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7 Abstract Biological invasions are a global threat to

8 biodiversity especially for aquatic resources. The

9 distribution of alien species is associated with human

10 activities; therefore, exotic species tend to accumulate

11 near big urban areas through different invasion vectors

12 such as ballast water, hull fouling, aquarium and pet

13 releases. The Rhine River region is one of the most

14 economically important in Europe. Around 60 million

15 people live in the river basin that is connected with

16 other large European rivers via the Rhine–Main–

17 Danube shipping canal. The Alpine Rhine flows to

18 Lake Constance, which is the second largest subalpine

19 lake in Europe.

20Here, eDNA metabarcoding was employed to

21inventory aquatic species from water samples in six

22riverine and four lake localities within Lake Constance

23region. A 313 bp fragment within cytochrome c

24oxidase subunit I gene was PCR amplified using

25generalist primers for metazoan and sequenced with

26MiSeq High-Throughput Sequencing platform. Seven

27invertebrate invasive species and the invasive fish

28Oncorhynchus mykiss were detected from eDNA.

29Species-specific primers were employed to confirm

30metabarcoded species. Most of the invasive species

31detected in this study correspond to samples from

32areas around lake ports, followed by other lake and

33degraded downstream river areas. Samples taken

34upstream of Lake Constance were free of invertebrate

35aliens. To establish common regulation and manage-

36ment actions regarding aquatic invasions in the three

37countries that share Lake Constance is recommended.

38Keywords Metabarcoding � High-throughput

39sequencing � Specific-primers � Rhine river � Non-

40indigenous species

41Introduction

42Biological invasions are a global threat to biodiversity

43especially for aquatic resources (Chown et al. 2015).

44Most translocations of aquatic organisms are derived

45from human activities (Leprieur et al. 2008), and the
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46 factor that best explains the number of biological

47 invasions in a region is often the density of the human

48 population nearby (e.g. Pyšek et al. 2010; Spear et al.

49 2013). Alien species have been introduced into rivers

50 worldwide for recreational fishing, aquaculture or

51 derived from aquarium trade (Havel et al. 2015;

52 Duggan et al. 2010). Concomitantly, global transport

53 is facilitating the spread of many species out of their

54 native distribution through fouling and ballast water

55 (Alonso and Castro-Dı́ez 2008; Molnar et al. 2008;

56 Thomaz et al. 2014). In addition, the increase of

57 temperature due to climate change may benefit the

58 dispersion of some invasive species in northern

59 regions; examples are the spread of Ponto-caspian

60 zebra mussel (Dreissena polymorpha) in the Baltic

61 Sea (Holopainen et al. 2016), or the expansion of the

62 Asiatic clam Corbicula fluminea in northern areas

63 (Gollasch and Nehring 2006; Crespo et al. 2015).

64 In Europe, UK, France, and Germany are donors of

65 alien species to northern countries and are among the

66 main gateways of alien species introduction in fresh-

67 water ecosystems (Hulme et al. 2008). At least 13

68 species from North America were introduced to

69 Germany and distributed to the Netherlands, Den-

70 mark, Hungary and Poland. Most of the exotic species

71 established in Germany are causing adverse ecological

72 effects (Garcı́a-Berthou et al. 2005). The distribution

73 of alien species is highly associated with human

74 activities (Wolter and Röhr 2010; Spear et al. 2013).

75 The Rhine River is the most important river in

76 Germany from the economic point of view. From its

77 1250 km length, 825 km of the river are navigable

78 from the port of Rotterdam on the North Sea coast to

79 Basel in Switzerland. Around 60 million of people live

80 in the river basin and the river supplies drinking water

81 for more than 30 million people (Plum and Schulte-

82 Wülwer-Leidig 2014). Moreover, it is connected with

83 nearly all large rivers in southern, central and Eastern

84 Europe. Together with the Danube, Rhine River is the

85 most invaded river in Europe (Leuven et al. 2009). The

86 fact that both rivers are connected via the Rhine–

87 Main–Danube shipping canal since 1992, might

88 facilitate the entrance of aquatic alien species. At

89 least 26 alien species reported in German waters can

90 be directly related with this canal, for example, the

91 arrival of the amphipod Dikerogammarus villosus in

92 the Rhine basin (Gollasch and Nehring 2006). This

93 pathway is the main vector for recent invaders in

94 Germany and Austria, especially species from Ponto-

95Caspian region (Rabitsch et al. 2013). The number of

96non-indigenous macroinvertebrate species in the

97Rhine River increased over the period from 1800 to

982005, from one to more than 13 species per decade.

99The rapid dispersion of exotic species is highly

100facilitated by shipping activities and the interconnec-

101tion of river basins (Leuven et al. 2009).

102In addition, the Rhine river has several hydrological

103power plants along its way from Lake Constance to

104Basel (e.g. in the upper part of the river, High Rhine).

105There are twelve in-stream barriers due to hydropower

106plants (N’Guyen et al. 2016), which altered the river

107flow and whose cooling waters can become suit-

108able habitat for invasive species, as has happened with

109the gobies in this region (Kalchhauser et al. 2013) or

110with the invasive mussel Mytilopsis leucophaeata in

111southern Bothnian Sea, Sweden (Florin et al. 2013).

112The reservoirs have been associated with a higher

113number of exotic species introductions (Clavero et al.

1142004; Johnson et al. 2005). Havel et al. (2015)

115suggested that once an exotic species is established

116in a lake, it could easily colonize nearby lakes and

117rivers.

118In the Rhine basin, Lake Constance is the second

119largest subalpine lake in Europe. It is situated at the

120northern fringe of the European Alps and is shared

121among Germany, Switzerland and Austria. It is the

122main reservoir of Rhine River. The lake itself is an

123important drinking water source for southwestern

124Germany and economically important for recreational

125and commercial fisheries and for tourism (N’Guyen

126et al. 2016). Twenty-nine fish species occur in the lake

127of which only a few are commercially exploited: two

128lake whitefish (Coregonus clupeiformis and C. lavare-

129tus); perch (Perca fluviatilis); European eel (Anguilla

130anguilla); brown trout (Salmo trutta); pike (Esox

131lucius); Arctic charr (Salvelinus alpinus) and pike

132perch (Sander lucioperca) (Eckmann and Rosch

1331998). The Lake Constance population of Salmo

134trutta was almost extirpated in the 1950s due to dam

135construction in the alpine Rhine, but thanks to

136protective measures, they have made a significant

137return (Ruhlé 1996). The lake was the home of the

138considered extinct species of trout Salvelinus profun-

139dus, as well as of the Lake Constance whitefish

140(Coregonus gutturosus) (Freyhof and Kottelat 2008).

141Among other factors, the extinction of the former fish

142species in the lake might be associated with the

143introduction of exotic species, because exotic invasive
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144 species are often a cause of animal extinctions

145 (Clavero and Garcı́a-Berthou 2005).

146 Since the Rhine basin and Lake Constance could

147 serve as a reservoir and point of entry of invasive

148 species that could rapidly spread all over Europe,

149 prevention and early detection of new alien species is

150 highly recommended. However, the management of

151 aquatic biota in this region does not seem to be

152 efficient because there are decentralized political

153 structures in the surrounding countries Austria, Ger-

154 many and Switzerland (Essl et al. 2011). This situation

155 is far from ideal especially when the river acts as

156 border between Germany and Switzerland in the High

157 Rhine region. In the current European regulation EU

158 No 1143/2014 of 22 October 2014 on Invasive Alien

159 Species (http://ec.europa.eu/environment/nature/

160 invasivealien/index_en.htm) the list of invasive alien

161 species includes 26 animals, amongst them ten species

162 that inhabit freshwater ecosystems: the crab Eriocheir

163 sinesis; the bullfrog Lithobates catesbeianus; the

164 crayfishesOrconectes limosus,O. virilis, Pacifastacus

165 leniusculus, Procambarus clarkii and P. fallax f. vir-

166 ginalis; the fishes Perccottus glenii and Pseudorasb-

167 ora parva; the slider Trachemys scripta. There is not a

168 common list of invasive species for Switzerland,

169 Austria and Germany (Wittenberg et al. 2005; Gol-

170 lasch and Nehring 2006; Nehring et al. 2010). When

171 searching the three countries in EASIN database

172 (European Alien Species Information Network,

173 https://easin.jrc.ec.europa.eu/), the list of invasive

174 species in each region/country is different with only a

175 few species in common.

176 Prevention and early detection of new invasions are

177 recommended to control dispersion of invasive alien

178 species (Thomaz et al. 2014). In the last few years, the

179 development of environmental DNA (eDNA) tech-

180 niques has become a promising tool to early detect and

181 survey alien species in aquatic ecosystems (Goldberg

182 et al. 2015). There are numerous examples of the use

183 of eDNA to successfully detect invasive species (e.g.

184 Ficetola et al. 2008; Ardura et al. 2015; Clusa et al.

185 2016). In this study we applied eDNA Metabarcoding

186 for the detection of nuisance species in the Rhine

187 basin. This technique is based on high throughput

188 sequencing of DNA barcodes on eDNA coupled with

189 bioinformatics analysis of the sequences to compare

190 them with databases and identify the species present in

191 the sample. It has been employed for species inven-

192 tories in ports (e.g. Borrell et al. 2017), rivers (e.g.

193Deiner et al. 2016; Fernandez et al. 2018) and lakes

194(e.g. Bista et al. 2017).

195The main objective of the present study was to

196assess, by applying metabarcoding and species-speci-

197fic primers on eDNA fromwater samples, the presence

198of alien species in the Rhine region. The results will be

199employed to inferring hotspots of nuisance and non-

200indigenous species (NIS) in the basin so informing for

201future management actions.

202Materials and methods

203Study area

204The Rhine River is divided in six sections: the Alpine

205Rhine and the Lake Constance; the high Rhine from

206Lower Lake Constance (LLC) to Basel, where many

207barriers are, including a 23 m waterfall situated 30 km

208downstream the lake (Rheinfall) and many hydrolog-

209ical power plant dams; the Upper Rhine that extends

210from Basel to Bingen; the Middle Rhine; the Lower

211Rhine from Bonn to Lobith and the Delta Rhine in the

212Netherlands (Leuven et al. 2009). The alpine part of

213the Rhine River flows into the lake in the southeast

214(near Bregenz) and flows out near Stein am Rhein in

215the LLC. The Rhine River is the primary artery of one

216of the most important economic regions of Europe. It

217has a total length of about 1250 km, a drainage area of

218circa 185,260 km2 and an average discharge of about

2192300 m3 s-1 (Rabitsch et al. 2013). Lake Constance is

22063 km long, and at its widest point expands nearly

22114 km. It covers approximately 571 km2 and is 395 m

222above sea level. The greatest depth is 252 m in the

223middle of the eastern part. It consists of two basins: the

224deep Upper Lake Constance (ULC) and Lower Lake

225Constance (LLC), which is smaller (Jeppesen et al.

2262012). Daily, car ferries link Romanshorn to Frie-

227drichshafen as well as Constance to Meersburg (Gergs

228and Rothhaupt 2015) in the Upper Lake Constance.

229Between October and November 2017, ten sam-

230pling points were visited in the region: from the Alpine

231Rhine (R0) to the Upper Rhine downstream Basel

232(R5), including the main ports areas of Lake Con-

233stance (Table 1, Fig. 1). The following features of the

234sampling sites were considered: degree of modifica-

235tion of the river bottom, since artificial substrates may

236be preferred by some invasive species (e.g. Wasson

237et al. 2005; Tyrrell and Byers 2007); and number of
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238 human inhabitants in the 10 km nearby the sampling

239 point for the known relationship between biological

240 invasions and human population density (e.g. Spear

241 et al. 2013).

242 Sample collection

243 Three 1L water replicates per sampling point were

244 collected in sterile bottles. The samples collection was

245 done in different days and always from downstream to

246 upstream. Additionally, water bottles were kept in the

247 cooler (blanks) and used as field controls. All the

248 personal equipment was cleaned with 50% bleach

249 between points and new gloves and sterile bottles were

250 used in each point, in order to avoid contamination

251 between sampling points. In every sampling point,

252 water was collected approximately 30 cm below the

253 surface, since recent DNA is located in the surface

254 whereas in the sediments old eDNA can be accumu-

255 lated and preserved long time at low temperatures

256 even when the source of DNA has disappeared (Turner

257 et al. 2015; Goldberg et al. 2016).

258All the samples were immediately transported to

259the laboratory, stored at 4 �C and immediately filtrated

260using an Acetate cellulose membrane (Fisher Scien-

261tific) of 0.22 lm pore size and a filter holder. Filtration

262took place inside a laminar flow cabinet previously

263treated with UV light to avoid any contamination. The

264filter holder was dismantled, cleaned with 50% bleach,

265rinsed with distilled water and treated with UV for

26620 min before use and between samples. A negative

267control consisting of 1L of milliQ water filtrated

268between two real samples was included in all the

269analysis. Filters were stored at - 20 �C until

270extraction.

271All the collection, filtration, extraction and analysis

272process were done following the recommendations

273from Goldberg et al. (2016) to avoid any cross

274contamination in the different steps.

275Environmental DNA (eDNA) extraction

276DNA from 1L water samples was extracted with the

277PowerWater� DNA Isolation Kit (Mobio laborato-

278ries) following the manufacturer’s protocol. Every

Fig. 1 Map showing the sampling points. The region is divided in four sections from downstream to upstream: Upper Rhine, High
Rhine, Lake Constance, and Alpine Rhine. All sampling points are indicated with a black circle
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279 replicate from each sampling point was extracted

280 separately in time, therefore, all the analysis and

281 extraction from the same water sample was done in

282 different weeks, minimizing the possibility of con-

283 tamination. In addition, the whole extraction process

284 was done inside the laminar flow cabinet. Addition-

285 ally, two negative controls were included in each

286 extraction and in all posterior PCRs amplifications;

287 consisting of a negative control for filtration (sterile

288 water) and a negative control for extraction which

289 consisted in a clean membrane. All the pre-PCR steps

290 were done inside the laminar flow cabinet after 20 min

291 of UV light decontamination, and the post-PCR steps

292 were done in a separate laboratory unit.

293 Inhibitors test

294 The presence of PCR inhibitors in eDNA samples

295 might represent a serious problem due to the fact that it

296 could be wrongly identified as a false negative

297 (Thomsen and Willerslev 2015). Thus, to control for

298 the presence of inhibitors in the samples, DNA from

299 the fish speciesGambusia holbrookiwas spiked to one

300 replicate from each of the sampling sites at two

301 different concentrations similar to the experiment

302 done by Clusa et al. (2016). For the high concentration

303 test, 1 ll of Gambusia DNA from 10 ng/mL was

304 spiked to 5 ll of the eDNA; and for the low

305 concentration assay 1 ll of Gambusia DNA from

306 10 pg/mL, near the detection limit of the specific

307 primers, was added to 5 ll of eDNAHigh quality DNA

308 samples obtained from fish tissue were added outside

309 the cabinet, in the last minute when all the tubes with

310 eDNA samples were closed inside the PCR machine.

311 The amplification reaction was performed in a total

312 volume of 20 ll, including Green GoTaq�Buffer 1X,

313 1 mMMgCl2, 0.25 mM dNTPs, 1 lM of each primer,

314 0.65 U of DNA Taq polymerase (Promega) and 5 ll of

315 template DNA. PCR conditions were the following: an

316 initial denaturation at 95 �C for 5 min followed by 35

317 cycles of denaturation at 94 �C for 1 min, annealing at

318 68 �C for 1 min, extension at 72 �C for 2 min and a

319 final extension step at 72� for 7 min. PCR products

320 were visualized in 2% agarose gels with 2.5 lL of

321 SimplySafeTM.

322 In order to discard false negatives due to excessive

323 DNA degradation or other reasons, the cytochrome c

324 oxidase subunit I (COI) gene was amplified from

325eDNA with generalist primers (Geller et al. 2013) in

326all the samples.

327Metabarcoding library preparation

328One replicate water sample was used in the HTS

329analysis to obtain a global view of biodiversity in the

330sample. The other two replicates were employed for

331amplification of species-specific primers and checking

332inhibition.

333The target of the barcoding assay was a fragment of

334313 bp from the COI gene, using the generalist

335primers mlCOIlintF and jgHCO2198 for metazoan

336described by Leray et al. (2013) and adapted to

337Illumina platform. The protocol used was the one

338described for Illumina platforms (Illumina), which

339consisted in two sequential PCRs. The first PCR

340amplification was performed using general primers

341with a barcode and a tag and the second PCR using

342primers with the tag and adapters for Illumina

343(Table S1). After each sequential PCR, the amplified

344product was purified with HighPrepTM PCR beads

345(MagBio Genomics, Maryland). For the first PCR, we

346used the 515F and 806R primers with a universal 50

347tail, for DNA amplification of a fragment of COI gene

348(313 bp). Briefly, 2 ng of eDNAwere used as template

349for the first PCR (2 min at 98 �C, 10 amplification

350cycles consisting of 15 s at 98 �C, 20 s at 55 �C and

35120 s at 72 �C and a final elongation at 72 �C for 2 min)

352and the purified PCR amplicons were the template for

353the second PCR (2 min at 98 �C, 20 amplification

354cycles consisting of 15 s at 98 �C, 20 s at 67 �C and

35520 s at 72 �C followed by a final elongation at 72 �C

356for 2 min) using primers including sequencing bar-

357codes as well as the Illumina adapter sequences

358(Table S1). Both PCRs were performed in 25 ll

359reaction volumes and amplifyed with the Q5 High-

360Fidelity polymerase (New England Biolabs, MA).

361After purification, DNA concentrations were mea-

362sured and specificity of amplification was checked for

363all samples using gel electrophoresis. Negative con-

364trols for filtration and extraction were used in the PCR,

365where no quantifiable DNA was detected using a

366Qubit v2.0 Fluorometer (Thermo Fisher Scientific,

367Massachusetts), so they were not processed further.

368The quality of the pooled libraries was assessed

369using a Bioanalyzer 2100 (Agilent Technologies,

370Germany). The genomic libraries were pair-end
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371 sequenced (2 9 250 bp) on MiSeq platform at

372 TUFTS genomic centre in USA.

373 Sequence processing

374 The Fastq files were split by barcodes, allowing

375 obtaining all the sequences from each sample. All

376 Fastq files were checked in the FastQC version 0.11.3

377 visor.

378 A small subset of 5000 reads was used to adjust the

379 pipeline settings to later analyze the rest of the

380 samples. Different merge (e.g. minimum overlapping:

381 j:100, j:80 or j:115) and assignment (identity and

382 e-value: -i and -e parameters) settings were tested

383 using QIIME (Quantitative Insights Into Microbial

384 Ecology) (Caporaso et al. 2010). At least five

385 sequences from all the species in the resulting OTU

386 table were manually checked to confirm the suit-

387 able performance of the assignment (data not shown).

388 Merged pair-end files were obtained using the script

389 join_paired_ends (Aronesty 2011) included in QIIME

390 (Caporaso et al. 2010), with a minimum overlap of

391 100 bp (j = 100) and a maximum error of 15%

392 (p = 15), being the parameters selected based on the

393 consistency of the number of species recovered and on

394 previous experience with different datasets (e.g.

395 Fernández et al. 2019). After that, the sequences were

396 left- and right- trimmed using PrinSeq version 0.20.4

397 (Schmieder and Edwards 2011) to remove primer

398 sequences. Sequences were filtered by length and

399 quality, allowing a maximum length of 340 bp and a

400 minimum of 230 bp and sequences with a mean

401 quality score lower than 25 were removed.

402 To create a reference taxonomic database, an

403 exhaustive search for ‘‘mitochondrial COI gene’’

404 sequences was performed in the NCBI website in

405 June 2017. All the cytochrome c oxidase subunit I

406 sequences available were downloaded with the script

407 entrez qiime.py (Baker 2016). After that, blast assign-

408 ments were performed using the script assign taxon-

409 omy from QIIME (Caporaso et al. 2010) using as

410 database the file generated with all the COI sequences

411 downloaded fromGenBank. The assignment was done

412 using a 97% of identity and an e-value of 10–50.

413 Finally, the OTU table was obtained using the script

414 for python fromTaxassignment2Otutable. The pipe-

415 line is similar to the one used by Galal-Khallaf et al.

416 (2016). Singletons were eliminated from the OTU

417 table for further downstream analysis.

418Validation using species-specific primers

419One fish and two mollusc invasive species were

420chosen to double check the Metabarcoding results

421from independent genetic markers and methodology.

422Three-spine stickleback (Gasterosteus aculeatus)

423DNA was detected using the specific primers designed

424by Thomsen et al. (2012). This species is native to the

425region and known to inhabit the Lake Constance and

426the Rhine River. New Zealand mudsnail Potamopyr-

427gus antipodarum was detected using the primers

428described in Clusa et al. (2016), and Corbicula

429fluminea using Clusa et al. (2017) primers. Primer

430sequences and PCR amplification conditions are

431described in the Table S2. All PCR amplicons were

432visualized in 2% agarose gel with DNA Stain clear G

433(SERVA). The species-specific primers were used in

434two out of the three samples taken from each site. To

435consider a sample as positive or negative, the two

436samples had to be positive or negative, respectively.

437The third sample of each point was reserved for

438running an extra PCR with specific primers to confirm

439the presence of the species in case of doubtful results

440(when only one of the samples was positive). Every

441positive PCR band was purified with ZymocleanTM

442Gel recovery kit and sequenced with ABI 3130

443sequencer to confirm the species identity using

444BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)

445against NCBI GenBank Nucleotide database.

446Estimations of environmental quality

447Global diversity (Shannon index) was estimated from

448the OTU table with the script alpha diversity from

449QIIME (Caporaso et al. 2010), using the reads of all

450the species after removing duplicated species and

451sequences which assignments with BLAST corre-

452spond to entries catalogued as ‘‘Environmental sam-

453ples’’ in GenBank. However, since there is little

454consensus on the extent to which proportions of reads

455generated corresponds to the original proportions of

456species in a community (Lamb et al. 2019), this index

457should be considered only a rough proxy of real

458diversity. A better diversity estimate was calculated

459using the number of species, instead of the reads, of

460each phylum as a variable.

461Six variables were measured from HTS data and

462used to take into consideration the environmental

463status of the sampling sites. Due to the known
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464 correlation between habitat degradation and invasive

465 species, which does not implying causality (Didham

466 et al. 2005), the presence of two types of nuisance

467 species was used as proxies of bad ecological status:

468 harmful algae (HABs) and exotic invasive species.

469 Therefore, the number and proportion of each type of

470 species were the variables. It is worth noting that the

471 mere presence of invasive species does not necessarily

472 indicates degraded habitat and other indicators would

473 be necessary for environmental quality assessment.

474 Variables associated with good ecological status were:

475 the number of native fish species as an ecosystem

476 service, and the number of EPT (Ephemeroptera,

477 Plecoptera and Trichoptera insects) species as world-

478 wide indicators of good water quality (e.g. Lenat 1988;

479 Masese and Raburu 2017; Ab Hamid and Md Rawi

480 2017). Two additional diversity estimates were the

481 number of other native invertebrate species, and the

482 number of other algae species (non-HABs).

483 The list of exotic species was taken from the

484 Invasive Species Compendium (CABI 2019, https://

485 www.cabi.org/isc, accessed on September 2019); the

486 species contributing to Lake Constance fisheries from

487 Eckmann and Röchs (1998); the list of reference of

488 HAB species was the IOC-UNESCO Taxonomic

489 Reference List of Harmful Micro Algae (http://www.

490 marinespecies.org/hab/, accessed in August 2019;

491 Moestrup et al. 2009 onwards). To calculate the pro-

492 portion of invasive species in the samples, only

493 sequences from aquatic metazoans were taken into

494 account, excluding sequences from human and avian

495 DNA, as well as fungi and protists.

496 Statistical analyses

497 Non-metric multidimensional scaling (nMDS) analy-

498 sis was performed for visualizing the differences

499 among samples, using the following six variables:

500 EPT, Native Fish, HABs, NIS, HABs, non-HABs and

501 other native invertebrates. The minimum spanning

502 tree among samples was calculated from Manhattan

503 pairwise similarity indices using 9999 bootstrapping

504 and visualized by Scatter plot.

505 Pairwise correlations between the biotic indicators

506 and proxies were performed using linear Pearson�s r

507 after checking for normality using Jarque–Bera tests

508 and Monte Carlo simulations, using PAST software

509 version Past3.dmg (Hammer et al. 2001). False

510 discovery rate (FDR) adjustment for multiple

511comparisons was carried out in R (R Core Team

5122020) using ‘‘psych’’ library.

513Results

514The amplification of the COI gene with universal

515primers confirmed the presence of good quality DNA

516in all eDNA samples. The spike test to discard the

517presence of inhibitors in the samples was successful,

518obtaining positive PCR amplifications in all eDNA

519samples with both high or low concentration of

520Gambusia DNA, discarding the presence of inhibitors

521in the samples.

522From each sample a minimum of 500,000 raw reads

523were obtained. After merging and filtration steps the

52476.80 ± 11.1% of sequences remained from the raw

525dataset of reads. A 12.6 ± 7.6% of the raw reads were

526assigned to a reference barcode with the 97% of

527identity. The sample with least sequences assigned

528was R5 with only the 2.6% of raw reads, whereas the

529sample with the highest number of sequences assigned

530was L4 (29.1% of raw reads) (Table S3).

531In number of sequences, the taxon most amplified

532from the HTS analysis was Porifera (more than 50% of

533the sequences) followed by Arthropods (25.85%), and

534Protista (11.32%); only 1.87% correspond to molluscs

535and 0.42% to chordate species (Fig. 2A). The taxo-

536nomic profile varied in the different samples, for

537example in R0 81.3% of the sequences corresponded

538to arthropods, in R1 the 81% corresponded to Protista

539or in R3 12.2% were molluscs (Fig. 2B). Shannon’s

540diversity index, taking into account all the sequences

541from all the taxa identified by HTS, showed that the

542highest value was found in samples R1 (3.9), R5 (3.8),

543and R4 (3.6) (Table S5).Considering the number of

544species per metazoan phylum, the samples were also

545clearly different (Fig. 3), although not as much as in

546the number of sequences for which they differed

547principally in Protista (Fig. 2B). River samples were

548richer in arthropods while lake samples were richer, in

549general, in mollusc species –absent from the river

550samples taken upstream of Lake Constance.

551From the assigned sequences eight NIS were

552detected (Table 2A) including two arthropods, one

553fish, one cnidarian and four molluscs: The killer

554shrimp Dikerogammarus villosus, the Caspian slender

555shrimp Limnomysis benedeni, the rainbow trout On-

556corhynchus mykiss, the freshwater jellyfish
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557 Craspedacusta sowerbyi, the zebra mussel Dreissena

558 polymorpha, the Asiatic clam Corbicula fluminea, the

559 New Zealand mudsnail Potamopyrgus antipodarum

560 and the freshwater pulmonate snail Physella acuta.On

561 the other hand, DNA of four species of Dinoflagellates

562 catalogued as harmful algae (HAB) represented by

563 more than one sequence was found in the dataset:

564 Alexandrium catenella, A. ostenfeldii, A. tamarense

565 and Karlodinium veneficum (Table 2B). All of them

566 occurred in the lake, principally in lake ports, while

567 only one sequence of A. tamarense was found in the

568 upstream river point closer to the lake (R1). It is worth

569noting that the mere detection of harmful algae does

570not implicate its bloom.

571Three species were double-checked from species-

572specific primers on the eDNA samples where they

573were found from Metabarcoding. All the positive

574amplifications were sequenced and the species con-

575firmed by Blast in the NCBI webpage. All the

576assigments are available in Table S4 The results were

577totally coincident and confirmed the presence of DNA

578of those species in the samples analyzed (Supplemen-

579tary Table S4. The native fish Gasterosteus aculeatus

580was detected in the samples LP2 and L3, the invasive

581Potamopyrgus antipodarum appeared in the lake and
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(B)
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Fig. 2 Sequences from HTS analysis by taxon. a Percentage of sequences of each taxon obtained from the HTS analysis. b Percentage
of sequences from each taxon in each sampling site
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582 in the first river sample downstream, and Corbicula

583 fluminea in the lake port where it was found from

584 metabarcoding. The fact that these species were

585 independently detected with species-specific primers

586 on the same water samples (eDNA), allowed to discard

587 these species to be false positives in the metabarcod-

588 ing, and confirmed the robustness of our metabarcod-

589 ing results. For P. antipodarum the haplotype found in

590 eDNA samples was the European haplotype t de-

591 scribed by Städler et al. (2005) also found by Clusa

592 et al. (2016) in Nora River in Northern Spain.

593 In general, lake samples contained more invasive

594 species and HABs than the river samples analyzed in

595 this study (Table 3). In contrast, traces of EPT DNA

596 were not found from lake samples. The highest

597 number of native Metazoans was found upstream of

598 Lake Constance, while on the other hand the phylo-

599 genetic diversity was lower in that upstream area than

600 in the lake and downstream (Table 3), due to the

601 absence of sponges, molluscs and bryozoans. Consid-

602 ering all the species present, the samples obtained

603 within the lake and the first sample downstream were

604 the most diverse (for Metazoans). DNA from eight fish

605 species native to the region was found: Abramis

606 brama, Barbus barbus, Coregonus lavaretus, Cottus

607 gobio, Esox lucius, Gasterosteus aculeatus, Salmo

608 trutta, and Squalius cephalus. Their distribution

609 suggested a clear basin zonation for the fish commu-

610 nity. Cottus gobio and Salmo trutta were found

611 upstream the lake, and Barbus barbus and Squalius

612 cephalus from river locations downstream. The other

613 four species were found only from lake samples.

614The difference among sampling sites was evident in

615the nMDS. The Shepard plot, with stress of 0.108 and

616r2 = 0.855 and 0.007 for axis 1 and axis 2, respectively

617(Fig. S1), showed most points aligned along the

618diagonal. The scatter plot showed the sites arranged by

619basin sections: lake samples connected together in the

620spanning tree, with the two ports very close to each

621other (Fig. 4), next to the four downstream river

622samples, and finally upstream river samples R0 and R1

623located farther. R0 and LP1 as the least and most

624disturbed samples respectively were located in oppo-

625site extremes of the minimum spanning tree.

626From our results, the localities with a lower

627environmental quality were the two larger lake ports

628(LP1 and LP2), with six and eight nuisance species,

629respectively, followed by the lake point L3 with five,

630then the other sampling sites with two nuisance

631species and the uppermost point R0 with none

632(Table 3). Thus, the lake ports could be considered

633hotspots of nuisance species.

634Regarding the relationships between the biotic

635indicators of environmental quality considered, only

636one of them were significantly correlated after FDR

637correction (Table 4): there was a negative correlation

638between EPT and HABs (r = - 0.769, 4 d.f.,

639P = 0.009). This correlation is expected since EPT is

640considered a positive indicator of environmental

641health and HAB is often correlated with habitat

642degradation. On the other hand, the effect of substrate

643artificiality was not clear—only two sites R1 and LP1

644had artificial substrate. Noteworthy, a significant

645correlation was found between the number of human
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646 inhabitants (population) and the number of NIS

647 (r = 0.784, 8 d.f., P = 0.007). The number of human

648 inhabitants was not significantly correlated with any of

649 the other community features considered (Table 4).

650 Discussion

651 The results of the present study have revealed hotspots

652 of nuisance species associated with large lake ports in

653 Lake Constance. The accumulation of NIS in lake

654ports can be explained by the fact that ships facilitate

655the spread of exotic species, and the higher water

656temperature due to sheltered conditions in ports, can

657increase the survival of these exotics species (Strayer

6582010; Gollasch and Nehring 2006). In our case study,

659the daily ferries crossing the lake may contribute to

660this transport (Gergs and Rothhaupt 2015). The HABs

661were used here as proxies of bad water quality, and

662were negatively correlated with the EPT—indicators

663of good water quality-, and positively correlated with

664NIS. All together, the results emphasize the role of

665ports as disturbed areas and shelters of nuisance

666species (Seebens et al. 2013). Moreover, we found a

667significant correlation between the number of NIS and

668the surrounding population density at a regional level.

669The same pattern has been found at both large (Pyšek

670et al. 2010) and regional (Spear et al. 2013) scales in

671other studies.

672From the technical side, this case study illustrates

673the utility of eDNA to detect invasive aquatic species

674using next generation sequencing methods, as found in

675recent studies (Rius et al. 2015; Borrell et al. 2017).

676Except in one sample (R5), where only the 2.6% of the

677raw reads were taxonomically assigned with the strict

678criteria employed here, the proportion of assigned

679reads was around 12% for all the samples (Table S3).

680These values are similar to other HTS studies (Deiner

681et al. 2016), indicating that the overall molecular and

682data treatment procedures were generally good.

Table 3 Values of HTS-based biotic variables obtained in the ten sampling sites within Rhine River basin

Upstream Upstream Port Port Lake Lake Downstream Downstream Downstream Downstream
R0 R1 LP1 LP2 L3 L4 R2 R3 R4 R5

HABs 0 1 3 3 3 1 0 0 0 0

NIS 0 1 3 5 2 1 2 2 2 0

EPT 2 1 0 0 0 0 2 3 1 1

Native fish 1 1 1 1 2 0 1 2 0 0

Other native
invertebrates

27 22 16 13 8 10 10 16 8 8

Other algae 7 6 2 4 2 0 3 3 4 2

Metazoan
Shannon

1.186 1.185 1.667 1.709 1.631 1.547 1.802 1.567 1.516 1.215

Metazoan
Simpson

0.64 0.592 0.792 0.809 0.781 0.777 0.809 0.715 0.76 0.667

The diversity indices Shannon and Simpson (1-D) calculated based on the number of species per Metazoan phylum are presented.
HABs, NIS and EPT are harmful algae, non-indigenous species and Ephemeroptera-Plecoptera-Trichoptera, respectively

Fig. 4 Non-metric multidimensional scaling analysis of the
biotic indicators and proxies. Scatter plot showing the minimum
spanning tree constructed from Manhattan pairwise similarity
indices is shown
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683 Focusing on the invasive species, our study builds

684 upon some of the invasions occurring in the Rhine

685 basin. Regarding the invasive clam Corbicula flu-

686 minea, the first record of this clam in the Rhine River

687 was in 1985 in the lower Rhine region in Netherlands.

688 After that, it was recorded in Basel ten years later

689 (1995), and it was later found in Rheinfelden (22 km

690 upstream Basel) in 2003, but not any further. Thus,

691 there was no record of the presence of this clam

692 between Rheinfelden and Lake Constance (Schmidlin

693 and Baur 2007). The first detection of this species in

694 Lake Constance was in 2003 in a sandy shallow-water

695 near Bregenz (Werner and Mörtl 2004). Our study

696 locates the species in the Upper Lake Constance near

697 Constance port (LP2). Corbicula larvae and small

698 individuals can travel attached to avian feet or feathers

699 and might be transported over large physical barriers

700 (Schmidlin and Baur 2007). The singular conditions

701 found in the ports, relatively sheltered and stable water

702 level, might favor the survival of this species, since it

703 has been shown that low temperatures and water level

704 decreases produce massive mortality in C. fluminea

705 (Werner and Rothhaupt 2008). Moreover, it has been

706 suggested that climate change may benefit warm-

707 water invaders (Rahel and Olden 2008; Chown et al.

708 2015). In this region, the average water temperature

709 increased 0.22 �C per decade between 1965 and 2009

710 (Jeppesen et al. 2012); this change might explain the

711 expansion of C. fluminea in the lake from Bregenz in

712 2003 (Werner and Mörtl 2004) to the other side of the

713 lake (Constance) in 2017.

714 We also found the New Zealand mudsnail Pota-

715 mopyrgus antipodarum in lake ports and downstream

716 localities. This organism is able to travel through

717 animal vectors (Alonso and Castro-Dı́ez 2008), but

718our results strongly suggest it is transported associated

719with ships. In previous studies, Gergs and Rothhaupt

720(2015) found only two P. antipodarum individuals in

7212005, none in 2006 and three in 2007 in Lake

722Constance. Therefore, our results suggest the species

723has expanded in the last decade. UnlikeC. fluminea, P.

724antipodarum is able to survive winter conditions, since

725it tolerates water temperatures from 0 to 28 �C and

726even resists short times of desiccation (Moffitt and

727James 2012; Alonso and Castro-Dı́ez 2012). Further

728surveillance together with rapid response would be

729convenient in order to control its spread.

730It is worth to mention that we found relatively few

731fish species in our study: only eight native and one NIS

732(O. mykiss). Using eDNA, species may remain unde-

733tected due to the sampling strategy (Comtet et al.

7342015). Here, sampling was performed at the shore of

735the river and the lake around 1-m depth. The sampling

736strategy was the same as that used in Ebro River (Clusa

737and Garcia–Vazquez 2018), which, like the Rhine

738River, is a big river with high flow and rapid current

739speed. Indeed, it is possible that the DNA of some

740species, especially for those fish swimming far from

741the shore, was at very low concentration and remained

742undetected. For a more detailed species inventory

743based on eDNA, samples should also be obtained from

744many points inside the lake and the stream, and at

745different depths, ensuring a good coverage of the

746habitats surveyed, but this was beyond the scope of

747this work.

748The lack of detection of a species from HTS could

749be also due to the primer bias; the primers used to build

750HTS libraries might have different affinity for the

751species present in the samples (Deagle et al. 2014).

752The COI gene primers employed in our study

Table 4 Pairwise correlations between the main HTS-based high and low quality environmental proxies employed in this study and
the human population size (see Table 1) near the sampling sites

HABs NIS EPT Native fish Population

HABs – 0.034 0.009 0.335 0.129

NIS 0.670 – 0.311 0.424 0.007

EPT - 0.769 - 0.357 – 0.424 0.347

Native fish 0.341 0.286 0.286 – 0.964

Population 0.513 0.784 - 0.333 0.017 –

Pearson’s r and their P-value are shown below and above the diagonal, respectively. Significant values after False Discovery Rate
(FDR) corrections are shown in bold italics
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753 amplified a high proportion of arthropods and Porifera

754 species, similar to the results of Leray et al. (2013) and

755 Deiner et al. (2016). Data processing may also produce

756 some false negatives (Thomsen and Willerslev 2015),

757 and better reference databases are needed since the

758 scarcity of references from many taxonomic groups

759 has been pointed out as the main limitation to assign

760 HTS sequences (Comtet et al. 2015; Goldberg et al.

761 2016). False negatives can also result from failures in

762 the sequencing process (Kelly et al. 2014; Thomsen

763 and Willerslev 2015), in the PCR conditions (Ushio

764 et al. 2017; Pochon et al. 2013) or even in the amount

765 of DNA released by the different species of the

766 environment (Minamoto et al. 2017). The use of

767 several samples to build HTS libraries and several

768 genes as metabarcodes is recommended to diminish

769 the errors mentioned (Kelly et al. 2014; Shaw et al.

770 2016). This is a limitation of our study, based only on

771 one sample per point and one metabarcode. However,

772 and despite this flaw, the results allowed to detect eight

773 NIS and to confirm the presence of P. antipodarum

774 and C. fluminea in Lake Constance. Surely more

775 replicates and metabarcodes will give a better global

776 vision of the real biodiversity of the Rhine basin.

777 The studied zones of the Rhine basin contain many

778 dams, and this feature may have implications on the

779 diversity patterns observed. Dams may prevent the

780 arrival of exotic species as many authors have

781 described (Fausch et al. 2006; McLaughlin et al.

782 2007), for instance, Dana et al. (2011) stopped the

783 expansion of the invasive crayfish Procambarus

784 clarkii in a Mediterranean stream by constructing

785 small dams. Dams may also work as refuges for

786 imperiled native species (Beatty et al. 2017). But, at

787 the same time, they block the migration route of

788 diadromous species and can cause the decrease of

789 diversity and abundance upstream (Nislow et al. 2011;

790 Limburg and Waldman 2009; Britton et al. 2011).

791 Despite the presence of barriers in the High Rhine

792 region (12 hydropower dams and a 23-m waterfall)

793 many species have colonized Lake Constance by

794 unknown routes (Eckmann et al. 2008). In our case

795 study, lake samples contained a higher proportion of

796 NIS than downstream samples, therefore, the role of

797 dams for preventing biological invasions is not clear

798 here. Conversely, the presence of dams altered water

799 temperatures and flow regimes in High Rhine and

800 generated a suitable environment for the invasive goby

801 Neogobius melanostomus (Kalchhauser et al. 2013). In

802the case of Physella acuta and C. fluminea in the lake,

803their possible original introduction could be aquarium

804releases (Schmidlin and Baur 2007). Moreover,

805recreational activities can aid in the dispersion of

806invasive species in this basin; for example, in the High

807Rhine region the river and lake are crossed by

808recreational boats that could work as a transport for

809exotic species, such as round gobies (N’Guyen et al.

8102016) as well as for exotic invertebrates attached to the

811boat hull or in bilge water to other water bodies in the

812region (Ricciardi 2015; De Ventura et al. 2016).

813The upstream location R0 was the only sampling

814point where the native brown trout (Salmo trutta) was

815found, no NIS was detected, and the diversity index

816was as low as in R1 (Table 3). It is becoming more

817evident that invasive species tend to accumulate in

818degraded areas near human populations (Havel et al.

8192015; Johnson et al. 2008; Spear et al. 2013),

820therefore, the absence of NIS in R0 –with low

821population density nearby- could be explained from

822a relatively lower anthropogenic influence.

823Conclusions

824The ports and sites near big urban areas were identified

825as potential hotspots of NIS in the region, therefore,

826better management measures should take into account

827the surveillance of these areas to avoid the spread of

828the invasive species already established in the region,

829and also the surveillance of recreational boats would

830be advisable. They could spread these NIS to other

831water bodies nearby, especially in this region with

832high number of tourists in summer who visit multiples

833lakes over a short period of time. Prevention measures

834have to be focused on human behaviour; educational

835efforts should reduce intentional releases. Addition-

836ally, stricter regulations of ornamental species and

837aquaculture would be desirable in order to reduce

838contamination of stocks and pet releases. Any garden

839pond or aquarium might represent a potential threat

840especially when global warming is causing the

841increase of winter water temperatures which would

842promote the establishment of ornamental species.

843Finally, it is highly advisable to establish a common

844regulation and management actions by all the coun-

845tries implied in the region.
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1319Wolter C, Röhr F (2010) Distribution history of non-native
1320freshwater fish species in Germany: how invasive are they?
1321J Appl Ichthyol 26(2):19–27. https://doi.org/10.1111/j.
13221439-0426.2010.01505.x

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

123

L. Clusa et al.

Journal : Medium 10530 Dispatch : 16-2-2021 Pages : 18

Article No. : 2462 h LE h TYPESET

MS Code : BINV-D-20-00075R2 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f

https://doi.org/10.1111/j.1365-2427.2011.02634.x
https://doi.org/10.1111/j.1365-2427.2011.02634.x
https://doi.org/10.1007/s10750-012-1433-1
https://doi.org/10.1007/s10750-012-1433-1
https://doi.org/10.1371/journal.pone.0073935
https://doi.org/10.1073/pnas.1002314107
https://doi.org/10.1073/pnas.1002314107
https://www.R-project.org/
https://doi.org/10.1111/j.1095-8649.2012.03457.x
https://doi.org/10.1111/j.1095-8649.2012.03457.x
https://doi.org/10.1111/j.1523-1739.2008.00950.x
https://doi.org/10.1111/j.1523-1739.2008.00950.x
https://doi.org/10.1016/B978-0-12-385026-3.00005-X
https://doi.org/10.1016/B978-0-12-385026-3.00005-X
https://doi.org/10.1093/czoolo/61.3.488
https://doi.org/10.1093/czoolo/61.3.488
https://doi.org/10.1007/s00027-006-0865-y
https://doi.org/10.1007/s00027-006-0865-y
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1111/ele.12111
https://doi.org/10.1016/j.biocon.2016.03.010
https://doi.org/10.1016/j.biocon.2016.03.010
https://doi.org/10.1016/j.biocon.2012.11.022
https://doi.org/10.1016/j.biocon.2012.11.022
https://doi.org/10.1111/j.1365-294X.2005.02603.x
https://doi.org/10.1111/j.1365-294X.2005.02603.x
https://doi.org/10.1126/science.286.5444.1577
https://doi.org/10.1126/science.286.5444.1577
https://doi.org/10.1111/j.1365-2427.2009.02380.x
https://doi.org/10.1111/j.1365-2427.2009.02380.x
https://doi.org/10.1007/s10750-014-2150-8
https://doi.org/10.1371/journal.pone.0041732
https://doi.org/10.1371/journal.pone.0041732
https://doi.org/10.1016/j.biocon.2014.11.019
https://doi.org/10.1016/j.biocon.2014.11.019
https://doi.org/10.1016/j.biocon.2014.11.017
https://doi.org/10.1016/j.biocon.2014.11.017
https://doi.org/10.1016/j.jembe.2006.10.014
https://doi.org/10.1016/j.jembe.2006.10.014
https://doi.org/10.1111/1755-0998.12690
https://doi.org/10.1007/s10530-004-2995-2
https://doi.org/10.1007/s10750-008-9479-9
https://doi.org/10.1007/s10750-008-9479-9
https://doi.org/10.1111/j.1439-0426.2010.01505.x
https://doi.org/10.1111/j.1439-0426.2010.01505.x

