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Abstract: Monte Carlo Tree Search is one of the main search methods studied presently. It has
demonstrated its efficiency in the resolution of many games such as Go or Settlers of Catan and
other different problems. There are several optimizations of Monte Carlo, but most of them need
heuristics or some domain language at some point, making very difficult its application to other
problems. We propose a general and optimized implementation of Monte Carlo Tree Search using
neural networks without extra knowledge of the problem. As an example of our proposal, we made
use of the Dots and Boxes game. We tested it against other Monte Carlo system which implements
specific knowledge for this problem. Our approach improves accuracy, reaching a winning rate of
81% over previous research but the generalization penalizes performance.

Keywords: Monte Carlo Tree Search; neural networks; generalized implementation; Dots and Boxes

1. Introduction

Games are usually considered important benchmarks for artificial intelligence research,
being abstract, interesting and challenging for human beings [1,2].

Studies on games can be used as tests to be extended on other contexts such as robotics
or chemistry [3]. One of the fields in which artificial intelligence is growing is medicine.
For example, hearth disease classification with deep learning techniques [4]. Nevertheless,
ethics regarding human health is still an issue to be discussed, although there already
are models which try to solve this [5]. That idea leads to the emergence of game theory,
which is the study of mathematical models of the interaction strategy between agents who
must make decisions [6]. The objective of game theory is to find the optimal solution for
each state of the game. Games can be categorized according to its strategy, dynamic of
turns, cooperativeness between players and if they are Zero-Sum games. Sohrabi et al. [7]
summarize and classify several studies considering classic and modern optimization
methods, optimization types, objectives and type of the game theory.

Search algorithms are the key to solve games. For example, Minimax, proposed by
Von Neumann [8] is the basis for other methods. It is considered the starting point of game
theory, providing conditions that guarantee that the max-min inequality is also an equality.
It is a recursive decision method to minimize the maximum expected loss in games with
an opponent and with perfect information. The idea is to take the best move for yourself
assuming that your opponent will choose the worst move for you. Over the years, multiple
variations have emerged, such as Negamax [9].

Alpha-beta pruning [10] is an improvement over Minimax, which tries to reduce the
number of nodes that are evaluated in its search tree. It is a technique that is still used in
many games such as Tic-tac-toe, Chess or Go. However, it has been overtaken by other
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techniques when the search space is too wide as is the case with Chess or the Go game.
The idea is to stop evaluating a move when it is sure that the movement will be worse than
the previous ones.

Although there are many more search methods and alternatives such as NegaS-
cout [11] or MT driver (MTD) [12]. In recent years, the scientific literature is focusing on
Monte Carlo (MC) methods. They are based on repeating random simulations to provide
approximate solutions to a problem. The main idea is to use randomness to solve problems
that are deterministic but too big to be calculated with precision [13]. In addition, the ac-
curacy of MC simulations can be improved using tree-based search, leading to the Monte
Carlo Tree Search (MCTS). MCTS is a best-first search algorithm based on heuristics where
pseudorandom simulations guide the solution to a problem. The goal is to find optimal
decisions in a specific domain of knowledge by generating random samples in the decision
space, at the same time that a search tree is generated according to the obtained results [14].

There are also other approaches which combine genetic algorithms and MCTS to get a
better response time to play real-time games [15].

MCTS has been successfully applied in different contexts. The most important mile-
stone since its appearance is perhaps the victory of AlphaGo against a Go champion 5-0 by
selecting new moves using neural networks ([16,17]) that were trained with supervised
learning [18]. Shortly after, AlphaGo Zero won 100-0 against AlphaGo by selecting new
moves using neural networks that were trained with reinforcement learning, without hu-
man data [19].

Since then, variations of AlphaZero and AlphaGo have been introduced get a better
performance such as the contributions made by Grill et al. [20]. MCTS has been used in
Settlers of Catan [1] too with reasonable results.

Several contributions have been developed for MCTS to improve accuracy and per-
formance [21,22]. They have been tested in single-player and two-player games such as
8-puzzle, Hanoi, chess or checkers. Walędzik et al. [23] focus their contributions on a
knowledge-free heuristic evaluation function which improves results for MCTS on sev-
eral games.

However, MCTS has also been applied to other areas different from games such as:
(1) combinatorial optimization; (2) constraint satisfaction; (3) scheduling problems; (4)
sample-based planning; or (5) procedural content generation [14]. An example is to detect
intruders in image-based biometrics authentication systems [24].

On the other hand, artificial neural networks can infer the behavior of games been
able to replicate good quality movements without implementing each rule.

MCTS and neural networks with Go is an example of good results on a big search
space. This recent success led us to use MCTS for our research. In contrast to other
algorithms mentioned before, Monte Carlo Tree Search can handle huge search spaces
limiting computation through the number of iterations as explained in Section 3. This
way, this approach could suit a wide range of games and processes which helps our main
objective about generalization of the algorithm.

Due to the background of the previous approaches, we also decided to use MCTS.
However, most of the proposed solutions until now, try to speed up the developed system
by adding domain-based heuristics which could help to solve the game. The implementa-
tion of the heuristics may be complex for certain games or problems or they could not be
deeply explored. The main goal of this work is to explore the possibility that the system
can learn to solve a problem, without having a data source and without using techniques
specific to any problem domain. To that end, we take advantage of the potential of the
Monte Carlo Tree Search technique. As part of the work, a case study based on the classic
Dots and Boxes game is presented [25] (see Section 2). The system, without using infor-
mation about the domain of knowledge, and only with the knowledge of the rules of the
game, can learn to play.

The rest of this work is structured as follows: In Section 2 we introduce the Dots and
Boxes game. In Section 3 we describe Monte Carlo Tree Search algorithm. In Section 4 we
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present the state of the art related to how to solve the game. In Section 5 we propose our
work and contributions to optimize Monte Carlo Tree Search to solve the game. In Section 6
we perform an evaluation of our proposal. Finally, Section 7 deals with the conclusions
and future work to be done.

2. Dots and Boxes

To carry out this work, we have chosen as a case study a perfect-information game.
Perfect-information games are characterized by the fact that every player has access to
all information about the game, such as the position of the board or any configuration
depending on the game. Examples of these games are Chess and Tic-tac-toe. A player who
follows a strategy better than the others is more likely to win. In addition, there are no
random variables which may influence the result [26].

We focus on the perfect-information game Dots and Boxes. It is a combinatorial
strategy game for two players popularized between children and adults. The first reference
we can find about this game comes from the 19th century in L’Aritmétique amusante written
by the mathematician Willian Lucas, who called the game “la pipopipette” [27]. The aim is
to reach the end of the game with more closed boxes than the other player.

The Dots and Boxes game is a combinatorial game that represents the group of
problems to which MCTS has been most often applied. Combinatorial games have the
following properties:

• Two players. There are typically only considered two players, although may not be
the case.

• Zero-sum. The gain or loss of a player is exactly balanced by the loss or gain of the
other player.

• Perfect information. The state of the game is fully observable to all players.
• Deterministic. There is no randomness in the development of future states.
• Sequential. Players move sequentially in turns.
• Finite. The number of movements must be always finite.

The game board consists of a set of dots displayed as a m× n size matrix. In each turn,
the player must link two consecutive dots with a horizontal or vertical line. The strategy
to follow is trying to close boxes and trying to avoid the opponent to close his own boxes.
To close a box, it must have already three sides, with only one empty side left where the
player will place the corresponding line. The turns are alternate, but after closing one box,
the player must link another two dots. Movements can be concatenated until there is no
possibility of closing any box. When a box is closed, a different mark for each player is
written inside. At the end of the game, the score is computed by adding the marks, being
the winner the player with the maximum score.

Figure 1 shows the trace of a game played on a 3× 3 board. A corresponds to the
boxes closed by P1 (Player 1) and B to the ones closed by P2 (Player 2). M X corresponds to
move number Move X. Each square represents the set of moves made by a player before
change turn. We can observe that the main strategy followed is to avoid leaving boxes with
three sides that could be closed in the next turn by the opponent. Moreover, when there is
no other option, the player must minimize the number of closed boxes that the opponent
could concatenate in her turn.
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Figure 1. Dots and Boxes game between two players.

3. Monte Carlo Tree Search Algorithm

Monte Carlo Tree Search algorithm consists of four phases which are iterated for
a determined number of times: selection, expansion, simulation and backpropagation.
The higher number of iterations, the more the tree grows and the easier is for the results to
converge to a meaningful one. A root node must be provided for starting the iterations.
The number of iterations will be an important variable in our experiments.

• Selection phase. First, the root node goes through selection phase (Figure 2 and
Algorithm 1), where a node is selected based on the biggest Upper Confidence Bounds
(UCB) formula value [14]. UCB formula tries to balance exploitation and exploration
of the tree thanks to its constant C. This value, according to Browne et al. [14], accom-
plishes that balance. The way of managing the analysis of a node is characterized by
exploitation and exploration. Exploitation of the tree nodes refers to grow the tree
in depth from a promising node, while exploration refers to grow the tree in width
checking unvisited nodes. UCB formula is composed by two terms which influence
the trend of MCTS about exploring or exploiting nodes. We can control and balance
it with constant C (the bigger, the more expanded nodes) considering the needed
information and computational cost. The adjusted value of C is 1.41 [28].

Figure 2. Selection phase in MCTS.
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Algorithm 1 Selection phase
function SELECTION(node)

while node has children do
node = child of node with biggest UCB

end whilereturn node
end function

• Expansion phase. In expansion phase (Figure 3 and Algorithm 2), if a node has been
visited, i.e., it has been simulated, their children (or possible next states) are generated
and added to the tree. Otherwise, it continues to the next phase.

Figure 3. Expansion phase in MCTS.

Algorithm 2 Expansion phase
function EXPANSION(node)

if is node visited then
generate children of node

end if
end function

• Simulation phase. In simulation phase (Figure 4 and Algorithm 3) if selected node
is expanded, a random child is taken, else the selected node is taken itself. Then,
next states are randomly chosen until it reaches a terminal state. Besides the random
technique, it can be used with improved systems. This will be studied in Section 3.1.
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Figure 4. Simulation phase in MCTS.

Algorithm 3 Simulation phase
function SIMULATION(node)

while node state is not final do
get next node random
node = next node

end whilereturn node state
end function

• Backpropagation phase. In backpropagation phase (Figure 5 and Algorithm 4),
the value obtained at simulation phase is propagated from leaves to root of the
tree updating the values of the nodes: visits and victories.

Figure 5. Backpropagation phase in MCTS.
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Algorithm 4 Backpropagation phase
function BACKPROPAGATION(node)

while node is not null do
increment node score
increment node visits
node = parent node

end while
end function

3.1. MCTS and Neural Networks

MCTS simulation phase is characterized by randomness that is optimized focusing
on converging the simulations using approaches based on artificial intelligence. AlphaGo
is one of the most successful systems that implement this technique, according to Sil-
ver et al. [18] it integrates two neural networks in simulation phase:

• Policy network is used to predict if a move corresponds to an expert human move.
It was trained with human moves data sets and considers the previous state and the
final state after the move. Its output is a probability of belonging to the mentioned
data set.

• Value network is used to predict the probability of winning given a certain state. It
was trained with game states result of playing again itself, choosing each move with
the help of the policy network.

According to Silver et al. [18], policy network is applied after the expansion of a node
N0 over every new node Ni. Predicting the probability of move N0→ Ni of being an expert
human move. That probability is stored on that node, which will be used on selection
phase combined with UCB value to select next node. Value network is applied to the node
to be simulated and its prediction is combined with the result of the random simulation
giving a final value used to update the tree in backpropagation. Fu [2] suggests a simpler
way to use value network: to predict the winner at the beginning of simulation phase,
if the result is consistent enough, take that value and jump to backpropagation phase, else
perform random simulation. We implement this approximation to build our system.

4. Background

Dots and Boxes problem is challenging because it has a large search space. For a m× n
board it has m× (n + 1) + (m + 1)× n edges, i.e., for a 5 × 5 board it has 60 edges and 260

state space, since any combination of movements is legal. In addition, a naïve search space
would generate 60! states, with many of them being duplicates reached from different
configurations of the game. This makes infeasible to solve the entire game for larger grids
if no specific heuristics are used. In addition, this is a special and interesting game in the
sense that despite being impartial (i.e., in Dots and Boxes the possible moves does not
depend on the current player), it does not use the normal play convention (i.e., in Dots and
Boxes the last player to move not necessarily wins).

Being a classic impartial, combinatorial game, there are many studies about the
resolution of Dots and Boxes.

Berlekamp et al. [25,29] explain the game from a mathematical point of view, describ-
ing specific strategies to win the game and presenting the problem as NP-hard.

Bossomaier and Knittel [30] describe the evolution of intelligent rule-based agent
teams for the Dots and Boxes game. The authors achieve a win rate close to 40% after
3,000,000 games playing against the artificial player Nonie’s Dots and Boxes (http://dsl.ee.
unsw.edu.au/dslcdrom/unsw/projects/dots/ (accessed on 9 March 2020)) over a period
of approximately 100,000 games. To that end, some structural information about the game
space must be included with an artificial economy model.

Since it is a two-player, perfect-information game, researchers try to solve the game,
i.e., to discover what can happen if two players are able to play optimally. David Wilson

http://dsl.ee.unsw.edu.au/dslcdrom/unsw/projects/dots/
http://dsl.ee.unsw.edu.au/dslcdrom/unsw/projects/dots/
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(https://wilson.engr.wisc.edu/boxe/ (accessed on 9 March 2020)) solved the game for a
4 × 4 board in 2020 and some partially completed 5 × 5 games.

Barker and Korf [31] propose a solution that is up to an order-of-magnitude faster
than previous works. To achieve that, they apply Alpha-Beta minimax search and different
general and problem-specific techniques (based on chains, transposition tables, symmetries
and move ordering) to reduce the search space. They can solve a 4 × 5 game, being a tie
given optimal play by both players.

Dots and Boxes 5 × 5 has a 260 state space. Algorithms which tend to explore the
whole search space would take a big amount of time and most of the computers may
not be able to handle that computational cost. An example of this is minimax. As we
explained previously, some approaches were developed to reduce the search space, such as
Alpha-Beta pruning or MCTS. MCTS makes use of the number of iterations to prune the
search space. Also, the introduction of ANN helps to converge the results of the simulations
to partially avoid bad quality moves.

Zhuang et al. [32] presents a board presentation specifically designed to solve the
Dots and Boxes game. The authors use game-specific knowledge to classify and manage 12
different types of chains and 4 categories of edges. Regarding the strategy to play, authors
have used MCTS together with an Artificial Neural Network (ANN) to avoid random
movements in the Monte Carlo tree. The ANN has 3 layers (input, hidden and output)
with hyperbolic tangent as the activation function and an output that ranges from −1 to 1
which provides a probability of victory or defeat. For a 5 × 5 game, the input only contains
25 elements given their specific representation of the board. Training data for the ANN
is generated randomly by generating random states in the middle of the game, applying
a minimax search to find the winner when both players play in an optimal way (due to
the huge search space it would be impossible to apply that technique from the start of
the game). The authors also propose several problem-specific refinements such as (1) the
use of UCB1-TUNED [33] instead of the common Upper Confidence bounds applied to
Trees (UCT) [34]; (2) auxiliary minimax search; (3) auxiliary greedy policy; (4) exploring
order for non-visited nodes; (5) pruning; (6) reusing information of parent nodes; and
(7) parallelization. The authors present their implementation in an open-source software
called QDab (http://dotsandboxes.tar.xyz/ (accessed on 8 March 2020)). According to
their tests, after turn 24 the ANN succeeds to indicate the right move with 66.8% accuracy.
After 32 moves the accuracy grows up to 83.8%. QDab was tested with a high success rate
against Dabble (https://www.mathstat.dal.ca/~jpg/dabble/ (accessed on 8 March 2020))
and PRsBoxes (http://www.dianneandpaul.net/PRsBoxes/ (accessed on 8 March 2020)).

Lu and Yin [35] combine heuristics with MCTS to avoid MCTS simulations to reach
terminal states. The authors obtain an improvement of the performance of the algorithm.

Agrawal and Ziegler [36] explore how controlling different resources (i.e., number
of simulations, number of independent learners, amount of information shared among
learners, how frequently learners share information), the performance of the game may
change by using a parallelized version of MCTS.

Li et al. [37] use convolutional neural networks integrated with MCTS in a value and
a policy net inspired by AlphaGo.

Zhang et al. [38] applies AlphaZero algorithm to Dots and Boxes proposing a rein-
forcement learning method able to improve its ability to play by playing against itself in
order avoid the lack of good quality sample data when training a neural network.

Table 1 shows the differences between the contributions of previous studies and ours.
We are comparing our approach with Zhuang et al. work, they also play against other
systems while other solutions just use their own implementations or humans for testing.

https://wilson.engr.wisc.edu/boxe/
http://dotsandboxes.tar.xyz/
https://www.mathstat.dal.ca/~jpg/dabble/
http://www.dianneandpaul.net/PRsBoxes/
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Table 1. Contribution comparison

Their Contribution Our Contribution
Bossomaier
and Knittel [30]

The authors use an intelligent
rule-based agent.

Our approach uses MCTS.

Barker and
Korf [31]

The authors use Alpha-Beta with
domain-based heuristics
such as chains and symmetries

Our approach uses MCTS
without information
about the game

Zhuang et al. [32]

The authors use heuristics to
represent the board and
pre-classify the nodes. They
also use an auxiliary
greedy policy and a different
method of data generation
(see Section 6.2.2).

Our approach does not use
any heuristic neither
auxiliary method.

Lu and Yin [35]

The authors use an approach
which reduces the
MCTS search space
considering the implemented
domain-based heuristics.

Our approach reduces the
search space applying an
ANN which can be trained
no matter the domain.

Agrawal and
Ziegler [36]

The authors focus on MCTS
parallelization.

Our approach does not
explore MCTS parallelization.

Zhang et al. [38]

The authors evaluate a network
based on AlphaZero against a
MCTS implementation.
They focus on generating a
good quality data set.

Our approach uses an ANN
(see Section 5.2)
integrated in MCTS.

Li et al. [37]

The authors propose two
implementations of MCTS
integrated with a value net and
a policy net. They use Alpha-Beta
as an auxiliary method.

Our approach proposes other
integration of ANN
in MCTS and with no
auxiliary algorithms.

In addition to the works cited, there are many other works related to how to solve
the game in some aspect, although most of them focus on using game-specific rules and
heuristics to take advantage of the domain knowledge. For example, Li et al. [39] work on
how to design and implement the board to optimize size and processing time. Bi et al. [40]
design an evaluation function with parameters based on a genetic algorithm to optimize
them. Allcock [41] gives algorithms for best play in Dots and Boxes consisting of loops and
long chains. There are even variations of the game such as Narrow Misère Dots and Boxes
by Collette et al. [42], where the goal is to receive the minimum number of points instead
of the maximum, reducing the complexity of the original problem. Although Dots and
Boxes is a well-studied game, it still lacks a game records database as there may be in other
classic games such as Chess or Go. Thus, Gao et al. [43] propose a game records standard
format based on JSON to support cross-platform applications and portability.

The main difference of our work with previous proposed works is that our system
can learn to play through auto-generated games without any heuristic or extra knowledge
added to MCTS. For that, we user Dots and Boxes as a use case.

5. Proposal

The aim of this article is to use an algorithm which implements Monte Carlo Tree
Search with neural networks in an efficient way without any domain language. The al-
gorithm will be able to solve the Dots and Boxes game (and be able to beat the current
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solutions for this game) in a generic way. It will not use any heuristic based on the do-
main knowledge of the game that could affect MCTS algorithm. In this section we will
explain our contributions to classic MCTS described in Section 3. First, we focus on the
contributions to MCTS and then on the implementation of our artificial neural network.

5.1. Monte Carlo

In MCTS, each node just uses one counter to sum up number of victories, draws and
defeats. We are adding a double counter for each node to solve the problem. In selection
phase, a node must be selected according to the greatest UCB value, i.e., to select the next
move from the current state. The UCB formula is represented as follows:

UCB = X̄j + 2Cp

√
2 ln(n)

nj
(1)

where X̄j is the mean of wins resulted from node j, nj is the number of visits j node received,
n the number of visits for the parent of the node and Cp is a constant. For calculating X̄j,
we are adding a “win” every time node j reaches a win game status during its simulations.
According to Arrington et al. [44] we get a better performance of this formula if the value
we assign as winning or losing values in the range [0,1], i.e., normalized. Dots and boxes
has three possible game ended status: victory, defeat or draw. Each node has a counter
which is updated during backtracking by adding a certain value for victory, defeat or draw.

X̄j =
unique_counter

nj
(2)

This value is X̄j in UCB formula. If we say that the current move is for Player 1
(P1) and we use just one counter for both players, the next move (next selected node)
will be chosen as the best value for P1. This is false for a game with alternative turns.
The next move must be the best for the other player, Player 2 (P2) to get a meaningful set
of moves. Therefore, we add another counter, this way we have one for saving P1 results
and the other for P2 results. When calculating the UCB value for each node, we took the
difference between both counters and change the sign, being positive if it is a good option
and negative if it is a bad option depending on the current player turn. If it is the turn of
Player 1, we do not touch that value, but if it is the turn of Player 2, we place the opposite
sign.

X̄j =
abs(counterP1 − counterP2)

nj
(3)

Also, if there are several nodes with the same greatest value the system takes a list
with all of them and picks one randomly.

5.2. Artificial Neural Network Configuration

One of the objectives of this study is the generalization of the problem. So, we are
generating our own data sets to train the artificial neural network by making the system
play against itself. This MCTS implementation is configured with an important number
of iterations to get good games minimizing incoherent moves. To balance response time
and good results, we considered experimentally 100,000 iterations. That number is big
enough to reduce meaningless moves and small enough to let us generate games in a
reasonable time.

The ANN trains over the moves of the Dots and Boxes board obtained with the
previous methodology. The boards are parsed into an array of 85 doubles distinguishing
between free and occupied positions (we do not differentiate between moves done by P1
or P2 because the resolution of the game does not depend on who does which move but
on the closing of boxes), boxes closed by P1, boxes closed by P2 and free boxes. Table 2
represents all values involved in board, their meaning in the game, their value on the board
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and their normalized value in the input array of the ANN. 115,000 games are used to train
this ANN.

Table 2. Mapped values from board to neural network.

Meaning Board Array
P1 move 1 0.25
P2 move 2 0.25

Free position 0 0.0
Box closed by P1 3 0.5
Box closed by P2 4 0.75

Free box 5 1.0

Artificial neural network configuration is described in Figure 6. It is composed by
three layers with 85, 100 and 3 neurons, respectively. Number of neurons of first layer must
be the same as the input array size. According to our experiments 100 neurons on layer 2
are effective. Sigmoid activation function (AF) has been proved to be effective in layers 2
and 3. The output is a set of the probabilities of P1 and P2 winning the game and ending
on draw.

Figure 6. Artificial neural network configuration.

This ANN is applied in simulation phase in MCTS as shown in Figure 7 and Algorithm 5.
Before starting that step, the ANN is called over the node to be simulated, if it returns a
probability over a threshold to be determined, it jumps to backpropagation with this win,
draw or defeat value, else continues with the random simulation.

Algorithm 5 ANN applied on MCTS
function SIMULATION(node)

while node state is not final do
probability = ANN(node state)
if probability >= threshold then return node state
end if
get next node random
node = next node

end whilereturn node state
end function
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Figure 7. ANN applied on MCTS.

6. Materials and Methods
6.1. Materials

A program is implemented to make the rival play against our system integrating both
movements and being possible to start a game from a determined state. For each set of
tests and different parameters, 100 games are played. Tests are done running our system
on Windows 10 Pro, 32GB of RAM, AMD Ryzen 7 3700X 8-Core Processor 3.59 GHz and
running rival system on Ubuntu Server 18.04 Hyper-V virtual machine and 4 GB of RAM.
The virtual machine runs on the host previously specified. Our system is implemented in
Java 13 and uses the library Encog Java 3.4 for the neural network.

6.2. Methods

The methodology of the experiments is described in this subsection.

6.2.1. Sets of Tests

The sets of tests taken into account in the experiments are explained below as well as
the varying parameters.

• MCTS without ANN and no double counter. The system makes use of MCTS without
calling ANN in simulation phase and with a unique counter. We test it varying
number of iterations.

• MCTS without ANN. The system makes use of MCTS without calling ANN in simula-
tion phase at all. We test it varying number of iterations.

• MCTS with ANN. The system makes use of MCTS calling ANN in simulation phase.
This is the final stage of the system. We test it varying number of iterations and ANN threshold.

6.2.2. System Comparison

We are testing our system against the one implemented by Zhuang et al. [32]. This
implementation of Monte Carlo Tree Search also makes use of neural networks, but it makes
use of some knowledge of the domain such as heuristics to reorder the candidate nodes to
be selected in Monte Carlo selection phase (Source code available at http://dotsandboxes.

http://dotsandboxes.tar.xyz/
http://dotsandboxes.tar.xyz/
http://dotsandboxes.tar.xyz/
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tar.xyz/). Their board representation is based on the model of Strings-and-Coins explained
by Berlekamp and Scott [25,45]. This converts the board in a set of chains joined by edges,
which are the remain possible moves, and allows the classification of each edge (candidate
move) in a category from 0 to 3, being 0 the safest for the current player and 3 the most
dangerous which could end benefiting the other player. At selection phase, they pre-classify
the candidate edges (candidate nodes) in these categories and start working with the one
from the safer category, reducing the tree search.

They also implement an auxiliary greedy policy to directly select nodes of category
0 if there is one. That makes the system quickly close a box when there is just one move
left without starting MCTS. Our system does not require a specific board representation,
a matrix representing moves and boxes is used. It neither pre-classifies candidate nodes.
When there is a possibility of closing a box, it runs the whole MCTS process instead of using
a greedy policy as the rival. This penalizes the performance of our solution for that cases.

Although our board representation consists of 85 elements, their representation allows
the translation of the state of the game to a vector of 25 elements, which is the input value
of their ANN. Their reduced number of input elements reduces the number of neurons
of the input layer of the ANN to 25. Our general representation of the board penalizes
the performance of the ANN as the more neurons, the more time it takes. Rival system
implements an ANN composed by three layers using the hyperbolic tangent as activation
function with 25 and 1 neuron for the input and output layer, respectively. The number of
neurons of the hidden layer is unknown as Figure 8 shows.

Figure 8. Rival neural network configuration.

It receives as input a board representation which contains 25 numbers representing
several characteristics of the state of the game [32]. It returns a single value with the
probability that the current player wins. Their data set is generated by producing games
resolved randomly from initial state to the middle of the game and completing the game
from there with Minimax search. Our system uses pure MCTS to generate games. For
converging to good MCTS results, the ANN is applied in simulation phase for selecting the
simulated moves instead of doing it randomly. For balance between execution efficiency
and the cost of the ANN, random technique is used at the beginning of the game while
ANN is called for the rest. Our system applies ANN to MCTS as described in Section 5.1.
Our objective is to prove that Monte Carlo can be used in a generic way without any extra
heuristic and be able to get good results. The rival is considered Player 1 (P1) and our
system is Player 2 (P2) in the experiments. P1 is configured at maximum difficulty setting
its timeout to 70,000.

6.2.3. Selected Games

To reduce the waiting time in the experiments, instead starting to play from initial
state, a determined state is used. State S (Figure 9) has been chosen to reduce the tree search,

http://dotsandboxes.tar.xyz/
http://dotsandboxes.tar.xyz/
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so it has 40 out of 60 moves fixed. The closed boxes number is the same for each player to
start the game with the same conditions. This state will be used in each set of experiments.

Figure 9. Starting node State S.

7. Results and Discussion

In this section, results obtained according to the described methodology are shown as
well as the evolution of the investigation with the proposed strategies.

7.1. MCTS without ANN and No Double Counter

The need for using double counter instead of unique appeared in early phases of this
investigation, where experiments with other games were still going on. Tic-tac-toe was
a good game for these experiments because it has few states and it is easy to track them
all. When we were debugging the tree for this game generated by MCTS turned into a
picture, we realized that the algorithm was not choosing the obvious next move but the
more convenient to the player who just moved. Then, we implemented the double counter
to prevent the problem described in the Proposal section and check again graphically that
the moves were the expected. After the implementation of Dots and Boxes, we run some
experiments with this game and unique counter. Table 3 shows how the results would be if
instead double counter for each node we used a unique counter and starting at State S.

Table 3. Results for unique counter.

MCTS
ITERATIONS

W. P1 W. P2 DRAW

10K 100 0 0
100K 100 0 0

The results show how determinant is the use of a double counter in our implementa-
tion with 0% of victories.

7.2. MCTS without ANN

Table 4 shows the results of the games started at State S. The first column corresponds
to the number of iterations done by Monte Carlo algorithm, the next three show the
victories for P1, P2 and draws occurred in 100 played games. For the first case, when
setting MCTS iterations to 1000, our system won 5 games out of 100.
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Table 4. Results from starting node State S without ANN

MCTS
ITERATIONS

WIN
P1

WIN
P2

DRAW MEAN TIME PER
MOVE (P1) (ms)

MEAN TIME PER
MOVE (P2) (ms)

1K 95 5 0 247 13
5K 86 14 0 263 67

10K 72 28 0 267 129
30K 65 35 0 286 363
50k 52 48 0 315 586

100K 51 49 0 323 1226

The mean time for the movements of Player 1 and 100,000 MCTS iterations is 300 ms
including the sending and response time of the request and some conversions to integrate
both systems. We can assume that the time needed to convert the rival response to a move
understandable by our system is similar to the time the rival might need to communicate
with its own board. Our system measures how long it takes to run MCTS and return a
move, this way, we can compare ourselves to that time. Table 4 shows how the time for
our system (P2) increases with the number of iterations. With 30,000 iterations we match
their time, but with only 35% of victories, while with 100,000 iterations we get 50% of
victories but being 2.8 times slower. This is a good result taking into account we are not
using domain knowledge of the problem. It also shows that the more MCTS iterations we
set, the better results we obtain and the more time it consumes. We start to get good results
from 100k iterations, with 50% of victories, although it still takes more time than rival
system. Despite the number of generated games, there was no draw case in any of them.

7.3. MCTS with ANN

The main contribution is to be able to use MCTS with ANN in a generic way with
acceptable results, so these tests correspond to the final implementation of the system
playing from State S.

Table 5 shows the results for MCTS with NN from State S. From left to right: MCTS
iterations, good predictions (mean number of times per move the ANN returns a probability
above the ANN threshold), number of victories for P1, number of victories for P2, number
of draws, mean time per move for P1, mean time per move for P2, number of unique states
which are not in data train that appeared along 100 games and times the previous described
states appeared along 100 games (certain state not in data train can appear more than once).
The ANN threshold has been set experimentally to 0.9.

Table 5. Results from starting node State S with ANN.

MCTS
IT.

GOOD
PRED.

WIN
P1

WIN
P2

DRAW
TIME

P1
TIME

P2
U. NOT
IN TRA.

T. NOT
IN TRA.

5K 2430 46 54 0 384 734 384 734
10K 5553 34 66 0 416 1451 816 1816
30K 17,885 25 75 0 423 4336 795 1851
50K 30,410 19 81 0 448 7345 822 1859
70K 41,093 18 82 0 453 10,260 784 1867

As Table 5 shows, the system reaches the optimal value at 50,000 MCTS iterations
with an 81%percent of victories. With 70,000 iterations the system obtains 1% more of
victories but with 39.69% more execution time. The good predictions are the 60.82% of the
50,000 iterations. Also, the execution time of the system is 15.40 times bigger than the rival.
With 50,000 iterations we obtain 68.75% more victories than with the tests without ANN,
so we can say that the use of ANN improves how our system plays. Although our system
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obtains better game results than the rival, its performance is worse. The generalization
of our system, without neither specific representation of the game, which can improve
ANN performance, nor heuristics in selection phase nor greedy policy when closing boxes,
penalties the average performance. To quantify the time we lose without greedy policy,
we assumed that in the best of scenarios, the time taken by the system to close a box with
greedy policy is zero. We measure the mean of total moves for Player 2 (Mvs), the mean o
moves that close boxes (CB) and the mean time per move for 50,000 MCTS iterations MT.
Then, we subtract to TM the number moves that close boxes, obtaining the moves which
actually consume time (RMvs), we are calling them real moves.

RMvs = Mvs− CB = 10− 6 = 4 (4)

After that, we calculate the mean time for a complete game (MTG) starting at State S
taking into account just the real moves.

MTG = MT · RMvs = 7345 · 4 = 29,380 (5)

Finally, we calculate again the mean time per move with the new mean time per game
and the total moves.

MT′ =
MTG
Mvs

=
29,380

10
= 2938 (6)

For this case, we can say that the absence of a greedy policy in our system increases,
at most, a 150% the mean time per move. Although our system presents worse performance,
it can be generalized for other problems. Its board representation does not require any
knowledge of the game and no domain heuristic modification of MCTS is implemented.

The system we are compared to is called QDab, QDab compares with Dabble, PRs-
Boxes and MCTS without optimizations. In Table 6 we are showing the winning rate of our
system related to QDab and the results of QDab against other systems, these last tests are
run taking into account the whole board.

Table 6. Winning rate comparison.

Winning Rate of QDab

QDab vs. Dabble 100%

QDab vs. PRxBoxes 90%

QDab vs. MCTS 100%

QDab vs. our system 19%

8. Conclusions and Future Work

Monte Carlo Tree Search can be implemented making use of neural networks in an
efficient and generic way. For the game Dots and Boxes, the tests run with a unique counter
showed that this approach is not enough to win any game against a MCTS domain-based
implementation. Tests with double counter and no ANN indicate an accuracy improvement
with 50% of victories but being 2.8 times slower.

Finally, a general implementation of MCTS with ANN, but without any knowledge of
the domain, can beat a MCTS implementation with heuristics in the 81% of the cases but
takes 15.40 times more execution time.

A general representation of the board and the lack of heuristics over MCTS algorithm
penalties performance but allows the application of this system to other problems.

Future work will be focused on the application of generic MCTS to other games as
Tic-tac-toe or Chess and prove its effectiveness against systems with domain knowledge.
Also, a way of transmitting the self-acquired knowledge of the system to humans could be
explored. Works will be carried out on our open-source project JGraphs [46].
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