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1 Introduction

The existence of UV complete supersymmetric quantum field theories in five spacetime
dimensions, first demonstrated by Seiberg in [1], can be regarded as one of the most striking
predictions of string theory.1 Superconformal fixed points in five dimensions were originally
argued to exist by observing the behavior of minimally-supersymmetric 5d gauge theories
on the Coulomb branch [1–3]. Under certain conditions the effective coupling squared
remains positive and finite everywhere on the Coulomb branch, and this indicates the
possibility of an interacting UV fixed point at the origin. The 5d gauge theory is the result
of deforming the 5d superconformal field theory (SCFT) by a relevant mass parameter
and flowing to the IR. The mass parameter in this case becomes the inverse-squared-YM-
coupling of the gauge theory. Further recent explorations using the tools of string theory

1The same can be said about supersymmetric quantum field theories in six spacetime dimensions.
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have made it apparent that the space of 5d SCFT’s is in fact much larger, and includes
gauge theories that do not satisfy the aforementioned requirement, as well as a plethora
of theories that cannot be deformed into a gauge theory. There are a number of different
approaches by now to the construction of 5d SCFT’s, including 5-brane webs in Type
IIB string theory [4–10], geometric engineering in M-theory [11–20], and reduction of 6d
theories [21–27]. It seems however fair to say that the precise connection between all these
approaches and whether this fully exhausts the space of 5d SCFT’s is yet to be clarified.

An interesting set of questions one can address within these constructions is related
to the spaces of supersymmetric deformations of five-dimensional SCFT’s. In particular
5d SCFT’s generally have a moduli space containing both Coulomb and Higgs branches.
In theories with an IR gauge theory description these correspond to vacuum expectation
values of scalars in vector multiplets and hypermutiplets, respectively. The Higgs branch is
especially interesting since it is generally richer than what appears in the IR gauge theory.
There have been a number of recent investigations of Higgs branches motivated by and
using string theory constructions [28–33].

One can also consider deforming 5d SCFT’s by relevant operators. Five-dimensional
SCFT’s have no marignal operators preserving supersymmetry, and the only relevant op-
erators correspond to mass parameters. These are dimension four scalar operators that
sit inside the conserved current supermultiplets associated to the global symmetry of the
theory. The mass itself may therefore be regarded as the VEV of a scalar field in a back-
ground vector multiplet associated to the global symmetry. The number of independent
supersymmetric mass deformations is therefore equal to the rank of the global symmetry.
In some cases a mass deformation of a 5d SCFT leads to an IR free supersymmetric gauge
theory, where the value of the mass becomes the inverse-squared-YM-coupling of the gauge
theory. But more generally a mass deformation may also lead to another interacting fixed
point in the IR. Furthermore, since the mass parameter in five dimensions is real, the
theory may flow to different IR phases for positive and negative mass, and each of these
may be an IR free gauge theory or an interacting theory.

The simplest non-trivial examples of this are the E1 and Ẽ1 theories [1, 2]. Both have
a rank one global symmetry, SU(2) in the first case and U(1) in the second, and therefore
a single supersymmetric mass parameter. The deformation of the E1 theory leads to a
supersymmetric SU(2) gauge theory with a trivial theta parameter on both sides, whereas
the deformation of the Ẽ1 theory leads to a supersymmetric SU(2) gauge theory with a
non-trivial theta parameter on one side, and to the interacting E0 theory on the other side.

When there are several mass parameters the situation gets more interesting, and the
space of mass deformations can potentially have many different phases separated by critical
walls. A simple example of this is the E2 theory, which has a two-dimensional space of
supersymmetric mass deformations exhibiting three different phases [2]. We will recall this
example and its string theory description in section 2.

In this paper we will explore the two-dimensional space of supersymmetric mass de-
formations of another set of theories describing higher rank generalizations of the E1 and
Ẽ1 theories. Unlike the E2 case in [2], we will not be able to fully map out the space of
deformations using field theory alone. We will therefore mainly use the realization of these
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theories using 5-brane webs in Type IIB string theory. The mass deformations of the field
theories will be realized as geometric deformations of the 5-brane webs. These deforma-
tions give rise to various junction splitting and joining transitions, resembling the changing
patterns of the cat’s cradle. As we will see, the number of different phases and critical
lines appears to grow with increasing rank, and the nature of the phases is qualitatively
different in the even and odd rank cases. Some of the phases are IR free gauge theories
while others are interacting theories.

The rest of this paper is organized as follows. In section 2 we will briefly recall the
different phases of the E2 theory, and how they are realized in the 5-brane web description.
In section 3 we will study the deformations of higher rank E1 theories, and in section 4 we
will study those of the higher rank Ẽ1 theories. Section 5 contains our conclusions. We
also include an important appendix, in which we review the basics of 5-brane webs and
their deformations.

2 Warm-up: the E2 theory

The E2 theory is part of the series of rank 1 interacting 5d SCFTs that have an En global
symmetry, with n = 1, . . . , 8, introduced in [1]. This particular theory has a global symme-
try E2 = SU(2) × U(1), and correspondingly, a two-dimensional space of supersymmetric
mass deformations, one for each Cartan factor of the global symmetry group. This space
was mapped out in [2], and is reproduced in figure 1. The massm0 (the x-axis) corresponds
to the SU(2) factor and the mass m (the y-axis) corresponds to the U(1) factor. Since m0
can be mapped to −m0 by an SU(2) transformation, it suffices to present just the right
hand side of the deformation plane, m0 ≥ 0. The left hand side is its mirror image.

Let us begin with the x-axis, namely the line m = 0. Along this line the theory flows in
the IR to an SU(2) gauge theory with a single flavor hypermultiplet, denoted SU(2)+F , and
the mass m0 > 0 corresponds to the inverse-squared-YM-coupling. The global symmetry
of this theory is U(1)×U(1), where one U(1) factor is the flavor symmetry, and the other
U(1) factor is the topological symmetry. This is consistent with the fact that m0 is part of
a triplet of the global SU(2) symmetry, and therefore breaks SU(2)→ U(1). Going above
or below this line corresponds to turning on a positive or negative mass m for the flavor.
The massive flavor decouples from the low energy theory, and its only effect is a mod 2
theta parameter whose value depends on the sign of the mass. Above the m0 axis the low
energy theory is a pure SU(2)0 gauge theory, and below the m0 axis it is a pure SU(2)π
gauge theory. While all of this is true at the origin of the Coulomb branch, there is a point
on the Coulomb branch, roughly when φ = |m|, where the flavor becomes massless, giving
rise to an extra sector in the low energy theory. It is useful to keep track of this sector.
Morrison and Seiberg denoted this sector by A0, where An denotes a free U(1) gauge theory
with n+ 1 equally charged hypermultiplets [2].

In the upper-half plane no new phase is encountered until one reaches the positive y
axis, namely the line m0 = 0. This corresponds to the infinite effective coupling limit of the
SU(2)0 theory, and is described by the E1 theory. This has a global E1 = SU(2) symmetry,
consistent with its position along m0 = 0. The massive flavor sector A0 goes along for the
ride. Taking its mass to zero brings us back to the E2 theory.
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E2 SU(2) + F

SU(2)0 +A0

E1 +A0

SU(2)⇡ +A0

Ẽ1 +A0

E0 +A0 +A0

E0 +A1

m0

m

Figure 1. Phases of the E2 theory [2].
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Figure 2. The 5-brane webs corresponding to the phases of tyhe E2 theory in figure 1.

The lower half-plane is more interesting. The effective coupling of the SU(2)π theory
blows up along the line m0 = −4m. Along this line the theory flows to the Ẽ1 theory,
which has only a U(1) global symmetry. The massive sector A0 again goes along for the
ride. On the other side of this line the theory flows to a different IR fixed point, described
by the E0 theory, a rank one interacting theory with no global symmetry, together with
two A0 sectors. The second massive field is, roughly speaking, the SU(2) instanton. Along
the negative y axis we expect to recover an SU(2) global symmetry. This happens by the
merger of the two A0 sectors into an A1 [2].

This entire structure is beautifully reproduced using 5-brane webs in Type IIB string
theory [4]. In figure 2 we have reproduced figure 11 of [4], with the added ingredients
describing the massive sectors. The latter correspond to the trivial junctions, denoted by
red circles, that are equivalent to detached 7-branes (see the appendix for more details).
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3 The E1 theory

The E1 theory is one of the simplest interacting superconformal field theories in five di-
mensions. It is a rank one theory with an E1 = SU(2) global symmetry, and hence admits
a single real mass deformation. Deforming the theory with this mass in either direction
leads to the IR free supersymmetric gauge theory with gauge group Sp(1)0 = SU(2)0. As
discussed above, the fact that the positive and negative mass deformations lead to the same
IR theory is guaranteed by the global SU(2) symmetry of the massless theory. The mass
deformation breaks SU(2) to U(1), which is in turn realized as the topological symmetry
of the five-dimensional SU(2) gauge theory.

The existence of the E1 theory emerged originally from a string theory construction
involving a D4-brane probing an orientifold 8-plane in Type IIA string theory. This set-up
allows a natural generalization for N D4-branes. We will denote the low energy theory on
the D4-branes as E(N)

1 . By construction this is the UV fixed point of a supersymmetric
gauge theory with gauge group Sp(N)0 and one hypermultiplet in the two-index antisym-
metric representation. For N = 1 this is a singlet, and the gauge theory is effectively a
pure supersymmetric Sp(1)0 = SU(2)0 theory. For N > 1 this theory has an SU(2)×SU(2)
global symmetry, and correspondingly a two-dimensional space of supersymmetric real mass
deformations. We will denote the coordinates of this space by (m0,m). The SU(2)×SU(2)
global symmetry implies that the four quadrants are identical, and allows us to focus on
just one quadrant, which we will take to be m0,m ≥ 0. Turning on just m0, the theory
flows to the Sp(N)0 +AS gauge theory, where m0 is interpreted as the inverse-squared-YM
coupling. The first SU(2) factor breaks to U(1), which is realized as the topological sym-
metry of the gauge theory, and the second SU(2) remains as the matter symmetry acting
on the real antisymmetric hypermultiplet. Then, deforming along m gives a mass to the
antisymmetric hypermultiplet, resulting in a pure Sp(N)0 gauge theory in the IR. From
this point of view, the reason that the positive and negative m deformations are identical
is that the effect of the antisymmetric fermion on the theta parameter is doubled relative
to a fundamental fermion.

The VEV of the scalar in the vector multiplet also contributes to the mass of the
hypermultiplet, and, as in the case of the E2 theory, a part of it will become massless at
some point on the Coulomb branch. In particular in the direction where Sp(N) is broken
to Sp(N − 1) × U(1) there is a U(1) charged state in the fundamental representation of
Sp(N − 1) which is massless for φ = m. This is again an A0 sector, and the full IR theory
is denoted Sp(N)0 +A0.2

2Using [34, 35], it is easy to see that the scalar potential is

V = P I P I

m0
+ 1

2 (φ−m)2 (ai)† ai + 2mφ (ai)† Pij aj , Pij =
1 δij − t (J3)ji

2 ,

where we combine the 4 scalars in the antisymmetric hypermultiplet into two complex combinations, denoted
by ai, i = 1, 2, which form an SU(2)R doublet. Moreover, we denote by P I ≡ P Iα the moment maps of the
Sp(N) gauge action being I an SU(2)R triplet index –here JI are the SU(2)R generators– and α an Sp(N)
index –with t the Sp(N) generator along the chosen Coulomb branch direction respectively. Finally, we
note that P –for which we only explicitly display the SU(2)R indices, is a projector, i.e. P2 = 1. For φ 6= m
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By analogy with what we saw in the previous section, this might lead one to guess that
turning on just m would lead in the IR to the SCFT corresponding to the UV fixed point of
the pure Sp(N)0 gauge theory. However this cannot be correct, since this theory is known
to have only a U(1) global symmetry [36], whereas the theory with m0 = 0 should have an
unbroken SU(2) global symmetry. This implies that there are necessarily more phases.

To gain further insight, we may consider the gauge theory, which, for m0 � m, is
weakly coupled. We can use the perturbative result for the effective prepotential on the
Coulomb branch, which reads (in the chamber m0, m > φN ≥ φN−1 ≥ · · · ≥ φ1)

F(φi) = 1
3

N∑
i=1

φ3
i +

N∑
i=1

N∑
j=1

φ2
iφj +

(
m0 −m (N − 1)

) N∑
i=1

φ2
i −

N (N − 1)
6 m3 ; (3.1)

and from this, compute the effective YM coupling at the origin

1
g2

eff
= 2

(
m0 − (N − 1)m

)
. (3.2)

This exhibits a critical line given by m0 = (N − 1)m. In the rank one case this reduces
to m0 = 0, corresponding to the infinite coupling limit of the pure SU(2)0 theory. But for
higher rank it is a diagonal line with a slope 1/(N − 1).

The perturbative analysis of the Sp(N)0 +AS gauge theory breaks down at this critical
line. To proceed further we will use the Type IIB string theory embedding of the E(N)

1
theory in terms of 5-brane webs. This will allow us to explore the full space of mass
deformations. As we will see, the complete space of deformations of the E(N)

1 theory is
more involved, and exhibits a number of different phases separated by critical lines. The
number of phases appears to grow with N , and the phases are qualitatively different for
even and odd values of N . In the rest of this section we will analyze in detail the theories
with 2 ≤ N ≤ 6, and then make some general observations about higher ranks.

3.1 Rank 2

The phase diagram of the rank 2 E1 theory, and the corresponding series of 5-brane webs,
are shown in figure 3.3 We begin with the 5-brane junction for the E(2)

1 theory in the
lower left corner. Moving in the m0 direction leads to the 5-brane web in the lower right
corner that describes the Sp(2)0 +AS theory [6]. The next deformation, corresponding to
turning on m, leads to a 5-brane web containing a trivial junction. The non-trivial part
of this web describes the pure Sp(2)0 theory [6]. The trivial junction, which is equivalent
to a detached (1,1) 7-brane, corresponds to the massive antisymmetric hypermultiplet,
namely to the A0 part. The next deformation corresponds to sending the Sp(2) coupling
to infinity, and leads to an interacting SCFT that we denote by X(2)

U(1), meaning that it has
rank 2 and a U(1) global symmetry, and correspondingly a one-dimensional space of mass
deformations. This is the theory along the m0 = m critical line. Its deformation in one

the whole AS becomes massive leaving the pure Sp(N)0 theory. On top of it, at φ = m, the part of the AS
satisfying Pa = 0 remains massless: this is the A0 theory.

3The phases of the rank 2 theory were originally identified using geometric engineering in [13].
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E
(2)
1 Sp(2)0 +AS

m

m0

Sp(2)0 +A0

X
(2)
U(1) +A0

X(2) +A0 +A0

X(2) +A1

(1,1)

(1,1) (1,-1)

(1,-1)

(1,0)

(3,1)
(3,1)

(1,3)

(3,1)

(1,3)

2 0 0

0 0

2
2

2

Figure 3. The phases of E(2)
1 . The number inside a non-trivial junction denotes its number of

local deformarions, i.e. Coulomb moduli.

direction gives the pure Sp(2)0 theory. The deformation in the other direction is shown in
the next step, and describes an interacting theory with no global symmetry. We therefore
denote it generically as X(2). There are also two identical trivial junctions in this case,
and correspondingly two A0 factors. As we continue to deform in this direction we will
reach a point where two equally charged states become massless at the same point on the
Coulomb branch. At this point the two A0 factors enhance to A1, and we get an SU(2)
global symmetry. In the web this corresponds to the (3, 1) and (1, 3) 5-branes having the
same length. This is the theory along the m direction. Finally, to complete the circuit we
shrink the (3, 1) and (1, 3) 5-branes, and arrive back at the 5-brane junction for E(2)

1 .

3.2 Rank 3

The phase diagram and corresponding 5-brane webs for the E
(3)
1 theory are shown in

figure 4. The first three steps are very similar to the rank 2 case, ending at the 5-brane
web describing a rank 3 interacting SCFT with a U(1) global symmetry X(3)

U(1), together
with a decoupled A0 sector. This is the theory along the m0 = 2m critical line. Deforming
it in one direction gives the pure Sp(3)0 theory. However deforming it in the opposite
direction gives something different from the previous case. The complicated looking web
resulting from this deformation describes an SU(4) gauge theory with a CS level 6 with
a massive hypermultiplet in the antisymmetric representation of SU(4), namely the 6 of
SU(4) = Spin(6). This is seen by performing a number of Hanany-Witten moves that lead
to the equivalent webs shown in figure 5. The non-trivial part of the last 5-brane web in
figure 5 describes SU(4)6. Taking the mass corresponding to the trivial part to zero then
leads to the web in the upper left corner of figure 4, which is a known representation of
the theory SU(4)6 + AS [6]. Since the rank 2 antisymmetric representation of SU(4) is
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1

X
(3)
U(1) +A0SU(4)6 +AS

SU(4)6 +A0

Sp(3)0 +A0

Sp(3)0 +AS(1,1)
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(1,-1)
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(5,1)
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(1,3)
(1,1)

3
0 0

0 0

3
0 0

(1,-1)(1,1)

(5,-1)(3,1)

0 0

Figure 4. Phases of E(3)
1 .

= =
(5,1)

(1,-1)(1,1)

(5,-1)

(1,1)

(3,1)

=
(5,1)

(1,3)
(1,1)

(1,1)(1,-1)

(1,1)
(1,1)

(1,-1)

(5,1)

(1,3)(1,1)

(1,1)
(1,1)

(1,-1)
(1,-3)

(1,3)

(1,1)

(1,1)
(1,1)

(1,3)

Figure 5. Equivalent 5-brane webs for SU(4)6 with a massive antisymmetric hypermutiplet.

real, this theory enjoys an SU(2) global symmetry, and must therefore appear along the m
direction. The mass of the antisymmetric hypermultiplet is given by m0. Indeed deforming
in either direction leads to SU(4)6, since the shift in the CS level of an SU(N) theory due
to a massive antisymmetric hypermultiplet is given by 1

2sign(m0)(N − 4), which vanishes
for N = 4. Finally, taking m→ 0 corresponds to taking the SU(4) coupling to infinity, and
leads, using one of the other equivalent webs in figure 5 and an SL(2,Z) transformation, to
the original E(3)

1 junction. This implies, in particular, that the topological U(1) symmetry
of the SU(4)6 +AS theory is enhanced, by instantons, to SU(2) in the UV.

3.3 Rank 4

The phase diagram and corresponding 5-brane webs for the E
(4)
1 theory are shown in

figure 6. The first four steps are qualitatively similar to the rank 2 case, ending at a 5-
brane web describing an interacting theory with no global symmetry X(4) together with
two massive hypermultiplets. Equivalent webs for this theory are shown in figure 7. Unlike
the rank 2 case, in this case the two massive hypermultiplets described by the two trivial
junctions are different. They are equivalent to two detached 7-branes with different (p, q)
charges. In the preceding deformation we turned on a mass for one of these hypermultiplets.
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Figure 6. Phases of E(4)
1 .
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Figure 7. Equivalent webs for X(4) +A0 +A0.

In the subsequent deformation we send the mass of the other one to zero, leading to the
5-brane web in the upper-left corner of figure 6. This describes a rank 4 interacting SCFT
with an SU(2) global symmetry, realized by the pair of identical legs. Finally sending the
mass of the remaining massive hypermultiplet to zero leads back to (an SL(2,Z) transform
of) the E(4)

1 junction.

3.4 Rank 5

The phase diagram and 5-brane webs for the rank 5 theory E
(5)
1 are shown in figure 8.

There are now three different phases separated by two critical lines. The first few steps are
analogous to the rank 3 case. In particular the complicated looking web in the upper right
corner describes an SU(6)8 theory with a massive antisymmetric hypermultiplet. This
can be seen in one of the equivalent webs shown in figure 9. Taking the mass of the
hypermultiplet to zero leads to the next web, which describes the SU(6)7 + AS theory.
Unlike the rank 3 case, the symmetry associated with the hypermultiplet is only U(1), and
so this theory lies on another diagonal critical line. A positive hypermultiplet mass shifts
the CS level to 7 + 6−4

2 = 8. A negative mass shifts the CS level to 7 − 6−4
2 = 6, which

is the theory described by the next web in the upper left corner of figure 8. This is seen
in the equivalent web in figure 10. In the next deformation we take the SU(6)6 coupling
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Figure 9. Equivalent webs for SU(6)8 with a massive antisymmetric hypermultiplet.
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Figure 10. Equivalent webs for SU(6)6 with a massive antisymmetric hypermultiplet.

to infinity, which leads to an interacting SCFT with an SU(2) global symmetry. We see
this explicitly in the next 5-brane web, but this is also more generally a property of the
SU(N)N theory [37]. Closing the circuit back to the E(5)

1 junction then just follows by
sending the remaining mass to zero and performing a Hanany-Witten move. We end this
subsection by noting that the U(1) × U(1) global symmetry of the SU(6)7 + AS theory
must be enhanced by instantons to SU(2) × SU(2) in the UV, since this corresponds to
sliding back to the E(5)

1 point at the origin along the critical line.
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Figure 11. Phases of E(6)
1 .

3.5 Rank 6

The phase diagram and 5-brane webs for the rank 6 theory E(6)
1 are shown in figure 11.

There are three different phases separated by two critical lines. The steps from E
(6)
1 to

X(6) + A0 + A0 are similar to the rank 4 case. At the next step we encounter a 5-brane
web that describes another rank 6 interacting theory with a U(1) global symmetry, which
is distinct from the one corresponding to the infinite coupling limit of the Sp(6)0 theory
(although we use the same generic notation X

(6)
U(1)). Continuing to deform in the same

direction leads to a web describing another rank 6 interacting theory with no global sym-
metry. The next deformation merges the two A0 sectors to an A1 sector, i.e. two identical
massive hypermultiplets. This is the theory along the m axis. The final deformation sends
the mass to zero, and recovers the E(6)

1 configuration after a Hanany-Witten move.

3.6 Rank N

The number of different phases of the E1 theory appears to grow with increasing rank N ,
and the pattern is qualitatively different for odd and even ranks. The latter observation
is consistent with the fact that E1 theories whose ranks differ by an even number can be
connected by going on the Coulomb branch, but E1 theories with an odd difference of
ranks cannot. We can see this explicitly in the initial gauge theory deformation. Start
with the Sp(N)0 + AS theory and go to a point on the Coulomb branch where Sp(N) →
Sp(N−1)×U(1). The Sp(N) antisymmetric decomposes into a singlet, a neutral Sp(N−1)
antisymmetric, and a charged Sp(N − 1) fundamental and its conjugate. The latter two
states are massive, and their masses have opposite signs. Integrating these states out
therefore shifts the mod 2 theta parameter of the Sp(N − 1) factor relative to the original
Sp(N) theory. Going down further to Sp(N − 2) shifts it back to its original value, etc.
Indeed we will see in the next section that the deformation pattern of the Ẽ1 theory, whose
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Figure 12. The first few phases of EN
1 for odd N ≥ 7.

initial gauge theory deformation gives Sp(N)π +AS, will similarly alternate between even
and odd ranks.

Though we have not been able to map out the complete phase diagram for N > 6,
we can offer some interesting observations about the first few phases, especially for odd
N , figure 12. The even rank case is less illuminating, so we omit it. The first critical
line separates the phase described by Sp(N)0 and SU(N + 1)N+3. This “duality” was first
studied in [38]. Moving counter-clockwise, the next critical line we encounter corresponds to
the theory SU(N+1)N+9

2
+AS. A positive hypermultiplet mass leads to SU(N+1)N+3, and

a negative hypermultiplet mass to SU(N + 1)6. We are also lead to the general prediction
that the U(1)×U(1) global symmetry of SU(N +1)N+9

2
+AS for odd N is enhanced in the

UV to SU(2)×SU(2). The next critical line corresponds to the infinite coupling limit of the
SU(N + 1)6 theory, which for N > 5 does not have an enhanced SU(2) symmetry. Beyond
this critical line the web deforms as shown in the last step in figure 12. This describes a
product of two interacting SCFT’s, each of which has an SU(2) global symmetry, with the
diagonal SU(2) gauged. We denote this as SU(2) ↪→

[
X

(N+5
2 )

SU(2) ×X
(N−7

2 )
SU(2)

]
. In fact these

SCFT’s correspond separately to the UV fixed points of SU(N+7
2 )N+7

2
and SU(N−5

2 )N−5
2

.4

This is as far as we got. The next critical line will correspond to taking the mass of the
hypermultiplet to zero, and so on.

4 The Ẽ1 theory

The Ẽ1 theory is a variant of the E1 theory. At rank 1 this is a theory with a U(1) global
symmetry, that with a positive mass deformation flows in the IR to the supersymmetric

4This generalizes a recent observation made in [39], that the “continuation past infinite coupling” of
SU(N)0 is given by SU(N2 ) N

2
× SU(N2 )−N

2
× SU(2).
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SU(2) gauge theory with a non-trivial theta parameter θ = π. Since the global symmetry
is only U(1), the negative mass deformation may lead to a different theory, and indeed the
IR theory is an interacting SCFT without any global symmetry known as the E0 theory.
In the Type IIA string theory construction, the Ẽ1 theory is realized by turning on an
additional torsion-valued RR flux [40]. Just as in the previous case, we can consider the
rank N generalization of this set-up corresponding to N D4-branes, denoted by Ẽ(N)

1 . This
theory has a U(1)×SU(2) global symmetry and a two-dimensional space of supersymmetric
mass parameters (m0,m). In this case there is a reflection symmetry only along the m
direction, so we will need to consider the entire upper half plane. Along the positive
m0 direction, the theory flows to the Sp(N)π + AS theory, which has a topological U(1)
symmetry and a matter SU(2) symmetry. Along the negative m0 direction, we expect it
to flow to a rank N generalization of the E0 theory with an SU(2) global symmetry which
we will denote by E(N)

0 . The same perturbative analysis as before shows that there exists
a critical line m0 = (N − 1)m corresponding to the infinite coupling limit of the pure
supersymmetric Sp(N)π gauge theory. As before, we will determine what happens beyond
this line using 5-brane webs. The pattern that will emerge for Ẽ1 with even rank will
resemble the pattern for E1 with odd rank, and vice versa. We will therefore be somewhat
briefer in our exposition, presenting explicitly only the rank 2,3 and 4 cases, and we will
also refrain from presenting the equivalent webs that were useful in identifying some of
the phases.

4.1 Rank 2

The phase diagram for Ẽ(2)
1 and the corresponding 5-brane webs are shown in figure 13.5

Deforming along m0 > 0 leads to a web that describes the Sp(2)π + AS theory [6]. Then
deforming along m leads to a web whose non-trivial part describes the pure Sp(2)π the-
ory [6]. The critical line corresponds to the infinite coupling limit of the Sp(2)π theory,
which is an interacting SCFT with a U(1) global symmetry, X(2)

U(1). The next deformation,
the “contiuation past infinite coupling” of the Sp(2)π theory, leads to a web that is eas-
ily shown, by a couple of equivalence moves, to describe the gauge theory SU(3)5 with a
massive fundamental (or equivalently antisymmetric) hypermultiplet. Taking the mass of
the hypermultiplet to zero leads to the web in the upper left corner, which corresponds to
the second critical line. On this line the theory flows to SU(3)11/2 + AS. This also leads
to the prediction that the U(1) × U(1) global symmetry of the SU(3)11/2 + AS theory is
enhanced at infinite coupling to SU(2)× U(1). Turning on the opposite sign mass for the
hypermultiplet then gives SU(3)6, corresponding to the next web in the figure. The next
deformation takes the gauge coupling to infinity, and leads to the theory described by the
web in the lower left corner, which is the rank 2 version of the E0 theory. Finally, we take
the mass of the hypermultiplet to zero, and recover the Ẽ(2)

1 junction.

4.2 Rank 3

The phase diagram and 5-brane webs for Ẽ(3)
1 are shown in figure 14. Other than the

Sp(3)π phase, all phases are interacting theories.
5The phases of the rank 2 theory were originally identified using geometric engineering in [13].
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Figure 15. Phases of Ẽ(4)
1 .

4.3 Rank 4

The phase diagram and 5-brane webs for Ẽ(4)
1 are shown in figure 15. There is an additional

critical line and an additional phase compared to Ẽ(2)
1 . As in the rank 2 case, we predict

that the U(1)×U(1) symmetry of the SU(5)13/2+AS theory is enhanced at infinite coupling
to SU(2)×U(1).

4.4 Rank N

As for the E1 theory, the number of phases appears to grow with increasing N , and the
pattern is different for odd and even ranks. The IR theories arising in the deformations
of the odd rank Ẽ(N)

1 theories are of the same type as those arising in the deformations
of the even rank E(N)

1 theories, and vice versa. This is consistent with the fact that E1
and Ẽ1 theories whose rank differs by an odd number can be related by Coulomb branch
deformations. In figure 16 we show the first few phases of the Ẽ(N)

1 theory with even
N ≥ 6. The first critical line separates the Sp(N)π phase and the SU(N + 1)N+3 phase,
which is again in agreement with the duality studied in [38]. The subsequent steps are
similar to the odd rank E(N)

1 theory. Our last web in the lower left corner is somewhat
interesting, as it describes a theory obtained by taking two interacting SCFT’s that do not
have any global symmetry, and “coupling” them with a “bi-fundamental” hypermultiplet,
and another massive hypermultplet described by the trivial junction. The next critical line
will correspond to taking the mass of the latter to zero, and so on.
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Figure 16. The first few phases of ẼN
1 for even N ≥ 6.

5 Conclusions

In this paper we have analyzed the two-dimensional space of mass deformations of two
families of 5d superconformal field theories given by the higher rank generalizations of
the E1 and Ẽ1 theories. We have seen that this space contains a number of different IR
phases that grows with the rank of the theory. A number of these phases are described
by IR free supersymmetric gauge theories, while others are interacting SCFT’s. One of
these phases is the 5d SU(N) theory with CS level k = N

2 + 4 and an antisymmetric
hypermultiplet, which is one of the more recent gauge theories argued to possess a UV
fixed point [25]. Its appearance in the space of deformations of the odd rank E1 theory
and the even rank Ẽ1 theory implies that it must exhibit an enhanced global symmetry at
strong coupling, SU(2)×SU(2) for even N and SU(2)×U(1) for odd N . This enhancement
has also recently been suggested on the basis of geometrical engineering/reduction from 6d
in [27]. It would be interesting to confirm this by field-theoretic means, using for example
the superconformal index.

Though we have not been able to fully map the space of deformations in the general
case, we have made the general observation that the space of deformations of the even rank
E1 theory is qualitatively similar to that of the odd rank Ẽ1 theory, and vice versa. This
can also be understood from the fact that the even/odd rank E1 theories are related to the
odd/even rank Ẽ1 theories by going on the Coulomb branch.

Our main tool has been the construction of 5d SCFT’s using 5-brane junctions in Type
IIB string theory, but we expect there to be a parallel description of this using geometric
engineering in M-theory, generalizing the analysis of the rank 2 theories in [13]. Our
preliminary investigation of the E1 and Ẽ1 theories indicate that higher rank SCFT’s in
five dimensions possess a zoo of different IR phases depending on the direction one takes in
the space of mass deformations. This clearly deserves further study. In particular, it would
be interesting to identify the massless BPS states associated to the critical lines separating
the different phases.

Lastly, a particularly interesting aspect of the high rank E1 and Ẽ1 theories is that
they have a holographic AdS6 dual in massive type IIA string theory [41]. It would be
interesting find the holographic description of the mass deformations studied in this paper.

– 16 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
2

Acknowledgments

We thank G. Zafrir for useful discussions. The work of O.B. is supported in part by the Is-
rael Science Foundation under grant No. 1390/17. The work of D.R.G. is supported in part
by the Spanish government grant MINECO-16-FPA2015-63667-P, and by the Principado
de Asturias through the grant FC-GRUPIN-IDI/2018/000174.

A 5-brane webs and their deformations

Type IIB string theory admits 5-branes charged magnetically under both the NSNS 2-form
B2 and the RR 2-form C2. The minimally charged objects are (p, q) 5-branes, where p
and q are relatively prime integers labeling the RR and NSNS charge, respectively. In
particular the (1, 0) 5-brane is the D5-brane and the (0, 1) 5-brane is the NS5-brane. A
5-brane web is a configuration of Type IIB (p, q) 5-branes containing 5-brane segments and
vertices, or junctions (which are really 4d spaces), where three or more 5-branes meet. The
Gauss law requires the sum of charges to vanish at each junction,

∑
i∈J pi =

∑
i∈J qi = 0.

Supersymmetry further restricts the entire configuration to be planar, and the relative
orientation of each (p, q) 5-brane in this plane to be given by p+ qτ (or p+ qτ̄), where τ is
the complex Type IIB axion-dilaton. For clarity of presentation one usually assumes that
τ = i. There are analogous configurations of (p, q) strings.

A planar configuration consisting of N ≥ 3 5-branes meeting at a point, namely an
N -junction, describes a five dimensional superconformal field theory [4, 5]. The parameters
and moduli of the 5d theory are realized as geometric deformations of the 5-brane junction.
In particular global deformations that move the external 5-branes correspond to the mass
parameters of the field theory, and local deformations that keep the external 5-branes fixed
correspond to the Coulomb moduli of the field theory. The latter appear as faces in the
resulting 5-brane web, and the dimension of the Coulomb branch is given by the number
of faces in the 5-brane web. The number of mass parameters, and therefore the rank of
the global symmetry, is given by N − 3. This is because moving the junction as a whole
does not change the theory, and fixing the orientations of N −1 of the 5-branes determines
that of the remaining 5-brane. In cases where the mass-deformed 5-brane web consists of
parallel 5-brane segments the corresponding theory is a supersymmetric gauge theory, in
which the inverse-squared-YM coupling is given by the value of the mass.

A.1 7-branes and equivalent webs

For a more complete description and classification of 5d SCFT’s we need to introduce (p, q)
7-branes on which the (p, q) 5-branes of the 5-brane junction end. For a 7-brane the (p, q)
charges define an SL(2,Z) monodromy action as one encircles it. The monodromy occurs
across a branch cut emanating from the 7-brane. The clockwise monodromy around a (p, q)
7-brane is given by

M(p,q) =
(

1− pq p2

−q2 1 + pq

)
. (A.1)
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Figure 17. Equivalent 5-brane junctions for the rank 1 E1 theory.

In our convention the (1, 0) 7-brane is a D7-brane, so that a (p, q) 5-brane ends on a (p, q)
7-brane.6

The addition of the 7-brane endpoints introduces a number of additional deformations.
The first corresponds to the possibility of breaking the 5-brane junction into 5-brane seg-
ments or sub-junctions that can move separately along the 7-branes, namely perpendicular
to the plane of the junction. This describes the Higgs branch moduli of the field theory.

The second corresponds to the motion of the 7-branes in the plane. For each 7-
brane we can divide this into a component perpendicular the 5-branes ending on it, and
a component parallel to them. The former are just the same mass parameters that we
previously identified with the global deformations that move the external 5-branes.

The motion of a 7-brane along the 5-brane direction, on the other hand, has no effect
on the field theory. For example if we take the 7-brane to infinity along its 5-brane we just
get the original infinite junction. This continues to be true if we move the 7-brane towards
the junction, shortening its 5-brane. And it contiues to be true as the 7-brane crosses to
the other side of the junction. Three things happen in this case: the 5-branes ending on the
7-brane reverse their orientation, additional 5-branes are created via the Hanany-Witten
effect, some of which annihilate the orientation-reversed 5-branes, and other 7-branes and
5-branes are transformed as we sweep the monodomy cut of the 7-brane to the other side.
The resulting 5-brane junction is different; it has a different set of (p, q) charges. But it
describes the same 5d theory. We refer to this as an equivalent web. A simple example of
this is shown in figure 17, which shows two equivalent 5-brane junctions describing the rank
1 E1 theory. Equivalences of this type are very useful in simplifying complicated looking
5-brane webs, and in identifying 5d gauge theory phases when they exist.

A.2 Generalized s-rule

Importantly, the introduction of 7-brane endpoints to a 5-brane junction also leads to
an additional condition for supersymmetry. Heuristically, this is understood using the
equivalent web construction described above. If, when a 7-brane crosses a junction the

6Note that strictly speaking 5-branes follow geodesics in the background of the 7-branes. However, one
may push the 7-branes far away from the meeting point where the SCFT lives by extending the external
5-branes, such that for all practical purposes, the axion-dilaton is approximatelty constant over the relevant
scales of the field theory.
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number of 5-branes created is less than the original number of 5-branes, we will be left with
5-branes having the “wrong” orientation, namely anti-5-branes. The resulting configuration
is clearly non-supersymmetric, and therefore so is the original one. A special case of this
condition is the s-rule:

s-rule: given a (p, q) 7-brane and an (r, s) 5-brane, with both (p, q) and (r, s) being
a pair of co-prime integers, the number of (p, q) 5-branes that can be suspended
supersymmetrically between them is at most |ps− qr| [42].7

This follows immediately from a single Hanany-Witten move, in which |ps − qr| 5-branes
are created.

The s-rule provides a bound for a special class of triple-5-brane junctions. One would
like to find the generalization of this bound that applies to any multi-5-brane junction. In
other words, given an n-junction with charges {(pi, qi)}, that are not necessarily co-prime,
what is the condition on {(pi, qi)} for it to be supersymmetric?

While the general condition for supersymmetry of 5-brane junctions has not yet been
clearly formulated, the analogous condition for the related system of string junctions has
been known for a while [48, 49]. Those studies were aimed at finding the spectrum of BPS
states of four-dimensional N = 2 supersymmetric gauge theories living on 3-brane probes in
7-brane backgrounds. The most general BPS state is described by a supersymmetric string
web with some prongs ending on 3-branes, and some ending on 7-branes. The condition
given in [48, 49] is expressed in terms of a specific SL(2,Z) invariant quantity8

I =

∣∣∣∣∣∣
∑

1≤i<j≤n7+n3

det
(
pi qi
pj qj

)∣∣∣∣∣∣−
n7∑
i=1

(gcd(pi, qi))2 , (A.2)

and is given by the inequality

I ≥ − 2 +
n7+n3∑
j=n7+1

gcd(pj , qj) . (A.3)

This condition on the multi-string-junction originates from its lift to M-theory, where it
corresponds to an M2-brane wrapping a holomorphic curve in an elliptically fibered K3
surface. The quantity I is the self-intersection number of the curve, and the inequality
in (A.3) follows from the equality I = 2g − 2 + b, the identification of the number of
boundaries b with the number of co-prime (p, q)-strings ending on 3-branes, and the non-
negativity of the genus g. The genus itself then corresponds to the number of possible faces
in the web, which for the 5-brane junction gives the dimension of the Coulomb branch of
the 5d SCFT,

dC = I + 2
2 . (A.4)

7The s-rule was originally formulated for D3-branes between a linked NS5-D5 pair in [43], and later
derived for fundamental strings between linked D-branes in [44]. There were subsequent generalizations to
D3-branes between (p, q) 5-branes and (r, s) 5-branes [45], and to (p, q) strings between (p, q) 7-branes and
(r, s) strings in [46, 47]. The s-rule for (p, q) 5-branes is identical to the one for (p, q) strings.

8We assume here that the charges (pi, qi) are either all incoming or all outgoing, and that they are
ordered either clockwise or counterclockwise around the junction.
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Figure 18. A generic mass deformation of an n-junction.

Upon closer examination however, it appears that the above criterion is only applicable
for irreducible junctions, namely for junctions that cannot be separated into sub-junctions.
This issue should be investigated further. For our purpose, however, it is sufficient to
concentrate on the condition for 3-junctions. If an n-junction is supersymmetric it should
have an (n−3)-dimensional space of supersymmetric mass deformations. At a generic point
in this space the n-junction is deformed into a web consisting of 3-junctions and segments,
figure 18. Therefore a sufficient condition for the n-junction to be supersymmetric, is that it
can be deformed into a web consisting of 3-junctions and segments, where all the 3-junctions
are supersymmetric. For a 3-junction with charges {(p1, q1), (p2, q2), (−p1 − p2,−q1 − q2)}
the bound (A.3) becomes

I = |p1q2 − p2q1| −
n7∑
i=1

(gcd(pi, qi))2 ≥ − 2 +
3∑

i=n7+1
gcd(pi, qi) . (A.5)

If the 3-junction is reducible, namely if it consists of multiple copies of the same basic
3-junction, this bound applies to the basic 3-junction. For n7 = 1 and (p2, q2) relatively
prime this reduces to the s-rule.

A.3 Trivial junctions

Hanany-Witten moves can also lead to a simpler configuration with a detached 7-brane.
This happens when the number of created 5-branes is equal to the original number of 5-
branes ending on the 7-brane. For a 3-junction this eliminates the junction completely,
leaving just a 5-brane and a detached 7-brane. We refer to this as a trivial junction, and
mark it with a red circle. A trivial 3-junction corresponds to a free hypermultiplet. A
simple example of a trivial junction is shown in figure 19. When the (0,1) 7-brane crosses
the (1,0) 5-brane it loses its (0,1) 5-brane connection, and we end up with a detached (0,1)
7-brane and a (1,0) 5-brane. A trivial junction may require several Hanany-Witten moves
to detach a 7-brane, as shown in the example of figure 20. Trivial junctions have no local
deformations, i.e. g = 0, and therefore saturate the inequality (A.3). More specifically the
self-intersection number of a trivial junction is I = 0,−1 or −2, depending on whether it
ends on one, two, or three 7-branes, respectively.

More generally, we define an m-trivial n-junction as an n-junction from which m 7-
branes can be detached by Hanany-Witten moves. Let us assume that the n-junction is
irreducible, and that all its legs end on 7-branes, namely it corresponds to the full 5d
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(1,1)

(1,0)

(0,1)

(1,0)

(0,1)

(1,0)=

Figure 19. A simple trivial junction.

= =

= . . . =

n-1

(1,1)

(2n-1,1)

(1,-1)

n
n-1

(1,1)

(2n-1,1)
(3,1)

n-2
n-2

(5,1)
(2n-1,1)

(3,1)
n-3

(2n-1,1)

(2n-3,1)

(2n-1,1)

Figure 20. A compound trivial junction.

(1,-2)

(1,1)

(0,1)

(2,-3)

(1,-2)

(1,1) (0,1) (2,-1)

=

Figure 21. An example of a 1-trivial 4-junction describing the E0 theory plus a free hypermultiplet.

SCFT. Clearly m ≤ n− 2. If m = n− 2 the n-junction is equivalent to a 5-brane between
two 7-branes and n − 2 detached 7-branes. The detached 7-branes describe n − 2 free
hypermultiplets, and the suspended 5-brane describes one more free hypermultiplet. If
m < n − 2 the n-junction is equivalent to an (n −m)-junction plus m detached 7-branes,
which describes a 5d SCFT given by the direct sum of the 5d SCFT described by the
(n−m)-junction (which has a rank n−m−3 global symmetry) and m free hypermultiplets.
An example of this with n = 4 and m = 1 is shown in figure 21.
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A.3.1 An alternative criterion for trivial junctions

Above we identified trivial triple-junctions by their self-intersection number, which is the
minimal one preserving supersymmetry for the given number of 7-branes. Here we will
present an alternative, but equivalent, criterion. The typical situation of interest involves a
triple-junction with one internal leg and two external legs ending on 7-branes. However the
criterion is most easily formulated by imagining that the third leg also ends on a 7-brane. If
the charges of the first two 7-branes are (p1, q1) and (p2, q2), then that of the third 7-brane
is (p3, q3) = (N1p1 +N2p2, N1q1, N2q2), where N1 and N2 are the multiplicities of the legs
ending on the first two 7-branes. The junction is trivial if, by repeated moves of the first
two 7-branes (the third 7-brane is a spectator) one of them is detached. This would leave a
detached (r, s) 7-brane and a (p3, q3) 5-brane between two (p3, q3) 7-branes: the other one
of the two and the spectator 7-brane. We assume here that (p3, q3) are relatively prime.
The charge (r, s) of the detached 7-brane depends on the original charges (p1, q1), (p2, q2),
and on the number of moves required for its detachment. While the charges of the two
active 7-branes change in this process, there are two useful invariant quantities. The first
is the total monodromy of the three 7-branes ordered counterclockwise,

M = Mp1,q1Mp2,q2Mp3,q3 , (A.6)

and the second is the Dirac pairing of the two active 7-branes,

∆ = det
(
p1 q2
p2 q2

)
. (A.7)

For a trivial junction these satisfy the relation

TrM = 2 (1−∆2) . (A.8)

This can be seen by computing the monodromy and Dirac pairing in the detached config-
uration, where

M = Mr,sM
2
p3,q3 , ∆ = det

(
r s

p3 q3

)
. (A.9)

As a consistency check, let us apply this criterion to the original junctions in fig-
ures 19, 20. In the first example, adding a (1, 0) 7-brane and a spectator (1, 1) 7-brane,
we have Tr(M) = − 6 and ∆ = 2, which satisfies the criterion. In the second example,
adding a spectator (2n− 1, 1) 7-brane, we also have Tr(M) = − 6 and ∆ = 2, which again
satisfies the criterion.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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