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ABSTRACT In this work we propose a semi-supervised framework to visually assess the progression of
time series. To this end, we present a recurrent version of the VAE to exploit the generative properties that
lead it to learn in an unsupervised way a continuous compressed representation of the data. We introduce
a classifier in the VAE training process to control the regulation of the latent space, allowing the network
to learn latent variables that set the basis for creating an explainable evaluation of the data. We use the
proposed framework to address the diagnosis of Atrial Fibrillation (AF) first validating it with simulated
data with known properties and subsequently testing it with intracardiac data obtained from pacemakers and
defibrillator systems.

INDEX TERMS Graphical Analysis, heart disease, recurrent neural networks, time series, variational
autoencoder.

I. INTRODUCTION
Most AI-based systems have a black box nature that allows
powerful predictions, but cannot be directly explained. This
is especially true when it comes to time series data, where
the bulk of methods stick to rawly classifying or predict-
ing a number or a set of numbers. Unsupervised learning
approaches are a possible alternative for this. Within this
paradigm Autoencoders are one of the most promising meth-
ods that we can find. Autoencoders are a family of neural
networks that have the ability to learn a simplified representa-
tion of the data, typically for dimensionality reduction. These
networks are designed to reconstruct the input data while at
the same time learn a compressed representation of it; the so-
called latent space. Variations of the original model [1]–[3]
have been developed in order to enhance classification and
clustering tasks until the emergence of Variational autoen-
coders (VAEs), whose main purpose is the generation of new
data.

Variational autoencoders are rooted in Bayesian inference
[4] and are comprised of an encoder function qφ(z|x) and a
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decoder function pθ (x|z) where z is the latent encoding vector,
x is the input data and φ and θ are parameters that initialize a
probability distribution. By introducing the Kullback-Leibler
divergence into the loss function, which simply measures
howmuch one probability distribution diverges from another,
the above-mentioned parameters corresponding to the input
data distribution can be learned. This, together with a recon-
struction error added to the loss function, allows the model to
produce a latent space in which similar data will be located
close to each other and also enables new data to be sampled
from points that do not belong to the original data, thus having
a generative model.

The main difference between VAEs and the rest of auto-
encoders lies in the learned latent space: The inputs are not
coded to a set of fixed vectors, but the compression depends
on a probability distribution qφ(z|x) instead, causing the data
to be organised in a continuous space, i.e. two nearby points
in the latent space should give similar contents when recon-
structed (Figure 1). Precisely, other unsupervised techniques
such as clustering algorithms lack this property. Although
they do prioritize grouping data of a similar nature, the visual
disposition of the clusters can often be arbitrary. On the other
hand, neither can the VAE latent space be used for clustering
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FIGURE 1. Simplified representation of the compression resulting from a
vanilla Autoencoder (left) and a VAE (right). When the latent space is
continuous, the organisation of the data allows decoding of a meaningful
figure, in this case a cross between a rectangle and a triangle, thus
favouring the generation of new data.

since the encoded data tend to be overlap to prioritize the
generative process.

Therefore, a methodology capable of combining the above
properties, that is, depicting the input data into clusters,
while preserving a continuous representation according to its
underlying complexion, would be of interest to time series
data. In fact, there has been a recent interest in seeking such
a model, as can be shown in [5]–[8], which make use of
Variational Autoencoders together with Gaussian Mixtures
in order to achieve an interpretable clustering. Nevertheless,
these approaches are not intended to be applied in time series.

Besides, although VAEs have proven to be efficient in
multiple domains, mainly related to computer vision [9]–[11]
and Natural Language Processing (NLP) [12]–[14], as gen-
erative frameworks as well as data compressors, there is a
lack of research when it comes to time series. In [15] the
authors present a VAE model that can map time series to a
latent vector representation, but the model has become obso-
lete due to more recent advances in recurrent architectures.
Other promising work has begun to emerge: In [16] LSTM
networks are used to model the temporal complexion of the
data, whereas in [17] the authors propose to use echo-state
networks for the same objective. Despite the fact that these
works combine recurrent architectures with VAEs, their goal
differs from ours since they aim to detect anomalies based
either on reconstruction errors or on anomaly scores, while
what we are pursuing is an interpretable assessment of time
series.

The solution that we propose is to introduce a recurrent
version of the VAE to deal with temporary data along with the
inclusion of a classifier in the training process that controls
the regularisation of the latent space to prevent the resulting
clusters from overlapping. In this way, a representation that
can be used for displaying a graphic map that gives insight
into the evolution of the time series is obtained.

The creation of such a model is motivated by the need to
offer a solution to a problem in which the presence of effi-
cient algorithms is limited: the diagnosis of Atrial Fibrillation
(AF). AF is the most common type of arrhythmia in clinical

practice. It is a type of heartbeat in which the atria tremble,
causing an irregular and accelerated heart rhythm.

The treatment of the disease often involves the use of
pacemakers. These devices are a source of data that record
the dates and lengths of the episodes of high atrial rate,
comprising a historical record, that is, a time series. Effective
and accurate diagnosis of this condition remains challenging
these days. Also, a simple prediction may not be informative
enough for specialists to examine the state of the disease.
Thus, a variational-clustering approach is tailored to our
needs in order to accomplish a visual diagnosis capable of
assessing the evolution of AF.

The structure of this paper is organised as follows:
Section II introduces the importance in the treatment of this
condition and the difficulties associated with its diagnosis.
A detailed description of the proposedmethod comprising the
semi-supervised VAE framework for achieving an explain-
able diagnosis is described in Section III. Before reporting
experimental results in Section V, an illustrative problem
is presented in Section IV while conclusions are drawn in
Section VI.

II. AF DIAGNOSIS
AF is an abnormal heartbeat usually presented in the
elderly. The course of the disease can lead to a progres-
sion from paroxysmal arrhythmia (arrhythmia episodes that
appear and disappear spontaneously) to persistent arrhyth-
mia (episodes that last at least seven days and do not end
without external intervention) or to permanent arrhythmia
(uninterrupted episodes). The progression of AF is a com-
plex process that depends on several risk factors [18], and
an early diagnosis may condition the provision of optimal
treatment.

Episodes of AF are easily detected on surface electrocar-
diograms (ECGs), obtained from non-invasive devices, but
the activity recorded is over a very specific period of time,
which in no case is enough to capture the evolution of the dis-
ease. Portable ECG monitors are an advantage in this respect
and recent advances in healthcare facilitate continuous moni-
toring of intracardiac activities. This is beneficial in detecting
pathological signatures and arrhythmias [19], especially in
patients in the latter stages of permanent AF [20]. On the
contrary, the health risks for patients in the early stages of
paroxysmal arrhythmia are lower and the disadvantages of
wearing these devices continuously outweigh the advantages.

It seems that the situation may change in the near future as
new ECG sensors are small enough to be incorporated into
wearable devices. The Apple Heart Study [21] shows that
different types of AF can be detected in smartwatches, though
the battery consumption is high, which prevents the sensor
from being always on. To date, the detection and timing of
short AF episodes remains an open problem.

In those patients in latter stages of the disease, pacemak-
ers or IDCs (Implantable Cardiac Defibrillators) are normally
used to control the heart rate [23] in order to keep common
symptoms such as dizziness or chest pain under control.
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FIGURE 2. Top: Intracardiac ECG. The morphology of the surface ECG is
not kept in the iECG, where there is only one peak for each heartbeat.
Bottom: Surface ECG (taken from reference [22]).

These devices provide heart rhythmmonitoring, being able to
detect episodes of arrhythmia, specifically of high atrial rate,
which normally correspond to AF episodes. Intra-cardiac
electrocardiograms (iECGs) are stored in the memory of
these devices (see Figure 2, upper part) which are repre-
sentations of the difference in potential between two points
in contact with the myocardium in space over time. They
keep a record of information seconds before and after the
detection of each episode. This includes only the instanta-
neous frequencies of the atrium and ventricle because the
morphology of the heartbeat is lost in the high-pass filtering
at the IDC electrode, unlike surface ECGs(see Figure 2, lower
part).Moreover, this information is not used for diagnosis, but
rather to adjust the operational parameters of the device.

Given these facts, themost reliable source of information to
work with, are the dates and lengths of the recorded episodes,
which are also stored. This is a drawback because patients
with multiple episodes will probably be in the latest stages
of AF, but the interest lies in patients with a short history
(initial episodes) so that the worsening rhythm of AF can
be anticipated. This goal is very challenging because it is
difficult to find a model that fits such a small amount of
data (see Figure 3). Besides, the fact that the data are non-
stationary makes the problem even more complicated, and
this is exactly what we want to predict on the basis of a

FIGURE 3. Top: Dates of pacemaker mode changes during a year Bottom:
Recorded length of the AF episodes.

short sample, the transition from paroxysmal to permanent
arrhythmias.

There are additional difficulties [24] because the algorithm
used by the IDC to determine the duration of the episodes is
not completely reliable. The device parameters are adjusted
based on the iECGs mentioned above and safety concerns
prevail, so the false positive rate is high. This leads to long
episodes of AF that are sometimes mistakenly reported as
short episode sets, so preprocessing is needed to take these
spurious events into account, which in turn causes the number
of episodes to be reduced even further.

All these reasons being explained, it is clear that the pro-
gression of AF is a complex process that depends on many
different factors. To ease the interpretation of these factors,
we are looking for a model capable of providing clinical
staff with a diagnostic tool that can accurately determine the
status of a patient with AF, therefore something more than a
straightforward prediction is pursued. A possible path is to
establish a Representation Learning approach since, unlike
others, the performance of models following this approach
depends directly on the internal representations, which in turn
can be leveraged in favour of a better understanding of the
problem itself. Typically, an algorithm capable of learning
the characteristics that best represent the underlying data
distribution is required, making it easier to perform other
tasks such as classification or prediction. Since Principal
Component Analysis (PCA) was developed, Representation
Learning has been investigated to overcome the challenges of
high dimensionality. Over the last decade, Deep Learning has
been taking an important role in this field through supervised
and unsupervised learning strategies, where it has had a great
impact due to the feasibility of processing temporal/spatial
data or images more efficiently than superficial methods such
as ICA, LDA or LLE.

Representation Learning has been employed in several
areas of medicine for purposes such as risk factor selection,
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FIGURE 4. Pipeline of the proposed solution. A simulation model is used to generate synthetic arrhythmias that reflect different stages of Atrial
Fibrillation. These data are fed to the proposed recurrent VAE so that it learns a representation that will later be used to evaluate the condition of new
patients.

disease phenotyping, and prediction or classification of dis-
ease risks [25]. This line of research is key to developing
explainable AI, where the results can be interpreted by human
experts. There is a lack of work in this direction concerning
the diagnosis of cardiovascular diseases where the few works
that exist are focused on image processing [26] or simple
classifiers are developed for time series data [27]. Regarding
the diagnosis of AF, the vast majority of papers analyze ECG
data from non-invasive devices [28], which are compatible
with patients in the early stages of the disease or without
previous pathologies, hence they are out of the scope of this
work. There are also incentive contributions [29] where the
authors study data from wrist-worn devices with convolu-
tional networks. Nonetheless, pacemakers are still the devices
that can provide valuable information in those patients in
more advanced stages of the disease.

In our previous work [30] we tried to contribute to this
path by presenting a graphical approach for analyzing the
progression of AF using the output of Recurrent Neural Net-
works (RNN). Activations of the last layers of LSTM and
GRU classifiers were used to create a topological map that
provided an intuitive visual diagnosis. Although the results
achieved were significant in terms of accuracy, the interpola-
tion used to create the map obtained was highly sensitive to
the differences between the neuron activations, which might
provoke inconsistencies in the map. For that reason, a recur-
rent version of Generative Adversarial Networks (GAN) [31]
was also introduced to use an ensemble formed by the dis-
criminative part of these nets trained on different types of
arrhythmia in order to learn a representation according to
the complexion of the data. Nevertheless, the classification
results were outperformed by the LSTM and GRU classifiers.

What we propose in this work is to exploit the repre-
sentation learning potential of VAEs in order to provide a
visual early diagnosis of the evolution of AF. VAEs have
the ability to condense data from a high dimensionality to a
much smaller dimension, maintaining consistency between
the distance of the data that is reduced. The influence of
Bayesian Variational Inference provokes the learned latent

space to depict a two-dimensional projection of the data
according to its nature, which is accurate to the AF problem:
this resulting latent space can be interpreted as an explainable
map where the distances between the compressed input data,
are correlated with the differences between the various types
of arrhythmia. When a sample of a patient’s data is presented
to the VAE, the resulting location on the map gives insight
into the state of the intracardiac activity of the patient and
how the disease might evolve in a short period of time, due to
proximity to other nearby points.

III. PROPOSED METHOD
This section describes the proposed framework for perform-
ing the task of evaluating the evolution of time series. Figure 4
shows the pipeline followed for applying this framework to
the diagnosis of patients with AF out of their intracardiac
data, where two main components are distinguished: First,
a model capable of simulating the behaviour of actual AF
clinical data (1) is used to generate a dataset that reflects
the variety of arrhythmias that a patient may suffer. Then,
a recurrent VAE (2) is trained with the generated dataset and
consequently, a latent representation that serves as a basis for
creating the proposed diagnostic tool is obtained.

A. AF SIMULATION MODEL
One of the main difficulties in applying Machine Learning
methods to medical problems is the data availability. It is well
known that the larger and more diverse the dataset with which
themodel is trained, the better the learning. However, medical
data are often highly sensitive and there are privacy concerns.
In this case, although pacemakers registers can be collected
keeping the privacy of the patients, gathering enough data
that reflect the different progressions the disease may have
in different people is beyond our reach. Instead, we opt to use
the simulation model presented in [30].

This simulation model is based on a continuous Markov
model with 3 states: ‘‘Normal’’, ‘‘Arrhythmia’’ and ‘‘False
Normal’’ (see Figure 5). The first and second states refer
to the periods of time in which the patient is in a normal
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FIGURE 5. State diagram of the dynamical model of the simulation of AF
episodes.

state (out of arrhythmia) or suffering an episode. The ‘‘False
Normal’’ state refers to those cases, as stated in the previous
section, in which the pacemaker erroneously detects the end
of an episode of AF and which subsequently leads to a change
in the pacemaker’s operation mode to control the arrhythmia,
a process also known as Automatic Mode Switching (AMS).
There are AMS events in the transitions from ‘‘Normal’’
to ‘‘Arrhythmia’’, but also in the transitions from ‘‘False
Normal’’ to Arrhythmia.

AMS events can therefore define the beginning of a true
episode of AF or the false end of an episode (‘‘False Normal’’
state). The latter case is not desired but there is no simple pro-
cedure to purge these events from the IDC data in real patients
[32], so the proposed generative model should produce these
spurious events as well.

It will be assumed that the times in the ‘‘Normal’’ and
‘‘False Normal’’ states follow an exponential distribution
with parameters λNA(t) and λGA(t), respectively. The time in
the ‘‘Arrhythmia’’ state follows an exponential distribution as
well, with parameter λA(t). The probability that the next state
after ‘‘Arrhythmia’’ is ‘‘False Normal’’, where the end of an
episode is signaled before time, is pAG and the probability that
instead of ‘‘False Normal’’ it is ‘‘Normal’’ is pAN = 1−pAG.
Under these conditions, the parameter λNA(t) determines

the distribution of the time between two episodes and the
parameter λA(t) determines the duration of an episode. The
progression from paroxysmal to permanent AF is measured
by the rate of change in these two parameters: the time
between episodes will be shorter and their duration longer
as the heart condition worsens. The rate of progression is
modeled by a parameter α ∈ [0, 1],

λNA(t) = λNA(0) · αt , (1)

λA(t) = λA(0) · α−t , (2)

where α = 1 denotes a stable patient while α values less than
1 evidence patients with a quick progression to permanent
arrhythmia.

To sum up, the proposed generative model is a Markov
model in continuous time characterized by 5 parameters:
(λNA(0), λGA, λA(0), pAG, α). With this model, it is possible
to produce a list of AMS events through Monte-Carlo simu-
lation by using a random seed. Each randomly generated list

can be viewed as a hypothetical patient whose type of AF is
defined by the above parameters. The data generated by this
model will be used to create the training set for the proposed
VAE.

B. RECURRENT VAE (RVAE)
The workflow followed in this component is quite simple: a
VAE is trained with the generated dataset to learn a simplified
representation of the data. Thus, the learned encoder acts as
a feature extractor that describes the input data according to
its properties, which are different stages of AF. This section
explains how this extraction, reflected in the resulting latent
space, can be leveraged to create the diagnostic map we
are pursuing. It also emphasizes the recurrent architecture
proposed to deal with time series as well as how the presence
of a classifier built over the frozen weights of the encoder in
the training process can influence the final solution.

1) ENCODER AS A FEATURE EXTRACTOR
In a VAE the training is regularised to avoid overfitting and
to ensure that the latent space has good properties that allow
the generative process. Precisely these properties contribute
to the input data being mapped in the latent space in such a
way that similar data are nearby and that this representation
can be used as a feature extractor.

A VAE, given an input, tries to find a latent vector that
is capable of describing it and at the same time has the
instructions to generate it again. The process can be described
as: p(x) =

∫
p(x|z)p(z)dz. Given that the integral of this

formula is intractable due to the continuous domain of z,
the variational inference is needed via the lower bound of the
log likelihood, Lvae,

Lvae = Eqφ (z|x)[log pθ (x|z)]− DKL(qφ(z|x)||pθ (z)). (3)

The first term is the reconstruction of x that tends to
make the coding-decoding scheme as efficient as possible
by maximizing the log-likelihood log pθ (x|z) with sampling
from qφ(z|x), modeled by a neural network whose output
are the parameters of a multivariate Gaussian: a mean and
a diagonal covariance matrix. The second term tends to
regularise the organisation of latent space by causing the
distributions returned by the encoder to approach a standard
normal. It regularises the latent variables (represented by z)
by minimising the KL divergence between the variational
approximation and the prior distribution of z. The encoder,
represented by qφ(z|x) is the component that will be used as
a feature extractor since its goal is to map the input data into
a lower dimensional space.

One of the advantages Autoencoders have is the flexibility
provided by their architecture. The temporal nature of the
data suggests that the VAE can be combined with time series
modeling approaches such as RNNs. Among the different
types of RNN that can be found, LSTM networks are the
most outstanding ones. LSTM networks process data from
back to front preserving the information from the past through
the hidden states. Nevertheless, it is also possible to preserve
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FIGURE 6. Network structure of the proposed method. The blue and green blocks are the encoder and decoder respectively and the red blocks refer to
the linear classifier.

information from the future by processing data from front to
back. This property is the operating principle of Bidirectional
LSTMs: they run in two directions, from past to future first,
and then from future to past by preserving information from
both periods. This is very valuable due to the fact that the
network is aware of how the data may look like in its future
stages, so it can help to understand what kind of information
to predict (different progressions of AF).

With that being said, we decide to replace the encoder of a
vanilla VAE with a Bidirectional LSTM network. In this way,
the encoder approximates the Gaussian distribution pθ (z) by
feeding the output into two linear modules to estimate its
mean and covariance. The compression of the input data
results in a two-dimensional latent space dominated by the
axis represented by the mean and the variance of the approxi-
mated distribution. It is expected that arrhythmias are grouped
in different clusters according to their features, depicting a
simpler representation of their nature.

Based on the representation learned by the encoder,
the data, x, is sampled from the conditional probability distri-
bution p(x|z). For generative purposes, this regularisation in
the latent space is very effective for easy random sampling
and interpolation for the creation of new data. This is the
objective of the decoder and is the most extended application
of VAEs in the literature. Yet, we decide to discard this part
after training the model because our efforts are focused on the
diagnosis of the input data instead of the generation of new
unseen cases.

2) DIAGNOSTIC MAP
The diagnostic tool introduced in this study is a color-coded
map that displays the actual state of the patient and the speed
of change in his/her condition from paroxysmal to permanent
AF. Once the VAE is trained with theMonte-Carlo simulation

of pacemaker events, a topological map is obtained in the
latent space from which evident clusters corresponding to
different types of arrhythmias are identified, as can be seen
in Figure 7 (part right). In this respect, the map can be
regarded as a graphic projection of the pacemaker data in a
space whose coordinates are the values of λNA, λGA, λA, pAG
and α. The values of λNA, λA and α in the projection measure
the condition of the patient and the progression of the AF.
λGA and pAG measure the chance that an AMS event in the
pacemaker is spurious. When actual pacemaker registers are
used as input, the encoder will place them according to their
features, giving information about what type of arrhythmias
the patient suffers depending on which cluster they fall into.
The following section provides further details on the interpre-
tation of this map.

3) CLASSIFIER: ENCODER QUANTITATIVE DIAGNOSIS
In order to have a clustering-like approach from the latent
representation that the encoder learns we propose the inclu-
sion of a classifier in the model training process. A simi-
lar approach was taken in [33] by Kingma et al. in what
they refer to as the latent-feature discriminative model. The
authors train a VAE and then feed a classifier with the outputs
obtained from the resulting encoder. That is to say, a classifier
is used to enhance the benefits of the VAE; however, what we
propose is to enhance the latent clustering properties of VAE
by using a classifier, not once the VAE is trained, but while it
is being trained.

The image on the left in Figure 7 represents why the first
approach is not suitable for the problem at hand. It corre-
sponds to the latent space the encoder learns after training the
model without any restrictions, therefore the regularisation of
the latent space for the generation of new data is prioritized.
This results in the location of the input data in areas where
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FIGURE 7. Latent representation learned by the encoder following two different training approaches.
In the left figure no restriction was added to the model while in the right one a penalty for
misclassifications was included.

instances that do not belong to the same group of parameters
with which they were trained, are located nearby and in many
cases overlap. A classifier was trained over the frozenweights
of the encoder, nevertheless, this overlap severely penalizes
the performance in classification.

Instead, we decided to take another path: including the
optimization of the classifier in the training process. Although
few previous works have taken this approach the results are
very promising [34]. Therefore, unlike what is proposed in
other works applied to VAEs where the problem is divided
into two steps: an unsupervised pre-training step (VAE), fol-
lowed by a supervised learning step (classifier), we decide to
merge both. The VAE is trained to minimise a loss function
composed of two objectives:

Lvae + Lcross−entropy(y, ŷ) (4)

The first objective corresponds to the VAE objective itself
and the second one is the categorical cross-entropy between
the labels and predictions for measuring the performance of
the classifier. By including the optimization of the classifier
in the loss function a restriction is added to the VAE because
it will strive not only for a continuous latent space but also
for a space where the different classes are separated enough
to be clearly differentiated, as can be seen in the right side of
Figure 7. The architecture of the classifier is simple: A single
Fully Connected layer and a softmax layer are added on top
of the encoder base.

In addition to the visual diagnosis that can be offered in
the map explained in the previous subsection, the classifier
obtained can report explicitly which parameters modeled by
the simulation model are the ones that best represent each

arrhythmia that is fed to the model. Also, the fact of building
a classifier will allow us to compare our method with other
state-of-the-art classifiers as we will see in the following
section.

Coming up with this result was not straightforward. Firstly,
a good choice of the Learning Rate (LR) is necessary, and
secondly, it must be taken into account that two optimizations
are being made: the VAE objectives and the classification
objective. This means that the contributions of each loss must
be assessed. Nevertheless, the relevance of each objective is
unbalanced and this causes the model representations to pref-
erentially optimize the task with the highest individual loss.
To solve this, we decided to use a penalty formisclassification
by using different weights for each problem, thus, we can find
the perfect balance for the objectives we pursue.

IV. ILLUSTRATIVE PROBLEM
Before addressing the diagnosis of arrhythmias, we present
a generic problem to demonstrate the ability of our model.
We aim to develop a solution that can analyze sequential data
by presenting a visual interpretation of its nature. To this end,
a dataset composed of sinusoidal sequences will be used as an
illustrative example of what can be obtained with our frame-
work. Thus, we have a dataset whose nature has a periodic
factor and relies on three parameters: frequency, amplitude
and phase. We generate six classes by varying the frequencies
in [1.0, 4.0], amplitudes in [0.125, 0.5], and random phases
between [−π , π].
The aim of training the model with these data is to obtain a

representation that is capable of dividing the six classes into
different groups and at the same time keeping a coherence
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between the distances of the different clusters. That is, if a
class has frequency 4 and amplitude 0.125, it is not desired
that samples belonging to this class are grouped near those
belonging to the class generated with frequency 1 and ampli-
tude 0.5 because the dissimilarities are evident and what we
pursue is that data be located near those that are most similar.

Figure 8 (part right) shows the resulting latent space after
training the model. At first sight, there are six clusters, each
one belonging to each generated class. In terms of classifi-
cation, the performance is optimal since each point is classi-
fied within the group to which it belongs and the proximity
between clusters, which is the feature we will use later for
the diagnosis, is understandable. The 3 most external clusters
belong to examples that have the same amplitude: 0.5, but
different frequency: 1, 2 and 3 from most external to most
internal. The 3 innermost clusters have the same frequency:
4 and 0.125, 0.25 and 0.375 as amplitudes from innermost
to outermost. This arrangement shows that the most similar
classes are adjacent on the map, which may let a new point
be located in the area of the map that best fits its parameters.
Again, it is important to highlight the influence of Bayesian
Inference in the display of the clusters since other clustering
methods lack this property as can be seen in the left side of the
figure where PCA was used. Sequences with frequency 4 and
amplitude 0.125 and 0.25 are not clearly differentiated and
most importantly, the outermost cluster belongs to sequences
with amplitude 0.375 and frequency 4, however, according to
the similarity between the data it should be placed between
the blue and red clusters. In consequence, the importance of
achieving a faithful representation according to the similarity
between the data is appreciated.

To conclude this section, it should be noted that although
the reconstruction is remarkable (see Figure 9), the addition
of the classifier provokes some division between clusters.
This penalizes the generative condition because if sequences
are generated from ‘‘empty’’ latent zones, that is, where there
are no points previously represented, the resulting recon-
struction may not make sense. Nevertheless, the generative
purpose of the framework does not fall within our objectives
nor will it be used for any purpose.

V. EXPERIMENTS
The experimental validation of the proposed framework has
two parts. First, synthetic data with known properties are
used to compare our framework with other state-of-the-art
classifiers. Second, actual patients are diagnosed and their
maps are validated by a human expert.

We begin by describing the experimental setup and then
introducing the numerical results. Finally, the diagnostic map
achieved is presented and the experimental validation is dis-
cussed.

A. EXPERIMENTAL SETUP
In the experiments carried out for both, the toy problem and
theAF diagnosis, the datasets were composed of sequences of
length 144 and one feature. The number of samples for train-

ing was 84000 and 16800 for test, which were completely
balanced between the six classes that were used. On the other
hand, as hyperparameter tuning is a very challenging task,
we made use of Hyperopt [35], a specific library for hyper-
parameter optimization. Also, an accurate choice of the LR
is particularly essential to improve the optimization process,
therefore for this parameter we used an adaptive LR opti-
mizer, Adam, and the Cyclic Learning Rate technique pro-
posed in [36] to help to select the optimal LR with which to
start the training. Also, to attain the best possible performance
of our model we used callbacks in the Keras [37] Deep Learn-
ing library for all our experiments to relegate the training
stop condition to the validation error instead of the number of
epochs. These implementations led us to find the best results
in terms of the functions to be optimized. All models and
experiments were implemented in python and the source code
to reproduce the experimental results is available in a public
git repository: https://github.com/NahuelCostaCortez/RVAE.

B. NUMERICAL RESULTS
In this section, we demonstrate that our framework can com-
pete with state-of-the-art classifiers for time series for the
case at hand. It should be noted that the baseline methods
we present do not include any representation of the data,
but simply predict the class to which each sample belongs,
which makes us appreciate the importance of Representation
Learning as it provides a more illustrative information than
just a numerical or categorical result, as we will see in the
next subsection.

In regard to the data, six AF categories were generated
using the model described in Section III. These classes
are labelled 998na10, 998na30, 998na180, 999na10,
999na30 and 999na180. The class labels begin with the
first three decimals of α, which is the speed of the progression
of the AF (998 is fast, 999 is slow)while the second number in
the class label is 1/λNA(0), from now β for simplicity, which
is the average time between two AF episodes, measured in
days (10, 30 and 180 days).

1) BASELINE METHODS
To evaluate the performance of our model, we used the tool
provided in [38] to implement 5 baseline methods,

• Resnet: a deep Residual Network proposed by [39] com-
posed of three residual blocks followed by a GAP layer
and a final softmax classifier whose number of neurons
is equal to the number of classes in a dataset.

• FCN: A Fully Convolutional Neural Network, with the
architecture also proposed in [39], which consists of
three convolutional blocks whose result is averaged over
the entire time dimension that corresponds to the GAP
layer. Finally, a traditional softmax classifier is com-
pletely connected to the output of the GAP layer.

• Encoder: Originally proposed by [40], Encoder is a
hybrid deep CNNwhose architecture is inspired by FCN
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FIGURE 8. Simplified representations of sine wave sequences by PCA (left) and our model (right). It is
shown that in our solution the organisation of the clusters is consistent according to the data while in
PCA the organisation may not fit the nature of the data.

FIGURE 9. Comparison of reconstructed and original senoid samples.

(Wang et al. 2017b) with a main difference where the
GAP layer is replaced with an attention layer.

• TWIESN: Time Warping Invariant Echo State Network,
a variant of the Echo State Networks (ESN) proposed by
[41] in which each timestep is projected in a spacewhose
dimensions are inferred from the size of a reservoir. Then
for each element, a Ridge classifier is trained to predict
the class of each element in the time series.

It should be noted that in the previous section the impor-
tance of RNN for time series processing was highlighted
whereas in this study TWIESN is presented as the only RNN
to be compared. RNNs are generally applied for time series
forecasting, however, when it comes to classification there are
some drawbacks that emerge:

• This type of architecture is primarily designed to predict
an output for each element in the time series [42].

• RNNs often suffer from the Vanishing Gradient problem
due to long time series training [43].

• RNNs are considered difficult to train and parallelize,
which leads to the avoidance of their use for computa-
tional reasons [44].

In our case the main objective is not classification but the
treatment of the evolution in the series that represent the
arrhythmias, which is why the application of other architec-
tures was not considered.

Table 1 shows the performance of the different models
for each class in terms of accuracy. Each entry in the table
is the number of times an arrhythmia in a class was recog-
nized by each model for the appropriate class. In addition,
to illustrate the performance of each method, the rank-
ing calculated by the Friedman method (ranking by range)
for each dataset and the resulting averaged ranking are
included.
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TABLE 1. Accuracy of the different classifiers, 6 types of AF.

It can be seen that the best classifier is Resnet, followed
by our solution, labelled as RVAE. To extend the comparison
between the different methods, post-hoc tests were carried
out to detect significant differences in pairs between all the
classifiers as recommended in [45]. Table 2 shows the family
of hypotheses formulated to compare the classifiers ordered
by the corresponding p-values. If the significance test yields a
p-value lower than a predefined threshold (usually 0.05), then
the difference is considered significant, therefore one model
is declared superior to another. In this case only Resnet is
significantly higher than the other models, which are FCN,
Encoder and TWIESN if a significance level of 0.05 is
considered since the p-values are below this threshold. The
only solution to which it does not significantly exceed is
ours. If the Bonferroni correction is considered, in which the
number of comparisons is taken into account, the threshold
which would have to be set is 0.05 divided by the number of
comparisons, i.e. 0.05/6 = 0.0083. Taking this value, Resnet
would only be significantly higher than TWIESN. This is
important to note because only TWIESN and our solution use
RNNs, so it can be stated that our solution outperforms the
best state of the art RNN classifier.

As a conclusion of this comparative study, it can be stated
that our framework is capable of competing with the best time
series classifiers reported up to 2019. Besides, the misclassi-
fication errors of our model correspond to arrhythmias that
by their characteristics are located between classes similar
to the one that really belongs, see Figure 7 right side: the
classifier learns from that representation, so it can be assumed
that failures are most likely due to the overlap of instances
of a similar nature, which can also be interpreted as an
estimate of the class of arrhythmia that most resembles its
parameters or even as the possible future evolution that they
will have, as we will address next.

C. VISUAL DIAGNOSIS
As discussed in previous sections, the latent properties of
the VAE were prioritized to obtain a latent space whose
characteristics were suitable for a simplified representation
of the data. Figure 7 (right side) is the result of the latent
representations obtained by the encoder for the training data
and it can be understood as a projection of the 5 parameters
that govern the arrhythmias simulation model. There are six
clusters, which correspond to the six classes with which

TABLE 2. Family of hypotheses ordered by p-value.

the VAE was trained, labelled according to the two most
relevant parameters of the simulated arrhythmias: α and β.
The representations are organised according to the criticality
of these two parameters.

The clinical interest lies in being able to project a real
patient’s data onto the latent space to find out which param-
eters of the model fit best. The procedure is quite intuitive;
the arrhythmias are fed to the encoder, which predicts an
output that will be the mean and variance of each one adapted
to the distribution learned during the training. These two
parameters are the axes that govern the latent space therefore,
their codification in this space corresponds to a point with
coordinates X=mean and Y= variance. In short, each point
represents an arrhythmia from the training set. By projecting
these dimensions on the learned map, their location on the
clusters of arrhythmias that are present will give insight about
the parameters that best define the patient’s condition.

Figure 10 shows a projection (red dots) of two randomly
selected patients from their pacemaker records. On the left
side, it can be seen that the patient’s projection falls into the
group belonging to arrhythmias that have parameters α =
0.999 and β = 180. Remember, α measures the speed of pro-
gression of arrhythmias and values of α close to 0.999 indi-
cate a slow progression of AF. β indicates the average time
between arrhythmias, in this case, it is more likely that those
of this patient will occur at least every 180 days, so it is esti-
mated that this is a patient that progresses positively without
involving much risk.

As the map is organised, it is evident that the values of β
are located from left to right from highest to lowest (180, 30,
10), which is equal to an organisation from lowest to highest
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FIGURE 10. Projection of arrhythmias of actual patients.

FIGURE 11. Projection of unseen simulated cases with known
parameters. It can be seen that the arrhythmias are projected in the
correct cluster. Besides, their location on the map is consistent according
to their proximity to other clusters.

criticality as low values of β indicate short times between
different episodes. On the other hand, the values of α are
organised from top to bottom (999, 998), from less to more
critical. This information can be used to facilitate a better

interpretation of the map. The upper right zone denotes the
less critical arrhythmias, while the lower right zone shows
those arrhythmias that represent a very advanced stage of
the disease. At the same time, the rest of the parameters of
the simulation model during the generation of the training
set have been varied randomly, which slightly influences the
condition of the arrhythmias, therefore this property can give
rise to the interpretation of arrhythmias between two clusters
as an interpolation between the parameters of two classes.

This fact can be seen in the patient depicted on the right side
of the same figure. This second case is located in the cluster
with parameters α = 0.998 and β = 30. Firstly, the parameter
β is closer to 30, but due to its proximity to the lower-left
group (β = 180), it can be understood that its evolution is
on the way to reach 30, possibly a value between 180 and
30. Secondly, the most critical parameter, α, corresponds to a
value of 0.998, which means that the evolution is closer to a
permanent arrhythmia. This is not the most critical case, but
it may need medical intervention in order to prevent future
complications.

The organisation of the latent space reveals that the model
is capable of setting apart the different values of α and β,
allowing us to know if the condition of a certain patient
evolves dangerously towards permanent AF. It is important to
highlight the latent organisation obtained and its interpretabil-
ity. Asmentioned previously, themost dangerous arrhythmias
are located on the lower right and those that do not suggest
too much danger on the upper left. This evolution from one
corner to the other can be interpreted as an interpolation of
the parameters used to offer a diagnosis onto the latent space:
α on the Y-axis and β on the X-axis. Figure 11 reinforces this
idea: new simulated arrhythmias are projected onto the latent
space by varying the parameters of the simulation model,
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but unlike the process followed to generate the training data
where the parameters λGA, λA(t) and pAG were randomly
altered within a certain range, on this occasion they were left
fixed. As a result, instances are represented as crosses and
labelled according to the parameter β with which they were
generated. The parameter α is omitted since the membership
towards 0.998 or to 0.999 is evident. The projection on the
map shows that the interpretation of the parameters of a given
arrhythmia can be established according to the proximity
to a specific cluster. That is, despite the fact that the first
group characterizes those arrhythmias with parameters α =
0.999 and β = 10, if an arrhythmia is located in the limit
between this group and the one on its left it is very likely
that it has an intermediate parameter β between both, (e.g.
20), or if an arrhythmia is located between a superior and an
inferior group it would mean that the parameter α evolves
dangerously towards values of 0.998. In this way, it is possible
to know how the progression of a given arrhythmia could
evolve.

VI. CONCLUDING REMARKS AND FUTURE WORK
We have described, trained and evaluated a recurrent VAE
architecture based on Bidirectional LSTMs to assess the
progression of time series by means of a graphic projection.
We introduced a classifier to regularise the formation of
the latent space and thus obtain a representation according
to the nature of the data. The diagnosis of AF disease has
been addressed with this model using intracardiac pacemaker
records from actual patients and not only was an explainable
diagnosis achieved but also our method was shown to be
able to compete with solutions dedicated exclusively to time
series classification, outperforming three of the four methods
presented in terms of accuracy.

Lastly, the flexibility of the resulting model provides an
opportunity to explore other future work contributions. Latent
properties can be addressed in even more detail with recent
architectures [46], [47] and the decoder, which has been
discarded for this work, can be used for other tasks such as the
detection of anomalies in data reconstruction or the prediction
of the next time steps in the analysed time series.
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