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Carlos López-Fernández

Department of Geology, University of Oviedo, Oviedo, Spain

The Cantabrian fault (CF) is a crustal-scale structure that cuts obliquely the western
North Iberian Margin (NIM) for 160 km and continues onshore transecting the Cantabrian
Mountains (CM) for another 150 km as the Ventaniella fault (VF). For most of its length
inland, the fault system is aseismic, except for a 70 km long segment at its southern
end. Within this segment, a gently north-dipping linear arrangement of earthquakes
was interpreted as related to the intersection of a slightly oblique fault to VF with the
basal thrust of the CM. In addition to earthquake nucleation along parts of its length,
the CF–VF also stands out regionally as a major seismotectonic boundary, separating
a seismically active area to the West from an essentially aseismic region to the East.
Contrasting tectonothermal evolution in the crust on either side during the Mesozoic
rifting may underlie the observed differences. On the other hand, the seismicity within
the subsea segment is low magnitude, persistent, and understudied. The scarcity of the
permanent seismic stations distribution in the area did not allow to establish more than a
generalized consensus relating the offshore events to the submarine structure. A recent
local seismic network monitored the area providing the highest accuracy information on
the offshore events to date. Although the location of foci is partially challenged by the
lack of recording stations from northern azimuths at sea, the observed pattern shows
indeed a broad linear trend in the submarine domain in relation to the crustal-scale
structure. Specifically, this study shows that the distribution of foci offshore display two
preferential areas along the CF–VF within its southern crustal block. Considering the
basement rock types and the deep architectural disposition of the margin crust, two
possible explanations for the origin of the clusters are put forward in this contribution.

Keywords: Cantabrian fault, Bay of Biscay, Ventaniella fault, intraplate seismicity, North Iberian Margin

INTRODUCTION. TECTONIC SETTING

The opening of the Atlantic Ocean initiated in the late Jurassic to early Cretaceous and had
several aborted branches. The northern coast of the Iberian Peninsula constitutes the southern
margin of one of these aborted rifts: the Bay of Biscay. The opening of the Bay of Biscay,
progressing from West to East, produced the hyperextension of the northeastern part of the Iberian
Peninsula leaving a strong thermal imprint in the crust (e.g., Tugend et al., 2014; Cadenas et al.,
2018). The margin includes different rift systems which based on a tectono-stratigraphic analysis
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(Cadenas et al., 2020), can be summarized into (1) an early
diffuse widespread Triassic system, (2) a confined Late Jurassic to
Barremian left-lateral transtensional one, and (3) a wide Aptian to
Cenomanian hyperextended rift system. The inherited templates
guided the subsequent events and the spatial distribution and
overprint of the systems results in a complex 3D structure.
However, west of the Ventaniella fault (VF)–Cantabrian fault
(CF), in the area targeted in this study, the later systems were less
important than to the East, and the variscan basement therefore,
considerably less affected thermally and tectonically.

During the Cenozoic, the Bay of Biscay hosted the convergent
plate boundary between the Iberian and the Eurasian plates
(Srivastava et al., 1990). The deformation associated to this
convergence stage was strongly localized in the southern margin
of the rift, reversing some of the extensional movements or, in
many cases, partially overprinting earlier structures (e.g., Boillot
et al., 1979). The interplay of the Alpine compression with the
three Mesozoic rifting systems amplified the inherited differences
and segmentations providing the ample variations observed
along the margin today. With compression, an accretionary
wedge formed at the bottom of the slope (Álvarez-Marrón et al.,
1997), representing one of the few margins in the world that
preserves such a witness of early reactivation (Stern and Gerya,
2018). The wedge increases in extension and depth toward the
east (Fernández-Viejo et al., 2012). The compression was halted
when the plate boundary migrated to the south in the actual
Azores-Gibraltar zone.This fact makes the North Iberian Margin

(NIM) one of the best examples where polyphase-multistage
rifting and posterior reactivation processes can be investigated, as
the later tectonic events did not obliterate completely the earlier
extensional structures (Roca et al., 2011; Tugend et al., 2014;
Cadenas et al., 2020).

Prior to the Mesozoic extension, the basement in North
Iberia was characterized by the Variscan orogenesis during
the Carboniferous in this part of the ancient mountain belt
(Figure 1). The structural grain of the Variscan orogen
observed onshore is northerly to northwesterly oriented for
most of the western half of the Peninsula turning northeasterly
offshore (Pérez-Estaún et al., 1991). The latest major tectonic
Variscan structure in northwestern Iberia dates from the early
Permian (e.g., López-Sánchez and Llana-Fúnez, 2018). More
than 50 ma later, in the Late Permian, the nascent rift
cut obliquely across major variscan structures (Arche and
López-Gómez, 1996) producing several northwesterly trending
faults with minor basins and associated local volcanism
(Martínez-García et al., 2004).

Crustal Structure
The thickness of the crust in the north-western corner of the
Iberian Peninsula is fairly constant, with the Moho discontinuity
located at about 32 km depth on land (Cordoba et al., 1988;
Fernández Viejo et al., 2000). Within the continental platform
west of VF–CF, crustal thickness reduces slightly to 27–9 km
(Ayarza et al., 1998). The crust-mantle boundary remains nearly

FIGURE 1 | Geological map of the Northwest Iberian Peninsula and margin. The trace of the Cantabrian fault according to Fernández-Viejo et al. (2014). APF, As
Pontes Fault; NA, Narcea Antiform. Major variscan and alpine structures are depicted and the predominant rock type zonation represented in color.
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flat until the continental slope, where sharply decreases to 18 km
in 40 km distance to become oceanic crust beneath the abyssal
plain (Fernández-Viejo et al., 1998). The study area belongs in
terms of rift domain characterization to the proximal domain,
where minor lithospheric thinning was achieved and small half-
graben basins are formed (Cadenas et al., 2018).

The thickness of the seismogenic zone in the continental
sector is estimated in 20 km (López-Fernández and Llana-
Fúnez, 2015). The seismicity pattern is divided into a western
sector where earthquakes tend to cluster in swarms and an
eastern sector where seismicity is distributed. This seismic
domains division matches the division in the tectonic style of
structures accommodating the Alpine convergence: two systems
of subvertical strike-slip faults to the West, contrasting to
orogenic frontal thrusts to the East. The transit between both
structural domains is aligned North-South and coincides with a
local increase in seismic activity (Figure 2).

The Ventaniella-Cantabrian Fault System
The VF and CF system has a surface trace in geological maps
that can be followed for more than 300 km crossing the CM
and NIM in a NW–SE conspicuous trend, affecting Paleozoic and
Mesozoic materials (Figure 1). Tavani et al. (2011) considered

the VF as part of a 15 km wide shear zone including also the
Ubierna fault in its southeastern termination, increasing further
its length. Although the cartographic pattern is straightforward
through the Paleozoic formations onshore, which are steeply
dipping, its recognition becomes more challenging through the
Mesozoic units, which are flat lying and not so well exposed.
There are parts of the fault onshore that reactivate Permian
extensional structures, as the main fault bounds some of the small
Permian basins (Martínez-García et al., 2004), and others that
reactivate earlier Variscan structures (Alonso et al., 2009). The
movements and evolution along the long-stretched history are
not fully understood. Nevertheless, its latest amply recognized
movement corresponds to an oblique dextral fault with a reverse
component, which resulting in a slight elevation of the NE block
(Julivert et al., 1971; Julivert, 1976). There is also geomorphic
evidence of quaternary movements, as it offsets Early Pleistocene
alluvial fan deposits (Nozal and Gracia, 1990). According to
these authors, the fault is sealed by younger fans, middle to
upper Pleistocene in age. Its recent accumulated movement
is also recorded in the coastal area, where the fault elevated
50 m a sector of the emerged wave cut platform that follows
closely the North Iberian coast (López-Fernández et al., 2020).
Across the mountain belt, it is also described to control the

FIGURE 2 | DEM of the Cantabrian Mountains and North Iberian Margin with the seismicity and seismic networks available for the study. SSN, Spanish Seismic
Network; GEOSN, Geocantabrica Seismic Network; GEOSCSN, GeocanCosta Seismic Network. The events are differentiated according to their depth and
magnitudes with colors and sizing separating microevents from the rest (>2.5). Below, histograms representing the frequency distribution of the registered
earthquakes with depth, (A) offshore and onshore depth distribution of events, (B) GEOSCN events, (C) GEOSN events, (D) GASPI events, and (E) SSN events.
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asymmetric distribution of rivers and a secondary water shed
(Jiménez-Sánchez, 1999).

Field data from the VF trace indicate a subvertical dip (Nozal
and Gracia, 1990; Tavani et al., 2011). The seismicity onshore
associated with its trace points to a minimum depth of 20 km
for parts of the fault (Figure 2; López-Fernández et al., 2018).
Offshore, it has been suggested that it could affect the whole
crust (Cadenas et al., 2018). Regarding its activity, on the basis of
seismic hazard calculations, the slip rate varies between 0.1 and
0.01 mm/year. Its dimensions make plausible the nucleation of
an earthquake up to 7 magnitude, but considering the recurrence
interval of more than 30 kyr, it is not regarded as a hazardous
structure (Villamor et al., 2012).

Traditionally, the fault prolongation within the continental
platform of the NIM followed the direction of the Aviles canyon,
one of the deepest submarine valleys in the Atlantic (Gómez-
Ballesteros et al., 2014). However, the study of Fernández-Viejo
et al. (2014), remapped it with a strike of N60W and accompanied
by a secondary branch striking N65W for at least another 80 km
length. A large submarine slide was observed associated to its
trace on the slope rim. This mass of material produced a bend in
the trajectory of the Aviles canyon, which shows a weaker tectonic
control than previously assumed.

The role of the CF–VF as a crustal domain boundary
structure applies to seismicity, practically absent to the East
(Figures 2,4), and to lithospheric and crustal thickness variations
based on seismic refraction data, potential field modeling,
and tomographic studies (Villaseñor et al., 2007; Torne et al.,
2015; Palomeras et al., 2017; López-Fernández et al., 2018;
Acevedo et al., 2020).

One striking aspect of the VF as a large-scale crustal feature
is its modest accumulative apparent offsets. The strike slip 5 km
offset (Julivert, 1976) or the 50 m vertical offset (López-Fernández
et al., 2020), are well below 2% of its reported length and can be
regarded as disproportionally low for a crustal-scale boundary.
A question still to be answered is whether the fault moved
in opposite senses throughout its long-lived history for longer
distances, and only allows seeing the destructive interference
of these movements. In summary, the transit between the
drastic change in crustal properties on either side of the
fault system remains enigmatic given the relatively small offset
observed at the surface.

METHODS

In this contribution, we focus on the distribution of the offshore
seismicity at the western NIM, and particularly that associated
to the CF trace at sea, based on data from different available
seismic networks. Data from the permanent Spanish seismic
network, (SSN) and three portable local seismic networks have
been analyzed in order to complete the offshore study. Two of
these were deployed specifically to target the Ventaniella fault
seismic segments (Figure 2):

(1) In September 2015, we deployed a dense short-period
seismic array consisting of 10 stations around the active
southern sector of the Ventaniella fault (Geocantabrica
seismic network, GEOSN). The seismic stations were

equipped with Worldsensing-Spidernano data loggers
in combination with three-component 2 Hz Geospace
MiniSeisMonitor sensors. This deployment registered for
19 months, covering an area of 60 km × 50 km (López-
Fernández et al., 2018; Acevedo et al., 2020).

(2) Later, in May 2019, we installed a second seismic
network covering a wider area in the Cantabrian
Mountains (160 km × 80 km). This array (Geocantabrica-
Costa seismic network, GEOCSN) was composed of 11
broadband seismic stations, 4 of which were placed
along the coast in order to improve earthquake detection
in the shelf. The seismic data was acquired using
Nanometrics Taurus dataloggers along with Nanometrics
Trillum 120 s sensors for a period of ∼9 months.
Our datasets were complemented with waveforms from
the two broadband stations of the SSN located in the
area: EPON and EARI (Figure 2). Both the GEOSN
and the GEOCSN arrays recorded continuous data at
a sample rate of 100 Hz and were time-synchronized
via Global Positioning System. The power supply was
provided by solar panels when the connection to a wired
electricity supply was not available. Some of the stations
were accessed via a gateway modem for telemetry and
data transmission.

The aim was to better localize and understand the continuous
seismicity. Given the higher density in these local networks,
it allowed us to increment the threshold of recording the
events, and therefore improve their location. For example, the
SSN registered 50 events in the same period than the local
networks registered 72. Apart from the recent local GEOCSN and
GEOSN networks, data from an earlier local deployment GASPI
(Figure 2) have also been included in the study

Data processing was done with SEISAN software (Figure 3;
Havskov et al., 2020). The detection of events within the
continuous recordings was performed through a STA/LTA
algorithm (STA length = 0.3 s; LTA length = 60 s; min. trig.
duration = 1.5 s; min. trig. interval = 15 s; filter = 2–16 Hz),
selecting events that had been registered by at least three of the
stations. After identifying the local events of natural origin, the
seismic phases were picked manually. Two examples from two
earthquakes are shown in Figure 3. To locate the hypocenters,
we used the HYPOCENTER program (Lienert et al., 1986;
Lienert, 1991; Lienert and Havskov, 1995) and obtained in
each case their ML and Mw magnitudes. The velocity model
used was a 1D model of seven layers with a VP/VS ratio
of 1.74, based on earlier studies and crustal structure local
models (López-Fernández et al., 2018). The events magnitude
MD was calculated with the formula of Lee and Lahr (1975) for
local earthquakes.

The average error in localization from the local networks in
X (north), Y (East), and Z (depth) directions are respectively 4.6,
3.7, and 8.3 km, while values of 6.81, 3.76, and 6.51 are given by
the SSN in the period 1980–2021 (Figure 4).

The registered local earthquakes were integrated into a
database implemented in a Geographic Information System,
which allows the visualization, analysis, and spatial management
of all the seismic information generated.
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FIGURE 3 | Processing scheme followed to locate the seismic events. Below, examples of waveforms recorded for a (left) ML 2.7 earthquake that occurred on
December 8, 2019 (18:36 UTC) and a (right) ML 2.5 earthquake registered on June 22, 2019 (14:26 UTC). Numbers of the left refer to the amplitude of the traces in
counts × 103. Time is expressed in hour of the day in seconds. P and S-wave arrivals marked in red and green respectively.

RESULTS: DISTRIBUTION OF
EARTHQUAKES IN THE CONTINENTAL
PLATFORM

The coastal network was deployed with the double objective
of improving the accuracy of the continental platform events,
and with the aim of obtaining tomographic models through
interferometry of ambient noise (Acevedo et al., 2019). The
number of earthquakes registered at the shelf from all networks
amounts to 195 events between longitudes 5 and 9◦ 30′ W
in a period of two decades. During four of those years, the
three temporary networks were deployed (GASPI, GEOSN, and
GEOCSN). However, considering the scarce instrumental cover
in the region it is reasonable to think that the number of events is
largely underestimated.

The improvement in detection of events and specially
the proximity of the receiving stations from GEOSCN to
the offshore areas increased the available data to depict a
first map of the distribution of earthquakes in the marine
segment of the fault up to date. Overall, 37 local events
between September 2015 and March 2017 were extracted from
the GEOSN dataset (López-Fernández et al., 2018). Due to
the enhancement of the detection capability generated by
the short inter-station distances of the GEOSN network, 35

of these events were not previously registered in the SSN
catalogs. Later, the GEOCSN network contributed to the
addition of another 73 local earthquakes, 24 of which were
previously undetected. Specifically GEOCSN detected 7 offshore
earthquakes between 6 and 21 km depth with magnitudes
between 1.9 and 2.9.

The seismic catalog was complemented with events from the
GASPI network, which operated between 1999 and 2002 (López-
Fernández et al., 2012), which delivered 14 earthquakes close
to Aviles, between 9 and 20 km and average magnitude 2,2. It
also delivered 8 more earthquakes with a disperse distribution
and average magnitude of 2.5. With respect to the SSN, we
have extracted 64 events with a disperse distribution and average
magnitude of 2.1 in the further offshore areas and 91 events closer
to the coast with an average magnitude of 2.4.

Comparing with the inland earthquakes, the number of events
offshore is lower but for some of the events, their depth seems
considerably higher.

The spatial distribution of earthquakes, both offshore and
onshore, is shown in map view in Figure 2 and along
swath vertical profiles in Figure 4. Offshore, the epicenters
show a NW–SE trend approximately coincident with the
trace of the CF, all within the southern crustal block
(Figures 1, 2).
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FIGURE 4 | (Left) distribution of the seismicity along the study area with location of swath profiles 1–8 and average error ellipses and (right) heat map showing the
clusters of seismicity obtained through a density estimation statistical analysis (fourth degree kernel function, area chosen 450 m). (A) Seismicity profiles along VF-CF
strike and perpendicular to it along Clusters 1 and 2. In light blue are represented in the cluster 1 the Moho and sub-Moho reflections according to Ayarza et al.
(2004) which could indicate the presence of the top of the Biscay slab (B) Swath depth profiles 1–4, in S–N direction, 5–8 in W–E. The depth to the crust-mantle
boundary has been plotted in the profiles (from Cadenas et al., 2018) to contextualize the seismicity. The average error ellipses are indicated in the right corner of the
last profile for both, local and SSN networks.

The inset in Figure 2 shows the frequency distribution of
events with depth, which is a graphical proxy to deduce the
seismogenic thickness of the study area (e.g., Tavani et al., 2020).

Even considering the higher error in hypocentral location,
therefore trying to be cautious, the seismicity onshore and
offshore presents a clear distinction: while the onshore events
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are distributed along the seismogenic crust, with a maximum
between 10 and 15 km depth, for the offshore events there is
two maxima in the distribution pointing out to two different
origins of the earthquakes. The first maxima is again located at
mid crustal depths of 12, but the second one is much deeper being
located at around 20–25 km depth.

A heat map of earthquakes foci along the continental platform
of the western NIM portrays the presence of two preferential
areas for earthquakes occurrence, one for about 40 km at the end
of the continental platform in the NW (Cluster 1 in Figure 4)
and a second one, close to the coast (Cluster 2 in Figure 4). The
density distribution also shows a small cluster onshore at around
longitude 7.5◦ W, coinciding with the presence of a normal fault
trending northeasterly, that could potentially be the triggering
structure for the observed seismicity.

Figure 4B displays the distribution of the same events with
depth projected in four S–N and four W–E swath profiles whose
location is given in Figure 4. All profiles portray the projection of
the estimated Moho depth (Cordoba et al., 1988; Ayarza et al.,
1998; Fernández-Viejo et al., 1998; and compiled in Cadenas
et al., 2020) for a crustal depth contextualization. South to North
profiles, 1–4 in Figure 4B, also include the onshore seismicity for
reference. The denser continental clusters correspond to the ones
along the As Pontes fault and the so-called Becerreá swarm inland
(Figures 1,2; López-Fernández et al., 2012).

The effect of the CF-VF system offshore is particularly
noticeable in the W-E swath profiles, numbered 5–8 in Figure 4B,
where one can observe that events practically disappear on
the northeastern crustal block. These latitudinal swath profiles
illustrate clearly the boundary effect exerted by the CF–VF,
separating two very contrasting crustal blocks according to the
seismic record. The southernmost swath shows the influence of
the continental seismicity in the southern crustal block, which
is more evenly distributed and related to other local structures.
The distribution follows the NW–SE trend of the fault system but
clustering in two sectors. The figure also shows the distribution
of seismicity in cross-section along the trace of the fault in NW–
SE direction, containing most of the offshore events, and two
perpendicular sections to the main fault along the two clusters.

DISCUSSION: SEISMICITY PATTERN OF
THE WESTERN NIM

The drastic change in crustal thickness in the NIM from the
continent toward the abyssal plain is similar to the one found
in active margins, a morphological reminiscence of the short-
lived subduction that took place during the Alpine convergence
(e.g., Álvarez-Marrón et al., 1997). This confers to the NIM its
somewhat atypical abruptness for a passive margin profile. From
the vertical profiles in Figure 4B, it is clearly seen the constant
thickness of the seismogenic zone onshore, while increasing
slightly toward the N, even as the crust is getting thinner toward
the abyssal plain.

The alignment of cluster 1 with the CF may be caused in
the same way as in the 70 km long seismic segment of the VF
inland (López-Fernández et al., 2018), that is, as an intersection

between two structures, the CF, and a south-dipping, East-West
trending one. The existence of an inherited weak interface at
the foot of the continental margin, in favorable orientation to
interact with other structures in the crust above, is therefore a
strong candidate to help nucleate part of the seismicity recorded
around the CF. A potential candidate for such structure is
the arrested subduction plane of the Bay of Biscay (Álvarez-
Marrón et al., 1997; Ayarza et al., 2004). The regional context
provides this alternative scenario as it is assumed that a plane
of underthrusting was created when the Bay of Biscay oceanic
crust, due to the collision of Iberia and Europe, started to be
consumed beneath the NIM. The depth of this interface is poorly
constrained, but Ayarza et al. (2004), interpreted a series of sub-
Moho arrivals in a deep seismic reflection profile as out of the
plane reflections from the top of the presumed subducted slab
situated at 40 km depth near the coastline and dipping 45◦
(Figure 4A, transversal to CF, cluster1). At the latitude of cluster
1, if we extrapolate from that depth and dip, the top of this plane
should be encountered at around 25 km depth, which agrees
with the depth of some of the cluster 1 earthquakes. In fact,
these events correspond to the second maxima in the frequency
distribution inset (Figure 2). Thus, there is scope in the future
to constrain better this particular area of structural intersection,
pending on an improvement in earthquake location to support
this hypothesis.

Profile 8 in Figure 4B portrays a second elongated cluster near
the coast, strongly following the CF on its southern crustal block.
The seismogenic zone involves the full thickness of the crust,
suggesting that the whole crust would be locally behaving in a
brittle manner. Nevertheless, close to the cluster 2 onland, the
area around the Narcea Antiform (NA) localizes deep seismicity
(Figure 1). The NA constitutes the boundary between the
external and internal zones of the Variscan orogen and it is
characterized by involving the crystalline basement during the
Variscan thrusting (Pérez-Estaún et al., 1991). The presence at
or near the surface of gneisses and various pre-Variscan igneous
rocks (Rubio-Ordóñez et al., 2015) points to its role as a rigid
body with respect to surrounding relatively softer materials: a
slate belt to the West, and a sedimentary rock sequence to the
East in the Variscan foreland-fold-and-thrust belt. The lateral
continuation of the NA toward the NE intersecting the CF
coincides broadly with the more populated cluster 2 in the NIM.

We have so far seen that the two offshore clusters identified
in this contribution have three things in common: (a) they are
aligned with the CF, a crustal-scale structure given the range
of depths at which activity occurr, (b) they appear where other
crustal scale structures intersect the trace of the CF, and (c) they
mostly nucleate in the southern block. The structure of the crust
in this block is characterized by the strong imprint imposed
during the Variscan orogeny and the minimum tectonothermic
imprint during the alpine cycle (Cadenas et al., 2018). On the one
hand, the grain of the orogen, which may be regarded as a crustal
fabric, is orthogonal to the CF. On the other hand, the nature
of the rocks in the vicinity of the clusters is dominated by either
high grade metamorphic rocks (cluster 1) or by old crystalline
igneous rocks (cluster 2). The conjunction of the two factors,
crustal fabric and rock type, suggests a stronger basement. This
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lateral gradient in crustal strength, would favor the concentration
and amplification of stresses in the western sector, stresses that
would be released on a bounding pre-existing and relatively weak
structure, such as the CF–VF system may be regarded.

In summary, the intersection of the NW-SE trending major
structure whether with W–E trending compressional structures
or with inherited variscan discontinuities, together with the
stronger basement provides a favorable setting where the
concentration of stress may accumulate sufficient energy in an
intraplate scenario to be released rapidly producing the observed
seismicity patterns.

CONCLUSION

Based on the seismological study of events recorded on local
seismic networks focused on the VF–CF system complemented
with earlier available data, a map of earthquake activity along
the western continental platform of the NIM is presented. The
location and distribution of earthquakes confirm their origin as
linked to the presence of the fault at sea. However, there are
several contributing factors as to why this structure nucleates
the observed seismicity only around some segments of its trace.
As suggested onshore, the intersection of the CF with other
crustal scale structures, is one possible scenario for the offshore
earthquakes. In the vicinity of the abyssal plain at the NW end,
the seismicity cluster could be related to the arrested subduction
during the Alpine convergence, while closer to the coast, it could
be the interaction with reactivated Variscan structures oriented
favorably for the current state of stress.

The offshore study reinforces the onshore observation that
the CF–VF system is an important barrier separating two
crustal blocks according to their seismicity: a western block,
with moderate, low-magnitude but persistent seismicity, and an
eastern block where is practically absent. This is possibly the
result of the different types of crust at one side and another,
with different tectonothermal regimes through the Mesozoic
and contrasting degrees of deformation during the Cenozoic
convergence. The presence of crystalline Variscan basement
barely affected by the Mesozoic extensions and posterior
convergence makes an outstanding candidate to produce a sharp
contrast in the mechanical behavior of the crusts on either side
of the fault. The brittle behavior of the Western crustal block
may be envisaged as reflecting its stronger mechanical strength,
in contrast with the weaker ductile Eastern crustal block.

The VF–CF system behaves as a full crustal scale discontinuity
that when encountering other crustal heterogeneities
concentrates and amplifies the mechanical contrast, due to
its favorable position within the actual stress state of the
Northwest Iberian Peninsula. Our analysis reinforces the need
for seismological studies constraining better the north azimuths
to test the various hypothesis proposed here. Any future
improvement in the resolution of events location will eventually
translate into major constrains of the details of structures
nucleating seismicity
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