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ABSTRACT
Mobile devices now rival desktop computers as themost popular devices forweb surfing
and E-commerce. As screen sizes of mobile devices continue to get larger, operating
smartphones with a single-hand becomes increasingly difficult. Automatic operating
hand detection would enable E-commerce applications to adapt their interfaces to
better suit their user’s handedness interaction requirements. This paper addresses the
problem of identifying the operative hand by avoiding the use of mobile sensors that
may pose a problem in terms of battery consumption or distortion due to different
calibrations, improving the accuracy of user categorization through an evaluation of
different classification strategies. A supervised classifier based on machine learning was
constructed to label the operating hand as left or right. The classifier uses features
extracted from touch traces such as scrolls and button clicks on a data-set of 174 users.
The approach proposed by this paper is not platform-specific and does not rely on
access to gyroscopes or accelerometers, widening its applicability to any device with a
touchscreen.

Subjects Computer Education, Social Computing, Software Engineering
Keywords Machine learning, Handedness, Customization, Stealth data gathering, Usability,
Accessibility

INTRODUCTION
This paper proposes a classification device to determine the user operation hand
(handedness) in order to help web developers to customize the user interfaces dynamically,
thus improving the usability of their designs.

The proposed model, founded upon the use of machine learning algorithms, is based
exclusively on data gathered by agents embedded inside E-commerce web applications,
observing users while they spontaneously interact with their browser, as they normally
would do in their own computational context. This allows the detection of the user’s
handedness after very few interaction actions with the system (such as scrolling or point and
clicks). Once the users are classified as left-handed or right-handed, the user interface can
be dynamically adapted to the specific interaction requirements of the users’ handedness.
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This topic is important because as of 2019, there were about 5.112 billion unique mobile
users in the world over a total population of 7.676 billion (We Are Social, 2019). Penetration
rate of mobile technology in 2018 was of 68% and the number of smartphone mobile users
increased in 100 million in the period January 2018 to January 2019 (We Are Social, 2019) .

However, this important penetration rate ofmobile technologies is not usually supported
by high levels of ease-of-use and/or accessibility. Mobile app usability related problems are
the fifth most frequent user complaint (Khalid et al., 2015), while about 52% of mobile
users experienced usability problems relevant enough to impact on their loyalty and/or
trustworthy feelings about E-commerce sites (Experienced Dynamics, 2015). These usability
problems not only downgrade the company brand mark but also increase the chances of
customers looking for similar services in the competitors.

Usability and accessibility on mobile computing is usually affected by context-specific
issues. Among other requirements, usability engineering must deal with a large variety
of screen sizes and device shapes. The display layout created to hold the application’s
interactive objects (buttons, menu items, text, etc.) must take in consideration the hand
posture required to operate the device, which is heavily influenced by the so-called user’s
handedness (Azenkot & Zhai, 2012).

Progressive increment in the display size of such devices introduced novel usability
problems when the users try to use them with only one hand (Guo et al., 2016; Löchtefeld
et al., 2015). These usability issues reveal to be even more relevant if we consider that 49%
of the users like to use their mobile devices with their thumb (Hoober, 2013).

Operating a mobile device with only one hand may be difficult for some users. Figure 1
shows the difficulties experienced by users of large displays when they try to access certain
areas with their thumb. The access to the top of the display and/or to the side opposite
to the operating hand are some examples of difficult or annoying interactions. Usability
problems arise when the application screen layout forces interaction on those areas since
users are implicitly requested tomodify their posture in an uncomfortable way. Even worse,
this may also represent an accessibility problem for motor-disabled users. People with a
limited range of movement in their hand or fingers may find hard (or even impossible) to
reach some areas of the display, preventing them to use specific features of their mobile
applications. This paper is focused on how to classify users implicitly and dynamically
according to their operational hand.

Some applications provide enhanced user experience (UX) through customization.
Customized interactive dialogues are created on demand to satisfy the interaction
requirements of users running applications in a specific interaction context (Gonzalez-
Rodriguez et al., 2009). The changes and adaptations on the layout of the user interface
are implicitly available to the user only when the application is able to infer or detect the
interaction context. However, most applications are not explicitly aware of changes in the
context of interaction, so these must be explicitly reported by the user to manually activate
the customization process (Löchtefeld et al., 2015). The explicit selection of the interaction
context (e.g., changing from portrait to landscape display modes in a mobile device) may
result in an annoying process to certain users.
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Figure 1 Red line shows the maximum thumb’s motion range on a 5.4’’ size mobile display. Source:
own elaboration.

Full-size DOI: 10.7717/peerjcs.487/fig-1

The customization of the user interface enhances the user experience when it is adapted
to the specific interaction requirements of the user’s operational hand (Hussain et al.,
2018). The detection o user features can be done implicitly and/or dynamically. Implicitly
means that users do not need to activate any option or preference in the interface in order
to select their operational hand. They may not even know that such an option exists.
Dynamically means that the system continuously monitors the interaction context looking
for variations that force users to change their operational hand (eg. when users have to
carry a heavy item with their operational hand, forcing them to use their mobile devices
with the other hand). Such kind of system would help developers to detect the user’s
operational hand (left-handedness or right-handedness) at any moment, thus they would
be able to apply the corresponding customized style to the display layout. To the extent
we know, customization of mobile web interfaces to accommodate user handedness has
been barely explored. Discussion about how this customization process can be done and
its implications in terms of user interaction is beyond the scope of this research.

Fernández et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.487 3/24

https://peerj.com
https://doi.org/10.7717/peerjcs.487/fig-1
http://dx.doi.org/10.7717/peerj-cs.487


This paper proposes a model based on the use of machine learning techniques to classify
users implicitly and dynamically according to their operational hand, reaching an accuracy
of 99.92%. Unlike other approaches, where users are forced to execute specific predefined
operations to facilitate the classification, the proposed solution encourages spontaneous
interactions without limiting or guiding the kind of actions to be done. The ultimate goal
is to avoid possible biases caused by non spontaneous behaviour (Kaikkonen et al., 2005).

Unlike other approaches, the proposal does not require reading data from the internal
sensors of the mobile phone (accelerometers, gyroscopes, etc.), Therefore there is no
additional battery consumption. It neither requires the installation of platform specific
software (Android, iOS, Windows Mobile, etc.). Thus it can be used in any touchscreen
based mobile device, provided that it is able to run a web browser. This approach also
avoids the bias and reading noise specific to each device as the performance of gyroscopes
and accelerometers varies significantly between different devices (Kos, Tomažič & Umek,
2016).

The paper is organized as follows. ‘Thumb-Based Interaction Patterns’ describes the so
called ‘‘thumb zones’’ and their relevance for human computer interaction studies. ‘Prior
Research’ presents the research background with a representation of the related studies on
interface adaptation and algorithms designed to detect the user’s operational hand. ‘Design
of the Study’ describes the experimental design, the data gathering and depicts the sample
distribution while ‘Variables of the study’ describes the analyzed variables. ‘Statistical
Methods’ shows the machine learning strategies adopted to select the best-performing
algorithm. ‘Algorithm evaluation’ discusses the performance of the most rated algorithms.
‘Limitations’ points out the research limitations while ‘Conclusions and Future Work’
discuss the results and describes the future research.

THUMB-BASED INTERACTION PATTERNS
Human Computer Interaction defines the so-called ‘‘Thumb Zones’’ as areas of mobile
displays that have the same easiness of access for the thumb (Hoober & Berkman, 2011).
They are defined for both the left and right thumbs and are applicable independently of
the user’s laterality or handedness.

In accordance with the easiness of access, the display is divided into three areas (see
Fig. 2). The easiest area to access for one-handed operation, and therefore the most
comfortable area, is known as the ‘‘natural’’ area. It is the closest area to the user’s thumb.
The second area, the so-called ‘‘extent’’ area, entails some difficulties for the user to access
it, but it is still usable. The last area, the so-called ‘‘hard’’ area, requires the user to modify
the wrist position to enlarge the thumb operational swipe area. As a result, the access to
elements located in that area is uncomfortable for most of the users and even painful or
inaccessible for some others, specially for those users with motor disabilities and/or who
interact with large displays (Scott Hurff, 2014b).

An example on how thumb zones affect usability is shown in Fig. 3. Overlays of these
areas have been applied to the user interface of Facebook to show the degree of easiness
for reaching relevant interactive objects. In the example, relevant menu options like
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Figure 2 Thumb Zonemappings in a large 5.5’’ screen. Left: thumb areas for a left-handed user. Right:
thumb areas for a right-handed user. Source: adapted from Scott Hurff (2014).

Full-size DOI: 10.7717/peerjcs.487/fig-2

‘‘Home’’ or ‘‘Events’’ are hard to reach by left-handed users but they are easily accessible to
right-handed users, even though these elements are not located in the right-handed users’
comfort (natural) zone.

Since the thumb zones for left and right-handed users are different, the difficulty level
required to access the same elements (buttons and menu items) will be different, thus their
user experience and satisfaction will be different too.

Scrolling operations are another challenge to easiness of use related to handedness-based
interaction on touchscreen displays. Most of the users start their scrolling actions placing
the thumb in the area near to the center of the screen, swiping to create an arc-shaped
trajectory that points to the side where the hand is holding the device (to the left, in the
case of left-handed users or to the right for right-handed users) (Goel, Wobbrock & Patel,
2012). In the cited example, the location of the ‘‘like’’ button makes it easier to unwillingly
click on it while scrolling through the display. Since clicking on this kind of button is done
in a single step action, not requiring extra confirmation dialogues, the erroneous action
may be executed implicitly, thus may be annoying to some users, thus diminishing the user
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Figure 3 The thumb-zones described in Fig. 2 are overlaid over the user interface of the Facebook app
for Android. Relevant interaction objects like the ‘share’ or ‘home’ buttons are hard-to-reach for left-
handed users. On the other hand, elements like the ‘photos’ or the ‘like’ buttons are hard-to-reach for
right-handed users. Source: own elaboration.

Full-size DOI: 10.7717/peerjcs.487/fig-3

experience. In an analogous way, right handed users may be prone to unintentionally click
on the ‘‘share’’ button. Figure 4 shows a possible adaptation of the user interface, designed
to comply with the interaction requirements of both left-handed and right-handed users.

PRIOR RESEARCH
Adaptation of user interfaces to the user handedness on mobile devices is mostly focused
on improving the performance in touchscreen operations with one hand only. The process
explores different locations and size to locate interactive objects. Studies on user handedness
in Human Computer Interaction have been mostly focused on human performance. Khan
& Rizvi (2009) studied the influence of handedness on data entry performance in typing
tasks, while Shen et al. (2017) measured the performance differences in keystroke tasks to
attempt handedness recognition in computer forensics analysis.

Parhi, Karlson & Bederson (2006) determined the optimal target size area when using
a mobile application with thumb only. Along the tests, 20 right-handed volunteers were

Fernández et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.487 6/24

https://peerj.com
https://doi.org/10.7717/peerjcs.487/fig-3
http://dx.doi.org/10.7717/peerj-cs.487


Figure 4 Example of an interface adaptation designed to make the interactive objects cited as an ex-
ample in Fig. 3 more usable. The ‘share’ and ’like’ buttons are now easier to access for both left and right-
handed users. Source: own elaboration.

Full-size DOI: 10.7717/peerjcs.487/fig-4

asked to tap the screen on different locations using their right-hand thumb only. The study
took into account the limited range of movement of the thumb on the screen and the
different locations it can reach on small touchscreen devices. Researchers concluded that a
9.2 mm size is large enough to reach single targets on mobile device apps.

Guo et al. (2016) explored the right matching between object location and user
handedness, asking volunteers to tap on like and dislike buttons that were located on
either side of display. For a right-handed user, the like button was placed on the right
side of the screen, making it easily accessible. The dislike button was located further to the
left of the screen, making it more difficult to access. Researchers recognized that there are
several handedness dependant elements in the user interface of mobile devices that must
be configured in a way different than in their desktop counterparts.

A similar study by Perry & Hourcade (2008) quantifies the performance change produced
when the users deal with interfaces for mobile devices not designed tomatch the interaction
requirements of their handedness. In the study, half of the volunteers were asked to execute
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several tasks using their non-preferred hand (left or right). As expected, the study showed
that users operating the device with their non-preferred hand were slower and less accurate.
This effect has more impact when the target is located on the side opposite to the operating
hand.

These studies also showed that the bigger the target, the easier, more accurate and quicker
it was for the users to reach it. Perry & Hourcade (2008) reported that this phenomenon
happened even whenever the non-preferred hand was used. The effect is supported by
Fitts’s Law (Fitts, 1954), which states that the time required to point to a target by a hand
or a finger can be estimated as a logarithmic function of the distance and the size of the
target. The bigger the target is or the closer it is to the thumb, the faster it will be to reach
it. This reasoning can also be applied to the accuracy required to reach the target. Fitts’s
Law shows the need to decrease the distance between the thumb and the interactive targets
in order to achieve a comfortable one-handed interaction experience.

If handedness can be properly determined, it would be possible tomitigate the associated
usability and accessibility issues through proper user interface customization strategies.

Determination of the operating hand and posture has been studied by several researchers
who proposed different algorithms. These algorithms are mostly based on the analysis of
the areas where the users tap on the screen. Separate studies by Goel, Wobbrock & Patel
(2012) and Löchtefeld et al. (2015) combine the detection of changes in the size of the
touching area with the screen location where touching is produced to infer the operating
hand. The algorithms assume that a more frequent contact is done on the screen side
further away from the thumb (the easier to reach zone). Using a similar approach, Seipp
& Devlin (2015) determined that the size of the touch zone depends on the finger used to
operate the device. This area is much larger when using the thumb than when using the
index finger. They concluded that a horizontal touch offset over the center of a button
was a strong indicator of the operating hand. Goel, Wobbrock & Patel (2012) also included
the study of touch trace analysis as a relevant factor to detect the operating finger. Their
heuristic-based prototype assumes that the thumb-based traces consistently create an arc
in contrast to the index finger where this consistency is not found. The algorithm analyses
the x-displacement of the traces recorded, biasing towards a thumb-based interaction
whenever the measure is greater than 5% of the screen resolution.

Guo et al. (2016) designed an Android-based prototype that determines the user’s
operating hand and the hand-changing process, combining touchscreen trace and data
provided by the device’s accelerometers and gyroscopes.The evaluated trace data include
speed, X and Y displacements, curvature, convex orientation and the total trace length
to obtain an accuracy of 95.6%. The study included only 14 volunteers who participated
under the supervised conditions of a usability lab. They were asked to swipe the operating
finger in each one of four possible directions: left, right, up and down, recording their
actions, so user spontaneous interaction behaviour on a free context was ignored.

Another study by Löchtefeld et al. (2015) bases the user’s operating hand detection
algorithm on a PIN and password phone-unlocking system. Researchers discovered that
when right handed users tried to unlock their phones with their (right) thumb, they showed
a tendency to swipe fromcenter to right. Left handed, however, tended to swipe their thumbs
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to the left area of the display. Although the researchers achieved high rates of accuracy in
their study, the number of users observed was only 12 and all of them where right-handed.
A similar study based on data gathered from a PIN/password phone-unlocking process
was designed by Buriro et al. (2016). They combined data about touching zones with
information provided by accelerometers and gyroscopes. They managed to determine the
user’s operating hand with a high level of accuracy and at the same time, they inferred
information about the gender and age of the users. Unfortunately, both algorithms are
based on a heavily domain dependent task (phone-unlocking) so it may be hard to
extrapolate these results to other domains. These algorithms can neither be used without
installing platform dependant software in the target mobile devices. They also force users
to execute specific phone-unlocking tasks to update information about the user’s operating
hand. Those PIN based phone-unlocking tasks have been largely superseded by footprint
recognition or by face recognition in modern mobile faces.

The research methodology employed in most of these studies is based on a similar
approach. Researchers ask volunteers to tap or swipe over specific (restricted) areas of the
screen in order to gather relevant data to be used by the algorithms. Information about
hot areas is frequently complemented with accelerometer and device orientation readings
coming from the gyroscopes installed on the mobile devices. This involves a strong device
dependency, since specific hardware (accelerometer and gyroscope sensors) is required. In
this regard a platform dependant development (Android, iOS, etc.) is required to access
the information provided by the sensors, as this data is crucial to infer the operating hand.
The main drawback of this approach is that mobile web-based applications cannot access
this information right from the web browser, as they need the explicit user permission. In
addition, not all mobile browsers offer this functionality (Mozilla, 2019).

Although several of thementioned studies succeed in determining the user’s handedness,
obtaining moderate to high levels of accuracy, they were not able to do it implicitly. That
is, they were not able to determine the user’s handedness through the (stealth) observation
of the users’ spontaneous behavior while they browse freely through the web with their
mobile devices. In the mentioned studies, small number of users were asked to execute
specific actions (such as swiping their fingers in the horizontal or vertical directions or
unlocking their phones using a specific finger) that were not directly related to those
required to execute the users’ everyday tasks. Therefore, these actions were unfamiliar to
the users. Buttons and other kinds of relevant interactive web elements, like scroll controls,
were not neither in the tests. Kaikkonen et al. (2005) showed that, under such kind of
controlled interaction environment, users show a strong bias to adapt their behavior to the
one expected by the observers. Thus their behavior may be different if they do similar tasks
in their natural own environment.

All these solutions require users to perform unfamiliar actions that they don’t
usually execute in their everyday interaction environments. This makes the handedness
categorization process explicit rather than implicit, so the predicting algorithms are hard
to be used at all in real web scenarios if they are intended to detect the handedness of
anonymous users browsing the web.
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Therefore, the research hypothesis we try to address is whether it is possible to reach
a level of accuracy similar to those obtained by the above mentioned studies but, using
implicit detection tactics instead. That is, trying to infer handedness through the stealth
observation of the spontaneous behavior of users while they freely navigate through the
web. All the data required is supposed to be captured by the web browser itself, without
requiring access to the mobile device sensors (eg. accelerometers or gyroscopes).

DESIGN OF THE STUDY
In order to validate the previously described hypothesis a study was conducted, composed
by the following phases:
1. Workspace design. A generic E-Commerce website prototype was developed to be

freely and spontaneously explored by the volunteers participating in the study.
2. Data gathering. Software agents were deployed on the prototype to observe by stealth,

the actions performed by the users.
3. Selection of Subjects. A volunteer recruiting process was done on an E-commerce user

target population obtaining a probability sample of 174 volunteers.
4. Variable selection. The coordinates of the click and scrolls operations, the scroll

displacement as well as the mean slope of the thumb sub-traces gathered during the
navigation sessions were considered as the dependent variables.

5. Statistical Methods. As it happens in the target population, the sample was highly
unbalanced (there were many more right-handed users than left-handed users) so
resampling techniques were required. To increase the Information Gain Ratio, feature
selection techniques were applied too in order to discard attributes that added noise.

6. Algorithm Evaluation. The processed sample was used to train and to evaluate a
considerable number of classifiers. A ranking was obtained based on several accuracy
markers.

Design of the test
To simulate a real mobile web environment, a web application was developed containing a
series of tests which had to be completed using two types of interaction tasks: scrolling and
tapping. To avoid the use of external non standard libraries, the native TouchEvent API for
JavaScript was used. This API, shared by the most popular web browsers, allows developers
to detect when a user initiates or finishes a touch trace as well as to gather information
during each touch trace. The web application would be later distributed through social
networks to gather data from a large user pool.

Figure 5 shows the flow of the experiment and the type of data recorded in each of the
pages. To initiate the test, the users first had to click on a ‘‘start’’ button. They would be
then presented with instructions and the context of the test. To continue, they were asked
to press another button. Then, the test began allowing users to freely navigate through a
web document in order to find an object that was located at the bottom of the document.
The object represented the classic Call To Action found in modern and E-commerce user
interfaces. When the users clicked on that object, they were taken to the instructions page
for the second test. Again, they were required to press a button to continue the tests. The
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Figure 5 Transition diagram for the experiment and type of data recorded in each step. Source: own
elaboration.

Full-size DOI: 10.7717/peerjcs.487/fig-5

second test involved finding an uppercase letter within a body of text in a web document.
When the users clicked on the letter, they were taken to the last page where a web form
asked users to indicate the operating hand and posture used during the tests. Their age,
gender and some other relevant information about the users was also collected in that web
form.

Data gathering
One of the issues found in described studies was the low number of test subjects: 14 (Guo et
al., 2016), 32 (Azenkot & Zhai, 2012), 12 (Löchtefeld et al., 2015), 14 (Seipp & Devlin, 2015,
and (Goel, Wobbrock & Patel, 2012). A major goal in this study was to gather information
from a large number of users to better simulate the data that would be gathered from a real
web application with many diverse users.

The data gathering phase consisted of a 3-day period in which the site was made public
https://lateral.herokuapp.com/en and shared through social media (Facebook, Twitter and
WhatsApp). The goal of this approach was to recruit users who had some experience in
browsing the Internet with mobile devices as well as obtaining from them abundant real
user data for the study.

Three main categories of data were collected: data related to button clicks, data related
to the user’s swiping behavior and data provided by the user. The testing web site included
a total of seven pages. Three pages had buttons that spanned the width of the screen: the
start page, the instructions pages, and the form. The position where the users clicked on
each button was recorded, measuring each click’s coordinates.

Additionally, two pages were specifically designed so that mobile users were required
to scroll up and down. Both pages required looking for a Call to Action object which was
located at the bottom of the page and out of view. This way, users unwittingly generated
scroll data while focusing on the search task. This idea is represented in Fig. 6, where ‘‘Call
to action’’ represents the position of the object to be found. Scroll data was recorded as a
collection of points, each with X and Y coordinates.

The button and scroll variables recorded were based on previous studies which showed
the importance of the curve formed by a finger swipe (Guo et al., 2016; Goel, Wobbrock
& Patel, 2012) and the X-position of a button click (Seipp & Devlin, 2015). Finally, the
users were asked to fill a form to provide information about the hand used to perform the
experiment, as well as some other information to serve as sample description: gender, age,
weekly computer usage (hours/week), and device type.
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Figure 6 Two scroll tests were designed specifically to allow users to scroll through the web document.
Source: own elaboration.

Full-size DOI: 10.7717/peerjcs.487/fig-6

Themain goal behind this experimental design was to prevent subjects from being aware
of the object of the study. To achieve this, the tests were designed as games, and the users
were simply asked to use the same hand and posture throughout the experiment while
looking for the items on the screen. Thus, they did not know that their scrolls and clicks
were being recorded. Furthermore, the experiment was accessible through a website and
open to the public. The raw data captured was directly stored for future analysis.

Analyzed sample
The experiment yielded data from 174 voluntary users. Out of these, 35 completed the
experiment with their left hand, whereas 139 performed it with the right hand, as can
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Table 1 Sample distribution.

Variable Category Occurrences

Left 35
Hand

Right 139
[15-25] 81
(25-35] 9
(35-45] 34
(45-55] 41
(55-65] 7

Age

(65-75] 2
Male 98

Gender
Female 76

be seen in Table 1. This meant that the resulting sample was highly unbalanced, which
might have caused the machine learning algorithms to bias towards the majority class,
providing low classification power for the minority class. Thus, as will be explained later,
it was required to apply a re-sampling technique to balance the classes before training the
classifiers (García et al., 2007).

VARIABLES OF THE STUDY
The gathered data for the scrolls was filtered to separate each touch trace into a set of
sub-traces. This step was necessary because a single trace could be the result of users
swiping up and down multiple times without lifting their finger. Therefore, every time the
trace changed direction (upward to downward or downward to upward), a new sub-trace
was created to preserve the validity of features such as start and end points, slope, and
maximumandminimumX-positions. Next, each sub-trace was passed through a secondary
filter to ensure it contained at least two touch-points to provide meaningful results, since a
sub-trace with only one touch-point would represent a user’s misclick when scrolling. The
gathered data for the clicks did not require any such filtering. Finally, the resulting set of
features is comprised of:

Click X and Y positions
The mean and median were calculated for the set of X coordinates and the set of Y
coordinates from each of the user’s clicks. Each X and Y coordinate is relative to the button
being clicked. In the study by Guo et al. (2016), the only data considered was based on
scrolls. In this study, click data was included to provide a more accurate description of the
user’s interactions with a mobile application.

Scroll X and Y positions
For each user, the positions of each point recorded, along their scroll sub-traces, were
examined. From this data, the means were calculated for the maximum, minimum, initial
and overall X-values for each of those sub-traces. Lastly, the standard deviation andmedian
were calculated for the user’s set of X and Y-values from all of their sub-traces.
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Scroll X and Y displacements
The displacements from the maximum to the minimum X and Y values along each scroll
sub-trace were calculated and then averaged over the set of sub-traces for each user.

Mean slope
The mean slope for the user’s sub-traces was calculated by computing the mean of the
slopes from the starting point to the end point of each sub-trace (Eq. (1)). Guo et al. (2016)
included more curve shape descriptors in their algorithms (Root Mean Squared Error,
Maximum Curvature, Average Curvature and Curve Convex Orientation). Although these
measures might provide a more exhaustive description of the curve, they increase the
computational workload. In contrast, as we will evaluate later, the slope of a curve is a
simpler operation which still serves its purpose as a trace descriptor.

m=
1y
1x
=

yn−y0
xn−x0

(1)

STATISTICAL METHODS
Several pre-processing techniques were applied to the filtered data to balance the classes
and remove irrelevant and redundant information from the feature set.

Resampling
For the purpose of this study, no preference was given in the prediction model for either
the left or the right hand. However, as seen in the sample distribution, more subjects
performed the test using their right hand, resulting in few left-hand operation examples,
which produced an unbalanced data-set. Furthermore, the natural distribution in a
classification problem seldom produces the best-performing classifier (Weiss & Provost,
2001). Therefore, a re-sampling technique was applied, randomly oversampling users from
the ‘‘left’’ class with replacement until both classes were balanced. The resulting data-set
contained the original 139 right-hand examples and the re-sampled 139 left-hand examples.
This method was used due to its good performance in solving the class imbalance problem
(Japkowicz & Stephen, 2002; Batista, Prati & Monard, 2004).

Feature selection
Further data pre-processing was applied to discard any attributes that might add noise
to the classification. The complete set of features was evaluated and ranked using the
Information Gain Ratio (IGR) as an attribute selection method.

The results for the Information Gain Ratio evaluation can be found in Table 2. The
average X-position of the clicks was found to be the most informative feature. Average
scroll X-position, along with the average maximum and minimum points of the scrolls,
also showed a high degree of information gain towards the classification. This supports this
study’s approach for a mixed classification system, combining click and scroll data to better
predict the user’s operating hand. However, four features provided no useful information
for this classification problem, each having a ranking of 0 after the evaluation. For the
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Table 2 Information gain ratio attribute selection ranking.

Feature IGR Feature IGR

Mean X (clicks) 0.487 Mean X (scrolls) 0.432
Mean Minimum X (scrolls) 0.395 Median X (clicks) 0.384
Mean Start X (scrolls) 0.323 Median X (scrolls) 0.305
Mean Slope 0.178 Mean Y Displ. (scrolls) 0.148
Mean Y (clicks) 0.147 Median Y (clicks) 0.117
Median Y (scrolls) 0 Mean X Displ. (scrolls) 0
Std. Dev. X (scrolls) 0 Std. Dev. Y (scrolls) 0

standard deviation measures, this might mean that both left and right-handed users are
just as consistent with the areas of the screen they use.

ALGORITHM EVALUATION
It is possible that, as each individual user generates more and more touch data during their
navigation session, the scrolling manner could be affected in some way during that session
so there could exist specific patterns present in their first scroll actions that may vary in
later scrolls actions. Furthermore, it would be interesting to gauge whether the predictive
power of the algorithms under evaluation varies when considering a specific number of
scrolls actions and whether a different classifier could perform better than the proposed
one based on that figure.

For this reason, the classification models were finely tuned for the prediction of the
operating hand considering a specific n number of scroll actions as the main parameter.
The initial goal was to obtain faster, but slightly less accurate classifiers, created from
training data coming from a very few scroll actions done by users who just arrived at the
web document. But the goal also pursued to define slower but more accurate classifiers
created with more touch trace data, coming from users who spent more time exploring the
website.

In order to perform individual scroll analysis, the original sample was split into several
sub-samples. Each of these sub-samples contains the features previously described for all
the recorded scrolls actions from only 1 scroll action up to n. The re-sampling method
previously described was consequently applied to each sub-sample. That is, the minority
class examples were over-sampled until both classes were balanced.

The amount of examples in each sub-sample decreases as the number of recorded scroll
actions grows larger. This occurs because some users were faster when finding the Call to
Action objects in the test, thus completing it without generating as much scroll data as
other users.

A considerable number of classifiers were trained and evaluated. Some of them were
chosen based on their success in previous studies, such as Random Forest, used by
Guo et al. (2016) and Seipp & Devlin (2015), Multi-Layer Perceptron, used by Guo et al.
(2016) or C4.5, used by Guo et al. (2016), Goel, Wobbrock & Patel (2012) and Seipp &
Devlin (2015). Sequential Minimal Optimization (SMO) (Platt, 1998) is one of the most
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Table 3 Classification results for n= 1.

Algorithm TPR Incorrect F-Measure AUROC

AdaBoost Decision Stump 98.16 2.00 0.98 0.99
AdaBoost PART 98.01 2.16 0.98 0.99
Random Forest 97.80 2.40 0.99 1.00
PART 96.98 3.28 0.97 0.97
C4.5 96.85 3.43 0.97 0.97
k-Star 96.75 3.54 0.97 0.99
KNN 96.68 3.62 0.97 0.96
MLP 95.32 5.10 0.95 0.95
Logistic Regression 95.11 5.32 0.95 0.97
SMO 94.34 6.16 0.94 0.94
Naive Bayes 84.32 17.05 0.83 0.64

popular algorithms for training Support Vector Machines (SVMs). It was not used in the
aforementioned studies, but was chosen for its wide applicability in pattern recognition
and classification problems (Naveed et al., 2019). Others used by other researchers in
similar studies, such as Naive Bayes (Guo et al., 2016) and K-Nearest Neighbors (Guo et al.,
2016; Löchtefeld et al., 2015; Seipp & Devlin, 2015) were also included. Furthermore, other
algorithms were tested and the best-performing ones were included into the experimental
set of classifiers. These include K-Star, PART (partial decision tree), Adaptive Boosting
with Decision Stumps, Adaptive Boosting with PART, and Logistic Regression.

The classifiers were evaluated by using a random 66% split on the data and averaging
the results over 200 iterations. Table 3, shows the results obtained for n= 1, that is when
only the first scroll action done by the users in the web site is considered. As can be seen by
considering only the first scroll action done by a user, the best model (AdaBoost Decision
Stump) achieves on average a 98.16% TPR, classifying on average 2 examples incorrectly.

In a practical application, this approach would provide a quick prediction as the user
starts scrolling, in exchange for some loss in the quality of the said prediction. As the
user generates more touch trace data, the classifiers learn from the new information while
still considering the previous one. This means that the classification power increases and
predictions are more accurate and robust. This is indeed confirmed by the results shown
in Table 4 for n= 2 where the best classifier (AdaBoost PART) achieves a 98.94% TPR and
the prediction is incorrect only for one instance. The corresponding tables for values of n
from 3 to 6 are included in Tables A1, A2, A3 and A4 in the Appendix (see appendix).

Finally, the best classification was achieved for n= 7 by partial decision trees (PART),
classifying incorrectly, on average, only 0.33 of the 42 testing instances in this sample on
average (see Table 5). This means that in most iterations the classifier provided perfect
results, predicting the user’s operating hand with 100% accuracy (see Table 5).

The results obtained in these tests demonstrate that when considering scrolls actions
individually and adding new information as the user generates touch trace data, the
classifiers can provide highly educated predictions from the moment the user starts
scrolling and even more accurate ones with as little as 7 interface interactions.

Fernández et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.487 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.487


Table 4 Classification results for n= 2.

Algorithm TPR Incorrect F-Measure AUROC

AdaBoost PART 98.94 1.00 0.99 1.00
AdaBoost Decision Stump 98.88 1.06 0.99 1.00
Random Forest 98.76 1.18 0.99 1.00
KNN 98.21 1.69 0.98 0.98
k-Star 97.95 1.94 0.98 0.99
C4.5 97.94 1.95 0.98 0.98
PART 97.60 2.26 0.98 0.98
Logistic Regression 94.30 5.39 0.94 0.98
MLP 94.00 5.67 0.94 0.97
SMO 93.78 5.87 0.93 0.94
Naive Bayes 92.32 7.26 0.92 0.95

Table 5 Classification results for n= 7.

Algorithm TPR Incorrect F-Measure AUROC

PART 99.92 0.33 0.99 0.99
AdaBoost Decision Stump 99.28 0.30 0.99 0.99
C4.5 99.19 0.33 0.99 0.99
Logistic Regression 98.70 0.54 0.99 1.00
AdaBoost PART 97.75 0.93 0.98 0.99
Random Forest 97.62 0.99 0.98 1.00
SMO 95.46 1.88 0.95 0.95
k-Star 95.26 1.96 0.96 0.98
MLP 95.06 2.05 0.95 0.97
KNN 94.98 2.08 0.95 0.94
Naive Bayes 93.60 2.65 0.92 0.98

For comparison to the 99.92% obtained, it is remarkable that Guo et al. (2016) achieved
a precision of 95.6% on data gathered from with an Android-specific implementation and
fewer test subjects and Löchtefeld et al. (2015) attained a TPR of 98.5% by gathering data
during the phone unlocking process, including gyroscope and accelerometer readings.
Although their systems achieved similar results compared to ours, they are not always
applicable, such as in mobile web applications where the phone unlocking process is rarely
used. Furthermore, these approaches require access to the device’s sensors, whereas the
approach proposed in this study is completely sensor-independent and applicable for any
device with a touchscreen.

The improved results obtained in this study are probably due to the combination of
click and scroll data, which provide more information for the classifiers than using only
one of them. Furthermore, the addition of several descriptors for the values of the scrolls,
such as the median or the starting points, and the inclusion of the slope descriptor might
also have had a positive influence on the classification power.
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LIMITATIONS
The age distribution of the sample comprised users from 15 to 74 years. While the most
recurrent user age groups are those from 15 to 25 and from 35 to 55 years, only 2 of the
subjects were in the range from 65 years onward, and no subject was younger than 15.
This sample distribution is consistent with the target population of e-commerce users and
consequent to the volunteer recruit strategy employed, as users belonging to those age
groups tend to use these interaction scenarios more frequently than older or younger users
(Hutchinson, 2017).

Although this sample distribution reinforces the internal validity of the study, it weakens
its external validity in specific age ranges as the study cannot draw conclusions concerning
user profiling of children and/or elderly users.

Regarding gender distribution, 44% of the test subjects were female, in comparison with
the approximately 50% found in the global population (World Bank, 2017). This slight
difference may be due to the method of distribution of the experiment. Nevertheless, this
study’s gender ratio remains representative of the global population.

Additionally, the data in this research was gathered from Spanish and English-speaking
users. These languages belong to the Western culture and share the same writing direction
(from left to right), among other common characteristics. As a result, the profiling model
may not be extensible to other cultures, specifically to the users of the majority of the
Semitic languages (like the Arabic, the Amharic, etc.) which are written from right to left.

CONCLUSIONS AND FUTURE WORK
The goal of this research was to implicitly determine the operating hand of a mobile
device user in an E-commerce web application. Previous studies had mostly focused on
sensor-based solutions, with few test subjects. The study byGuo et al. (2016)was the closest
we found to our goal (F-Measure value of 0.956), although in their approach the user is
required to do specific tasks on an Android-based platform, whereas our user can freely
use their preferred device to navigate through a web document.

Our findings suggest that the best classification device is a partial decision tree trained
using a combination of features gathered through the evaluation of button clicks and scroll
traces from 174 voluntary users, detecting the user operating hand with an TPR value of
99.92. However, we must point out that whenever it is required to get a quick classification
based on analysis of very few user interactions (n= 1, n= 2...), the algorithms based on
boosting techniques (such as AdaBoost Decision Stump or AdaBoost PART) are the ones
that perform better.

To the best of our knowledge, this approach is the first to explore and propose a solution
for operating hand detection in mobile web applications using only data gathered from the
touchscreen when the user spontaneous carries out web browsing tasks. Although the tasks
studied are focused on click and scroll up/down, the relatively high level of classification
accuracy obtained (99.6%), ruled us out to explore the effect of other, no so common web
browsing tasks, such as for example scroll left/right or zoom in/out.
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Unlike other proposals covered in this document, the proposed solution is based on
implicit determination of the user’s handedness based on stealth observation of natural
interaction tasks. It does not require users to perform uncommon tasks in order to
determine their handedness. It neither requires to install platform dependant software on
the target mobile device, neither the use of sensors, avoiding calibration an extra battery
consumption.

E-commerce web application developers can make use of these findings to detect the
handedness of anonymous users visiting their web sites after observing their natural
(spontaneous) interactions for a few time in stealth mode. The proposed algorithm is
able to detect the user’s handedness with moderate-high level of accuracy, thus enriching
the user model required by their applications through the user interface personalization
process.

Although discussion about how this personalization process may be implemented
is beyond the scope of this paper, E-commerce applications may improve their user
experience providing custom interfaces for left and right-handed users. Hence, the
personalization process may provide accessibility-based solutions to the specific user
interaction requirements of each kind of user.

The data gathering agents developed in this study can be deployed in the target web
applications to feed inference algorithms running on the server-side. Boosting-based
algorithms, like AdaBoost Decision Stump or AdaBoost PART, can be used to perform a
first and quick classification round based on one or two user interactions followed by the
execution of partial decision trees (once more data from ore user interaction is gathered)
to get a more accurate classification. These algorithms can classify the visiting anonymous
users, updating these results in the user model. This information may be used in several
ways to adapt the user interface (eg. through the use of customized CSS), hence increasing
the overall user experience.

As mentioned in the limitation section, the way the users creates sub-traces while they
freely perform scrolls operations during their navigation sessions may be influenced by
other factors rather than their handedness, such as the language spoken. This study revealed
a few interesting future research topics. One of these involves studying the influence of
user’s culture. Activities such as swiping and clickingmight be biased by cultural aspects like
the writing direction of the user’s language. Thus, studying cultural differences performing
these interactions might improve this research, widening the applicability of the solution.

As mentioned in the limitation section, activities such as swiping and clicking might be
biased by cultural aspects like the writing direction of the user’s language. The data samples
obtained for this study were based on languages written from the left to the right only.
Thus, studying cultural differences behind these interactions might improve this research,
widening the applicability of the solution to, for example, languages written from the right
to the left.
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APPENDIX
Classification results of n from 3 to 6.

Table A1 Classification results for n= 3.

Algorithm TPR Incorrect F-Measure AUROC

AdaBoost PART 98.54 1.20 0.99 0.99
AdaBoost Decision Stump 98.30 140 0.98 0.99
Random Forest 98.10 1.56 0.98 1.00
C4.5 97.92 1.72 0.98 0.98
PART 97.81 1.80 0.98 0.98
k-Star 96.96 2.50 0.97 0.99
KNN 96.41 2.91 0.96 0.97
Logistic Regression 95.92 3.36 0.96 0.98
MLP 95.03 4.09 0.95 0.97
SMO 94.32 4.67 0.94 0.94
Naive Bayes 91.96 6.61 0.92 0.95

Table A2 Classification results for n= 4.

Algorithm TPR Incorrect F-Measure AUROC

Random Forest 98.74 0.89 0.99 1.00
AdaBoost PART 98.67 0.94 0.99 0.99
AdaBoost Decision Stump 98.10 1.34 0.98 0.99
k-Star 97.84 1.53 0.98 0.99
C4.5 97.59 1.70 0.98 0.98
PART 97.51 1.76 0.97 0.98
Logistic Regression 97.11 2.05 0.97 0.99
SMO 97.00 2.11 0.97 0.97
MLP 96.23 2.66 0.96 0.98
Naive Bayes 94.69 3.76 0.95 0.97

Fernández et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.487 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.487


Table A3 Classification results for n= 5.

Algorithm TPR Incorrect F-Measure AUROC

k-Star 98.60 0.83 0.99 0.99
KNN 98.41 0.94 0.98 0.98
AdaBoost Decision Stump 97.88 1.26 0.98 0.99
C4.5 97.54 1.46 0.98 0.98
AdaBoost PART 97.68 0.98 0.98 0.99
PART 97.46 1.51 0.97 0.98
Logistic Regression 97.22 1.64 0.97 0.98
Random Forest 97.14 1.69 0.99 0.99
MLP 96.22 2.23 0.96 0.97
SMO 95.82 2.48 0.96 0.96
Naive Bayes 92.87 4.22 0.93 0.97

Table A4 Classification results for n= 6.

Algorithm TPR Incorrect F-Measure AUROC

C4.5 99.16 0.42 0.99 0.99
PART 99.16 0.42 0.99 0.99
AdaBoost Decision Stump 98.75 0.63 0.99 0.99
AdaBoost PART 97.84 1.08 0.98 0.99
Logistic Regression 97.57 1.22 0.97 0.99
Random Forest 97.19 1.42 0.97 1.00
MLP 96.33 1.84 0.96 0.98
k-Star 96.07 1.98 0.96 0.98
KNN 95.36 2.34 0.96 0.96
SMO 94.79 2.62 0.95 0.95
Naive Bayes 92.05 4.00 0.92 0.97
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