear ordinary
differential equations,




ẋ = y − ax3 + bx2 − z + I,
ẏ = c − dx2 − y,
ż = ε[s(x − x0) − z],

(1)

where x is the membrane potential, y the fast, and z the slow gating
variables for ionic current. In our study, we will consider a typi-
cal choice of parameters: a = 1, c = 1, d = 5, s = 4, and x0 = −1.6.
Parameters b and I determine the bursting or spiking behavior and
their values are considered in specific ranges where such phenom-
ena are present. Parameter ε governs the fast–slow behavior and we
will study dynamics for ε small, but including scenarios far from the
singular limit ε = 0. In the sequel, we consider (1) as a family of vec-
tor fields depending on parameters (b, I, ε), and, say, fast subsystem
to refer to the z-family obtained after taking ε = 0.

Roughly speaking, we can say that a fast–slow system exhibits
bursting when orbits exhibit periods of fast spiking followed by
periods of quiescence. When the jump between these two different
regimes can be explained by a fold bifurcation of equilibria and a
homoclinic bifurcation of periodic orbits (both bifurcations occur-
ring in the fast subsystem), we say that the bursting is of fold/hom
type.6 In Sec. II (see Fig. 3), we will describe how fold/hom bursters
arise in the HR model.

One of the big challenges regarding bursting phenomena is to
understand the mechanisms explaining the variation in the num-
ber of spikes (Fig. 4 in Sec. II B provides an illustrative example
in the HR model). These spike-adding processes have been studied
for several mathematical neuron models (see, for example, Refs. 7–
9), and also in other contexts such as laser dynamics, chemical
reactions, or discrete maps, with the alternative name of period-
adding.10–14 This process is quite important in that it progressively
modifies the spectrum of periodic orbits of the system and the

structure of chaotic attractors.15–18 As argued by Terman,18 these
transitions may be either continuous, with the period of the bursting
solution increasing along the process or they may involve chaotic
behaviors (see also Ref. 19). Recently, these transitions have been
studied in detail20 providing a theoretical scheme for ε fixed. The
relevance of fold bifurcations of periodic orbits in this process was
pointed out earlier in Ref. 21. Dealing with fold/hom bursting,
the spike-adding process has also been related to the existence of
canard orbits22–25 and with the existence of certain codimension-
two homoclinic bifurcations.15,26,27 Working with a fixed value ε =

0.01, the role of homoclinic bifurcations of codimension-one and
-two in the spike-adding mechanisms was discussed in Ref. 26
and some preliminary results were advanced. In particular, bifur-
cations of periodic orbits around flip and Belyakov bifurcations
(see Sec. II A for background) were identified as crucial ingredi-
ents to understand some spike-adding transitions that are present
in the HR model. Again, working with that fixed value of ε,
codimension-two homoclinic bifurcations were again considered
in Ref. 27, but providing a much more thorough study. Different
homoclinic curves were discussed and their sharp fold points were
already detected in that reference and linked to the spike-adding
processes. Codimension-two homoclinic bifurcations in Refs. 26
and 27 are also organizing centers of chaotic regions in the bifur-
cation diagram. All these chaotic phenomena were discussed in
Ref. 15.

What is missing in the literature is a global study of how
homoclinic bifurcations are organized, and to that goal we need,
at least, to describe them in a three-parameter space. Note that it
is intrinsic to the notion of bifurcation the possibility of observ-
ing its effects without the bifurcation point being present. In the
HR model, one can explore the parameter space without detecting
homoclinic bifurcations (see Fig. 4), although their consequences
(fold and period-doubling bifurcations) are exhibited. The organiz-
ing points (the codimension-two homoclinic bifurcations) may be
placed far away in the space or parameters, and even, they may
be outside a particular set of parameters that we are visualizing,
but they continue being the organizing centers. Taking all of this
into account, the goal of this article is to provide a model of the
homoclinic organization that explains all these facts.

As already mentioned, previous work in the literature was
focused in studying, for some ε fixed, the curves of homoclinic
bifurcation at equilibria displayed by the system.15,26,27 A bifurca-
tion diagram in a three-parameter space, including variation of
ε, was first considered in Ref. 46. Changes in the spike-adding
structures and the underlying bifurcations were observed. More-
over, foldings in the curves of inclination flip (IF) bifurcation were
already detected. In Ref. 20, a theoretical scheme giving a com-
plete scenario of bifurcations involved in the spike-adding processes
in fold/hom bursters was introduced. This theoretical scheme pro-
vides a complete description of the connections of the different
codimension-two points and the organization of the homoclinic
curves for ε fixed. Also, in that paper, the validity of the scheme is
checked for a pancreatic β-cell neuron model.

In this article, we are interested in understanding the global
structure of the homoclinic surfaces in the three-parameter space.
To that goal, a detailed numerical study with continuation
techniques is required (we use the well-known software AUTO28,29)
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as well as the spike counting (SC in the sequel) technique, as
introduced in Refs. 15, 26, and 30.

Supported by numerical evidences, we conjecture that the
intersection of each homoclinic surface with horizontal planes (with
ε fixed) produces isolas in the plane of parameters (compare with
results in Ref. 31 for the FitzHugh–Nagumo system), that is, simple
closed curves in the corresponding slice. We show how, for each ε

fixed, the model exhibits a finite number (number that grows when
the small parameter decreases) of isolas corresponding to primary
homoclinic bifurcations. Isolas are not only exponentially close to
each other but they also exhibit a pair of extremely sharp folds so that
the width of each isola is also exponentially small. These folds allow
two sides of the isola to be distinguished (and also two faces of the
surface of homoclinic bifurcations). On one of the faces, the corre-
sponding homoclinic orbits on the fold/hom regime exhibit n spikes
and, on the other face, n + 1. It is because of this fact that, from now
on, we use the notation hom(n,n+1) to refer to the different homo-
clinic bifurcation surfaces (or isolas if working with two-parameter
plots).

Remark 1. Notation hom(n,n+1) was already introduced in
Ref. 20. In Refs. 26 and 27, the authors use a different option to label
homoclinic bifurcation curves. In particular, they do not emphasize
that a given homoclinic bifurcation curve can correspond to homo-
clinic orbits with a different number of spikes. For instance, in Ref. 27,

the authors use the notation hom(n), where we use hom(n,n+1). Never-
theless, one should note that when required (see Figs. 4, 5, and 7 in
Ref. 27), they also use two different notations for a unique curve of

homoclinic bifurcation, changing the label from hom(n) to hom(n+1 a)

after a sharp fold of the curve is crossed, pointing out that the number
of spikes changes from n to n + 1.

Homoclinic surfaces are the main focus of this article. We
show how they are disposed in the parameter space, taking into
account that, as numerics show, they are exponentially close to each
other when ε → 0. Because of their tubular shape and the prox-
imity of the surfaces, we can compare the whole structure with a
“mille-feuille” pastry. There, we observe pencils of curves of fold
and period-doubling (PD) bifurcations of periodic orbits gener-
ated on codimension-two bifurcation points. Moving ε, each of the
curves in the pencil gives rise to a surface. Hence, we can com-
pare the codimension-two bifurcation curves with the “spines-of-a-
book” with pages correspondent to surfaces of bifurcations of peri-

odic orbits. Besides, the ε-level reached by each surface hom(n,n+1)

decreases as n increases. This allows us to explain the simplification
mechanisms (bursting with a lower number of spikes) that can be
observed as ε increases.

The article is organized as follows. In Sec. II, we provide general
information about the HR model: fast–slow decomposition, spike-
adding process linked to fold/hom bursters exhibited by the model,
and a discussion about existence of equilibria in the full system.
A short survey about homoclinic bifurcations is also provided in
Sec. II. In Sec. III, we pay attention to some particular slices (with
ε fixed) inside the three-parameter space. Here, we show how the
base shape of the homoclinic curves evolves as ε varies, but much
more significantly, how the codimension-two homoclinic bifurca-
tion points move on the homoclinic curves and, in fact, how they
disappear when ε grows. Section IV presents a three-parameter

study explaining some of the phenomena that are observed when ε is
fixed and shows isolas of codimension-one homoclinic bifurcations.
Section V introduces the global theoretical scheme creating the
structure that we call “homoclinic mille-feuille,” bearing in mind the
codimension-one bifurcation surfaces. In them, we find “spines-of-
a-book,” bearing in mind the codimension-two bifurcation curves,
holding pencils of bifurcations of periodic orbits. Both structures
give rise to the theoretical model proposed in this article. Finally,
we present some conclusions in Sec. VI.

II. BACKGROUND

In this section, we recall some basic aspects about homoclinic
bifurcations and fast–slow dynamics, including a description of fold-
hom bursters, one of the mechanisms exhibited by the HR model
for the creation of bursting orbits. In addition, to facilitate further
discussions, the equilibrium points displayed by the full system (1)
are explained. In our revision on bifurcations, only those that play a
relevant role in the global organization of dynamics in the HR model
are included.

A. Homoclinic bifurcations

First, we review some theoretical features regarding homoclinic
bifurcations. For additional details and references, see Ref. 37 or for
the books Refs. 38 and 39. Refs. 40–43 are essential, but technical.

Consider a smooth family of vector fields Xµ onR3 with µ ∈ Rk

and suppose that there exist µ0 ∈ Rk and p0 ∈ R3 such that p0 is a
saddle-type hyperbolic equilibrium of Xµ0 . Without loss of gener-
ality, we assume that µ0 = 0 and p0 = 0. Let Ws(0) [respectively,
Wu(0)] be the stable (respectively, unstable) invariant manifolds of
X0 at 0. Up to time reversal, we can assume that dim(Ws(0)) = 1.

To state certain conditions, we will need to use the notions of
strong unstable manifold and center stable manifold. Assume that
DX0(0) has real eigenvalues λs, λu and λuu with λs < 0 < λu < λuu.
The strong unstable manifold Wuu(0) is a one-dimensional invari-
ant manifold whose tangent space at 0 is given by the eigenspace
corresponding to the eigenvalue λuu (the so called strong unstable
direction). On the other hand, the center stable manifold Wcs(0) is
a two-dimensional invariant manifold whose tangent space at 0 is
given by the eigenspace corresponding to the eigenvalues λu and λs.

Let 00 ⊂ Ws(0) ∩ Wu(0) be a homoclinic orbit. In the sequel,
we assume that the family Xµ unfolds 00 generically. To understand
this condition, consider a cross section 6 at a point in 00 and define
the distance 1(µ) between the point Ws(pµ) ∩ 6 and the curve
Wu(pµ) ∩ 6, where pµ denotes the saddle type hyperbolic equilib-
rium of Xµ, which exists close to 0 for µ to be small enough. We
say that 00 is generically unfolded with respect to µ if Dµ1(0) 6= 0.
Under this generic assumption, there always exists a hypersurface
H in the parameter space such that 0 ∈ H and Xµ has a homoclinic
orbit asymptotic to pµ for all µ ∈ H.

There exist four classes of codimension-one homoclinic
orbits.

Case 1 Eigenvalues of DX0(0) are λs, λu and λuu, with λs < 0
< λu < λuu and λs + λu > 0.

Case 2 Eigenvalues of DX0(0) are λs, λu and λuu, with λs < 0
< λu < λuu and λs + λu < 0. Moreover,
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(H1) 00 6⊂ Wuu(0).
(H2) Wcs(0) intersects Wu(0) transversally along 00.

Case 3 Eigenvalues of DX0(0) are λs < 0 and ρu ± ωui, with ρu > 0,
ωu 6= 0 and λs + ρu > 0.

Case 4 Eigenvalues of DX0(0) are λs < 0 and ρu ± ωui, with ρu > 0,
ωu 6= 0 and λs + ρu < 0.

Conditions λs + λu 6= 0 and λs + ρu 6= 0 are non-resonance
hypothesis. Condition (H1) implies that 00 is tangent to the weak
unstable direction, that is, the direction given by the eigenspace asso-
ciated with the weak unstable eigenvalue λu. Condition (H2) is a
“non-inclination” property.

In Case 1 and Case 3, a single unstable (repelling) periodic orbit
is born from the homoclinic connection for parameter values on
one side of the hypersurface H. In Case 2, a saddle periodic orbit
emerges from the homoclinic orbit. Its stable manifold is orientable
or not, depending on the orientability of Wu(0). In Case 4, there
exist infinitely many saddle-type periodic orbits in any neighbor-
hood of the homoclinic orbit. In fact, as argued in Ref. 44, there exist
infinitely many horseshoes in any neighborhood of the homoclinic
orbit 00. When the connection is destroyed, finitely many of the
horseshoes persist and hence it follows the existence of an infinite
number of periodic solutions. The appearance or disappearance of
horseshoes is accompanied by unfoldings of homoclinic tangencies
of saddle-type periodic orbits and hence, strange repellers should
emerge.35,36,45 Readers can find more extended explanations about
all these bifurcation results in Refs. 37 and 38.

Regarding codimension-two homoclinic bifurcations, we only
pay attention to the inclination flip, orbit flip (OF), and Belyakov
bifurcations because they are the only cases that we will discuss in
the context of the Hindmarsh–Rose model. So, we distinguish the
cases below.

Inclination Flip (IF): Assume all conditions in Case 2 except
(H2), that is, we assume that the intersection
between Wcs(0) and Wu(0) is non-transversal
along 00.

Orbit Flip (OF): Assume all conditions in Case 2 except (H1),
that is, we assume that 00 ⊂ Wuu(0).

Belyakov Point: Assume that the equilibrium point is a saddle-
node (SN) with eigenvalues λs and λu with
λs < 0 < λu. The eigenvalue λu has geomet-
ric multiplicity one and algebraic multiplicity
two.

To characterize different types of inclination and orbit flip
bifurcations, we need to introduce the following ratios between
eigenvalues:

α = −
λuu

λs

, β = −
λu

λs

. (2)

Note that α > β .
Bifurcation diagrams corresponding to IF and OF bifurcation

points are quite similar and they can be described simultaneously.
First, we observe that the hypersurface H of homoclinic bifurcation
splits into two regions separated by a manifold of codimension-two
homoclinic bifurcations. The orientation of the unstable invariant
manifold at the equilibrium point reverses when such manifold is
crossed.

Inclination Flip

A

B
C1

C2

1

1/2

1

A

BC

Orbit Flip

1

1

FIG. 1. Types of inclination and orbit flips. Values of the ratios α and β are given
in (2).

For either IF or OF bifurcations, there are three cases (see
Fig. 1):

Inclination flip Orbit flip

Case A β > 1 β > 1
Case B α > 1 and 1

2
< β < 1 β < 1 and α > 1

Case C α < 1 or β < 1
2

α < 1

We are only interested in Case C because the other two cases
are not detected in our exploration of the HR model. Homoclinic
flip bifurcations in Case C require additional generic assumptions.
In particular, for inclination flips, we assume:

(I1) β 6= 1
2
α.

(I2) If β > 1
2
α (region C1 in the left panel of Fig. 1), the homo-

clinic orbit does not lie in the unique smooth leading unstable
manifold.

(I3) If β < 1
2
α (region C2 in the left panel of Fig. 1), there is

a quadratic tangency between Wcs(0) and Wu(0) along the
homoclinic orbit.

Remark 2. Regions labeled SN1 (red) and SN2 (white) in the
bottom panels shown for each ε in Figs. 5 and 6 correspond to saddle-
node equilibria where conditions β > 1

2
α and β < 1

2
α, respectively,

are satisfied.
On the other hand, for orbit flips in Case C, we assume:

(O1)Wcs(0) intersects Wu(0) transversally along 00.

Hypothesis (I2) [respectively, (I3)] makes sense in the region C1

(respectively, C2) depicted in Fig. 1. We do not extend in details
about these two cases because they make no difference in the unfold-
ings. The essential distinction has to do with the way in which the
unstable manifold approach the origin when it is followed along the
homoclinic orbit by the forward flow (see Fig. 2 in Ref. 40).

There are two possible bifurcation diagrams in case C. In both
cases, horseshoes exist in a region of the parameter space. We
remark that chaotic regions have been observed in the HR model46

connected with the infinite fans of period doubling and fold bifurca-
tions of periodic orbits generated at these codimension-two points.
Depending on how they are formed, cases C (in) and C (out) are
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FIG. 2. Theoretical two-parameter unfolding of the codimension-two OF and IF
homoclinic bifurcations of type C (in) and C (out) describing the fans of period
doubling and fold bifurcations of periodic orbits. Bifurcation diagrams for Belyakov
bifurcations are similar, but folds and period doublings accumulate from both sides
of the primary homoclinic bifurcation (see details in Ref. 43). A fan of secondary
homoclinic orbits [labeled hom(2)] is also depicted.

distinguished (see Fig. 2). In both, infinitely many one-sided curves
of secondary N-homoclinic orbits emerge for each N ≥ 2 from the
flip point on the branch of primary homoclinic orbits (labeled hom
in Fig. 2). These are homoclinic orbits that follow N times the pri-
mary one before closing up. Also, in both cases, the bifurcation
diagram exhibits an infinite fan of bifurcation curves correspond-
ing to period doublings and folds of periodic orbits. The horseshoe
dynamics appear in between that cascade and the infinite fans of
N-homoclinic orbits. In case C (in), shift dynamics and the homo-
clinic cascade are separated by the curve hom, whereas, in case C
(out), the homoclinic cascade, the shift dynamics, and the fan of
bifurcations of periodic orbits are located on the same side of the
curve hom (see Fig. 2). A complete description of the bifurcation
diagrams can be found in Refs. 37, 40, and 41.

Regarding Belyakov bifurcations, we remark that the hypersur-
face H of homoclinic bifurcation splits into two regions separated
by a manifold of codimension-two homoclinic bifurcations. Saddles
change from saddle-node type to saddle-focus (SF) type when such
manifold is crossed. Additional generic conditions include global
assumptions on the behavior of the invariant manifolds (see Refs. 37
and 43 for a complete description and particularly Fig. 14 in the
second reference).

If λs + ρu < 0, a unique unstable limit cycle bifurcates from the
homoclinic orbit (see Ref. 43). Otherwise, a two-parameter bifur-
cation diagram is quite similar to those in Fig. 2. Infinitely many
one-sided curves of secondary N-homoclinic orbits emerge for each
N ≥ 2 from the Belyakov point and they are tangent at the flip
point to the branch of primary homoclinic orbits corresponding to
saddle-focus. The bifurcation diagram also exhibits infinite fans of
bifurcation curves corresponding to period doublings and folds of
periodic orbits, but, in contrary to what is shown in Fig. 2, they accu-
mulate on the branch of saddle-focus homoclinic orbits from both
sides (see Fig. 14 in Ref. 43).

Codimension-three homoclinic bifurcations have been studied
in Ref. 40. In particular, transitions from Case A to Case B and also
from Case B to Case C were discussed and conjectural bifurcation
diagrams were provided. See also Ref. 42 regarding the case of the
coalescence of resonances between eigenvalues with an orbit flip
degeneracy. In both references, particular attention is devoted to the
existence of homoclinic doubling cascades. Our study of the homo-
clinic phenomena in the HR model focuses on codimension-one and

codimension-two bifurcations, but, as expected in a three-parameter
study, higher codimension configurations do exist. For instance,
coalescence between IF and Belyakov bifurcations and transitions
from C1 to C2 in Fig. 1 (left) are expected in the HR model. Neverthe-
less, although these codimension-three phenomena have not been
previously considered in the literature, they are out of the scope of
this paper. Despite this, none of the scenarios considered in Refs. 40
and 42 have been detected in the HR model, but the bifurcation
diagrams there proposed should inspire our future analysis of such
configurations. These diagrams show pencils of codimension-one
bifurcations connecting codimension-two bifurcation points. This
is similar to what is shown in Fig. 6 in Ref. 20.

B. Slow-fast dynamics and fold-hom bursters

Equilibrium points in the full system (1) are given, after substi-
tuting the parameter values, by the intersection of the plane

z = 4(x + 1.6) (3)

and the curve {
0 = 1 − 5x2 − y,
0 = y − x3 + bx2 − z + I.

(4)

They do not depend on ε, but there can be one, two, or three
equilibrium points depending on the values of parameters b and I.
Projections of the plane (3) and the curve (4) on the plane (z, x) are
illustrated in Fig. 3 for b = 2.7 and I = 2.2; see the brown colored
straight line and the green-red colored Z-shaped curve, respectively.
For these parameter values, there is a unique equilibrium point in
the full system (1).

A detailed discussion about local bifurcations was given in
Ref. 26. In particular, the description provided in Ref. 26 (Fig. 3)
is similar to the information given at the bottom panels in our
Figs. 5 and 6. As a reference, we use the bottom panel in Fig. 6 for
the value ε = 0.08. For parameters in the purple region, there are
three equilibrium points. Outside this region (at least in the range
of parameters under consideration) there is only one equilibrium
point that is attracting for parameter values on the green region until
it undergoes a Hopf bifurcation (yellow line). The pale blue region
correspond to saddle-focus (SF) equilibria with stability index 1, that
is, equilibria where the linear part has eigenvalues λs and ρu ± ω,
with λs < 0 < ρu and ω 6= 0. The transition from the pale blue to
the red region means the change from SF to saddle-node (SN) equi-
libria (with stability index 1), that is, equilibria where the linear
part has eigenvalues λs, λu, and λuu such that λs < 0 < λu < λuu,
with λs < 0 < λu < λuu. Note that λu = λuu for parameters on the
borderline between the pale blue and the red regions. This tran-
sition is related to the existence of Belyakov bifurcations, which
were described in Sec. II A. The difference between red and white
regions—labeled SN1 and SN2, respectively—has to do with con-
ditions on the eigenvalues, which are used to characterize specific
cases of flip bifurcations (see Remark 2). In any case, both regions
correspond to SN equilibria with stability index 1.

The Hindmarsh–Rose model is a prototypical example of a
fast–slow system. The bifurcation diagram of the fast subsystem,

{
ẋ = y − x3 + bx2 − z + I,
ẏ = 1 − 5x2 − y,

(5)
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FIG. 3. Illustration of a slow-fast decomposition in the HRmodel with b = 2.7 and
I = 2.2. Top panel shows a bifurcation diagram of the fast subsystem (5) when
variable z is considered as a bifurcation parameter. Straight line ż = 0 is also
depicted to visualize the equilibrium point that exists for the full system. A periodic
orbit with five spikes is superimposed on the fast and slow manifolds. The time
series of the x-component of the solution is shown in the bottom panel.

obtained when ε = 0 is crucial to explain the dynamics when ε is
small.2 It should be remarked that each time that we refer to the fast
subsystem (5), z is considered as an additional parameter. Fixing
b and I, the model analysis provides two invariant objects: a curve
of equilibrium points, with equations given in (4), and a manifold
of limit cycles. As illustration, in Fig. 3, we show a partial bifurca-
tion diagram of (5) with b = 2.7 and I = 2.2. The Z-shaped curve
corresponds to equilibrium points: solid green lines correspond to
stable equilibria, whereas dashed red lines correspond to unstable
points. Note that the displayed curve corresponds to the projec-
tion of the curve with Eq. (4) on the plane (z, x). Stability along
the lower branch is lost at a fold bifurcation point. There is also a
second fold where the equilibria recover their stability to become
again unstable when they undergo a Hopf bifurcation. The emerging
limit cycles disappear in a homoclinic bifurcation to emerge again
for lower values of z through an additional homoclinic bifurcation.
This second family of limit cycles disappears at a Hopf bifurcation
point, which is not displayed in the figure. We also show the maxi-
mum and minimum values of the x variable along the periodic orbits
with solid blue lines. So, in general, we identify two invariant mani-
folds. On the one hand, the fast manifold Mfast, also named spiking
manifold, is given by the second family of attracting limit cycles of
the fast subsystem (5) and, on the other hand, the slow manifold
Mslow, formed by the equilibrium points of the fast subsystem (5).

It follows from the Fenichel theory that for values of z where these
manifolds are normally hyperbolic, they perturb to invariant man-
ifolds M ε

fast and M ε
slow, which exist for ε small enough in the full

system.
Bursting in the full system emerges because orbits repeatedly

switch between M ε
slow and M ε

fast. An example of a bursting orbit with

5 spikes for ε = 0.01 is shown in Fig. 3. Top panel shows the bursting
orbit projected on the plane (z, x) and superimposed on the picture
of the fast–slow decomposition. The time series of the x component
of the solution is displayed in the bottom panel. Note that the active
regime begins close to a fold bifurcation of equilibria and finishes at
a homoclinic bifurcation of limit cycles in the limit case. Due to this
reason, following the Izhikevich6 classification of bursting types, we
say fold/hom bursting (also named square-wave bursting) to refer
to the case illustrated in Fig. 3. The classification in Ref. 6 is based
on the fast/slow decomposition (first developed in Ref. 32) of the
model. Detailed explanations about the previous description of the
bursting phenomena in the HR model can be found, for instance, in
Refs. 15 and 33.

In the literature, there are a lot of papers devoted to the study
of the variation in the number of spikes that can be observed when
one parameter is changed. Thus, plots similar to Fig. 4 are obtained
(see also, for instance, Fig. 4 of Ref. 34), where the number of spikes
in the neuronal response increases from two to six as a parameter
is varied, and where each spike-adding transition is characterized
by a strong increase in the L2 integral norm of the orbit. By spike-
adding process, we mean any mechanism leading to the formation
of extra excursions around the tubular invariant manifold Mfast (and
therefore the addition of one spike to the bursting orbit).

In Fig. 4, we use the HR model to exemplify a process of
spike-adding. We fix ε = 0.01 and I = 2.2 and let b vary as the
continuation parameter of a periodic orbit. It is clear from the pic-
ture that a sequence of fold bifurcations (blue dots in the figure) is
involved, giving rise to hysteresis phenomena and the appearance of
bistability regions (in Fig. 4, we show two examples of coexisting sta-
ble periodic orbits). Although they are not shown, period-doubling
bifurcations may also be present. As shown in Refs. 15, 20, 26,
and 27, at least in the case of the HR model, all these bifurcations
of periodic orbits are related to homoclinic phenomena.

III. ANALYSIS WITH ε FIXED

In this section, we begin our analysis by describing all the infor-
mation provided by a selection of horizontal slices with the small
parameter ε fixed. These selected slices will show us the different
scenarios that we can find by changing ε, and it will help us later
to develop a complete three-dimensional bifurcation diagram in the
parameter space (b, I, ε) shown in Secs. IV–VI. Also, these two-
parameter plots will show the connection of the spike-adding pro-
cess with the “far-away” codimension-two homoclinic bifurcation

points. Recall that the notation hom(n,n+1) was already introduced in
Sec. I to refer to codimension-one homoclinic bifurcation curves.

As a first analysis, Figs. 5 and 6 show the results we have
obtained in the plane (b, I) for different values of ε. In total, eight
different values of ε are considered and for each value, two panels
are exhibited. The selected values cover all the different possibilities
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FIG. 4. Example of a spike-adding process in the HR model. A periodic orbit is continued with b varying when ε = 0.01 and I = 2.2. As b decreases, the change in the L2
integral norm can be seen. The increase in the number of spikes is illustrated by showing a collection of orbits corresponding to specific positions along the bifurcation curve.
We observe how this type of spike-adding process is associated to fold bifurcations of periodic orbits. Two coexisting stable periodic orbits are shown in the small plots for
two values of b.

found in the tests. The upper panel combines a two-parameter sweep
done with the SC technique (that counts the number of spikes per
burst of the stable periodic orbit) with a parameter continuation of
bifurcation curves as in Refs. 15 and 27. The lower panel provides
information about the number and type of equilibrium points in
different regions of the parameter plane (see Subsection II B).

All the ingredients that we need in our description of dynami-
cal and topological changes are shown in Figs. 5 and 6. The displayed

bifurcations are the following: black lines correspond to hom(1,2)

bifurcation curves; red lines represent period-doubling bifurcation
curves; yellow lines stand for Hopf bifurcation curves; red points
are Belyakov bifurcation points and green and gray points repre-
sent, respectively, IF and OF bifurcation points. When displayed all

together, the homoclinic bifurcation curves hom(n,n+1) are not dis-
tinguishable because for low values of ε, they are exponentially close

and the largest is hom(1,2), the one shown. Therefore, the IF and
Belyakov bifurcation points corresponding to different homoclinic
curves are superimposed (they are in different homoclinic curves
but at a very small distance). The OF bifurcation points also corre-
spond to several homoclinic curves (to be studied later), but they are
clearly distinguished. In Fig. 7, we provide an alternative schematic
view. Taking four representative values of ε, we show separately

the homoclinic curves hom(1,2), hom(2,3), and hom(11,12) and some

connected bifurcations. These figures illustrate the changes that can
be expected in our global study and that we should explain.

In each lower panel of Figs. 5 and 6, the parameter plane is
partitioned in different regions corresponding to different types of
equilibrium points. As already explained in Subsection II B, this clas-
sification does not depend on ε. There is either a unique equilibrium
point (purple region labeled 1EP and only displayed for ε = 0.07
and ε = 0.08) or three equilibrium points (3EP). In fact, we only
need to pay attention to regions where the unique equilibrium point
is a saddle-focus (region SF in the plots) or a saddle-node (regions
SN1 and SN2 in the plots). Distinction between regions SN1 and
SN2 has to do with two different cases for IF bifurcations character-
ized in Subsection II A. In particular, if a Case C of IF bifurcation
is detected for parameter values on SN1 (respectively, SN2), hence
eigenvalues correspond to the region C1 (respectively, C2) shown
in Fig. 1 (left). Moreover, eigenvalues at the saddle-node point for
parameter values in regions SN1 and SN2 correspond to region C in
Fig. 1 (right), where the cases for the OF bifurcations are shown.
In short, all IF and OF bifurcations are in Case C. Lower panels

also display the curve hom(1,2) to understand all different types of
homoclinic bifurcations: saddle-focus homoclinic orbits along sec-
tions contained in region SF and saddle-node homoclinic orbits
along sections contained in regions SN1 and SN2.
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FIG. 5. Parametric plane (b, I) for ε = 0.01, 0.015, 0.018, 0.02. In the upper panel, and for each ε, a SC sweep is overlaid with several bifurcation curves and points. In the
lower panel, the parameter plane is partitioned in different regions corresponding to different types of equilibrium points. See the text for details about the curves and points
displayed.

Several changes can be observed as ε increases. First of all, as we
have already noted in Ref. 46, there is an evolution in the shape of
the homoclinic bifurcation curves. For lower values of ε, the homo-
clinic bifurcation curves have a C-shape, with just one visible fold
(as we can see in the case ε = 0.01). For intermediate values of ε,

the C-shape transforms into a Z-shape, with two visible folds (see
ε = 0.03). Last, for higher values of ε, the homoclinic bifurcation
curves have no visible folds (ε = 0.07). As shown in Refs. 22, 23, 46,
and 47, the C-shape is typical of the homoclinic bifurcation curves
in the fast–slow regime.
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FIG. 6. Parametric plane (b, I) for
ε = 0.03, 0.05, 0.07, 0.08. In the upper
panel, and for each ε, a SC sweep is
overlaid with several bifurcation curves
and points. In the lower panel, the
parameter plane is partitioned in different
regions corresponding to different types
of equilibrium points. See the text for
details about the curves and points
displayed.

Another apparent change is the disappearance of some
codimension-two bifurcations. Regarding IF points, when ε is small
enough (for instance, ε = 0.009 18), there is only one IF point.

When ε increases a little (ε ≈ 0.01), there are two IF points. When

ε = 0.01 (see Fig. 5), the uppermost IF point is superimposed to the

Belyakov point. For smaller values of ε, the role of the IF point is

taken by the Belyakov bifurcation point. Besides, for large values
of the small parameter (ε ≥ 0.02), there are no IF points. Obvi-
ously, these facts need a more detailed analysis provided by the
three-parameter study done in Sec. IV as one may ask him/herself

about codimension-three bifurcation points. Regarding OF bifur-
cation points, for ε = 0.015 (see Fig. 5), we show four OFs, one

for each homoclinic bifurcation curve hom(1,2), hom(2,3), hom(6,7),
and hom(11,12) (there are more OF points on each curve but we just
present one to show a scheme). For ε = 0.03 (see Fig. 6), only three

OFs remain, due to the disappearance of the one on hom(11,12). In

fact, the complete homoclinic curve hom(11,12) disappears, together
with the strip corresponding to 11 spikes per burst. For ε = 0.05,

there are two OF points placed on hom(1,2) and hom(2,3) (more strips
have disappeared). Finally, for ε = 0.07, no OFs have been found
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FIG. 7. Global schemes with the
different possibilities on the plane (b, I)
when the small parameter ε changes.
The schemes shown correspond to the
obtained results from AUTO for particular
values of ε.

(although there are some bands with bursting dynamics). Again, all
these changes ask for a detailed three-parameter study. Recall that
attending to the lower panels of Figs. 5 and 6, we can conclude
that all OF and IF bifurcations are in Case C. This fact implies the
birth of an infinite number of fold and period-doubling bifurcation
curves emerging from these points, as well as infinitely many sec-
ondary homoclinic bifurcation curves with extra passages close to
the equilibrium point (see Fig. 2).

The bifurcation diagrams in Figs. 5 and 6 also show the dis-
appearance of the Belyakov bifurcation points. As ε increases, the
distance between the two Belyakov points shrinks until they collapse;
for ε = 0.08, there are no Belyakov bifurcation points. Lower panels
help to understand how the Belyakov bifurcation points disappear.
As ε increases, the homoclinic bifurcation curve has a smaller por-
tion in regions SN1 and SN2. Note that the Belyakov bifurcation
points appear when the homoclinic bifurcation curve intersects the
borderline between regions SN1 and SF.

As it can be observed in the upper panels of ε = 0.018, 0.02, 0.03,
qualitative changes in the period-doubling (PD) bifurcation curves
occur for values of ε near to the value for which IF bifurcation points
disappear (ε ≈ 0.0197). For ε = 0.015, we have plotted just one of
the PD bifurcation curves emerging from each IF bifurcation point
and for each one of the homoclinic bifurcation curves (in fact, the
theory37 regarding IF bifurcation points shows that infinitely many
one-sided PD bifurcation curves emerge; see Fig. 2). A continuation
of these curves in the plane (b, ε) shows that pairs of PD bifurcation
curves are transformed into a single curve that persists for higher
values of ε. This fact is a direct consequence of the disappearance
of IF points where the pencils of PD and fold bifurcation curves are

born. Therefore, the curves do not have a mechanism to finish and
so they have to continue connecting both branches. Effects of this
type have been already reported in the literature in other contexts
(e.g., Refs. 48 and 49).

In order to summarize all the previous results, we show in Fig. 7
the complete global schemes with the different possibilities on the
parameter plane (b, I) when the parameter ε changes. The schemes
correspond to the results obtained for particular values of ε, but each
bifurcation diagram is persistent, that is, it is qualitatively equiva-
lent on any close enough horizontal slice. In the figure, we show a
table in which each row corresponds to a certain transition from n
to n + 1 spikes, while each column corresponds to a given value of
ε. For each n and for each value of ε, we show the corresponding
homoclinic bifurcation curve(s), the codimension-two homoclinic
bifurcation points and some PD bifurcation curves. Color codes are
those used in Figs. 5 and 6. When two adjacent boxes share the same
diagram, we mean that the corresponding two cases are qualitatively
the same. When a certain box appears crossed out, it means that
there is no homoclinic structure for the corresponding transition in
the number of spikes and for the given value of ε. This organization
allows the reader to have a clear sight of all the different situations
and to understand how the homoclinic structures vary as ε moves
and different number of spikes are considered.

The first row of the table, i.e., the cases associated with 1 spike,
has been already discussed. As it can be easily observed, the main
difference between the case n = 1 (change from 1 to 2 spikes) and
the other cases is that in the latter cases there is no longer a unique
homoclinic curve for all values of ε, but two homoclinic curves exist
for low values (this is the first time this fact is observed in the HR
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model). Second, it is also important to note that the number and
the type of codimension-two bifurcation points vary significantly
with n. In the case n = 2, for all the values of ε, the codimension-
two points present a similar situation to their analogs of 1–2 spikes.
However, in the case n = 11, some of the codimension-two points
that appear in the former cases do not exist (see, for example, the
Belyakov points for ε = 0.009 18 and 0.015). Last, the case n = 11
reveals that the persistence of the homoclinic structure as ε increases
depends on the number of spikes to which it is associated (see the
fourth column, corresponding to ε = 0.08). This fact suggests the
existence of a mechanism of disappearance of the global structures
for large number of spikes when ε grows. All these numerical find-
ings and hypothesis underlying these differences will be discussed in
Secs. IV–VI.

Note that all the previous discussions make clear that when
dealing with fast–slow systems, the understanding of the mecha-
nisms of creation and destruction of spikes requires studies in spaces
of parameters which include the “small parameters.” It is essential to
have a global view of the bifurcations and Secs. IV–VI will stress the
relevance of this goal.

IV. GLOBAL ANALYSIS CHANGING ε

As shown in Sec. III, a higher dimensional analysis is needed in
the parameter space in order to explain the changes in the bifur-
cation diagrams observed in planes (b, I). In this section, we will

discuss the three-dimensional structures associated to the different
homoclinic bifurcation curves we have observed.

In Figs. 8–10, we provide bifurcation diagrams in the three-
parameter space (b, I, ε). Codimension-one homoclinic bifurcations
are shown in black, Belyakov bifurcations in magenta, IF bifurca-
tions in green, and OF bifurcations in gray, as in previous pictures
of this article. We have calculated curves of codimension-one homo-
clinic bifurcations with a step of 0.001 in the parameter ε using
AUTO software, in order to visualize surfaces. For each case, the
three-dimensional diagram is shown, as well as projections in the
planes (b, I) and (I, ε). These representations allow us to understand
the mechanisms of appearance or disappearance of the different
codimension-two bifurcation curves. It must be remarked that we
have found difficulties for the continuation of OF bifurcation curves
with AUTO in the HR model. For that reason, the continuation of
OF curves is only partial in Figs. 8 and 9. In the parametric zones,
where we have been able to obtain the OF points, we provide an
interpolated curve in gray color. We conjecture, taking into account
the points already calculated and the rest of bifurcation curves, that
the full OF bifurcation curve in these two cases will be similar in
shape to the IF curve. They will show a fold for large ε values, and for
ε ↘ 0, they can continue or they can end in either a codimension-
three point (such as the IF curve in Fig. 8) or at one turning point of
the homoclinic codimension-one curves when they have two com-
ponents (such as the IF curve in Figs. 9 and 10 and the OF curve
in Fig. 10). In any case, the numerical results show us a complete
picture of the global dynamics of the system.

FIG. 8. (a) Three-parameter plot

(b, I, ε) for the hom(1,2) homoclinic case;
(b) and (c) plane projections. Homoclinic
bifurcations of codimension-one and two
are shown. The OF bifurcation curve in
gray is only part of the complete curve.

Chaos 30, 053132 (2020); doi: 10.1063/1.5138919 30, 053132-11

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

FIG. 9. (a) Three-parameter plot (b, I, ε) for the hom(2,3) homoclinic case; (b) and (c) plane projections. Homoclinic bifurcations of codimension-one and two are shown. The
OF bifurcation curve in gray is only part of the complete curve.

Looking at the first two cases in Fig. 5, we observe how a
IF bifurcation point appears close to the upper Belyakov point. If
we observe now Fig. 8, we clearly see that it seems that the IF
and Belyakov bifurcation curves collide at the numerically obtained
parameter values,

ε ≈ 0.009 189, b ≈ 3.102, I ≈ 4.713.

This “collision” would give rise to a codimension-three point that it
is not studied in the literature, but it is out of the scope of this arti-

cle. Besides, it is clear that, in the case hom(1,2) (Fig. 8), the Belyakov
bifurcation points and also the IF bifurcation points disappear due
to a folding of the bifurcation curve with respect to ε (the maxima
we can observe in the 3D plots) of their corresponding bifurcation
curves in the three-dimensional parameter space. Specifically, the
Belyakov bifurcation curve has its folding point at ε ≈ 0.0748 and

the IF bifurcation curve at ε ≈ 0.0197. In the case of hom(2,3) (Fig. 9),
the Belyakov bifurcation curve presents a similar behavior to the

hom(1,2) case. However, there is a very important difference in the
way the IF bifurcation curve disappears. Note that curves forming

the surface hom(2,3) have two disconnected components for (fixed)
low values of ε. In addition, the system ceases to exhibit homoclinic
connections in one of the regions in the parameter space where the

geometry of the flow is the appropriate for the formation of IF bifur-
cations. This situation appears again in all the codimension-two

curves in the case of hom(11,12) (Fig. 10). Therefore, we can observe a

clear difference between hom(1,2) and all the other cases. This change
in the topology of the homoclinic surfaces will be explained in more
detail in Sec. V.

There is also another remarkable difference regarding the
values of the small parameter for which each homoclinic surface

disappears. In the cases hom(1,2) and hom(2,3), it can be seen that
the homoclinic curves clearly persist for all the values of ε we have
studied, namely, up to ε = 0.08. Note that for larger values, we
cannot consider the system as a fast–slow one. However, in the

case hom(11,12), the homoclinic surface has disappeared at ε ≈ 0.038.
Using the SC technique, we discover band structures in the param-
eter planes with ε fixed, as shown in Figs. 5 and 6. Each band is
associated to a given number of spikes per burst. The spike-adding
process in fold/hom bursters was connected recently25,50 with saddle-
type canards.51,52 Besides, the necessary fold bifurcations of periodic
orbits of the spike-adding process for hold/hom bursters were also
recently connected with codimension-two homoclinic bifurcation
points and also the homoclinic orbits experiment canard phenom-
ena on one turning point of the homoclinic bifurcation curves.15,27

Our numerical findings also support this idea, as they show clearly
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FIG. 10. (a) Three-parameter plot

(b, I, ε) for the hom
(11,12) homoclinic

case; (b) and (c) plane projections. Homo-
clinic bifurcations of codimension-one
and two are shown.

that the disappearance of a band corresponding to n spikes is linked
to the disappearance of the corresponding homoclinic curves (sur-

faces) hom(n,n+1). This is a quite important consequence of the
three-parameter plots, as they explain the simplifications that are
observed in the band structure of the fold/hom regime as ε increases,
giving rise to burst phenomena with a small number of spikes (see
in Figs. 5 and 6 how the number of color stripes decreases when ε

grows).
All the above mentioned features, together with the SC sweeps,

suggest that the bigger the number n of spikes is, the smaller is the
value of ε for which the corresponding homoclinic curve vanishes.
Moreover, the numerical results show that the different homoclinic
curves are stacked in a certain direction, being hom(1,2) the first one,
providing an upper bound for “length and shape.” The other homo-
clinic surfaces are disposed, exponentially close each other, as slabs
in increasing order with respect to number of spikes per burst, but
decreasing their size.

We have checked that Belyakov and IF bifurcation curves of
different numbers of spikes overlap with each other in all the points
in the (b, I, ε) where they coexist (they are exponentially close each
other, like the homoclinic bifurcation surfaces). One can understand
that the magenta (Belyakov) and green (IF) curves are placed in a
fixed location in all the diagrams due to the requirements for their
existence, and the existence or not of bifurcation points for some
of the ε values depends if the corresponding homoclinic bifurca-
tion curves (black curves) cut them. However, OF bifurcation curves
corresponding to different numbers of spikes do not coincide with

each other, and in fact they are quite far. This behavior is consistent
with the role of OF bifurcation points in the spike-adding process as
stated in Refs. 15, 20, and 27.

What remains in the numerical tests is to reveal what is the
aspect of the homoclinic surface in all cases, that is, if it is just a one
leave surface or it has folds and it is a two (or more) leaves surface.
This is in fact a relevant question as it will give the global structure
of the homoclinic leaves. We are going to show the structure of iso-
las displayed by the different homoclinic bifurcation curves, once
the parameter ε is fixed. We do not pay much attention to explain
the transitions from n to n + 1 spikes on a given curve or surface
(for details of this process, see Refs. 27 and 31) on both sharp folds
of the isolas. Isolas are isolated closed curves of solution branches;
hence, the curve is homotopic to a circle. In the literature, there are
several examples of isolas of equilibria53,54 or limit cycles.55–57 Com-
puting many isolas is tedious and requires an adequate strategy. For
instance, in Ref. 53, the authors develop a strategy for locating fami-
lies of isolas of equilibria. In this article, we focus on the detection of
isolas of homoclinic orbits (see also Ref. 58) in the parameter space.

By performing sections on the surface hom(2,3) and using
AUTO, with a large number of points and steps to guarantee some
numerical precision in the computations, we have obtained the
results given in Fig. 11. The pictures show codimension-one homo-
clinic isolas in the parameter plane (b, I) for ε = 0.03 (panel A)
and ε = 0.07 (panel B). In the case ε = 0.03, the AUTO software
is not able to connect one side of the isola, and adjusting different
parameters of the software, just slight increments in the length of
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FIG. 11. Codimension-one homoclinic isolas in the parameter plane (b, I) for the surface hom(2,3). Sections ε = 0.03 (A) and ε = 0.07 (B) are shown. In both cases, several
xz projections of two homoclinic orbits on the curve for fixed values of either I or b parameter are displayed. In the case ε = 0.03, the black-and-white portion denotes where
the AUTO software is not able to connect one side of the isola. Displayed in panel C, we observe magnifications of the sharp fold located on the left side of the isola, but on
a plane (b, ‖ · ‖2).

the bifurcation curve are obtained (the black-and-white portion of
the homoclinic curve denotes where the AUTO software stops the
computation in one side). On the other hand, for higher values of
ε, like ε = 0.07 shown on panel B, the software is able to connect
both sides of the isola giving a close curve. In both cases, several xz

projections of two homoclinic orbits on the curve for fixed values of
either I or b are displayed. The study of what happens at the right
sharp fold of the homoclinic curve is explained in detail in Fig. 6 of
Ref. 27 (this corresponds with the subplot –1– of the case ε = 0.03),
but the complete evolution along the isola is not given in that article.
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Partial numerical results

Option 1:    Homoclinic ISOLA

Option 2:    Homoclinic ISOLA + Cod-2 bifurcations

“small’’

FIG. 12. Theoretical scheme of the codimension-one homoclinic isolas for ε fixed.

For ε = 0.03, the passage through the milder visible folds (compared
with the sharp U-turns of both extremes of the isolas) of the homo-
clinic curve exhibit no bifurcations as the plots xz along the isola
show (–3– to –4– and –5– to –6–). It is important to remark that
taking the homoclinic orbits close to the values of the parameter
where the continuation software stops for ε = 0.03, subplots –2–
and –4–, the different orbits show exactly the same behavior, with
just small modifications (as it also shows the intermediate subplot
–3– for one side). Therefore, it is perfectly logical to conjecture in
this case that both sides of the curve are connected giving an isola,
even more taking into account the results for ε = 0.07 where the
isola is fully obtained. Note that in Ref. 27, the homoclinic isolas and
the homoclinic organization were not detected as their main interest
was the spike-adding and canard process of the homoclinic orbits
on the lower-right sharp fold of the homoclinic bifurcation curve
for ε fixed. In panel C (Fig. 11), we show two magnifications of the
lower sharp fold of the isola for ε = 0.07. In these zooms, instead of
plotting on the parametric plane (b, I), we use the plane with b and
the AUTO norm L2 to get a clearer image of the fold, showing two
curves, and thus it illustrates one extreme of the isola.

In any case, the numerics only can give strong evidences of the
existence of the isola. This fact is shown in the theoretical scheme
shown in Fig. 12. The black curve is our conjectured isola (based
in our numerical results), but, as the observed phenomena is on a
small distance in the parameter space (the isola is very “thin,” with a
width about 10−8), other options can be possible, like the existence of
foldings in both sides and also some extra homoclinic codimension-
two points, that is, two connected isolas, that are able to give rise to

the folds (one option can be the dotted curve in Fig. 12). In any case,
all of our numerical results show that it seems that we really have
isolas, that is, the topological structure of the black curve in Fig. 12.

If one looks at the theoretical unfolding of the OF and IF
codimension-two points shown in Fig. 2, there is an infinite fan of
secondary codimension-one homoclinic bifurcation curves. None of
the numerical simulations on the system (our studies in this article
and in Refs. 15, 20, and 46, and in Refs. 26 and 27 of other authors)
show any of these bifurcations and any dynamical effect that can
be related to them. This fact allows us (as also done in Ref. 27) to
conjecture that the secondary homoclinics are inside the very thin
homoclinic isola, and, therefore, it is not computationally possible
to observe any of them. With these elements, we propose in Fig. 13
a theoretical scheme of the secondary homoclinic bifurcation curves
and their connections (in a similar way as in Ref. 40) in the cases of
having an even or odd number of pairs of codimension-two points.

As already remarked, it is apparent that there is an overlap

between the different hom(n,n+1) bifurcation curves (in fact, they are
exponentially close to each other as commented above), except for
the higher values of ε where a slight separation can be observed.
This separation of the curves occurs progressively as ε increases,
and it can be appreciated for ε > 0.07. In Fig. 14, we show super-

imposed the three homoclinic isolas hom(1,2), hom(2,3) and hom(11,12)

for ε = 0.036 and ε = 0.07 to show that the isolas are outside of each
other but exponentially close.

V. THEORETICAL SCHEME: THE HOMOCLINIC

“MILLE-FEUILLE”

In Sec. IV, we have explored the three-dimensional parameter
space of the HR model considering in detail the homoclinic struc-
ture. What it remains is to provide a complete theoretical scheme
that connects all the basic ingredients of the spike-adding process
in fold/hom bursters. That is, on the one hand, we have that in
the parameter space the system experiments the spike-adding pro-
cess far from the homoclinic bifurcations. On the other hand, the
spike-adding process requires of two fold bifurcations to give rise to
hysteresis phenomena and canards on one side to generate the extra
spike (see Refs. 20, 25, and 50). However, where are these fold bifur-
cation points generated? These points form bifurcation curves that

primary homoclinic curve
(homoclinic isola)

secondary homoclinic curves
(conjecture)

“small’’

cod-2 bifurcation points

(type C-in)

(a)

(n+1) spikes

n spikes

(n+1) spikes

n spikes

primary homoclinic curve
(homoclinic isola)

secondary homoclinic curves
(conjecture) “small’’

(b)

(n+1) spikes

n spikes

(n+1) spikes

n spikes

FIG. 13. Conjectured theoretical scheme of the codimension-one secondary homoclinic bifurcation curves for ε fixed for cases with an (a) even or (b) odd number of pairs
of codimension-two points.
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FIG. 14. Homoclinic isolas hom
(1,2),

hom
(2,3), and hom

(11,12) for ε = 0.036
and ε = 0.07 showing their relative posi-
tion.

are born at codimension-two bifurcation points located on the “far-
away” homoclinic bifurcation lines. All the bifurcation lines, in fact
pencils of fold and PD bifurcation lines, are born, like the “pages-of-

a-book” at the OF and IF points of the hom(n,n+1) curves as shown
in Figs. 5 and 6 and in Refs. 15 and 27. But there is no reference on
the literature (to our knowledge), where it is explained globally in

the parameter space why we have more spike-adding phenomena as
ε → 0.

The numerical findings shown in Secs. III and IV permit us to
establish a global theoretical scheme to describe the whole picture
(see Figs. 15–17). First, in Fig. 15, we show the different homoclinic
surfaces. All of them are composed of one or two tubular structures.

FIG. 15. Homoclinic “mille-feuille” organization in fold/hom
bursters.
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As the number of spikes of the homoclinic orbit grows, we distin-

guish three types, either a tubular surface (hom(1,2)) or two tubular

surfaces connected (hom(2,3), . . . , hom(k,k+1)) or, finally, surfaces that

disappear when ε grows (hom(k+1,k+2), . . .). Note that Figs. 8–10 also
illustrate numerically each one of these three types of surfaces. In the
scheme, the different homoclinic surfaces are clearly separated from
one another, but in the real parameter space, they are extremely close

when ε is small, being organized in shape and size by the hom(1,2)

surface. When ε is large, the separation becomes evident, showing
that, indeed, these homoclinic surfaces have no contact point when
ε > 0 (see Fig. 14).

If we take a section fixing the value of ε, we find three different
situations, already partially described in Ref. 46, depending on the
value of ε. When ε is large [O(1)], the slices just show a few homo-
clinic isolas corresponding to a small number of spikes and without
visible folds. For intermediate values of ε, the isola corresponding to

hom(1,2) has Z-shape with two visible folds. The other isolas complete
a Z-shape, or not, depending on their length. Finally, for small ε, that
is, in the generic situation when we are concerned with fast–slow

systems, the principal isola for hom(1,2) has a C-shape with one vis-

ible fold. The curves corresponding to hom(n,n+1), with n ≥ 2, split
into two isolas also disposed in such a way that they are adapted
to the C-shape of the principal isola. In this case, all the homoclinic

curves have two components (isolas) but the first one hom(1,2) and all
of them have folds with branches exponentially close to each other.

Due to the fact that, from a certain point of view, homo-
clinic surfaces are piled up one upon another, we refer to this
conjectured global theoretical structure as the fold/hom homoclinic
“mille-feuille” organization. Note that for fixed ε, we have a finite

number of homoclinic curves, but the number of them grows as ε

decreases.25,33

Codimension-one homoclinic bifurcations that form each sur-
face hom(n,n+1) must be understood as primary bifurcations. These
surfaces contain curves of codimension-two homoclinic bifurcation:
IF, OF, and Belyakov points. Emerging from these curves, there exist
surfaces of bifurcation of periodic orbits: PD or folds, some of them
involved in the spike-adding process. Also attached to these curves
there are surfaces of secondary homoclinic bifurcations arising in
the inner side of the surface, that is, separated from the surfaces
of bifurcation of periodic orbits by the surface of primary homo-
clinic bifurcations [see case C(in) in Fig. 2]. Note that this scenario
is covered by the classical unfolding theory of codimension-two
homoclinic bifurcations.37,38 We remark that these unfoldings have
to be “glued” to the homoclinic surfaces given by the “homoclinic
mille-feuille.” Figure 16 illustrates the described scenario. Each of
these curves of codimension-two bifurcations behaves as the “spine-
of-a-book” located on the homoclinic surface (like the “bookshelves”
of a “bookcase”), whose “pages” consist of surfaces of bifurcations
of periodic orbits and secondary homoclinic bifurcations. Plot 16.A
provides the theoretical scheme of a homoclinic surface with the
curve of codimension-two bifurcation points that form the “spine-
of-a-book” structure creating the pencils of surfaces of fold and PD
bifurcations. In plots 16.B and 16.C, we show some numerical results
illustrating such a theoretical scheme. The plot 16.B presents a pro-
jection of the homoclinic structure for three values of ε. Also, in
plot 16.C, we see the global three-parametric view illustrating the
theoretical scheme proposed in 16.A.

Finally, Fig. 17 illustrates the complete “mille-feuille” organiza-
tion together with the “books” of bifurcation of periodic orbits. Now,

FIG. 16. Theoretical and numerical illus-
tration of the “spines-of-a-book” structure

on the hom
(1,2) homoclinic surface. Each

of the curves of codimension-two homo-
clinic bifurcations is identified with the
“spine-of-a-book” gathering “pages” of fold
bifurcations, period-doubling (PD) bifurca-
tions, and also (not showed) secondary
homoclinic bifurcations. Panel A shows
this theoretical model in the case of a
“spine” of orbit flip (OF) points. Panels B
and C show numerical results illustrating
typical “pages” of one of these “books.” In
particular, panel B shows numerical slices
of a “book” projected on the (b, I) plane.
A three-dimensional view is given in panel
C. Attached to each “spine,” we see two
“pages” of fold bifurcation and one “page”
of period-doubling.
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FIG. 17. Complete “mille-feuille” and
“spines-of-a-book” theoretical structure. In
panel A, we recall the unfolding of the
bifurcation diagram associated to a OF
bifurcation: there are pencils of PD and
fold bifurcation of periodic orbits and also
a pencil of secondary homoclinic bifur-
cations. In panel B, we see how these
pencils are attached along a primary
homoclinic curve. The isola has an expo-
nentially small width d. Panel C illus-
trates a collection of isolas for a small
value of ε. Finally, a three-dimensional
scheme is provided in panel D. We see
three “bookshelves” (homoclinic surfaces)
and with some “books” (codimension-two
points and the bifurcations generated) on
them.

we can identify each layer of the “mille-feuille” with a “bookshelf ”
keeping as many “books” as “spines” of codimension-two homo-
clinic bifurcations it contains. So, we have a complete “bookcase” of
bifurcations of periodic orbits. Moreover, we must notice that each
surface in the “mille-feuille” has their own collection of “spines,”
that is, their own collection of “books.” This figure gives an idea of
how much entangled the bifurcations involved in the spike-adding
process is. As illustrated in Fig. 17 (panel B), there are “pages”
of the “books” involved in the spike-adding process. We remark
that Fig. 17 provides a complete theoretical explanation of all the
numerical findings obtained in this article (and in the literature).
Our conjectured theoretical structure permits to link the global
three-parametric structure (the homoclinic surfaces) with the spike-
adding phenomena that can be observed on parameter regions that
are quite far from the homoclinic curves. In addition, if we use
another set of parameters, we can also observe the fold/hom spike-
adding processes, even without homoclinic bifurcations in the entire
parametric plane. This is easily explained from Fig. 15, as if our
parameters do not cut the homoclinic surface we cannot observe
the homoclinic orbits themselves. But what remains are the fold
and PD surfaces generated on the codimension-two points attached

to the homoclinic surfaces, as shown in Figs. 16 and 17. Following
with the “bookcase” analogy, this will be the case if we have “books”
wider than the “bookshelves,” and we observe it without seeing the
bookcase.

Obviously, our theoretical scheme is necessarily a partial one,
as other bifurcations and phenomena may be present on the com-
plete global picture, but it englobes all the current numerical and
theoretical analysis in literature. This article provides new insights
into the spike-adding process and the global parametric study of the
Hindmarsh–Rose model. We hope that it may be applied to other
fold/hom bursters, and this is part of our future work.

VI. CONCLUSIONS

In this article, we have presented a three-parameter study of
homoclinic bifurcations in the canonical Hindmarsh–Rose neu-
ron model when it evolves in the fold/hom bursting regime. We
have introduced a new structure, the homoclinic “mille-feuille” con-
nected with the fold/hom spike-adding process. Fold/hom bursting
is found in numerous fast–slow models, and we expect that most of
the findings of this article will be present in many similar problems.
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Exploration of other fold/hom bursters is a goal for our future work,
but a preliminary study as well as the theoretical scheme of the
spike-adding process was introduced in Ref. 20.

Our numerical analysis using different techniques allows us
to conjecture the global theoretical homoclinic organization. There
exists a “mille-feuille” structure of tubular-like homoclinic surfaces.
Each of them corresponds to a transition where the homoclinic orbit
increases the number of spikes by one, that is, taking the appro-
priate paths of parameters, one could observe in the phase-space
how the orbits pass from n to n + 1 spikes for certain n. Moreover,
as ε increases, the disappearance of a homoclinic surface associ-
ated to the transitions from n to n + 1 spikes means the “de facto”
disappearance in the surroundings of the band of periodic orbits
with n + 1 spikes. This structure provides a theoretical explana-
tion of why there is not a regular fold/hom bursting regime with
a large number of spikes when the small parameter grows. More-
over, due to the tubular structures, an analysis for fixed values of the
small parameter gives rise to the appearance of isolas of homoclinic
bifurcation points.

Note that previous relevant studies in the literature15,26,27 focus
their attention on the spike-adding and canard process of the homo-
clinic orbits on the lower-right sharp fold of the homoclinic bifurca-
tion curve for ε fixed. The other sharp fold, the isolas, and also the
complete bifurcation scheme where not identified and studied.

Located on each homoclinic surface, we find curves of
codimension-two homoclinic bifurcation. These curves act as the
organizing centers for the framework of fold and period-doubling
bifurcations of periodic orbits, which is behind one of the main
spike-adding mechanisms. The discovery of the global structure
of orbit flip, inclination flip, and Belyakov bifurcations is one of
our main motivations. Homoclinic surfaces can be compared with
“bookshelves,” where the “books” of bifurcation of periodic orbits
are kept. Hence, curves of codimension-two homoclinic bifurcations
can be compared with the “spines-of-a-book.”

The global structure (homoclinic “mille-feuille” + “spines-of-a-
book”), which is revealed in the three-parameter space, is a moti-
vation for further study of higher codimension bifurcation points,
which appear on the homoclinic bifurcation surfaces. In fact, the
global structure we have uncovered gives clues about part of the
bifurcations, which should be expected when dealing with such
bifurcation points (and their connections, in a similar way as some
codimension-three phenomena provides a global theoretical picture
in Ref. 40). These relevant open problems are out of the scope of this
article but they are part of our current research.
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4.3 Paper III

In this paper [3] we deepen into the relationship between the homoclinic bifurcation
structure of the Hindmarsh-Rose model and the spike-adding phenomena. Small values
of ε are considered.

We provide a global scheme that allows to locate continuous and chaotic spike-adding
processes with respect to the homoclinic bifurcation curves. The side of the homoclinic
curve on which the system is placed determines which are the bifurcations involved, and
thus, how the process takes place. We consider different cuts in the (b, I) plane and
illustrate the different spike-adding processes in detail. Different elements are involved
in these processes: homoclinic isolas, canards, pencils of period-doubling bifurcations,
codimension-two homoclinic bifurcation points, etc. The bifurcation structure underlying
these phenomena is shown to persist for small values of ε (when the model is biophysically
plausible).

We combined different techniques (spike-counting, continuation, IBD’s), which allows
to connect the different views of the spike-adding processes provided in previous works,
where the role of the homoclinic bifurcations is not evident. Our results highlight that
a dynamical behaviour can be a consequence of a bifurcation that is not visible in the
chosen parameter space. For instance, we provide an in-depth analysis of the diagonal
band structure in the (x0, I) found in previous works. Our exploration allows us to identify
continuous and chaotic spike-adding and explain the passage from one to another from
the homoclinic bifurcation structure.

We also illustrate that structures similar to those of the Hindmarsh-Rose model are
found in the Sherman model of pancreatic β-cells. In particular, the spike-counting map
for the Sherman model is also structured in bands corresponding to bursting of differ-
ent number of spikes, and there are also chaotic lobes arrranged in a similar fashion to
the chaotic lobes of the Hindmarsh-Rose model. We have found homoclinic bifurcation
curves with codimension-two degeneracies, from which fold and period-doubling bifurca-
tion emanate. These fold and period-doubling bifurcation curves constitute borders of
the different qualitative regions of the spike-counting map. All these findings suggest that
the theorical scheme that we proposed may be universal for generic fold/hom bursters.
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a b s t r a c t 

Square-wave or fold/hom bursting is typical of many excitable dynamical systems, such 

as pancreatic or other endocrine cells. Besides, it is also found in a great variety of fast- 

slow systems coming from other neural models, chemical reactions, laser dynamics, and so 

on. We focus on the spike-adding process and its connection with the homoclinic struc- 

ture of the system. The creation of new fast spikes on a bursting neuron is an important 

phenomenon as it increases the duty cycle of the neuron. Here we mainly work with the 

Hindmarsh-Rose neuron model, a prototype of fold/hom bursting, but also with the pan- 

creatic β-cell model, where, as already known from the literature, homoclinic bifurcations 

play an important role in bursting dynamics. Based on several numerical simulations, we 

present a theoretical scheme that provides a complete scenario of bifurcations involved 

in the spike-adding process and their connection with the homoclinic bifurcations on the 

parametric space. The global scheme explains the different phenomena of the spike-adding 

processes presented in literature (continuous and chaotic processes after Terman analysis) 

and moreover, it also indicates where each kind of spike-adding process occurs. Different 

elements are involved in the theoretical scheme, such as homoclinic isolas, canard orbits, 

inclination and orbit flip codimension-two bifurcation points and several pencils of period 

doubling and fold bifurcations, all of them illustrated with different numerical techniques. 

Some of these bifurcations needed in the process may be not visible on some numeri- 

cal simulations because the organizing points are in different parametric planes due to 

the high dimension of the whole parameter space, but their effects are present. There- 

fore, we introduce a mechanism of the spike-adding process in fold/hom bursters in the 

whole space of parameters, even if apparently no role is played by the “far-away” homo- 

clinic bifurcations. This fact is illustrated showing how the theoretical scheme provides a 

theoretical explanation to the different interspike-interval bifurcation diagrams (IBD) that 

have appeared in the literature for different models. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the most active research lines today is neuroscience, and a part of it is devoted to the study of its basic elements, 

neurons. Models in this field exhibit fast slow dynamics [1] , a feature which is shared with many other models in practical 

applications as the case of some chemical reactions [2] or, in the field of technology, laser devices [3] . An essential measure 

is the time that a neuron, or any other system, is active. This is related with the number of oscillations (spikes) in the 
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fast subregime. In the literature there is a large number of articles dedicated to study the mechanisms involved in the 

spike-adding processes and also how the number of spikes changes when one parameter is varied. 

This paper studies the spike-adding process focusing on the Hindmarsh-Rose [4] neuron model, as a well known example 

and prototype of square-wave (or fold/hom) bursting [5] . Literature concerning this model is really impressive and, only in 

relation to our interests, we can quote [6–17] . We contribute to the general understanding of the spike-adding process in 

fold/hom bursters, one of the most common ones. Namely, we put forward a theoretical scheme to describe the mechanisms 

involved in the formation of spikes in the context of such model. Later, we also show how these mechanisms are also 

observed in the Sherman et al. model of the pancreatic β-cell [18] . 

Since the pioneering work by Hodgkin and Huxley [19] , many proposals have been made to encapsulate a qualitative 

description of the neuronal dynamics in a family of differential equations. The Hindmarsh–Rose model: 

⎧ ⎨ 

⎩ 

˙ x = y − ax 3 + bx 2 − z + I, 

˙ y = c − dx 2 − y, 

˙ z = ε[ s (x − x 0 ) − z] , 

(1) 

is able to reproduce the most significant behaviours: quiescence, spiking and also bursting, either regular or irregular. Vari- 

able x represents the membrane potential, whereas y and z correspond to ionic currents. We consider a typical choice of 

parameters a = 1 , c = 1 , d = 5 and s = 4 , discussing the spike-adding processes for different choices of the others [20] . The 

parameter ε is the small parameter of the model, giving rise to a fast-slow system with two fast and one slow variables. 

This model is a prototypical example of fast-slow system. Bifurcations in the fast subsystem (limit case ε = 0 ) are essen- 

tial elements of the fast-slow decomposition (first developed by Rinzel [21] ) to explain the dynamics when ε is small. The 

study of the fast subsystem provides the spiking (or fast) manifold M fast , formed by stable limit cycles of the limit case, and 

the slow manifold M slow 

, formed by the equilibria of the limit case. The stable periodic orbits of the complete model be- 

have following the well-known phenomenon, explained by singular perturbation theory and Fenichel’s theorems [22] , that 

the orbits (for small enough parameter ε) exhibit jumps from one manifold to the another one along its trajectory. Note 

that, when ε = 0 , z is an additional parameter of system (1) . Choosing b and I in suitable regions one can check that the 

curve of equilibrium points (slow manifold) exhibits a S -shape with two Hopf and fold bifurcations splitting the curve in 

stable and unstable branches (see [1] for more details). 

We call bursting oscillation a time evolution consisting of bursts of rapid spikes (any excursion around the tubular man- 

ifold M fast ), alternated by phases of relative quiescence (following M slow 

). The kind of bursting that we study here is said 

fold/hom [23] because the family of limit cycles displayed by the fast subsystem ends at a homoclinic bifurcation, where 

trajectories of the full system jump to the slow manifold. 

By spike-adding process we understand any mechanism leading to the formation of additional turnings. The spiking 

rate and the time between spikes are essential elements in the understanding of the codifications in the neurons. As a 

result, spike-adding has been studied in many fold/hom neuron models [24–27] , including the Hindmarsh-Rose system as 

a prototypical one. It should be noted that in the literature one can find other types of spike addition processes that arise 

in bursting models of different nature, such as systems with external multiple frequency forcings, in which new bursting 

patterns can be observed [28,29] . In these models, the effects of forcing frequencies must be taken into account. As well, 

phenomena of mixed mode burst oscillations (MMBO), that is, solutions that exhibit small amplitude oscillations and bursts 

consisting of one or multiple large amplitude oscillations, have been observed in some fourth order systems [10] . 

As explained in [30] , the spike-adding transition may be either continuous, with a period which increases along the 

process, or discontinuous, involving chaotic phenomena. Relevance of fold bifurcations of periodic orbits was pointed out 

numerically in [31] . Dealing with fold/hom bursting, the spike-adding has also been related with canard orbits [14,16,32,33] , 

already anticipated in [30] when the increasing of the period was pointed out, and also with the existence of certain 

codimension-two homoclinic bifurcations [7,8,10,16,17] . Spike-adding cascades were also discussed in [25] for a modified 

version of the Hindmarsh-Rose model. Authors identified two different routes which were determined by the location of 

the equilibrium point in the full system with respect to the homoclinic bifurcation in the fast subsystem. One involves fold 

bifurcations of periodic orbits. In the second route the spike-adding cascade is organized by isolas. 

As already mentioned, spike-adding mechanisms have been linked to the occurrence of certain codimension-two ho- 

moclinic bifurcations. Namely, fold and period doubling bifurcations have been shown to arise from codimension-two bi- 

furcation points located along homoclinic bifurcation curves exhibited by the full system for fixed values of ε and with b 

and I varying. In this paper, we aim at showing the mechanism of the spike-adding process by proposing, based on our 

bifurcation results, a possible theoretical scheme that completes and provides answers to open questions related to the first 

scheme given in [16] . Moreover, the proposed scheme permits to locate theoretically both spike-adding processes studied 

by Terman [30] , a connection which is missed in the literature. 

All these spike-adding processes are usually illustrated by means of interspike-interval bifurcation diagrams (IBD) of 

stable bursting orbits as one parameter changes (see [9,13,25] ). That kind of pictures shows different cascades of spike- 

adding (or period-adding) phenomena, crossing or not chaotic zones. The involved chaotic transitions have been discussed 

in several papers [8,13,15,17] , but what is missing is a connection with a theoretical framework. In Section 3 it is shown 

how the introduced global scheme provides a theoretical explanation to the different IBD diagrams that have appeared in 

the literature. 
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This paper is organized as follows. Section 2 presents a global three-parametric numerical study of the Hindmarsh-Rose 

model focusing on the 2–3 spike-adding process (from 2 to 3 spikes per burst) and on the 6–7 one. Section 3 provides a 

theoretical scheme of the fold/hom spike-adding area with the different bifurcations involved in the process. Also, once the 

theoretical scheme is given we show how it provides an explanation for the typical IBD pictures shown in literature. An 

example using a more realistic model, the pancreatic β-cell neuron model of Sherman et al. [34] , is presented in Section 4 , 

showing that the same bifurcations as in the Hindmarsh–Rose model are present. Finally, we give some conclusions. 

2. Global analysis 

In this section we study the structure of the parametric space of the system by using different numerical techniques. 

As an introduction, in Fig. 1 we use the HR model to exemplify two processes of spike-adding usually shown in literature 

[13,25] . Panel (a) shows an interspike-interval bifurcation diagram (IBD) of stable bursting orbits as I varies when ε = 0 . 01 , 

x 0 = −1 and b = 2 . 7 . Similar bifurcation diagrams are given in [9] , where the spike-adding process is clearly shown. For high 

values of I , from right to left, the model exhibits tonic spiking which precedes a cascade of period doubling bifurcations 

leading to chaos. After crossing the chaotic zone the bifurcation diagram is wider and it starts an inverted cascade of period 

doubling bifurcations, and later a regular bursting regime with 12 spikes is observed. This transition is named a continuous 

interior crisis [11,13] (compare also with [30] when Terman shows that a transition from n to n + 1 spikes can be chaotic). 

When I decreases there is a sequence of spike-deletions between which there is a well-defined bursting regime. In [12,13] it 

is said that the dynamics is block structured. Note that the transition between blocks can be again chaotic. As already 

mentioned, this type of diagram is shown quite frequently in literature for different models but, although chaotic transitions 

are discussed, no connection with a theoretical framework is available. 

Right side panel (b) shows another IBD. In this case b varies whereas ε = 0 . 01 , x 0 = −1 . 6 and I = 2 . 2 . From now on, 

unless indicated, we fix the value x 0 = −1 . 6 . We also provide the continuation of a periodic orbit (plotting the ‖ · ‖ 2 norm 

against b using AUTO continuation software [35] ) along the whole process of spike-adding. Note that the periodic orbits 

evolve continuously with respect to the parameter (a similar evolution could be shown for the case of the left panel, at least 

for the transition from 2 spikes to 11 spikes). This spike-adding mechanism with a continuous evolution of the periodic orbit 

was already anticipated in [30] . Note that the sequence of bifurcations involved in the transition from n to n + 1 spikes is 

always the same: two fold bifurcations give rise to an hysteresis phenomenon. These fold bifurcations are the key features 

of this spike-adding process. They have already been shown in some examples in [8,14,16] . 

As illustrated in Fig. 1 , spike-adding cascades determine, following the notion introduced in [13] , a block structure in the 

bifurcation diagrams. But this analysis uses just one parameter, and other techniques are more suitable to provide results in 

higher dimensional parameter spaces. Fig. 2 shows how these blocks give rise to bands when two- and three-dimensional 

parameter spaces are explored. Spike-counting technique [9] , which counts the number of spikes in a burst, is used to 

obtain two-parameter sweeps on certain parameter planes: a vertical one with I fixed and five horizontal planes with ε
fixed. Putting everything together on a three-dimensional parameter space ( b, I , ε), we obtain the two pictures displayed in 

Fig. 2 (front and back views). Clearly visualized, we observe a band structure which goes through a simplification process 

as ε increases: note how the number of colors (related with the number of spikes per burst) decreases. The simplification 

of the band structure is explained in [7] by means of a parallel process of simplification in the homoclinic structure in the 

system. The dark red regions denote chaotic areas or, due to the chosen color scale, they correspond to bursting orbits with 

a large number of spikes (see bottom part). For further understanding, one should place the bifurcation diagrams shown in 

Fig. 1 in the context of Fig. 2 , where the IBD shown in the plot (b) of Fig. 1 corresponds to a line in the three-parametric 

Fig. 1. Two typical examples of spike-adding processes. Left: interspike-interval bifurcation diagram (IBD) with x 0 = −1 , b = 2 . 7 , ε = 0 . 01 and I as bifurca- 

tion parameter. Right: continuation of a periodic orbit with b varying and x 0 = −1 . 6 , I = 2 . 2 , ε = 0 . 01 . This left panel shows the IBD and the ‖ · ‖ 2 norm of 

the periodic orbit as a function of b , where solid (resp. dashed) refers to stable (resp. unstable) orbits. 
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Fig. 2. Three-parametric ( b , I , ε) diagram showing the spike-counting (SC) sweeping technique, number of spikes per burst of the attractor, in different 

biparametric planes. The pictures show how the number of spikes per burst decreases when the small parameter ε grows and how less and less color 

bands appear. The global structure seems to be similar for any small value of the parameter, but with more color bands. 

study of Fig. 2 that crosses the different bands on the spike-adding process. Now the question is to focus on detecting the 

main ingredients that give rise to the structures observed in Fig. 2 . 

In the sequel, we use the notation hom 

(n,n +1) to refer to a homoclinic bifurcation surface (or curve) where the homo- 

clinic orbit evolves from n to n + 1 spikes. In [6,7] , we showed how these homoclinic bifurcation surfaces overlap each 

other forming a structure of “mille–feuille”. In turn, arising from these surfaces we find bifurcations of periodic orbits that 

are essential ingredients in the mechanisms of spike-adding. As already mentioned, bifurcations of periodic orbits involved 

in the spike-adding mechanisms in the Hindmarsh-Rose model were linked to the existence of certain codimension-two 

homoclinic bifurcations in [14,16] . 

In Fig. 3 we show bifurcation diagrams on parametric planes ( b, I ), fixing different values of ε. All of them show 

similar techniques and elements: spike-counting, a homoclinic bifurcation curve, codimension-two homoclinic bifurcation 

points, folds of periodic orbits and curves of period doubling bifurcation. Although three types of homoclinic bifurcations 

of codimension-two can appear, now we only pay attention to inclination flips (IF) and orbit flips (OF). In our case, at 

both bifurcations the linear part at the equilibrium point has real eigenvalues λs , λu and λuu with λs < 0 < λu < λuu . Passing 

through an inclination flip, the orientation of the global two-dimensional unstable manifold changes. Whereas through an 

orbit flip, there is a switching when, following the backward flow, the homoclinic orbit approaches the equilibrium over the 

leading unstable manifold; namely, the entrance branch is reversed. Reference [36] contain extended discussions regarding 

these codimension-two homoclinic bifurcations. There are three classes of flip homoclinic bifurcations: A, B and C. Those 

exhibited in the Hindmarsh-Rose model are all of type C. The corresponding theoretical bifurcation diagram is well-known 

in literature (see [36] and references therein). There exist pencils consisting of fold bifurcations of periodic orbits, period 

doubling bifurcations and wedge-shaped regions of chaotic behaviour. 

Left and right panels in Fig. 3 show diagrams which include (black coloured lines) the curve hom 

(2,3) and hom 

(6,7) , re- 

spectively. From top to bottom the values of ε are 0.01, 0.015 and 0.03. Note that, as already known from [16] , the endpoints 

of the homoclinic bifurcation curve are only apparent ends. There, the curve is folded onto itself so that, actually, there is a 
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Fig. 3. Three biparametric ( b , I ) spike-counting diagrams (for ε = 0 . 01 , 0.015 and 0.03) and the main bifurcation lines detailed for the 2–3 and 6–7 spike- 

adding processes. The square remarked area shows the structure for small parameter values of ε (similar pictures for any ε � 1 exist but with more and 

more stripes). The PD and Fold bifurcations shown are the ones that delimit the spike-adding structure. Some codimension-2 homoclinic bifurcation points 

are marked on the corresponding homoclinic bifurcation lines. See the text for more details. 

double covering with two branches. In fact, it is argued in [7] that these curves are closed and hence it makes sense to refer 

to isolas limited by homoclinic bifurcations. To illustrate this fact, in Fig. 4 we show (central panel) the curve hom 

(6,7) on 

the two-parameter plane ( b, I ) for ε = 0 . 07 . It seems to be just a line, but this cannot be the case, as long as the bifurcation 

curve cannot stop suddenly, unless a codimension-two point or another singularity appears. If we follow the bifurcation 

curve with continuation techniques (using the software AUTO in our case) we really see that the continuation process pro- 

duces foldings on the visible segment. To study what happens, we consider three values of the parameter I and we show the 

homoclinic orbits obtained in each one of the branches. At each value of I we have obtained two different homoclinic orbits 
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Fig. 4. Center: Parameter plane ( b, I ) for ε = 0 . 07 showing the isola of the codimension-one homoclinic curve that gives 6–7 spikes per burst. Left and 

right: xz projections of two homoclinic orbits for three fixed values of I . 

Fig. 5. Three-parametric ( b , I , ε) plots of homoclinic bifurcation curves corresponding to hom 

(2,3) and hom 

(6,7) for low values of the small parameter ε, 

including also the main PD and Fold bifurcations. 

(left and right panels in Fig. 4 ). One has an extra loop around the equilibrium far from the burst activity, namely, there 

is a homoclinic orbit with six spikes (black color), and another one (red color) with seven spikes, but organized in two 

groups, one of six spikes and another one of just one. This provides a numerical evidence of the existence of the homoclinic 

isola. 

In this paper we focus on small values of ε because we want to provide a study of the generic case when ε � 1. That is 

the reason why the bifurcation diagrams for ε = 0 . 01 and ε = 0 . 015 are remarked in Fig. 3 . Note that the main difference 

between small and large values of ε has to do with left ends of folds and period doubling bifurcations. Whereas for small 

values these curves emerge from inclination flip bifurcations placed on the left side of the homoclinic curve, for larger values 

these bifurcation curves extend far from the homoclinic structure. 

To understand the theoretical scheme that we propose below in Section 3 , one should pay attention to some of the 

differences observed in Fig. 3 . The most remarkable one is that, whereas hom 

(6,7) exhibits two orbit flips (OF), the left 

one located on the lower branch of the homoclinic curve and the right one on the upper one, hom 

(2,3) only exhibits one, 

located on the lower branch. We remark that the behaviour exhibited by hom 

(6,7) is the generic one, that is, it corresponds 

to the behaviour that we found along hom 

(n,n +1) for ε small and n > 2. Nevertheless, as already argued in [16] , we stress 

that hom 

(2,3) behaves differently, although the global picture is similar, except in a very small region around the homoclinic 

curve. We will come back to this later, when we discuss the scheme provided in Fig. 6 . 

In Fig. 5 we show that the structures observed in Fig. 3 for some values of ε are the generic ones for ε small enough. 

The bifurcation curves build up surfaces in the three-parameter space ( b, I , ε). Later on, this global structure will allow us 

to understand, from a slightly different perspective, the different explorations on spike-adding processes provided in the 

literature. 
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Fig. 6. Generic theoretical scheme ( n > 2) showing the entwined bifurcation diagram involved in the spike-adding mechanisms. See the text for explanation. 

3. Global theoretical scheme 

In Section 2 we have seen numerically how the main bifurcations (period doublings and folds of periodic orbits) which 

are involved in the spike-adding mechanism are organized with respect to the homoclinic structures exhibited in the system. 

Next, we introduce a theoretical scheme providing a fully general overview of the process. 

3.1. Global theoretical scheme: biparametric case ( ε fixed) 

Using the numerical simulations shown in Section 2 and previously in [7,8,16] , we provide in Fig. 6 a more complete 

generic scenario of the transition in fold/hom bursters from n to n + 1 spikes when ε is small. Note that the homoclinic isola 

component was illustrated in the previous section exploring the hom 

(6,7) case. As already explained in [7] , the homoclinic 

isolas are piled up and their size decreases as the number of spikes increases. In each homoclinic curve we find some 

significant degenerations: three inclination flips and two orbit flips. The two inclination flips on the left side are terminal 

points for fold and period doubling bifurcations, but they do not play a relevant role in the discussion below. Depending on 

the location, either above or below the isola, the mechanisms to create extra spikes are different. Note that the scheme is 

partial as more bifurcations and codimension-two points should be present. 

In Fig. 6 we have remarked the complete structure for the n to n + 1 ( n > 2) spike-adding process. Suppose we follow 

the evolution of a periodic orbit with n spikes as we move from the right side of the parameter plane and below the 

homoclinic curve (see right plots of Fig. 1 ). This orbit undergoes through two fold bifurcations which give rise to a hysteresis 

phenomena (a Z-shaped continuation curve). The first one is on the left, where the orbit becomes unstable and later the 

continuation goes back to the right till the fold bifurcation on the right is reached. There, the periodic orbit becomes stable 

again and, as we will shortly explain, exhibits an extra spike. The stability is lost later through several period doubling and 

fold bifurcations (due to some pencils of these bifurcations generated on codimension-two bifurcation points) till another 
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Fig. 7. Directions in which the saddle periodic orbits emerge from the homoclinic connection as we move along the homoclinic bifurcation curve. In the 

generic case ( n > 2) there are three changes of direction, two of them are explained by the existence of orbit flips, whereas, the other can be explained by 

the presence of an inclination flip. In the case of the curve hom 

(2,3) there is only one change which is explained by the existence of just an orbit flip. 

period doubling, located in between both main fold bifurcations, is reached. Hysteresis explains the existence of a region 

of bistability, where orbits with n spikes coexist with orbits with n + 1 spikes. The addition of the extra spike is explained 

by a canard transition [10,14] which occurs while the orbit undergoes through the second fold bifurcation on the right side. 

On the other hand, the transition from n to n + 1 spikes above the homoclinic isola involves a chaotic region. Note that 

the theoretical scheme includes the two types of spike-adding processes introduced by Terman in [30] and also described 

in [13,14,16] . The main original contributions of the scheme are, first to establish what areas will produce each kind of 

spike-adding, and second to provide an overall explanation of the origin of the bifurcations involved in each type of spike- 

adding process. Later, in Fig. 8 , we will provide numerical explorations to illustrate both, continuous and chaotic spike- 

adding processes. We remark that the boxed area of Fig. 6 contains the main ingredients for the spike-adding process in a 

fold/hom burster (as it is shown later in Section 4 for the pancreatic β-cell model), while the complete panel explains the 

complete structure for the Hindmarsh-Rose model. 

Next, we describe in detail the location of the codimension-one bifurcations of periodic orbits proposed in Fig. 6 . Let 

us first pay attention to the bifurcations involved in the continuous spike-adding process (below the homoclinic isola). The 

fold bifurcation on the left emerges from the orbit flip on the left, located on the lower branch of the homoclinic curve. 

At this orbit flip the homoclinic connection exhibits n spikes. This fits with the fact that, at the fold bifurcation on the left, 

the periodic orbit also has n spikes. On the other hand, the fold bifurcation on the right emerges from an inclination flip 

located on the folding of the homoclinic isola [16] . Note again that this fits with the fact that at this fold bifurcation the 

periodic orbit is still evolving from n to n + 1 spikes. Indeed, as we will illustrate later in Fig. 9 , while the periodic orbit 

undergoes through the fold bifurcation on the right the head of a canard orbit is starting to develop and, as a consequence, 

an extra spike is being formed. It makes sense to think that this mechanism is related to its counterpart behaviour along 

the homoclinic curve. In addition, as we will see later, the existence, conjectured in [16] but not numerically detected 

(due to precision limitations of any available numerical continuation software), of the inclination flip on the folding of the 

homoclinic isola, is explained by arguments related to the way in which periodic orbits are created from the homoclinic 

curve. On the other hand, the chaotic lobe is related to several codimension-two homoclinic bifurcations. The fold and 

period doubling bifurcations at the right, separating the chaotic zone from the region corresponding to bursting with n 

spikes, emerge from the orbit flip located on the lower ( n -spikes) branch of hom 

(n,n +1) . The fold bifurcation at the left, that 

is, the frontier between the chaotic zone and the region corresponding to bursting with n + 1 spikes, emerges from the 

orbit flip located on the upper ( n + 1 spikes) branch of hom 

(n,n +1) . In Fig. 8 we will show that the chaotic behaviour inside 

the upper chaotic lobe is based on bursting behaviour with n -spikes, and so the pencils of bifurcations associated with that 

phenomena have to be generated on a codimension-two point related with n -spikes behaviour. Therefore, we conjecture that 

the period doubling and fold bifurcations inside the chaotic lobe emerge from the orbit flip located on the upper branch 

( n -spikes) of the previous homoclinic curve hom 

(n −1 ,n ) . 

As already mentioned, AUTO is not able to detect the inclination flip located at the right end of the isolas. Neverthe- 

less, as reasoned in [16] , there is an argument to show that there must be another degeneracy in between the orbit flips 

when we move from one to the other side of the isola along the right side of the curve. Arrows in Fig. 7 indicate the di- 

rection in which single saddle periodic orbits emerge [37] from the homoclinic bifurcation curve (determined using AUTO 

software). Left panel shows the generic case where we see that there are, at least, three changes of direction. Following 

[16,38] , there are three codimension-two homoclinic bifurcations which can explain the side-switching: orbit flip, incli- 

nation flip and resonant eigenvalues. The latter one is excluded and moreover, following the homoclinic orbit from one 

orbit flip to the other along the right side, there is no change in the direction along which the homoclinic orbit leaves the 

equilibrium point and, hence, no additional orbit flip may exist in between. The only option to explain the change in the 

direction of the arrows is the existence of an inclination flip. The same situation can be found in literature in a different 

model [38] . 

Right panel in Fig. 7 corresponds to the curve hom 

(2,3) . In this case only one change of direction is observed. This fits 

with the fact that in this case (and also along hom 

(1,2) ) only one orbit flip exists. In fact, the existence of an inclination 

flip at the right tip of the isola in these two cases is discarded because there exist two Belyakov bifurcation points and the 
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Fig. 8. Analysis of the spike-adding process from 2 to 3 spikes for ε = 0 . 01 . Top: Biparametric diagram with the spike-counting technique and main bi- 

furcation curves for the transition along selected spike-adding process. Bottom: Bifurcation diagrams for segments marked on top picture ( L 1 ≡ I = 2 . 2 ; 

L 2 ≡ I = 2 . 727 − 3 . 0918(b − 2 . 926) ; L 3 ≡ I = 2 . 891 − 3 . 0918(b − 3 . 001) ). Two pictures have been performed for each segment: one plot with the standard 

bifurcation continuation diagram given by AUTO showing the ‖ · ‖ 2 norm of the orbit and another one with the y value of the points where the corre- 

sponding orbit has a maximum for variable x . 

Fig. 9. (a): Evolution of periodic orbits throughout the process of spike-adding. (b): Bifurcation diagram obtained by continuation corresponding to the 

segment L 1 on Fig. 8 . The coloured numbers mark the points in the diagram corresponding to the selected values. Along the continuation of the bifurcation 

lines we observe periodic orbits with two spikes (orbit 1), later headless canards (orbit 2), maximal canard (orbit 3), canards with head (orbit 4), and 

finally orbits with three spikes (orbit 5). 
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right side of the homoclinic curve in between the Belyakov points corresponds to saddle-focus equilibrium points and so, 

flip bifurcations make no sense. 

We remark that our theoretical scheme of Fig. 6 is valid for the generic case of hom 

(n,n +1) with n > 2. As already ex- 

plained, in the generic case, one of the fold bifurcations involved in the continuous spike-adding emerges from the incli- 

nation flip at the tip on right side of the homoclinic isola, as well as one of the folds involved in the chaotic spike-adding 

emerges from the orbit flip located on the upper branch of the curve hom 

(n,n +1) . When n = 2 , there are only one OF point 

on the lower branch of the curve hom 

(2,3) . In any case, the macroscopic global view is similar to the generic case, as shown 

in Fig. 3 . 

Both cases, continuous and chaotic spike-adding transitions, are illustrated in Fig. 8 for the case of the transition from 2 

to 3 spikes (we have chosen this case as globally the process is the same but it is easier and better visualized due to the 

bigger area involved). A periodic orbit is continued along three different segments of parameters: L 1 , L 2 and L 3 as displayed 

in the top panel. Bottom panels show the corresponding bifurcation diagrams: on the vertical axis we plot the value of y 

(top diagrams) at the points where the variable x has a maximum and the ‖ · ‖ 2 norm (bottom diagrams) of the periodic 

orbit. 

Along the segment L 1 we observe a continuous spike-adding process. From right to left, we see how a periodic orbit 

with 2 spikes undergoes a fold bifurcation at which it looses its stability. Later, now for b moving to right, the periodic 

orbit increases its length until it reaches a second fold at which b starts to decrease again. The periodic orbit recovers the 

stability after a period doubling bifurcation. Note that in this area there are pencils of bifurcations very close each other, 

and so it is quite difficult to observe them and their effects. Just to show this, the doubled periodic orbit emerging at that 

point ( b � 2.922) is also continued with AUTO. It undergoes through a fold bifurcation where parameter b starts to increase 

until a second period doubling is reached, and so on (note that the unstable orbit is connected with bifurcated orbits close 

to the fold on the right). This process only can be detected using continuation techniques because the stable region is very 

small and it has no real effects in the dynamics. 

The behaviour along the segment L 2 , very close to the homoclinic curve but below, exhibits some differences to that 

already described along the segment L 1 , but the process is still continuous. The main difference is that in this case there 

is a microchaotic structure coexisting with stable periodic orbits due to the segment L 2 crosses pencils of period doublings 

and fold bifurcations generated on the orbit flip point located on the left (see [8] for additional details). 

Finally, along the segment L 3 , the spike-adding process is discontinuous, going through a chaotic area. Starting from the 

right we see how a 2-spikes periodic orbit goes through a chaotic window after which only one stable orbit persists, but 

exhibiting 3 spikes. Note that the chaotic window is generated via a period doubling cascade originated from a bursting 

orbit with 2 spikes, as shown on the picture on the right for the segment L 3 . Note that the determining characteristic for 

the process of spike-adding to be continuous or discontinuous is on which side of the homoclinic curve the system is located 

and, therefore, what are the bifurcations that affect it. 

A picture of the transition from 2 to 3 spikes along the segment L 1 is given in Fig. 9 . Following the bifurcation curve 

depicted in the plane ( b , ‖ · ‖ 2 ) displayed in the right panel, the excursion starts on the lower branch of the bifurcation 

curve where the 2-spikes periodic orbit is stable. After undergoing through a fold bifurcation, the periodic orbit becomes 

unstable and its length starts to increase as b decreases. This is the beginning of the canard transition already mentioned. 

The increment in the length of the periodic orbit occurs as it extends following the piece of the slow manifold. The orbit 

evolves from “headless” canard to a maximal canard, giving finally a bursting orbit with an extra spike (for details, see 

[10,14] ). Homoclinic orbits undergo similar transformations as they evolve from the orbit flip located in the lower branch of 

the homoclinic curve and they pass the right-folding (see [16] for an example showing the transition from 3 to 4 spikes). 

3.2. Global theoretical scheme: global case 

The structure provided by the theoretical scheme is robust with respect to ε for small values of this parameter. In Fig. 10 

the theoretical scheme of Fig. 6 is visualized into a three-parameter space. Note that the surfaces of fold bifurcation and pe- 

riod doubling involved in the spike-adding process emerge from the homoclinic bifurcation curves. A green plane is marked 

to emphasize that, in principle, it would be possible to take two-parameter slides hiding the whole homoclinic structure, but 

in any case, as we have argued, the spike-adding process cannot be fully understood without realizing the full bifurcation 

diagram. Particularly, all previous explorations recorded in the literature fit with our scheme, although in some of them it is 

not possible to see any homoclinic bifurcation (it depends on the selected parameters and regions as argued from Fig. 10 ). 

In fact, all the situations detected in previous studies can be explained with a single global theoretical scheme shown in 

Fig. 10 . 

In order to see how the theoretical scheme given in Fig. 6 is valid for the classical 1D views provided in literature, we 

take again the pictures of Fig. 1 . Plots (b) and (c) have been already studied in Figs. 8 and 9 linking them with the results 

of Fig. 6 . Now, we intend to explain the theoretical facts of the 1D simulation shown on plot (a) of Fig. 1 (we recall that 

this type of 1D visualization was already considered in [9,13] , among others). Top panel in Fig. 11 shows how the three- 

parametric global scheme does not only extends adding ε but also other parameters as, for instance, x 0 (compare also with 

Fig. 2 ). In this case we observe that moving parameter x 0 just makes a translation of the global picture in the parameter 

space, and therefore the biparametric picture ( I , x 0 ) just shows a parallel band structure as presented in plot (b). On that 

picture we also add some bifurcation lines (fold and homoclinic bifurcations), that obviously follow the band structure, 
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Fig. 10. Scheme of a three-dimensional view of the theoretical scheme (only essential elements are displayed). The structure persists for small values of ε. 

giving straight lines. Taking now a segment fixing b = 2 . 7 , x 0 = −1 and ε = 0 . 01 as that depicted in panel (b), we obtain the 

bifurcation diagrams displayed in panels (c), (d) and (e). Note that plot (e) corresponds to the IBD right panel of Fig. 1 . 

It is important to remark that when one studies the interspike-interval bifurcation diagram shown in panel (e), and 

we note that this is the most standard visualization of this kind of systems in literature, the relevance of the homoclinic 

bifurcation remains hidden, in spite of the segment crosses the homoclinic surface. In order to reveal the internal structure 

of the spike-adding process in that line, we need to use continuation techniques. To that goal, we pay now attention to 

the other two 1D bifurcation diagrams of panels (c) and (d), where we show the ‖ · ‖ 2 norm and the period of the stable 

(continuous line) and unstable (discontinuous line) periodic orbits for the given parametric values computed using AUTO 

software. Starting from the left, we see that there exists a spike-adding cascade, but moving to the right, the role of the 

homoclinic orbit is again hidden because we are now following the stable branch of periodic orbits. Only when we continue 

the orbit up to the last fold bifurcation we see that an unstable periodic orbit persists as I decreases up to it undergoes a 

homoclinic bifurcation on the value marked by a dotted vertical line. So, attending to this exploration, we can say that it is 

at the homoclinic orbit where the periodic orbit involved in the continuous spike-adding is created, but when the periodic 

orbit bifurcates from the homoclinic orbit it is unstable and only recovers the stability through period doubling or fold 

bifurcations. 

Note that to the right of the homoclinic bifurcation the spike-adding is chaotic: the segment crosses chaotic lobes, most 

of them very narrow, and so difficult to detect. In that region the bands of periodic orbits with a fix number of spikes are in 

fact formed by isolas of periodic orbits disconnected one each other. The periodic orbits experiment a period doubling cas- 

cade (we just depict the first period doubling with a red dot) generating the chaotic region. One should also compare with 

the continuation along the segment L 3 in Fig. 8 . Recall that, when explained by a chaotic process, the spike-adding is dis- 

continuous (see [30] ). Discontinuities are apparent in the inter-spike interval bifurcation diagram depicted in Fig. 11 (panel 

(e)). In panels (c) and (d) we observe that the bifurcation curves emerging from the cascade of folds located to the right 

of the homoclinic bifurcation create isolas with a fold bifurcation point located to the right side of the bifurcation dia- 

gram. In fact, close to the value of I for which the segment enters in the region with one spike, there is a collection of 

fold bifurcation curves. Note that all of these bifurcation points are in fact the intersection with the pencils of bifurcations 

created on the orbit-flip and inclination-flip points located on the homoclinic bifurcation curve but on different parametric 

planes. 

Finally, we remark that the global scheme presented in this paper explains most of the phenomena of the spike-adding 

process as it relates the different bifurcation lines, that are present in Figs. 8 and 11 , with the pencils of bifurcations created 

on the codimension-two homoclinic bifurcation points that are in different parametric planes and that cannot be seen in 

the selected set of parameters. As illustrated on Fig. 10 , when we have a large parametric phase space, it depends on how 

and where we make a section in order to better visualize the real organizing points of the studied phenomena. 

4. Pancreatic β-cell neuron model 

In this section we briefly illustrate that similar structures, as the ones observed for the Hindmarsh–Rose neuron model, 

are observed in other fold/hom neuron bursting models. Different models of pancreatic β-cells are usually based on the 

standard Hodgkin–Huxley formalism including different phenomena [34,39,40] , like the intracellular storage of Ca 2+ , the 

glucose metabolism, the influence of ATP, and so on. The most simple model of pancreatic β-cells which generates a realistic 

bursting behaviour is a three-dimensional model with two fast variables and one slow variable. In this paper we consider 
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Fig. 11. (a) Three-parametric ( I , x 0 , b ) diagram showing the spike-counting (SC) sweeping technique in different biparametric planes using ε = 0 . 01 . (b) 

Biparametric ( I , x 0 ) diagram with b = 2 . 7 . And (c), (d) and (e), 1D cuts on the line x 0 = −1 showing the ‖ · ‖ 2 norm, the period and the IBD of the orbit, 

respectively. Several bifurcation lines and points are depicted. 

the model of Sherman et al. [34] given by 

⎧ ⎨ 

⎩ 

τ ˙ V = −[ I Ca (V ) + I K (V, n ) + g S S(V − V K )] + I app , 

τ ˙ n = σ [ n ∞ 

(V ) − n ] , 

τS 
˙ S = S ∞ 

(V ) − S, 

(2) 
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Fig. 12. Biparametric ( V S , I app ) spike-counting diagrams of the β-cell neuron model (for k S = 0 . 004 ) and the main bifurcation lines detailed for the 2–3 and 

6–7 spike-adding processes. Some codimension-2 homoclinic bifurcation points are marked on the corresponding homoclinic bifurcation lines. See the text 

for more details. 

with the auxiliary ionic current functions defined by I app (the external current) and 

I Ca (V ) = g Ca m ∞ 

(V ) (V − V Ca ) , I K (V, n ) = g K n (V − V K ) , 

and where the different steady state gating variables take the forms 

m ∞ 

(V ) = 

[ 
1 + exp 

(
V m 

− V 

θm 

)] −1 

, n ∞ 

(V ) = 

[ 
1 + exp 

(
V n − V 

θn 

)] −1 

, 

S ∞ 

(V ) = 

[ 
1 + exp 

(
V S − V 

θS 

)] −1 

. 

In this model, V represents the membrane potential, n the opening probability of the potassium channels and I Ca and I K 
are the calcium and potassium currents, (for more details see [27,34] ). The fixed parameters values that we use are taken 

from reference [27] and they are given by 

τ = 0 . 02 , τS = 5 , V Ca = 25 , V K = −75 , g Ca = 3 . 6 , g K = 10 . 0 , g S = 4 , 

σ = 0 . 85 , V m 

= −20 , V n = −16 , θm 

= 12 , θn = 5 . 6 , θS = 10 . 

The ratio k S = τ/τS , in our case k S = 0 . 004 , defines the ratio of the time parameters for the fast ( V and n ) and the slow ( S ) 

variables. The parameter V S is the main bifurcation parameter and it defines the membrane potential at which the steady- 

state value for the gating variable S attains one-half of its maximum value. 

In Fig. 12 we show bifurcation diagrams on the parametric plane ( V S , I app ). These pictures are similar to the ones shown 

in Fig. 3 for the Hindmarsh–Rose model. The main difference is that for this model it is much more difficult to locate 

numerically the different elements that are clearly shown in the Hindmarsh–Rose model. Besides, in the β-cell neuron 

model we do not have Belyakov points for the 2–3 spike-adding process, and so now this case also follows the generic 

theoretical scheme of the boxed area of Fig. 6 with two orbit flip codimension-two points. As in the Hindmarsh–Rose model, 

an inclination flip point is conjectured in the sharp fold of the homoclinic curves. The 2–3 spike-adding process is detailed 

with a magnification of the bifurcation lines. On the left side of the homoclinic curve the main fold bifurcations that create 

the spike-adding region go to one OF and to the conjectured IF. On the right side, the period doubling and fold bifurcation 

lines that delimit the chaotic lobe go each one to different OF points as shown in the generic theoretical scheme of Fig. 6 . 

On the magnification on Fig. 12 the continuous lines are the ones computed with AUTO, and the discontinuous ones are the 

conjectured continuation of the lines. 

On the 6–7 spike-adding process the numerical continuation software is not able to compute some of the curves close 

to the codimension-two points (AUTO detects the two OF points, but they are very close each other). 

Therefore, from this brief analysis on the β-cell neuron model, it is plausible that the fold/hom spike-adding process 

in mathematical neuron models follows the theoretical scheme shown in Fig. 6 . Note that the Fig. 6 provides the complete 
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scheme for the Hindmarsh-Rose model, while the boxed area the generic scheme for fold/hom bursters. The great advantage 

of using the Hindmarsh–Rose model is that it makes easier to detect the different elements of the spike-adding process. 

5. Conclusions 

We propose a global scheme to understand the spike-adding process in fold/hom bursting models, exemplified in the 

Hindmarsh–Rose neuron model. In the analysis we use different numerical techniques such as spike-counting, Lyapunov 

exponents and bifurcation continuation methods. Our simulations, and those of literature, allow us to introduce a global 

theoretical scheme that completes the previous ones that appeared recently (see [16] ). The global framework connects the 

different types (continuous and chaotic) of spike-adding processes introduced by Terman [30] . It determines the regions of 

the parametric space where each kind of process occurs, and provides a general explanation of the origin of the bifurca- 

tions involved in them. Finally, being a global and multiparametric scheme, it allows to give an explanation to the different 

interspike-interval bifurcation diagrams (IBD) that have appeared in the literature for different models. This is an important 

point, since in most papers the spike-adding process is illustrated only with IBD plots, but without connecting to any region 

or bifurcation. In addition, an example has been presented that uses a more realistic model, the pancreatic β-cell neuron 

model of Sherman et al., which shows the same scheme as in the Hindmarsh–Rose model. Therefore, there are indications 

of the universality of this theoretical scheme for the generic fold/hom spike-adding process. 
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4.4 Paper IV (submitted)

The present work is devoted to the mechanisms underlying the different spike-adding
processes found in the Hindmarsh-Rose model and completes the results provided in Paper
III. We address the case of ε taking small values, so ε = 0.01 is fixed. The dynamics in
the (b, I) plane are investigated.

The model exhibits fold/hom and fold/Hopf bursting. Fold/hom bursting is known to
present two types of spike-adding: continuous and chaotic, following Terman notation [44].
We refer to them as canard-induced continuous spike-adding and chaos-induced spike-
adding, respectively. Only one spike-adding process have been observed for fold/Hopf
bursting, which we refer to as Hopf-induced continuous spike-adding.

We determine a map in the (b, I) plane locating the spike-adding processes exhibited by
the model, illustrating them thoroughly and discovering novel aspects of the dynamics.
Transitions from one process to another (transition spike-adding states) are analysed.
For instance, we show how the passage from canard-induced to Hopf-induced continuous
spike-adding is located far from the homoclinic bifurcation curve, in regions where the
fold bifurcations arising at codimension two points are vanishing. Cusp bifurcations have
a key role separating both processes.

There also exist parametric regions where the Izhikevich classification does not hold,
since the fast-slow skeleton corresponds to fold/Hopf bursting but the orbits clearly resem-
ble fold/homoclinic bursting, despite ε = 0.01 is usually considered as a value compatible
with the fast-slow dissection. Mixed orbits combining bursts resembling fold/hom be-
haviour and bursts resembling fold/Hopf dynamics are also found.

We provide a theorical explanation for the Hopf-induced spike-adding, employing a
toy model to show analytically how the number of spikes is related with the space being
available for the production of oscillations. More precisely, the distance between the fold
bifurcations along the manifold of equilibria determines the number of spikes per burst.
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Classification of fold/hom and fold/Hopf spike-adding phenomena
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Hindmarsh-Rose neural model is widely accepted as an important prototype for fold/hom and fold/Hopf burstings.
In this paper we are interested in the mechanisms for the production of extra spikes in a burst, and we show the
whole parametric panorama in an unified way. In the fold/hom case two types are distinguished, the continuous one,
where the bursting periodic orbit goes through bifurcations, but persists along the whole process, and the discontinuous
one, where the transition is abrupt and happens after a sequence of chaotic events. In the former case we speak
about canard-induced spike-adding and, in the second one, about chaos-induced. For fold/Hopf bursting, a single
(and continuous) mechanism is distinguished. Separately, all these mechanisms are, up to some extent, presented in
literature. Nevertheless, our full perspective allows us to build a spike-adding map and, more significant, to understand
the dynamics which are exhibited when frontiers are crossed, a crucial point not studied previously.
Keywords: neuron models, fold/hom bursting, fold/Hopf bursting, spike-adding mechanisms
AMS codes: 37B10, 65P20, 92B20

Among the elements that allow communication between
neurons, spikes or action potentials are major pieces. Not
the isolated ones, but the spike trains are those that allow
the brain to build a language for the transmission of in-
formation. A burst is a signal with a higher probability of
being picked up by neighbouring neurons than an isolated
spike.1 Moreover, the number and the temporal pattern of
spikes provide a system for encoding messages. Facing this
context, understanding how spikes can be gained (or lost)
becomes a central question. This is the goal of this work,
taking the Hindmarsh-Rose equations as a paradigm for
certain classes of bursting, we analyse three different types
of spike-adding processes. Although most of the involved
dynamics and bifurcations are well known, we will be
able to discover some novel characteristics. Our classifica-
tion of the different spike-adding mechanisms determines
maps in the parameter space. But maps are not useful if
one is not able to understand the frontiers between differ-
ent regions. Indeed, in this work we deal with the dynam-
ics that characterize the transitions from one to another
type of spike-adding. Challenges in neuroscience and, in
particular, the problems that still remain to be solved in
deciphering the language of neurons are impressive, but,
without doubt, the classification of the different mecha-
nisms involved in the genesis of extra action potentials is
one of those essential basic steps.

I. INTRODUCTION

Bursting is one of the most relevant phenomena that can be
observed in a neuron. Roughly speaking, bursting is charac-

a)Electronic mail: rbarrio@unizar.es
b)Electronic mail: mesa@uniovi.es
c)Electronic mail: perezplucia@uniovi.es
d)Electronic mail: sserrano@unizar.es

terized by the appearing of sequences of spikes, correspond-
ing to fast discharges, alternating with periods of quiescence.
Moreover, when dealing with a bursting neuron, one of the
major challenges is to understand how spikes are added to a
given train of signals.

This paper studies the spike-adding mechanisms exhibited
in the Hindmarsh-Rose2 neuron model, a well known exam-
ple and prototype of fold/hom (or square-wave) and fold/Hopf
bursting3,4. It is able to reproduce the most significant behav-
iors: quiescence, spiking and also bursting, either regular or
irregular (chaotic). Literature concerning this model is really
impressive and, only in relation to our interests, we can quote
Refs. 5–18.

The Hindmarsh-Rose (HR) model is described by the fol-
lowing set of equations:





ẋ = y−ax3 +bx2− z+ I,
ẏ = c−dx2− y,
ż = ε[s(x− x0)− z].

(1)

Variable x represents the membrane potential, whereas y and z
correspond to ionic currents. We consider a typical choice of
parameters with a = 1, c = 1, d = 5 and s = 4, discussing the
spike-adding processes for different choices of the others b, I
and ε18. We assume that ε is a small parameter in the model,
giving rise to a fast-slow system with two fast (x and y), and
one slow (z) variables.

When ε = 0 in model (1), we obtain a reduced system
which is usually called fast subsystem. Note that the fast sub-
system is a family of planar vector fields where z is an addi-
tional parameter. Fixing b and I (still with ε = 0), we obtain
a bifurcation diagram with respect to z that is illustrated in
Fig. 1. There is a curve formed by equilibria which is named
the slow manifold (Mslow) and a surface containing limit cy-
cles which is said the fast manifold (M f ast ). Recall that, in a
general setting, slow-fast decompositions were first described
in Ref. 3. For I = 2.2, b = 2.91646 (top) and for I = 2.75
and b = 2.39 (bottom) the slow manifold is shown in dark
red (resp. orange) for stable (resp. unstable) equilibria and
the fast manifold is shown in gray. Intuitively, one can un-
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FIG. 1. 2D projection of fold/hom (top) and fold/Hopf (bottom)
bursting orbits (ε = 0.01) superimposed (in black) over classical
slow-fast decomposition (ε = 0) of the HR model (1) formed by the
1D slow manifold of stable (dark red) and unstable (orange) equi-
libria (Mslow) and the 2D fast (spiking) manifold (M f ast ) of limit
cycles of the fast subsystem of the model (in gray). SN stands for
saddle-node bifurcations of equilibria, Hopf denotes the Hopf bifur-
cation points and “hom” the homoclinic bifurcation points.

derstand how burst patterns emerge. Fig. 1 also shows stable
periodic orbits of the full system (black) superimposed to the
bifurcation diagram of the fast subsystem. The slow dynamics
in the complete model is such that ż < 0 when fast variables
are moving close to the lower branch of Mslow, whereas ż > 0
when they do close to M f ast .

Indeed, as singular perturbation theory and Fenichel’s the-
orems explain19, orbits (for small enough ε) follow both man-
ifolds on some parts of its trajectory. Following the terminol-
ogy in Ref. 4, in the first case (top panel), the bursting orbit
is said of fold/homoclinic type, because the termination of the
fast subregime is due to the existence of a homoclinic bifur-
cation in the phase space of the fast subsystem. In the second
case (bottom panel), the bursting orbit is said of fold/Hopf
type because the amplitude of oscillations during the burst-
ing is decreasing as the limit cycles of the reduced model ap-
proach the Hopf bifurcation.

As already mentioned, the main goal of this paper is to ex-
plain the processes (spike-adding) that lead a busting orbit to
change its number of spikes per period. More precisely, we

provide a classification of the different types of spike-adding
processes in fold/hom and fold/Hopf bursters. From Ter-
man20, in the general context of fold/hom bursting, two spike-
adding mechanisms are considered. On the one hand, there
can arise extra excursions around the fast manifold which are
generated through a discontinuous process linked to a chaotic
phenomenon. On the other, there also can happen that extra
excursions are created through a continuous process linked to
orbits that transit through phase space following the unstable
branch of the slow manifold. We will refer to the first scenario
as chaos-induced spike-adding, and the second one as canard-
induced spike-adding. Both cases have been recently studied
in the literature5,7,14,16,21. The spike-adding mechanism in the
case of fold/Hopf bursting is completely different and is re-
lated to the distance between saddle-node (left SN bifurcation
point of Fig. 1(bottom)) and Hopf bifurcation points in the fast
subsystem, see Fig. 1. Namely, the number of spikes depends
on the length of the oscillation tube which is accessible for
orbits after they jump to the fast manifold from the slow man-
ifold. It also depends on the characteristic rotation speed at
the Hopf bifurcation point. We will refer to this mechanism
for spike-adding as Hopf-induced. Of course, in all cases, the
number of spikes also increases as ε decreases, but this is not
our interest, we will consider fixed small values of ε . Dis-
cussions in the literature about the spike-adding mechanism
involved in the fold/Hopf bursters are not so common as those
about the mechanisms linked to fold/hom scenario.

We will see how the Hindmarsh-Rose model exhibits the
three spike-adding mechanisms that we have just described.
As said, all have already been considered, to a greater or a
lesser extent, in the literature. However, in this paper the treat-
ment is unified, which allows to understand the differences
between them. Besides, we pay special attention to the transi-
tion dynamics between scenarios, a problem not well studied
in literature. Having in mind that different spike-adding pro-
cesses are feasible in a model (HR model in our case), the
question is: where and why they are produced?

The frontier between the two spike-adding mechanisms
linked to fold/hom bursters will be shown sharp. Namely,
it will be marked by homoclinic surfaces in the three-
parameter bifurcation space.6 Nevertheless, the separation
between Hopf-induced processes and either chaos-induced
or canard-induced will appear fuzzy. Coming from the re-
gion of chaos-induced spike-adding, a fan of bifurcations
must be crossed to enter into the region corresponding to
Hopf-induced processes. These bifurcations arise from a
codimension-two homoclinic bifurcation point. As we will
recall later, in the case of a canard-induced spike-adding, the
periodic orbit must undergo several periodic orbit bifurca-
tions (bistability and hysteresis are present), among them two
curves of fold bifurcations which dissapear at cusp bifurca-
tion points. These codimension-two bifurcation points will
play the role of boundary stones separating the canard do-
mains from the Hopf ones. In other words, continuous spike-
adding can be canard-induced or Hopf-induced. The first case
happens when the continuation of the periodic orbit includes
paths of instable regime. When this course is not realizable
because no bifurcation is accessible (the continuation curve is
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far from the cusp boundary stones), the gaining of extra spikes
can be explained through a Hopf bifurcation process.

All the different types of spike-adding mechanisms are de-
tailed in Section II, showing how they indeed arise in the
Hindmarsh-Rose model. Transitions between these mecha-
nisms will also be described in II. Results are summarized
and discussed in Section III, where a theoretical classification
parametric map is proposed. Conclusions are provided in Sec-
tion IV.

II. CLASSIFICATION OF SPIKE-ADDING PHENOMENA

In this section we describe the different spike-adding phe-
nomena present in the HR model. On Fig. 2, regions with
periodic attractors with a different number of spikes are rep-
resented in different colors (spike-counting technique). From
dark blue, indicating spiking, towards red, the number of
spikes of the periodic orbit grows. Dark red indicates that
the maximum number of spikes considered in the method has
been exceeded, meaning that in a large part of that region the
dominant behavior is chaotic9.

This figure shows a typical situation for small ε values (in
this case ε = 0.01). There exist a finite collection of homo-
clinic bifurcation curves, the black curve represented in the
figure being one of them. All the other are so close that, if
they were also depicted, they would overlap with each other
(see details in Ref. 6). Located on such curves there also
arise codimension-two homoclinic bifurcations from which
many of the elements involved in the spike-adding processes
emerge. As an illustration, Fig. 2 includes some codimension-
one bifurcations of periodic orbits: fold (yellow) and period-
doubling (red) curves. Below the homoclinic bifurcation
curve, there are wedges corresponding to bistability regimes.
These regions are bounded by a pair of fold bifurcations con-
necting through a cusp. Above the homoclinic bifurcation
curve, lobes of chaotic dynamics are formed containing pen-
cils of period-doubling cascades. These lobes are limited by
a fold bifurcation curve of periodic orbits and the first period-
doubling cascade.

Figure 3 presents two different techniques for the study
of the segment R1 of Fig. 2, that crosses regions of the bi-
parametric plane showing the three types of spike-adding
detected in the model: chaos-induced discontinuous spike-
adding (right), canard-induced continuous spike-adding (mid-
dle) and Hopf-induced continuous spike-adding (left). On the
plot on the top it is shown the interspike-interval bifurcation
diagram (IBD) showing clearly the number os spikes and the
time length among spikes. Red color represents coexistence
of two periodic attractors with n and n+1 spikes. The bottom
plot presents the parametric evolution of the periodic orbits
using continuation techniques. Along this article all the con-
tinuation analysis has been done using the well known soft-
ware AUTO22,23. The figure shows the ‖ · ‖2 norm of the
periodic orbit along the selected segment R1. On the con-
tinuation line, the blue color line changes from Hopf-induced
continuous spike-adding (left part) to canard-induced contin-
uous spike-adding (middle part). Note that, on the right side,

the purple color line represents an isola (simple closed curves
in the corresponding slice) of 3-spikes periodic orbits and
green and other colors represent the basic 2-spikes periodic
orbit and its period-doubling bifurcated orbits on the region
of chaos-induced discontinuous spike-adding. We can also
observe how the change from the discontinuous spike-adding
to the continuous spike-adding occurs sharply when cross-
ing the homoclinic curve. On the other hand, while canard-
induced continuous spike-adding is occurring, the segment
R1 crosses wedges of bistability, limited by a fold point and
period-doubling bifurcation. When the last wedge has been
crossed, the Hopf-induced continuous spike-adding occurs.
Bistability regions occur only for the canard-induced contin-
uous spike-adding. Segments R1a, R2 and R1b from Fig. 2
have been selected to illustrate with more detail each kind of
spike-adding process. We will dedicate the following subsec-
tions to that description.

In addition, we include (Subsection II D) detailed studies
of the transition processes between different types of spike-
adding. As we have just mentioned, the boundary between
chaotic processes and canard-induced mechanisms will be
clearly located at the homoclinic curves. The separation be-
tween chaos induced and Hopf-induced mechanisms is not so
sharp but clearly linked to the passage through a cascade of
bifurcations that arise at a codimension-two homoclinic bifur-
cation.

Note that in Fig. 3 we have included a vertical line (in
green) indicating the value of b for which, according to the
Izhikevich classification, the bursting change from fold/Hopf
to fold/hom. That is, the value of b at the point where the ho-
moclinic bifurcation curve folds in the direction of b for the
limit case (ε = 0). Of course, this association is worst as ε
increases. For ε = 0.01 we can see how the spike-adding is
classified as canard-induced to the left of the green line (up
to the red line) because bifurcations of periodic orbits are still
detected. The change happens when one crosses the red line
corresponding to the cusp bifurcation. Therefore, we have
marked this region with and interrogant symbol on the top of
the figure, as more details are required. This transition will be
explained in more detail in Subsection II D. The limitations of
the Izhikevich classification when one transits from fold/Hopf
to fold/hom will be discussed in III.

A. Chaos-induced discontinuous spike-adding

The first type of spike-adding process that we are going to
analyze is the chaos-induced discontinuous one. As we have
already mentioned, this process occurs in the region above the
homoclinic curve, this curve being a boundary of such region.
On Fig. 4 we consider segment R1a of Fig. 2 and we zoom in
on the surrounding region with the spike counting technique.
Below that picture, we show the IBD of this segment and the
‖ · ‖2 norm of the periodic orbits obtained with continuation
techniques (AUTO).

As we can see in the figure, to the right of the segment there
is a bursting periodic attractor with 2 spikes. As b decreases,
a typical scenario is present. Firstly, the periodic attractor
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FIG. 2. Biparametric spike-counting bifurcation diagram for ε = 0.01. Different segments are selected to illustrate (on later figures) three
different spike-adding processes: chaos-induced discontinuous spike-adding, canard-induced continuous spike-adding and Hopf-induced con-
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P1 to P2 and along the segments R3a, R3b and R3c will be described to explain how dynamics evolve to change from one scenario to another.

undergoes through a cascade of period-doubling bifurcations,
until a chaotic attractor is generated. Within the chaotic re-
gion, narrow windows of regular behavior appear where new
periodic orbits are generated. They will go through new bifur-
cations where they will become unstable joining to the chaotic
set. Finally, at a fold bifurcation, the chaotic set stop being at-
tractor and two periodic orbits (one stable and one unstable)
with 3 spikes are generated.

To show how the attractors evolve throughout this spike-
adding phenomenon, on Fig. 5 we present the complete pro-
cess. The central picture shows the bifurcation diagram ob-
tained by continuation (AUTO) corresponding to the segment
R1a on Fig. 2. We have selected several values of b (marked
in the central picture with small colored squares and num-
bers) for which we have plotted these orbits. For these values,
the periodic orbits (solid line for stable, and dashed for unsta-
ble ones) and a chaotic attractor (for square −6−) are shown
around the central picture. Orbit −1− represents the basic
periodic orbit of 2 spikes. After the first period-doubling bi-
furcation, the orbit −1− becomes unstable and a stable peri-
odic orbit (−2−) with two bursts with 2 spikes (2×2 orbit) is
generated. A second period-doubling bifurcation repeats the

former mechanism from 2× 2 to 4× 2 orbit (−3−). So, the
same mechanism is developed again and again (to a 8×2 orbit
−4−, 16×2 orbit−5−, and so on), a countably infinite num-
ber of times giving place to a typical period-doubling route
to chaos that generates a chaotic attractor (−6−). After a fold
bifurcation, the chaotic set becomes unstable and two periodic
orbits (−7−) with 3 spikes are born (the spike-adding). One
of them is stable, the other one unstable, both are indistin-
guishable at the fold bifurcation and they run along the outer
edge of the chaotic set. When b moves away from the value
at which the bifurcation occurs, both orbits are separated from
each other.

It is worth paying attention to certain qualitative aspects
that can be observed in the chaotic transition illustrated in
Figure 5. As the attracting periodic orbits that arise through
period-doublings build the chaotic attractor (−6−), spikes ar-
range visually in four groups inside phase space, although two
of them, those placed in central positions, seem to compete to
fill the same area. This process is typical in period-doubling
cascades giving rise first to thin Feigenbaum chaotic attrac-
tors that later merge in thicker and larger ones via boundary
crisis phenomena. When the chaotic attractor is fully created,
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we clearly see how the groups of spikes give rise to three, not
to four, areas within the attractor, characterized by a denser
flow. When the fold bifurcation occurs, the three-spiked sta-
ble periodic orbit takes the place of the chaotic attractor, flow-
ing through the denser areas previously swept by the chaotic
trajectory. The fold bifurcation marks the beginning of a peri-
odic window: the chaotic attractor becomes an unstable sad-
dle chaotic invariant set that embeds, among other unstable
periodic orbits, the unstable orbit itself that is born at the fold
bifurcation.

As already pointed out in Ref. 8, the process we have just
described is what is known in the literature as Type I inttermi-
tency transition to chaos, as introduced in Refs. 24 and 25. In
Ref. 8, authors explore a segment of parameters which cuts

the whole sequence of chaotic lobes. The scenario here pre-
sented is common to each spike-adding. As b decreases, peri-
odic orbits with n spikes go through a period-doubling cascade
which precedes the formation of a horseshoe. The dynamics
enters into a chaotic window which disappears through a Type
I intermittency transition. Chaotic transitions have been stud-
ied in Refs. 20 and 26. Working in a general framework,
which includes the Hindmarsh-Rose model, Terman explains
how the passage from n to n+ 1 spikes can be accompanied
by the creation of horseshoes. In that sense, we understood
that each passage through a chaotic lobe includes a Terman’s
transition.
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B. Canard-induced continuous spike-adding

A full detailed picture of the continuous transition from 2
to 3 spikes between fold/hom bursters along the segment R2
(Fig. 2) is given in Figure 6. In the central panel, the bifurca-
tion curve obtained by continuation is displayed. Solid curve
represents stable periodic orbits, while dashed curve indicates
unstable periodic orbits. Squares with different colors over the
curve mark different values of parameter b selected to show
their corresponding periodic orbits (pictures around). These
periodic orbits are plotted over the slow Mslow and fast M f ast
manifolds of the limit case to explain the canard transition

generating the new spike7,10,14. In the upper left corner of the
central picture, all the selected orbits are represented together
to see their relative position. Starting from the lower branch of
the bifurcation curve, where the 2-spikes periodic orbit is sta-
ble, and decreasing the value of b, the curve reaches a fold bi-
furcation (marked with a square inside a circle). There, the pe-
riodic orbit becomes unstable and its length starts to increase
as b decreases. This is the beginning of the canard transition:
The increment in the length of the periodic orbit occurs as it
extends following the piece of the slow manifold close to the
unstable part of the manifold of equilibria between both fold
bifurcations (see Fig. 1 top). Along the middle branch of the
bifurcation curve, “headless” canards evolve up to a second
fold bifurcation is reached. There, the orbit overcomes the
right-fold of the equilibrium manifold in the fast subsystem
and an additional turn around the tubular fast manifold arises;
the canard orbit is said maximal and the canard “head” starts
to be developed (second fold bifurcation marked with a square
in a circle). This “head” moves to the left as b increases and
the orbit recovers its stability after a period-doubling bifur-
cation (marked with a square inside a circle), when the orbit
already has an extra spike. Therefore, the new spike has trav-
elled from the neighbourhood of the right piece of M f ast to
the neighbourhood of the left piece of M f ast . This process
that we have just described is the essential mechanism behind
the continuous spike-adding for fold/hom bursters7,10,14.

In the sense in which we have travelled the curve, the bifur-
cation where the orbit with three spikes regains its stability is
actually a period-halving bifurcation. Keep in mind that in a
small interval to the right of this bifurcation there are pencils
of bifurcations very close each other, and so it is quite diffi-
cult to observe them and their effects. Just to show this, the
doubled periodic orbit emerging at that point is also contin-
ued with AUTO and both bifurcation curves are displayed on
Fig. 7 (light blue color lines). The curve for the double period
orbit undergoes through a fold bifurcation where parameter b
starts to increase until a second period-doubling is reached,
and so on (note that the unstable orbit is connected with bi-
furcated orbits close to the fold on the right). This process
only can be detected using continuation techniques because
the stable region is very small and it has no real effects in the
dynamics. However, once the phenomenon is detected, the or-
bits obtained can be carefully integrated to observe the chaotic
behavior in that narrow parametric region (see red dots on the
IBD on the top picture of Fig. 7).

This canard-induced spike-adding mechanism had already
been discussed in the literature.7,10,14,16 Some micro-chaos
zones had already been detected and discussed in Ref. 8,
but for segments very close to the homoclinic bifurcation
curves, and not on the generic spike-adding process. Here
we observe how small chaotic windows are detected far
from the homoclinic skeleton. It follows that the fan of
bifurcations of periodic orbits extends widely in parameter
space. In fact, the chaotic window is associated with a cas-
cade of period-doubling. The tangled bifurcation diagram
formed by the codimension one bifurcations that arise from
the codimension-two homoclinic bifurcation points have been
discussed in Ref. 6, where it is also explained how the spike-
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where the first period-doubling cascade occurs is shown.

adding mechanisms fit into the whole web.

C. Hopf-induced continuous spike-adding

The Hindmarsh-Rose model presents a variation of con-
tinuous spike-adding, where bistability and canards are not
present. The spike-adding occurs without the periodic orbits
loses their stability, but still increasing their length by adding
an extra cycle to their turns around the fast manifold.

Unlike what happens in the fold/hom cases, in the process
of Hopf-induced spike-adding, period-doubling and fold bi-
furcations do not appear. Nor is chaotic behavior observed,
nor do canards appear. The complete process is shown in
Fig. 8, presenting again in the central panel the continuation
bifurcation diagram of segment R1b of Fig. 2. The coloured

squares mark the points in the diagram corresponding to the
selected values. For these values, the stable periodic orbits
are shown over the slow Mslow and fast M f ast manifolds (see
Fig. 1 for more details). As shown on Fig. 8, the process is
straightforward. That is, what happens in this case is that, as
b decreases, almost the entire orbit is moving toward smaller
values of z. But the point of re-entry of the orbit around the
fast manifold, after passing through the stable lower branch
of the slow manifold, does not move. This means that more
space is generated in the corner of the slow manifold where
the upper saddle-node is located. Thus, there comes a time
when there is room for a new spike in the orbit, which is oc-
cupied. As b continues to decrease, the displacement of most
of the orbit continues, causing the amplitude of the new spike
to increase. Along the continuation of the bifurcation line we
observe how periodic orbits with thirteen spikes move to the
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left so that space is generated for the appearance of a new
spike on the right side of the orbit giving rise to a burster with
fourteen spikes instead of thirteen. If b continues to decrease
sufficiently, this spike-adding process will be repeated in the
same way.

As already mentioned in the introduction, any process of
spike-adding where periodic orbits do not cross any bifurca-
tion, just a smooth change allowing an extra spike, will be

referred as Hopf-induced, even in the case where the fast dy-
namics does not correspond to a fold/Hopf bursting from the
Izhikevich classification.

In the Appendix we explain theoretically, using a simple
model, how the number of spikes depends on the distance be-
tween the two saddle-node bifurcation points of the slow man-
ifold of equilibria Mslow. In the case of a fold/Hopf burster,
the number of spikes exhibited by an orbit is strongly linked to
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the size of the oscillation region in the phase space. The trajec-
tory around the fast manifold is longer as greater is the width
of that region in the direction of variable z and that width cor-
responds to the distance between the saddle-node bifurcation
points, at least for small values of ε . As b decreases, that dis-
tance increases. To be precise, observe how the lower saddle-
node point moves to left as b decreases, but the upper one
seems to remain fixed.

D. Transition spike-adding states

In the previous subsections we have identified three dif-
ferent spike-adding processes, namely, mechanisms induced
by chaotic behaviors, canard explosions or Hopf bifurcations.
Recall that the former is a discontinuous evolution, whereas
the latter two are continuous transitions. Now we explain how
the dynamics is transformed to change from one type to an-
other.

We begin by discussing the transition between the two types
of continuous spike-adding. In this case we cannot visually
identify a sharp border marking the passage from one to the
other. Fig. 9 shows the spike-adding process from bursting pe-
riodic orbits with 10 spikes to periodic orbits with 11 spikes
along the three small segments R3a, R3b and R3c (see Fig.
2). Along the first segment, the process clearly corresponds
to canard-induced continuous spike-adding. In the case of the
third segment, however, the process clearly is Hopf-induced
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FIG. 8. Evolution of periodic orbits throughout the process of Hopf-
induced continuous spike-adding. Central picture shows the bifurca-
tion diagram obtained by continuation corresponding to the segment
R1b of Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. The stable periodic orbits are
shown over the slow Mslow and fast M f ast manifolds. The grey
arrow indicates the direction in the process of adding a new spike.
Along the continuation of the bifurcation line we observe how pe-
riodic orbits with thirteen spikes move to the left so that space is
generated for the appearance of a new spike on the right side of the
orbit. Finally, periodic orbits have fourteen spikes.

continuous spike-adding. It is evident that, between these two
segments, a bifurcation has to occur that generates the change
between both types of spike-adding. However, for this value
of ε we are not able to detect it numerically as the continu-
ation software stops the calculation of the fold bifurcations.
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curve has been stretched and from now on the spike-adding process
is Hopf-induced.

We show an intermediate segment (R3b) where the passage
through the canard is not so apparent.

In order to illustrate more clearly the transition between
these two types of spike-adding, we study one case for a
higher value of the small parameter (ε = 0.05) to help in
the visualization. For this ε value, the two fold bifurca-
tions involved in the spike-adding from 2 to 3 spikes between
fold/hom bursters that occur in the upper part of the region be-
low the homoclinics can be fully continued numerically. Fold
bifurcation curves are plotted in yellow on Fig. 10, they arise
from codimension-two bifurcation points located on the ho-
moclinic curves. Segments A and B cut both curves and, as it
can be seen on the bottom pictures, the spike-adding process
is canard-induced. If we compare the continuation bifurca-
tion curves (left pictures) for both segments, we can observe
how, as I decreases, the curve is stretched. As a consequence,
the two fold bifurcation curves get closer to each other, un-
til they reach a point (cusp bifurcation) where both coincide
and disappear. Segment C goes through that point. This is
the bifurcation point where canard-induced continuous spike-
adding ends to give rise to Hopf-induced continuous spike-
adding. Segments D and E cross this type of spike-adding, as
can be seen on bottom pictures.

Once we understand how a cusp bifurcation of periodic or-
bits allows us to explain the passage from a canard-induced
spike-adding towards a Hopf-induced type, we can conjecture
that this is what happens for smaller values of ε and, in partic-
ular, in the case illustrated in Fig. 9, although the fold bifurca-
tion curves involved are not easy to detect and to continue. It
is important to remark here one main difference among both
continuous spike-adding phenomena: in the canard-induced
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case the canard orbit in the process to obtain an extra spike
makes a “go-and-come-back” excursion, whereas in the Hopf-
induced case the orbit that is obtaining an extra spike grows
but it does not come back. This is clearly seen on Figures 9
and 10.

As already mentioned, the transition from the region where
spike-adding is induced by chaotic dynamics to the zones ex-
hibiting continuous processes is determined, one way or an-
other, by the homoclinic skeleton of the model. Two cases
are clearly distinguished according to whether the dynamics
change to either a canard-mediated mechanism or a Hopf-
induced one.

If we pay attention to the transition towards a canard-
induced spike-adding, the homoclinic bifurcation curve itself
becomes a sharp frontier with the region governed by the
chaotic machinery. Indeed, if we consider any horizontal line
in the parameter space such that it crosses the homoclinic
curve, as the segment R1 in Fig. 2, the passage through the
homoclinic curve is clearly that event which marks the change
of behavior. The spike-adding cascade showed in Fig. 3 illus-
trates this fact. Moving from right to left, one can observe
how the chaotic windows (see Section II A) are replaced by
instability/bistability windows (see II B) as mechanisms pro-
ducing the spike-adding transitions, but once the homoclinic
curve is crossed, (macro-)chaos is no longer observed.

The transformation of discontinuous spike-addings into
Hopf-induced ones is quite different. To describe how dy-
namics evolves, we have selected a short segment in the pa-
rameter space fixing I = 4.1 and b ∈ [2.58,2.6]. We denote by
P1 and P2 the left and right ends, respectively, of the seg-
ment shown in Fig. 2. The transition process starts when
the segment crosses an ultimate fan of bifurcation curves of
periodic orbits arising from the type-C inclination-flip (IF)
codimension-two homoclinic bifurcation point located in the
fold of the homoclinic curve (see the theoretical unfolding27

and the numerically computed bifurcation curves displayed at
the bottom-right panel in Fig. 11). As showed at top pan-
els of Fig. 11, for P1 and P2 we observe a fold/Hopf and
a fold/hom bursting, respectively. Some of the changes that
occur in the attractor can be seen in the IBD bifurcation di-
agram (central panel of Fig. 11). By decreasing parameter
b, a bistability zone is detected, which leads to the gaining
of a new spike. It is formed as a consequence of the passing
through fold and period-doubling bifurcation curves. Shortly
after crossing this bistability zone, there is an abrupt change
in the number of spikes that precedes the entrance into the
domain of Hopf-induced spike-adding (see the green vertical
band in the IBD). The time series and the orbit exhibited at the
bottom-left panel in Fig. 11 show a phenomenon of intermit-
tency where the fold/Hopf and the fold/Hom bursting alter-
nate (the sum of the spikes of both types explains the abrupt
jump observed in the IBD). We can understand this peculiar
behavior appealing to the fast-slow decomposition. Along the
transition from fold/Hopf to fold/hom bursting (see Fig. 1),
the 2D fast manifold of limit cycles becomes tangent to the
1D slow manifold of equilibria. Close to this tangency, orbits
can show the alternation between the two types of bursting,
exhibiting phases where the orbit follows the fast manifold up
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FIG. 11. Crossing the bridge between Hopf-induced (top-left) and
chaos-induced (top-right) spike-adding. Orbits correspond to points
P1 and P2, respectively, of Fig. 2. Inter-spike bifurcation diagram
for I = 4.1 and b ∈ [2.58,2.6] is provided in central panel, where the
green vertical band separates the two types of spike-adding. Tran-
sition through the green band is illustrated at the bottom-left panel.
Bottom-right panel provides de location of P1 and P2, and also the
numerically calculated bifurcation curves and the theoretical unfold-
ing of a type-C inclination-flip.

to the Hopf bifurcation point and phases where orbits behave
as if the fast manifold were split. The presence of the pen-
cils of bifurcations that converge to the IF point helps in this
mixed behavior.
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III. DISCUSSION

Throughout the previous section we have provided a uni-
fied perspective of several of the spike-adding mechanisms
that are unfolded in the Hindmarsh-Rose model and the tran-
sitions that occur between the different types. Panel (b) in
Figure 12 provides a schematic illustration of the catalogue.
Specifically, we have identified

• Chaos-induced spike-adding: (translucent red region)
discontinuous spike-adding formed by isolas of burst-
ing periodic orbits with cascades of period-doubling bi-
furcations leading to chaos. This case corresponds to
the chaotic scenario studied by Terman20.

• Canard-induced continuous spike-adding: (translu-
cent dark-green region) continuous spike-adding cre-
ated in hysteresis areas limited by fold bifurcations of
periodic orbits and canards being involved in the gene-
sis of extra spikes.

• Hopf-induced continuous spike-adding: (translucent
pale-green region) continuous spike-adding with a Hopf
bifurcation being involved in the processes generating
new extra spikes (see also Appendix).

• Transition spike-adding states: there are three pos-
sible transitions. Translucent light-green regions in
Fig. 12 correspond to the mixing of Hopf-induced and
canard-induced continuous spike-addings near a cusp
bifurcation where the two fold bifurcations of periodic
orbits collapse. On the other hand, the black curve (ho-
moclinic) marks the transitions from chaos-induced to
canard-induced spike-adding. The change from chaos-
to Hopf-induced spike-adding is also evident: it in-
volves bifurcation curves of periodic orbits arising from
codimension-two homoclinic bifurcations.

At panel (a) in Fig. 12 one can see how the isolas of periodic
orbits and the chaotic region are located to the right of the
vertical line that marks the passage through the homoclinic
bifurcation curves.

Fig. 12 also shows the vertical line (b = 2.67434) that, ac-
cording to the fast-slow dynamics and the Izhikevich classifi-
cation, corresponds to the passage from fold/hom to fold/Hopf
bursting. Namely, that vertical line is tangent to the homo-
clinic bifurcation curve for the fast subsystem at the point
where the curve folds in the b-direction. Of course, this the-
oretical frontier works the better as smaller the value of ε is
and, in fact, already for ε = 0.01 we observe how the Izhike-
vich criterion is no longer applicable in some regions (as ex-
pected).

Paying attention to the cascade of bifurcations shown at
panel (a) of Fig. 12, it is still observed how on the left
side of the vertical line of homoclinic folding, the canards
are involved in the genesis of new spikes. That is the case
throughout the entire vertical pale-pink band, limited to the
left side by a cusp bifurcation of periodic orbits. On this
complete band, the Izhikevich analysis classifies the burst-
ing as fold/Hopf, but this only manifests for smaller values

I

b2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
1.5

2

2.5

3

3.5

4

4.5

 

 

Discontinuous Spike-Adding

(chaos-induced Spike-Adding)

Canard-induced 
continuous Spike-Adding

Hopf-induced 
continuous 
Spike-Adding

Mixed: 
canard-induced and 
Hopf-induced

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1b

|| 
. |

| 2

chaos-induced 

spike-adding

homoclinic

bifurcation (ε=0.01)

fold/homfold/Hopf

Canard-induced 

continuous spike-adding

homoclinic folding 
for the limit case
(ε=0)

      2.75

cusp bifurcation

Canard-ind

continuous

furcation

Hopf-induced 

continuous 

spike-adding

(a)

(b)

(a1)

homoclinic bifurcation

chaotic behaviour

3 3.5

Fast-slow 
decomposition fails
in the classification

b=2.6

FIG. 12. (a) Extra details in the bifurcation diagram for the continua-
tion of the periodic orbit through the cascade of spike-addings along
segment R1 (see Fig. 2). Compare with bottom panel of Fig. 3. (b)
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region with discontinuous spike-adding and the other regions.

of parameter b (on the left-side of the cusp bifurcation line,
to be precise). The reason lies in the fact that for a higher
dimensional parameter space, like in a three-dimensional bi-
furcation diagram, including ε , the transition bifurcation sur-
faces exhibit some inclination, that is, they are not completely
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vertical (see recent Ref. 6 for a complete three dimensional
analysis). Panel (a1) in Figure 12 illustrates one example of
the limits with Izhikevich’s classification. Superimposed on
the fast-slow decomposition, a bursting orbit is shown. Fast-
slow decomposition is fold/Hopf type, but bursting is clearly
of fold/hom type. In any case this fact is what is expected as
this useful classification is based on the limit cases.

IV. CONCLUSIONS

Neural communication takes place through action poten-
tials or spikes. In addition, it is when the spikes travel in
packets that the exchange of information is more fluent and
efficient. The number and tempo of the spikes in each burst
are main ingredients to build neural messages. These are the
reasons that justify the importance of the analysis of the spike-
adding mechanisms. In this paper we deal with bursting in
single-neurons activity. Among the most popular models, we
chose the Hindmarsh-Rose, as it is the simplest one that is able
to exhibit bursting behavior. We show and classify the dif-
ferent mechanisms of spike-adding: chaos-induced, canard-
induced and Hopf-induced. Besides, we study the transition
mechanisms from one type of spike-adding process to another.
This classification leads to a map where frontiers are some-
times clear and other times fuzzy. We have identified the
key ingredients of each spike-adding process and transitions
among them. For further research, it would be interesting to
explore whether this classification is valid in other models ex-
hibiting fold/hom and fold/Hopf bursting, where we honestly
believe that is the case. Particularly, it would be interesting to
know if different transition dynamics along frontiers are pos-
sible. More challenging, Izhikevich’s catalogue for the types
of bursting is extensive and one must wonder which spike-
adding mechanisms are available in each case and also which
are the transitional dynamics.
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APPENDIX

In this Appendix we just show analytically with a simple
example how the distance between the saddle-node bifurca-
tions of equilibria in the fast subsystem of the HR model al-
lows the increment of the number of spikes, and so, it gener-
ates the Hopf-induced spike-adding process.

Let us consider the following family of vector fields:




x′ = −zx−ωy−Lx(x2 + y2),
y′ = ωx− zy−Ly(x2 + y2),
z′ = ε.

(2)

This is a toy-model for a Hopf bifurcation, where the bifurca-
tion parameter z varies with respect to time at a constant ratio
ε , which we assume to be a small parameter (ε � 1). Coeffi-
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cient L corresponds to the first Lyapunov coefficient30 and we
assume that L > 0.

Using polar coordinates x = r cosθ , y = r sinθ in (2), we
get:





r′ = −zr−Lr3,
θ ′ = ω,
z′ = ε.

(3)

Let

ϕ(t,r0,θ0,z0) =(
ϕr(t,r0,θ0,z0),ϕθ (t,r0,θ0,z0),ϕz(t,r0,θ0,z0)

)

be the flow defined by equations (3). Clearly,

ϕθ (t,r0,θ0,z0) = θ0 +ωt,
ϕz(t,r0,θ0,z0) = z0 + εt.

Fixing time t = 2π
ω and angle θ0 = 0 we get the first return

map from the half-plane θ0 = 0 on itself. Namely,

P(r0,z0) =
(
Pr(r0,z0),Pz(r0,z0)

)

with

Pr(r0,z0) = ϕr
(

2π
ω

,r0,0,z0

)

and

Pz(r0,z0) = ϕz
(

2π
ω

,r0,0,z0

)
= z0 +

2πε
ω

.

In what follows, we assume that

(r0,z0) ∈ [0,R]×{−δ},

for some δ > 0 and R >
√

δ
R , and define

(rn,zn) = ((Pr)n(r0,z0),(Pz)n(r0,z0)).

Constant δ stands for the maximum allowed change in pa-
rameter z. We say that the orbit of the point (r0,0,z0) has N
spikes if N is the maximum number of iterations of the first re-
turn map which remain in the rectangle [0,R]× [−δ ,δ ]. Since

R >
√

δ
R , it follows by construction that rn < R for all n ∈ N.

On the other hand

zn =−δ +
2πε n

ω
,

and, in order to have zn > δ , the condition

n >
2δω
2πε

,

must be fulfilled. We obtain the expected results, that is, the
number n of allowed spikes increases as either δ or the rota-
tion speed ω increase. Bearing in mind the Hindmarsh-Rose
model, the number of spikes in the fold/Hopf bursting in-
creases as the distance (measured in the z-direction) between
the two saddle-node bifurcation points in the fast subsystem
(2δ in the toy model) increases.
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4.5 Paper V

The goal of this article [7] is the study of the dynamical mechanisms underlying patho-
logical phenomena in cardiac activity. As in the case of neurons, the activity of the heart
presents different time-scales and exhibits oscillatory phenomena, which is of spiking type
in healthy individuals, and bursting-like in pathological cases. Due to these elements
in common, we can use sweeping and continuation techniques to study the dynamics as
a function of parameters. We considered a simplified version of the Luo-Rudy cardiac
model, which consists of the following system of ODE’s:





CmV̇ = −(ICa + IK) + Isti

ḟ =
f∞ − f
τf

ẋ =
x∞ − x
τx

with the ionic currents

ICa = GCad∞(V )f(V − ECa); IK = GKx(V − EK)

being the steady state functions

f∞(V ) =
1

1 + exp
(
V−Ef

θf

) , x∞(V ) =
1

1 + exp
(
Ex−V
θx

) , d∞(V ) =
1

1 + exp
(
Ed−V
θd

)

The variable V represents the transmembrane potential of the heart, and f and x
are auxiliar variables, corresponding to inactivation gates of the ionic currens. We study
the dynamics of the system in the planes (GK , GCa) and (GK , Cm), fixing the rest of the
parameters to biophysically plausible values. Our focus is the generation of arrhytmogenic
early afterdepolarizations (EADs), which consist of an elongation of the plateau phase of
the normal beat accompanied by small oscillations. EADs are a pathological behaviour
that can lead to sudden cardiac death.

We consider a 1 fast, 2 slow variable decomposition to analyse the dynamics of the
model, which allows us to relate the evolution of the solutions with the critical manifold
of the system. We employ sweeping techniques to generate maps in the (GK , GCa) and
(GK , Cm) planes that allow us to identify parametric regions associated with healthy beats
and abnormal beats with one or more extra oscillations. We considered a one-parameter
cut and investigated the bifurcation diagram of the system. The regions corresponding to
the appearance of EADs are organised by isolas of periodic orbits, each isola corresponding
to an abnormal beat with a different number of extra oscillations. The isolas have stable
and unstable section, and the stable sections delimite the appearance of the corresponding
pathological beats.
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Abstract: In this study, we teased out the dynamical mechanisms underlying the generation
of arrhythmogenic early afterdepolarizations (EADs) in a three-variable model of a mammalian
ventricular cell. Based on recently published studies, we consider a 1-fast, 2-slow variable decomposition
of the system describing the cellular action potential. We use sweeping techniques, such as the
spike-counting method, and bifurcation and continuation methods to identify parametric regions
with EADs. We show the existence of isolas of periodic orbits organizing the different EAD patterns
and we provide a preliminary classification of our fast–slow decomposition according to the involved
dynamical phenomena. This investigation represents a basis for further studies into the organization
of EAD patterns in the parameter space and the involved bifurcations.

Keywords: cardiac dynamics; early afterdepolarizations (EADs); bifurcations; isolas;
fast–slow decomposition
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1. Introduction

In a healthy heart, the sinoatrial node sends out an electrical impulse, which spreads cell to
cell throughout the heart, activating all cardiomyocytes to produce an electrical response called the
action potential (AP). Upon being stimulated, cardiomyocytes in the lower chambers of the heart,
the ventricles, suddenly increase their transmembrane voltage (depolarization). This increase is
followed by a small partial voltage decrease (transient repolarization) and a prolonged plateau phase
where voltage remains approximately constant. In the final part of the AP, transmembrane voltage
decreases (repolarization) while returning to the resting potential level, which is maintained until
receiving the next stimulus.

Under some circumstances, the normal sequence of AP phases can be reversed due to inward
currents raising the transmembrane voltage during the plateau or repolarization phases of the
AP, producing so-called phase-2 or phase-3 early afterdepolarizations (EADs). Drug side effects,
ion channel dysfunction or oxidative stress, among others, can lead to the genesis of EADs [1–3].
In heart failure and genetic syndromes, EADs have been documented to be an important cause for
lethal ventricular arrhythmias [4–6], but further knowledge is required to understand the mechanisms
underlying EAD generation and the relationship between these cellular abnormalities and the
occurrence of arrhythmias at tissue and whole-organ level that could eventually lead to sudden
cardiac death.

Mathematics 2020, 8, 880; doi:10.3390/math8060880 www.mdpi.com/journal/mathematics
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Computational models of cardiac electrical activity have greatly contributed to shed light
into varied cardiac phenomena, including EADs. Multiple models of mammalian ventricular
cardiomyocytes have been used in the literature. Some of these are highly detailed, complex models
with tens of state variables and hundreds of parameters, while there are other simpler models
with just a few variables and parameters. Whereas complex (high-dimensional) models allow for
greater realism in reproducing experimental observations and facilitating biophysical interpretation,
simple (low-dimensional) models aid in isolating the dynamical mechanisms underlying a particular
phenomenon and in performing a comprehensive theoretical study. In the present work, we use a
low-dimensional approach based on a reduced three-variable cardiomyocyte model.

In 1991, Luo and Rudy [7] introduced a mathematical model of the membrane AP of a mammalian
ventricular cell based on experimental data recently available at that time. This model, differently from
subsequent models developed by the same authors, is called “passive” because all ionic concentrations,
except for intracellular calcium, remain unchanged rather than varying dynamically over time. Due to
its simple formulation and its ability to represent phenomena involving both depolarization and
repolarization of ventricular cell, this model, either as such or with some simplifications, has been
extensively used. In [8], a reduction in the number of variables of the Luo–Rudy model was proposed
to investigate the mechanisms of EADs when decreasing the stimulation frequency. Initially, a model
able to produce EADs was considered that contained three ionic currents, namely a fast Na current,
an intermediate time-scale Ca current, and a slow K current. Later, the fast Na current was discarded
due to it having little effect on EAD generation, as it is activated mostly during the AP upstroke and is
practically null during the plateau and repolarization AP phases. In our analysis, we use this reduced
model to simplify the number of state variables at its maximum and, thus, facilitate a theoretical study.

From a mathematical point of view, this is a fast–slow dynamical system with multi-timescale
phenomena. A fast–slow analysis of a reduced version of the Luo–Rudy model is presented in [8],
considering a system with one slow and two or three fast variables. In that paper, the presence
of a subcritical Poincaré–Andronov–Hopf bifurcation is shown as a signature of pseudo-plateau
bursting. Similar analyses were published based on mathematical neuron models [9–11], where the
classification of bursting models and the generation of new oscillations (spikes) were related, among
others, with Poincaré–Andronov–Hopf and homoclinic bifurcations in the fast subsystem of two
variables (dimension 2). While this approach has been successfully used in a variety of cardiac
studies to investigate the causes for the presence or absence of EADs, it has recently been shown
to fail in explaining the lack of certain types of EADs [12]. Considering the reduced three-variable
version of the Luo–Rudy model presented in [8], a 1-fast, 2-slow decomposition is proposed [12,13] to
provide more insight into the facilitation or inhibition of EADs as a function of the pacing frequency or
pharmacological interventions. In this paper, we use this approach for the fast–slow decomposition and
we characterize dynamical behaviors by introducing a sweeping technique, namely the spike-counting
method. Besides, by using continuation techniques, we describe some bifurcations of the system and
we show, for the first time to the best of our knowledge, the presence of isolas of families of periodic
orbits in the reduced Luo–Rudy model.

The paper is organized as follows. In Section 2, the reduced model used to describe the electrical
behavior of a mammalian ventricular cardiomyocyte is presented. In Section 3, the dynamical analysis
performed to identify parametric regions with EADs and generate associated bifurcation diagrams
is described. In Section 4, the discussion and conclusions of the study as well as recapitulating
classification figures regarding EAD generation are presented.

2. The Reduced Luo–Rudy Mammalian Ventricular Cell Model

Following a Hodgkin and Huxley formalism [14], Luo and Rudy proposed a mathematical model
of a mammalian ventricular cell (LR91) [7]. The rate of change of the transmembrane potential (V) is
given by

dV/dt = −(1/Cm)(Ii + Isti)
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where Cm is the membrane capacitance, in this study set at 0.5 µF/cm2, as in [13], and subsequently
varied to investigate its role in facilitating the generation of EADs. In the above equation, Isti is
an external stimulus current and Ii is the sum of the ionic currents in the cell. All ionic currents
were computed for a membrane area of 1cm2. Six ionic currents were defined in the LR91 model:
INa, a fast sodium current; ICa, a slow inward current; IK, a time-dependent potassium current; IK1,
a time-independent potassium current; IKp, a plateau potassium current; and Ib, a time-independent
background current.

Since here we focus on EAD generation, we follow the approach proposed in [8] and we discard
the fast INa current for the reduced version of the LR91 model. Although some studies have described
a role for the sodium current in the generation of EADs [2,3], it should be noted that this current
has two components, namely the fast sodium current and the late sodium current. While the late
sodium current flows throughout the AP plateau and its involvement in EAD generation has been
well documented, the fast sodium current contributes to the AP depolarization and has a more limited
contribution to EADs. In the reduced model used in this work, only the fast sodium current is included
and, thus, we discard it based on its reduced contribution to the investigated phenomenon. The other
two ionic currents in the reduced model are: ICa = GCa · d · f · (V − ECa), which is a calcium current
with an activation gating variable d and an inactivation gating variable f ; and IK = GK · x · xi · (V− EK),
which is a time-dependent potassium current with a time-dependent activation gating variable x and
a time-independent inactivation gating variable xi set to one for simplification. The reversal potential
of calcium was set at ECa = 100mV, rather than being time-dependent as in the LR91 model.

The values of the gating variables used to define the ionic currents are obtained as the solution of
a coupled system of nonlinear ordinary differential equations (ODEs) of the form dy/dt = (y∞(V)−
y)/τy(V), where y represents any gating variable, τy is its time constant, and y∞ is the steady-state
value of y [7].

An additional simplification to the four-variable system (V, d, f , and x) proposed in [8] was later
described by Kügler [15]. The gating variable d was replaced with its steady-state function d∞(V) and
the time-constant functions τf (V) and τx(V) were assumed to be constant, thus being represented by
τf and τx.

With all these simplifications, the three-variable model used here [12] was described by the
following ODE system:





Cm
d V
d t

= −(ICa + IK) + Isti ≡ h(V, f , x),

d f
d t

=
f∞(V)− f

τf
≡ g1(V, f ),

d x
d t

=
x∞(V)− x

τx
≡ g2(V, x),

(1)

with the inward ionic calcium current ICa (with the calcium channel conductance GCa and the dynamic
inactivation variable f ) and the outward ionic potassium current IK (with the potassium channel
conductance GK and the dynamic activation variable x) defined by:

ICa = GCa · d∞(V) · f · (V − ECa); IK = GK · x · (V − EK). (2)

The steady-state functions were given by:

f∞(V) =
1

1 + e
V−E f

θ f

, x∞(V) =
1

1 + e
Ex−V

θx

, d∞(V) =
1

1 + e
Ed−V

θd

.
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The fixed parameter values used in this study, unless otherwise stated, were:

Cm = 0.5µF/cm2, τf = 80 ms, τx = 300 ms, GCa = 0.025 mS/cm2, ECa = 100 mV,
GK = 0.04 mS/cm2, EK = −80 mV, E f = −20 mV, θ f = 8.6 mV, Ex = −40 mV,
θx = 5 mV, Ed = −35 mV, θd = 6.24 mV.

It should to be noted that, whereas the LR91 model well represents the behavior of a ventricular
cardiomyocyte with constant resting membrane potential during Phase 4, the reduced model described
above presents a Phase 4 with slowly increasing transmembrane potential. Thus, an external stimulus
is required to depolarize the AP in the LR91 model, but the AP depolarizes spontaneously when
transmembrane potential reaches a threshold in the case of the reduced model. Consequently, Isti = 0
in the above equations for the three-variable model.

3. Dynamical Study

We showed that the reduced version of the LR91 model described above presents a behavior
comparable to that of typical spiking-bursting activity [9–11]. To achieve a better understanding
of the model dynamics, we performed a detailed numerical analysis using both a spike-counting
technique and numerical continuation to detect the main bifurcations. Numerical simulations were
performed using a variable-stepsize variable-order Taylor series method (software TIDES (https:
//sourceforge.net/projects/tidesodes/) [16,17]), which provides a highly accurate numerical ODE
solver, using TOL = 10−12 as error tolerance.

3.1. Spike-Counting Sweeping

When EADs are generated, extra spikes can be seen in the plateau of the AP. Figure 1 shows a
normal beat with no EADs, a beat with one EAD and a beat with several EADs (more than 2 spikes).

The spike-counting technique consists of detecting the number of spikes of the limit cycles of
the system, when these exist [18]. Regions of parameter values with the same number of spikes per
beat are represented with the same color. This allows appreciating different bands in the parameter
space, which characterize the structure of the model. The detection of the number of spikes per orbit is
performed by computing all relative maxima and minima and by counting the spikes where the relative
difference between the maxima and minima in the voltage variable is higher than a threshold. Here,
the threshold is set at 10−2 so as not to include very small oscillations that occur in action potentials
such as the one represented on the right panel of Figure 1. The number of counted spikes is clearly
sensitive to the selection of the threshold value, but the global behavior in terms of the occurrence of
EADs is generally well captured, as all main voltage changes during the AP plateau are detected.

0 1000 2000 1000 2000 1000 2000 3000
-80

-60

-40

-20

0

20

40

60

0 0

EAD

EADs

normal 
beat

2 spikes
1 spike n spikes

time (ms) time (ms)time (ms)

V 
(m

V)

Figure 1. Normal beat and beats with one or more EADs.

In our analysis, we used the conductances of the calcium and potassium currents, GK and
GCa, as the main set of parameters to investigate their involvement in EAD occurrence. We also
investigated variations in the cell capacitance, Cm. This represents a further step from previous studies
that considered variations only in GCa [8] or both GCa and GK [12] to determine the presence of
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EADs. While using a reduced model facilitates theoretical understanding on the mechanisms for EAD
generation, future works should be conducted with more complex and more realistic cardiomyocyte
models that allow meaningful interpretations regarding the parameters involved in the occurrence
of EADs.

Figure 2 shows the results of the spike-counting technique for the biparametric plane (GK, GCa),
with the upper left inset presenting a magnification of a specific area. Colors indicate different cellular
behaviors. Darkest blue denotes cases where no beats are generated. Slightly lighter blue corresponds
to normal beats without EADs, an example of which is illustrated in Figure 3b for the parameter values
of Point I. In the region of Point II, the periodic orbit shows one EAD, as exemplified in Figure 3d.
When the parameters move to the lightest blue and red regions, more EADs are present, as shown
in Figure 3f for Point III and in Figure 4c,f for Points IV and V, respectively. In particular, Point III
corresponds to the default values GCa = 0.025 and GK = 0.04, for which EADs are present. Based on
the different cellular behaviors indicated by the color band structure in Figure 2, further analyses
were performed for the default value of GCa = 0.025 while varying GK along the horizontal red line,
as described in the following sections.
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Figure 2. Regions of the spike-counting analysis for the biparametric plane (GK , GCa). In the upper
left inset, a magnification of a specific region is shown. Different colors mark different numbers of
spikes in the attracting orbit. A triangular shape region delimits the regions of beats with and without
EADs. Point I corresponds to a normal beat without EADs (illustrated in Figure 3b). In the region of
Point II, the periodic orbit shows one EAD (illustrated in Figure 3d). More EADs are present when
the parameters move to the lightest blue and red regions (illustrated in Figure 3f for Point III and in
Figure 4c,f for Points IV and V, respectively). The horizontal red dashed line corresponds to the default
value GCa = 0.025.
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Figure 3. Analysis of cases I, II, and III on the line GCa = 0.025. Plots (a,c,e): the critical manifold
Mcritical (orange) is shown with the attracting and repelling sheets separated by the fold lines, F+ and
F− (red). The periodic orbit is shown in blue. As the bifurcation parameter Gk is varied, the periodic
orbit and the number of EADs change depending on the position of the equilibrium point (black),
the folded-node point (magenta), and the stable manifold of the equilibrium (green). Plots (b,d,f):
the temporal evolution in milliseconds of the variable V of the periodic orbit is shown.
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Figure 4. Analysis of cases IV and V on the line GCa = 0.025. Plots (a,b,d,e): the critical manifold
Mcritical (orange) is shown with the attracting and repelling sheets separated by the fold lines, F+ and
F− (red). The periodic orbit is shown in blue. As the bifurcation parameter Gk is varied, the periodic
orbit and the number of EADs change depending on the position of the equilibrium point (black),
the folded-node point (magenta) and the stable manifold of the equilibrium (green). The local
two-dimensional unstable manifold Wu

loc(eq) and the unstable subspace Eu(eq) of the equilibrium
point are plotted. Plots (c,f): the temporal evolution in milliseconds of the variable V of the periodic
orbit is shown. In this case the periodic orbit shows a longer activation time because of AP plateau
prolongation and there is a remarkable increment in the number of EADs per beat.
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Figure 5 shows additional spike-counting results for the biparametric (GK, Cm) plane, with the
horizontal red line corresponding to the default value Cm = 0.5 (and GCa = 0.025). In this case as well,
color bands can be observed, rendering similar structures to those shown for the (GK, GCa) plane in
Figure 2. Based on the results shown in the two figures, bounded regions in the global parameter space
can be expected in the characterization of EAD dynamics.
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Figure 5. Regions of the spike-counting analysis for the biparametric plane (GK , Cm). Different colors
mark different numbers of spikes in the attracting orbit. A similar structure to that shown in Figure 2
can be observed. The red dashed line represents the value of Cm = 0.5, studied below in detail.

3.2. Fast–Slow Analysis

The reduced version of the LR91 model used in this study is a fast–slow system, since its state
variables change at different time scales. When analyzing a fast–slow system, it is of major relevance
to investigate the bifurcation diagrams of the limit cases (when the parameters responsible for the
difference in time scales are considered to be zero) [10]. This approach uses geometric singular
perturbation methods and allows (partially) explaining the dynamics when such parameters are small
enough (see [19] for a review and [9] for the basic theory and for classification of bursting mechanisms).

The default values of the time constant parameters characterizing the state variables f and x in
the reduced LR91 model are τf = 80ms and τx = 300 ms. An estimate of the time constant for the
state variable V can be obtained by τV = Cm

GCa+Gk
= 7.7 ms [12]. This means that V is the fastest state

variable and x is the slowest one, while the state variable f can be considered as a fast or a slow one.
In [8], the four-variable (V, d, f , and x) system was decomposed into a fast three-variable (V, d, and f )
subsystem and a slow one-variable (x) subsystem, thus including f as a fast variable. In [15], a simpler
three-variable (V, f , x) model was considered, as d was replaced with its steady-state function d∞(V).
The fast subsystem was defined to contain two variables (V and f ), thus again taking f as a fast state
variable. On this basis, a fast two-variable and a slow one-variable subsystems were analyzed and their
information was combined to characterize the dynamics of the full three-variable system. By fixing x,
the model analysis provides two invariant objects: a curve of equilibrium points and a manifold of
limit cycles. The main issue with this approach is that it does not explain some changes in the system,
as illustrated in [12]. To solve this issue, some studies have decomposed the same three-variable
system into a fast one-variable (V) and a slow two-variable ( f and x) subsystems [12,13]. A systematic
analysis of the geometric singular perturbation methods for 1-fast, 2-slow variables is given in [20,21].
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In this study, we considered, on the one hand, the reduced LR91 model (Equation (1)) using the
fast time scale τ = t/Cm:

dV
dτ

= h(V, f , x),
d f
dτ

= ε · g1(V, f ),
dx
dτ

= ε · g2(V, x). (3)

where ε is a parameter that takes small values (Cm/τf , Cm/τx) and h(V, f , x) = −(ICa + IK), as no
external stimulus was considered (Isti = 0), as in [12,13]. When ε decreases to zero (ε −→ 0), the system
described in Equation (3) defines orbits that converge during fast dynamics to solutions of the fast
subsystem or layer equations given by:

dV
dτ

= h(V, f , x),
d f
dτ

= 0,
dx
dτ

= 0. (4)

On the other hand, when the orbits have slow dynamics, the fast variable moves so rapidly that
it can be considered to have already reached steady-state. Thus, changing to the time scale t̃ = τ/ε

and taking the limit case, the orbits converge to solutions of the differential algebraic equation (DAE)
system, called the slow-flow system, given by:

0 = h(V, f , x),
d f
dt̃

= g1(V, f ),
dx
dt̃

= g2(V, x). (5)

The solutions of Equation (5) evolve on the manifold given by h(V, f , x) = 0, which is called the
critical manifold and is denoted byMcritical. Besides, this gives the manifold where the equilibria of
the fast subsystem are. It follows from Fenichel theory [22] that this manifold perturbs to invariant
manifolds that exist for small enough ε in the full system.

In the following, a detailed investigation of the geometry of the bursting orbit dynamics for the
reduced LR91 model, and in particular the orbits for the set of parameters corresponding to Points I–V
in Figure 2, is performed. Taking the model equations defined by Equation (1), the critical manifold is
given by the cubic-shaped surface:

Mcritical :=
{
(V, f , x)

∣∣ h(V, f , x) = 0
}
→ Mcritical =

{
(V, f , x)

∣∣∣∣ f = − GK x (V − EK)

GCa d∞(V) (V − ECa)

}
. (6)

Figure 3 shows the outer sheets of the surface, which are attracting ones, and the middle sheet,
which is a repelling one. The different sheets are separated by curves F± corresponding to fold
bifurcations of the fast subsystem:

F± =

{
(V, f , x) ∈ Mcritical

∣∣∣∣
∂h(V, f , x)

∂V
= 0,

∂2h(V, f , x)
∂2V

6= 0
}

. (7)

From the analysis of limit cases and Fenichel theory, the solutions of the global system were
found to evolve in the slow epochs close to one of the attracting sheets of the critical manifold.
The evolution on the attracting sheets was found to give the stable hyperpolarized and stable
depolarized steady-states. Close to the fold bifurcations, the orbits quickly fell down to the other
attracting sheet. The rapid transitions between the attracting sheets were approximated by solutions
of the fast one-variable subsystem in Equation (4).

As described above, the equations of the slow motion on the critical manifold are given by
Equation (5), where differential equations describe the motions of the variables f and x, whereas the
fast variable V is implicitly described by the first algebraic equation in Equation (5). Through several
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manipulations (see [12,13,19] for details), the slow subsystem can be transformed into the so-called
desingularized system:

dV
dtd

=
∂ h
∂ f

g1 +
∂ h
∂ x

g2,

dx
dtd

= − ∂h
∂V

g2.
(8)

Folded singularities are equilibria of the desingularized system only, but not of the slow subsystem
in Equation (5) or the initial model in Equation (1). Thus, they lie on a fold curve and satisfy:

FN =

{
(V, f , x) ∈ F±

∣∣∣∣
∂ h
∂ f

g1 +
∂ h
∂ x

g2 = 0
}

. (9)

A study of their linear stability suggested they are folded-node equilibria in this system.
These special points give a route to the solutions of the slow subsystem to cross the folds from
an attracting sheet and to move some time on the repelling sheet. Therefore, these points may generate
the so-called singular canards (see [19,23] for details).

The existence of canard orbits have relevant consequences in many different systems, as they
allow uncovering mechanisms of sudden changes. For instance, they were linked to the spike-adding
phenomena in the Hindmarsh-Rose neuron model [24,25]. In a reduced LR91 model, canard orbits
were shown to organize the first EADs generated on the orbits in phase space [12]. This is well
explained in references [12,13] and therefore here we focus on the different geometric characterizations
of the periodic orbits of the system showing where EADs are produced by the canard orbits and where
different phenomena are also present.

In Figure 3, the fast–slow geometry is described for the orbits with labels I, II, and III in Figure 2
on the parametric line GCa = 0.025. The critical manifold is shown in orange, with the attracting
and repelling sheets separated by the fold lines, F+ and F−, in red and with the periodic orbits in
blue. The temporal evolution of the variable V of the periodic orbit is shown on the right panels.
It can be observed that in Case I for GK = 0.05 the orbit presents a normal beat without any EADs
(Figure 3a,b). In this case, the orbit presents the “nominal behavior”, remaining most of the time on
the critical manifold of the slow motion and fast transitioning between the attracting sheets close
to the fold lines. Note that the orbit is far from the folded-node singular point in magenta and,
therefore, there is no canard orbit. By moving forward on the line GCa = 0.025 towards Point II
corresponding to GK = 0.045, it can be observed that the orbit has one EAD (Figure 3c,d). In this
case, the orbit passes near the folded-node singular point and this allows the orbit to make a loop
on the repelling sheet before progressing to the other attracting sheet (see [13]). By further moving
on the parametric line towards Point III corresponding to GK = 0.04, more EADs are generated by
the maximal canards (Figure 3e,f). Maximal canards are given by the intersections of the depolarized
attracting and the repelling sheets of the slow manifold of the system and extended by the flow
(for more details, see [12,13,26]). The equilibrium point, which is a saddle-node of type (1,2) with
eigenvalues λ1 = −3.91295, λ2 = 0.0928806, and λ3 = 4.27207, is attracting the orbit along the stable
manifold Ws(eq) of the equilibrium (in green) at the same time that the canard orbits generate new
EADs until the orbit progresses to the other attracting sheet (see inset in Figure 3e). This phenomenon
has been previously observed in other 1-fast, 2-slow variables systems [27–29].

Figure 4 shows how further variations in the bifurcation parameter Gk lead to higher numbers
of EADs as the orbit approaches the equilibrium point shown in black. The two orbits presented in
Figure 4 contain a large number of EADs, particularly the second one. The mathematical mechanism
explaining such a large number of EADs is twofold: the described canard phenomenon that gives
rise to EADs when the orbit passes near the folded-node and the stable manifold Ws(eq) of the
equilibrium that increasingly pulls the orbit closer to that point. On the orbit of Point IV corresponding
to GK = 0.035, there is a saddle-focus equilibria of type (1, 2) with eigenvalues λ1 = −0.00436926,
λ2 = 0.00861114 + 0.035771 i, and λ3 = 0.00861114 − 0.035771 i. It can be observed in Figure 4
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how such an orbit oscillates due to the canard orbits around the stable manifold of the equilibria
Ws(eq) until reaching a point close to the equilibrium point (Figure 4a,b). Consequently, the orbit
remains more time active as the orbit approaches the equilibrium and it subsequently spirals outward
(last spikes of the orbit). This can be appreciated in the two-dimensional local unstable manifold
Wu

loc(eq) of the equilibrium shown in Figure 4. In a previous study, this phenomenon was observed as
a first approximation using the unstable linear subspace Eu(eq) of the equilibrium [15]. In addition,
similar observations hold for the last investigated point, i.e., Point V corresponding to GK = 0.03345
(Figure 4d,e). As before, the first oscillations are due to the canard phenomena and the fact of
passing near the folded-node singularity, while subsequent oscillations can be explained by the
orbit approaching the saddle-focus equilibria of type (1,2) with eigenvalues λ1 = −0.0040745,
λ2 = 0.00137656 + 0.0399119 i and λ3 = 0.00137656− 0.0399119 i. It can be noted that in this case the
ratio |λ1|/Reλ2,3 = 2.95991, which makes the attracting dynamics strong and prolongs the approach
towards the equilibrium point. When the orbit is already close enough to the equilibrium point,
the unstable manifold takes control of its escape dynamics and the orbit follows this manifold. This is
illustrated in the inset of Figure 4d, which shows how the orbit spirals the two-dimensional local
unstable manifold Wu

loc(eq). The small variations in the plateau phase of the AP closely resemble
the oscillations present in pseudo-plateau bursting, whose dynamics has also been studied for 1-fast,
2-slow variables systems [21].

As the parameter GK takes decreasing values, the orbit approaches more and more the
saddle-focus equilibria. As shown above, more and more small spikes are then generated. The fact of
setting a threshold on voltage when counting the number of spikes may render the algorithm unable
to detect a small spike, as shown in Figure 6, which can be additionally influenced by the enlargement
of the orbit approaching the saddle-focus equilibria. This may generate transitions between areas of
different colors, which would seem to indicate a change in the number of spikes by one or more spikes
even if this is not actually the case.
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Figure 6. (a) Magnification of the spike-adding plot of Figure 2 using a different color scale;
and (b) some selected beats illustrating how the number of counted spikes can decrease due to the
threshold on voltage set in the spike-counting algorithm, even if the number of oscillations is not
decreased.

3.3. Isolas of Periodic Orbits

To investigate bifurcations on the parametric line GCa = 0.025, numerical analysis with
continuation techniques was performed using the software AUTO [30,31]. The main focus of this
study was to explore the presence of isolas of periodic orbits, that is, simple closed curves of families
of periodic orbits. These isolas have been described for other models, such as the Koper model of
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chemical reactions with mixed-mode oscillations (see Figure 19 in [19]). For the reduced LR91 model
used in this study, some bifurcations are identified in [12] but no isolas are shown.

Figure 7 shows the bifurcation diagram obtained with the software AUTO using Gk as the
continuation parameter on the line GCa = 0.025. The bifurcation diagram shows the maximum
(the highest peak of the orbit) and minimum (resting membrane potential) values of the transmembrane
voltage variable V for different periodic orbits corresponding to a range of given values of the
continuation parameter. The continuation of the equilibria (black thick line) and limit cycles (color lines)
are shown too. Continuous lines are stable invariants while discontinuous lines are unstable ones.
In the figure, presenting a large parametric interval Gk ∈ [0.02, 0.46], two Poincaré–Andronov–Hopf
bifurcations can be observed, a subcritical one on the left part and a supercritical one on the right part.
As Gk decreases, the stable periodic orbits generated at the supercritical Hopf bifurcation move to the
left towards the subinterval for Gk with associated EADs.

stable equilibrium
unstable equilibrium

stable limit cycle
unstable limit cycle

V max

V min

ISOLAS OF 
LIMIT CYCLES

supercritical 
Hopf bifurcation
subcritical 
Hopf bifurcation

G   (mS/cm  )K
2

V(
m

V)

Figure 7. Bifurcation diagram using Gk as the continuation parameter for a large interval of Gk values
to show the Hopf bifurcations. Black thick lines correspond to equilibria, while color lines correspond
to limit cycles. Continuous lines represent stable invariants, while discontinuous lines represent
unstable invariants.

In the subinterval with several EADs, shown in Figure 8b, families of periodic orbits can be
observed, which are plotted in different colors. These families are organized in isolas, that is,
closed family curves of periodic orbits with different numbers of oscillations in the form of EADs.
The different isolas have a section formed by stable limit cycles placed mainly on the top (and bottom,
as it is the maxima and minima) of the isola. These stable periodic orbits lose their stability at fold
bifurcations (or saddle-node bifurcations of limit cycles), as indicated in [12]. However, the stable
line is in fact a discontinuous one, as it is formed by the top subintervals of stable periodic orbits of
the different isolas, and not a continuous line with several bifurcations. The unstable parts of the
isolas shown in the figure evolve with similar maximum and minimum values, which explains why
they are so closely represented in Figure 8b, while they are formed by different limit cycles, as can be
appreciated in Figure 8a. Besides, there are fold and period-doubling bifurcations on the bifurcated
periodic orbits from the subcritical Hopf bifurcation.
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Figure 8. (b) Magnification of the bifurcation diagram of Figure 7 using Gk as the continuation
parameter on the subinterval with isolas. (a) Two orbits on two consecutive isolas (orange and
yellow ones) for the same value of the parameter Gk = 0.038. (c) A zoom of the Vmax component
of two isolas. Black thick lines correspond to equilibria, while color lines correspond to limit cycles.
Continuous lines represent stable invariants, while discontinuous lines represent unstable invariants.
Several bifurcations are pointed (fold and period-doubling bifurcations of limit cycles).

Two of the isolas in Figure 8b are represented separately in Figure 8c only for the maximum
value of voltage. Now, the fold bifurcations are clearly seen as the limit of the stable periodic orbits.
The temporal evolution of voltage along the hearbeat is represented for the two parametric values
marked with a black dot in each of the two isolas, each showing a different number of EADs. The stable
part of the isolas is located on the flat top segment, which corresponds to the observed limit cycles.
These results confirm that the reduced LR91 model exhibits isolas of periodic orbits, as reported
for other fast–slow models in the literature [19]. This can be the basis for further studies into the
organization of EAD patterns in the parameter space and the involved bifurcations.
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4. Discussion, Conclusions, and Future Work

In this study, we investigated the dynamical mechanisms for EAD generation in the reduced
LR91 mammalian ventricular cell model. As in recent studies [12,13], we considered a fast–slow
decomposition of the system with 1-fast and 2-slow variables rather than 2-fast and 1-slow variables [8],
and we analyzed the influence of maximal canard orbits. We used sweeping techniques (the
spike-counting method) as well as continuation techniques. The former allowed us to identify different
parametric regions with EADs (see a summary in Figure 9), whereas the latter was used to generate
bifurcation diagrams for the mentioned parametric regions. We showed the existence of isolas of
periodic orbits and we performed a preliminary classification of the fast–slow decomposition in various
cases according to the involved dynamical phenomena.
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Figure 9. Classification of the different dynamical behaviors of the orbits on the parametric planes
(GK , GCa) and (GK , Cm).



Mathematics 2020, 8, 880 15 of 17

As a summary, based on the dynamics on the critical manifold and near the unstable equilibrium
point, several regions in the (GK, GCa) and (GK, Cm) parametric planes associated with different
dynamical behaviors can be identified. Specifically, regarding EADs, the first region corresponds
to cases where the orbit has an EAD due to a maximal canard orbit. As more canards take part
in the process, more EADs are generated. When the orbit approaches the equilibrium, this gives
rise to additional oscillations. When the equilibrium point is of saddle-focus type, the orbit gets
closer and closer to the equilibrium and spirals following its unstable manifold. These mechanisms
create EADs corresponding to small oscillations of voltage during the course of the AP, commonly in
association with AP prolongation. Figure 9 recapitulates our classification of the dynamical behaviors
of the orbits in the (GK, GCa) and (GK, Cm) parametric planes: white is associated with no activity,
that is, the equilibria is an attractor; blue corresponds to normal beats; yellow denotes EADs created
by the maximal canards; red corresponds to the attracting behavior of the equilibria on the stable
manifold direction with AP prolongation; and maroon is for very elongated APs remaining close to
the saddle-focus equilibria. Color regions, associated with active cell status, are delimited by two Hopf
bifurcations that make the equilibrium point unstable in the middle parametric interval. As can be
noted from the two panels in Figure 9, results for both (GK, GCa) and (GK, Cm) parametric planes
render bands that allow making a parametric description of the areas in the parameter space that lead to
EAD generation. This sets the basis to investigate actions able to move the system, i.e., the mammalian
ventricular cell, to parameter regions far from areas prone to arrhythmogenic EADs. Part of our future
research in this line focuses on studying the effects of including an external stimulus in this model
and the dynamics of other, more complex and realistic cardiomyocyte models. This would allow more
meaningful interpretations regarding the parameters involved in the occurrence of EAD.

Author Contributions: Conceptualization, R.B.; software, R.B. and L.P.; formal analysis, R.B., M.A.M., L.P., and
E.P.; writing—original draft preparation, R.B. and M.A.M.; and writing—review and editing, R.B., M.A.M., L.P.,
and E.P. All authors have read and agreed to the published version of the manuscript.

Funding: R.B. and M.A.M. have been supported by the European Social Fund (EU), Aragón Government (Grant
LMP124-18 and Group E24-17R), and the University of Zaragoza-CUD (grant UZCUD2019-CIE-04). R.B. has been
supported by the Spanish Ministry of Economy and Competitiveness (grant PGC2018-096026-B-I00). M.A.M. has
been supported by the Spanish Ministry of Economy and Competitiveness (grant DPI2016-75458-R). L.P. has been
supported by the Spanish Ministry of Economy and Competitiveness (grant MTM2017-87697-P) and by Programa
de Ayudas “Severo Ochoa” of Principado de Asturias (Grant PA-18-PF-BP17-072). E.P. has been supported by
the European Research Council (Grant ERC-638284), Spanish Ministry of Economy and Competitiveness (grant
DPI2016-75458-R), European Social Fund (EU), and Aragón Government (grant LMP124-18 and Group T39-17).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EADs Early AfterDepolatizations
LR91 Luo–Rudy model (1991)
AP Action Potential

References

1. January, C.T.; Riddle, J.M. Early afterdepolarizations: Mechanism of induction and block. A role for L-type
Ca2+ current. Circ. Res. 1989, 64, 977–990. [CrossRef] [PubMed]

2. Song, Y.; Shryock, J.; Belardinelli, L. An increase of late sodium current induces delayed afterdepolarizations
and sustained triggered activity in atrial myocytes. Am. J. Physiol. Heart and Circ. Physiol. 2008, 294,
2031–2039. [CrossRef] [PubMed]

3. Xie, L.; Chen, F.; Karagueuzian, H.; Weiss, J. Oxidative-stress-induced afterdepolarizations and calmodulin
kinase II signaling. Circ. Res. 2008, 104, 79–86. [CrossRef] [PubMed]



Mathematics 2020, 8, 880 16 of 17

4. Antzelevitch, C.; Sicouri, S. Clinical Relevance of Cardiac Arrhythmias Generated by Afterdepolarizations.
Role of M Cells in the Generation of U Waves, Triggered Activity and Torsade De Pointes. J. Am. Coll. Cardiol.
1994, 23, 259–277. [CrossRef]

5. Huffaker, R.B.; Weiss, J.N.; Kogan, B. Effects of early afterdepolarizations on reentry in cardiac tissue: A
simulation study. Am. J. Physiol. Heart Circ. Physiol. 2006, 292, 3089–3102. [CrossRef] [PubMed]

6. Sato, D.; Xie, L.H.; Sovari, A.A.; Tran, D.X.; Morita, N.; Xie, F.; Karagueuzian, H.; Garfinkel, A.; Weiss, J.N.;
Qu, Z. Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. Proc. Natl.
Acad. Sci. USA 2009, 106, 2983–2988. [CrossRef] [PubMed]

7. Luo, C.; Rudy, Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and
their interaction. Circ. Res. 1991, 68, 1501–1526. [CrossRef] [PubMed]

8. Tran, D.X.; Sato, D.; Yochelis, A.; Weiss, J.N.; Garfinkel, A.; Qu, Z. Bifurcation and Chaos in a Model of
Cardiac Early Afterdepolarizations. Phys. Rev. Lett. 2009, 102, 258103. [CrossRef]

9. Rinzel, J. A Formal Classification of Bursting Mechanisms in Excitable Systems. In Mathematical Topics in
Population Biology, Morphogenesis and Neurosciences, Proceedings of the International Symposium, Kyoto, Japan,
10–15 November 1985; Teramoto, E.; Yumaguti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1987;
pp. 267–281.

10. Ermentrout, G.B.; Terman, D.H. Mathematical Foundations of Neuroscience; Springer: New York, NY, USA,
2010; Volume 35.

11. Barrio, R.; Martínez, M.A.; Serrano, S.; Shilnikov, A. Macro- and micro-chaotic structures in the
Hindmarsh–Rose model of bursting neurons. Chaos 2014, 24, 023128. [CrossRef]

12. Kügler, P.; Erhardt, A.H.; Bulelzai, M.A. Early afterdepolarizations in cardiac action potentials as mixed
mode oscillations due to a folded node singularity. PLoS ONE 2018, 13, e0209498. [CrossRef]

13. Vo, T.; Bertram, R. Why pacing frequency affects the production of early afterdepolarizations in
cardiomyocytes: An explanation revealed by slow-fast analysis of a minimal model. Phys. Rev. E 2019,
99, 052205. [CrossRef] [PubMed]

14. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction
and excitation in nerve. J. Physiol. 1952, 117, 500–544. [CrossRef] [PubMed]

15. Kügler, P. Early Afterdepolarizations with Growing Amplitudes via Delayed Subcritical Hopf Bifurcations
and Unstable Manifolds of Saddle Foci in Cardiac Action Potential Dynamics. PLoS ONE 2016, 11, e0151178.
[CrossRef]

16. Barrio, R.; Blesa, F.; Lara, M. VSVO formulation of the Taylor method for the numerical solution of ODEs.
Comput. Math. Appl. 2005, 50, 93–111. [CrossRef]

17. Abad, A.; Barrio, R.; Blesa, F.; Rodriguez, M. TIDES: A Taylor series integrator for differential equations.
ACM Trans. Math. Softw. (TOMS) 2012, 39, 5. [CrossRef]

18. Barrio, R.; Shilnikov, A. Parameter-sweeping techniques for temporal dynamics of neuronal systems: case
study of Hindmarsh-Rose model. J. Math. Neurosci. 2011, 1, 6. [CrossRef] [PubMed]

19. Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H.M.; Wechselberger, M. Mixed-Mode
Oscillations with Multiple Time Scales. SIAM Rev. 2012, 54, 211–288. [CrossRef]

20. Vo, T.; Bertram, R.; Wechselberger, M. Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated
with Pseudo-plateau Bursting. SIAM J. Appl. Dyn. Syst. 2013, 12, 789–830. [CrossRef]

21. Vo, T.; Bertram, R.; Wechselberger, M. Bifurcations of canard-induced mixed mode oscillations in a pituitary
Lactotroph model. Discret. Contin. Dyn. Syst. A 2012, 32, 2879. [CrossRef]

22. Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 1979,
31, 53–98. [CrossRef]

23. Szmolyan, P.; Wechselberger, M. Canards in R3. J. Differ. Equ. 2001, 177, 419–453. [CrossRef]
24. Desroches, M.; Kaper, T.J.; Krupa, M. Mixed-mode bursting oscillations: Dynamics created by a slow passage

through spike-adding canard explosion in a square-wave burster. Chaos 2013, 23, 046106. [CrossRef]
25. Barrio, R.; Ibáñez, S.; Pérez, L.; Serrano, S. Spike-adding structure in fold/hom bursters. Commun. Nonlinear

Sci. Numer. Simul. 2020, 83, 105100. [CrossRef]
26. Wechselberger, M. À propos de canards (Apropos canards). Trans. Amer. Math. Soc. 2012, 364, 3289–3309.

[CrossRef]
27. Guckenheimer, J. Singular Hopf Bifurcation in Systems with Two Slow Variables. SIAM J. Appl. Dyn. Syst.

2008, 7, 1355–1377. [CrossRef]



Mathematics 2020, 8, 880 17 of 17

28. Guckenheimer, J.; Meerkamp, P. Unfoldings of Singular Hopf Bifurcation. SIAM J. Appl. Dyn. Syst. 2012, 11,
1325–1359. [CrossRef]

29. Mujica, J.; Krauskopf, B.; Osinga, H.M. Tangencies Between Global Invariant Manifolds and Slow Manifolds
Near a Singular Hopf Bifurcation. SIAM J. Appl. Dyn. Syst. 2018, 17, 1395–1431. [CrossRef]

30. Doedel, E.J. AUTO: A program for the automatic bifurcation analysis of autonomous systems. Congr. Numer.
1981, 30, 265–284.

31. Doedel, E.J.; Paffenroth, R.; Champneys, A.R.; Fairgrieve, T.F.; Kuznetsov, Y.A.; Oldeman, B.E.; Sandstede, B.;
Wang, X.J. AUTO2000. Available online: http://cmvl.cs.concordia.ca/auto (accessed on 1 December 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



148 CHAPTER 4. CONTRIBUTIONS



4.6. POSTER 149

4.6 Poster

The poster entitled ”Homoclinic organization in fold/hom bursters: the Hindmarsh-Rose
model” was presented by the PhD candidate at the 5th International Conference on Math-
ematical NeuroScience (ICMNS) held in Copenhagen in June of 2019. It summarizes the
main results presented in Paper II regarding the homoclinic structure of the Hindmarsh-
Rose model in the three-dimensional space (b, I, ε).
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Homoclinic organization in fold/hom bursters:
the Hindmarsh-Rose model.
L. Péreza (lperezp@uniovi.es), R. Barriob (rbarrio@unizar.es), S. Ibáñeza (mesa@uniovi.es)
a Department of Mathematics, University of Oviedo bIUMA and Department of Applied Mathematics, University of Zaragoza

1. The Hindmarsh-Rose neuron model
The Hindmarsh-Rose (HR) model is a classic model for the behaviour of individual neurons. It mimics the main activities found in biological neurons,
namely, quiescence, spiking and bursting. The nice balance between simplicity and realism makes it a good choice to study the details of the dynamics
of bursting, which has a prominent role in neuronal communication.





ẋ = y − ax3 + bx2 + I − z → x represents the membrane potential
ẏ = c− dx2 − y → y represents the fast ionic currents
ż = ε(s(x− xrest)− z) → z represents the slow ionic currents

It is clear that the HR model is a fast-slow system (due to the presence of the parameter ε, usually set positive and very close to 0). Thus, for small
values of ε, the structure of the manifolds of equilibria and limit cycles of the fast subsystem determines a great part of the dynamics in the whole system.

2. Spike-adding
When changing a parameter, the system can go
from n spikes per burst to n + 1. This process
is known as spike-adding.

The spike-adding process of periodic orbits is
known to be related to the hysteresis phenom-
ena shown in the figure below, where a periodic
orbit is continued in one parameter. The fold
bifurcations are key features of the evolution of
periodic orbits to gain spikes.
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3. Homoclinic structure
To measure similarity of two molecules or to
combine them into one model, DeCAF first
finds theirmaximum common substructure
(MCS). To provide fast, but accurate method
for solving MCS problem, we combined Generic
Match Algorithm (GMA) [?] with backtracking
algorithm proposed by Yiqun Cao [1] [2][3] [4]
Here we present comparison of molecules with
similar and with different structures. DeCAF
scores and Tanimoto coefficient (Tc) values
are shown in red and black, respectively.

3. Homoclinic structure
For each n, the spike-adding process from n to n + 1 spikes is associated with an homoclinic bi-
furcation curve in (b, I), since the relevant bifurcation curves in the spike-adding process (namely,
folds of periodic orbits and period-doublings) are born from the codimension-two points lying in the
corresponding homoclinic curve.

Fixing all parameters up to b and I, numerical techniques allow us to calculate the typical number of
spikes in each point of the parametric plane (b, I), obtaining a map of the system. Stripes associated to
different number of spikes exhibit a complicated structure, which is closely related to the bifurcation
curves of the system, specially homoclinic bifurcation curves. When considering different values of
ε, this map is deformed. One of our goals is to study the evolution of the homoclinic structure when
ε increases.

4. Some 3D insight
We have performed a numerical study of the homoclinic structure in the parameter space (b, I, ε)
in order to visualize the evolution of the bifurcation diagram when ε increases. Some remarkable
features are the following: the shape of the homoclinic curves in (b, I) varies when ε takes different
values; the codimension-two points disappear via folding processes when ε increases; except in the
case of 1 → 2 spikes, there is a hole in the bottom part of the homoclinic surface: for intermediate
values of ε, two homoclinic bifurcation curves approach each other until they collide and form a
bigger homoclinic bifurcation curve; lastly, for bigger n, the corresponding homoclinic surface ends
for smaller values of ε. The simplification of the spikes map is associated to a simplification of the
homoclinic structure of the system.
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5. Isola structure
The homoclinic bifurcation curves have an isola
structure: their extreme points are actually
turning points where the curve has a very sharp
fold. In these folds a spike-adding process of
homoclinic orbits occurs.
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Chapter 5

Conclusions and future research

The present thesis delves into the dynamics of the Hindmarsh-Rose model. We have
adopted two different perspectives. The first one consists in studying the structure of the
bifurcation diagram in the (b, I, ε) parameter space, being ε the small parameter responsi-
ble of the fast-slow dynamics. Thus, we study what happens with the bifurcation diagram,
specially with the homoclinic structure, when the system goes far from the singular limit
(ε = 0) and the dynamics is not longer of fast-slow type. We have found relevant phe-
nomena, as the disappearance of codimension-two homoclinic bifurcation points due to
different processes and the correlation between the existence of bursting of n spikes for
fixed values of ε and the existence of the corresponding homoclinic surface for that value
of ε. The results are developed in Paper I and Paper II.

The second perspective consists of deepening into the relationship between the ho-
moclinic bifurcation structure and the spike-adding processes for biophysically plausible
(small) values of ε. We propose a global scheme that connects the different views of the
spike-adding mechanisms and explains the role of the homoclinic bifurcations. A prelim-
inary study of the Sherman model of pancreatic β-cells is provided, suggesting that our
theorical scheme may be general for fold/hom bursting models. We obtain a map in the
(b, I) parameter plane in which the different spike-adding processes are located. All these
mechanisms are illustrated in detail and explanations about the transitions states are also
provided. Papers III and IV deal with all these results.

Lastly, we have studied the dynamics of a three-dimensional reduction of the Luo-
Rudy model of cardiac cells. The Luo-Rudy model exhibits healthy beats as well as
pathological beats (EADs) for appropriate values of the parameters. Neurological and
cardiac phenomena are obviously different, but their dynamics have some common ele-
ments. So, techniques as the spike-counting method can also be employed in the analysis
of cardiac models. Besides, every ODE system depending on parameters can be studied
using bifurcation theory. We show how a 1 fast, 2 slow variable decomposition can be used
to analyse the dynamics of the model. The spike-counting method is used to construct
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maps in different parametric planes in which healthy cardiac beats and pathological car-
diac beats are located. We choose a one-dimensional parametric cut and show how the
pathological regions are organised by isolas of periodic orbits. Our results are presented
in Paper V.

The results obtained throughout this thesis and collected in the contribution papers
raise challenging questions whose investigation attracts our greatest interest. Our analy-
sis reveals that one of the mechanisms of disapperance of codimension-two points in the
Hindmarsh-Rose model as ε grows is a folding process. This is the case of the inclination
flip curve lying in the homoclinic surface hom(1, 2). There appear connections between
bifurcation curves arising from such codimension-two bifurcation points as these organiz-
ing centers collapse. If fixed values of ε are considered, we have that in the corresponding
(b, I) diagrams different pairs of period-doubling bifurcation curves joint each other form-
ing single curves. This is a relevant change in the bifurcation diagram of the model. We
aim to investigate the dynamics in systems exhibiting similar phenomena, that is, foldings
of codimension n bifurcation curves. There are authors which use to say codimension n+1
to refer to this foldings in the bifurcation diagram

Another natural question is whether the structure we have found in the Hindmarsh-
Rose equations appears in other models showing fold/hom or similar bursting mecha-
nisms.. In Paper III we performed a preliminary study of the Sherman model that shows
that the dynamics display elements similar to those that appear in the Hindmarsh-Rose
model. One of our future goals is to broaden the collection of models in order to show
that the theoretical scheme not only works for a particular system, but it has a universal
character. To support this claim, we need to consider fast-slow systems coming from
different fields, not only neuron models.

We are also interested in analysing the coupling of Hindmarsh-Rose systems, a first
step towards real world applications. This would allow to study the phenomenon of
synchronization, which is believed to have a relevant role in neural processing. The initial
motivation of this PhD candidate was to study neuron dynamics to discover the role that
mathematics can play in addressing illnesses such as Pakinson disease, which has been
related to excess of synchronization in certain areas of the brain. Thus, the study of
coupled neurons or networks of neurons is a challenge of great interest for the candidate.
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