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1 Introduction

A null (or degenerate) hypersurface L into a spacetime is a codimension one embeded sub-
manifold such that the pullback of the Lorentzian metric is degenerate at every point. Null
hypersurfaces have not only an interesting geometry, but they also play an important role in
General Relativity, where they arise as black hole event horizons and Cauchy horizons.

For the study of null hypersurfaces the theory of non-degenerate submanifolds fails. In fact,
there is a non trivial intersection between the tangent and the normal bundles of null hy-
persurfaces. In order to avoid such difficulty, a distribution, transverse to the radical of the
pullback of the metric, is usually introduced on L (see for instance [4] and references therein).

Although the induced metric is degenerate on L, the family of (non-degenerate) spacelike
submanifolds through L gives remarkable properties to the null hypersurface and conversely,
under the assumption that a spacelike submanifold Σ factorizes through a fixed null hyper-
surface L, the intrinsic geometry of Σ becomes limited. For example, recall the classical result
by Brinkmann which states that an n-dimensional Riemannian manifold, with n > 2, is lo-
cally conformally flat if and only if it can be locally isometrically immersed in the light cone
of the (n + 2)-dimensional Lorentz-Minkowski spacetime Ln+2 (see [3] for a modern proof).
From the extrinsic point of view, the spacelike submanifolds through null hypersurfaces have
also been considered. For example, codimension two spacelike submanifolds which factor-
ize through a light cone of de Sitter spacetime have been recently studied in [1], where the
compact marginally trapped ones have been characterized.

On the other hand, it has been pointed out that there is a strong relationship between the
extrinsic and the intrinsic geometries of submanifolds through the light cone in the Lorentz-
Minkowski spacetime [10], [11]. Inspired by this point of view, our main aim in this note is
to show a natural correspondence between the light cone of the Lorentz-Minkowski spacetime
and the null hypersurfaces, also called light cones, of de Sitter and anti-de Sitter spacetimes.
By means of this correspondence, several results of [10] and [11] can be adapted to de Sitter
and anti-de Sitter spacetimes. We denote here (anti)-de Sitter when we are talking about any
of them.

Specifically, we consider codimension two spacelike submanifolds which factorize through
a light cone of (anti)-de Sitter spacetime and we stablish a correspondence between these
submanifolds and codimension two spacelike submanifolds which factorize through the light
cone in the Lorentz-Minkowski spacetime Ln. The intrinsic geometries of the corresponding
submanifolds are actually the same but the extrinsic ones are different (see Section 3). Then,
we focus on the case of spacelike surfaces which factorize through a light cone of the 4-
dimensional (anti)-de Sitter spacetime, where we obtain our main results.

This note is organized as follows. Section 2 is devoted to recall the basic formulae of codimen-
sion two spacelike immersions in a Lorentzian manifold with constant sectional curvature. In
Section 3 we define the light cones in (anti)-de Sitter spacetime, and we establish the cited
correspondence between codimension two spacelike submanifolds through a light cone in Sn1 (c)
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and Hn
1 (c) and codimension two spacelike submanifolds that factorize through the light cone

of Ln. This correspondence allows us to show, in Section 4, that the scalar curvature S of a
spacelike immersion ψ : Σ → Mn

1 (c) through a light cone Λc(p) is given by (see notation in
Sections 2, 3)

S = n(n− 1)
[
〈Hψ,Hψ〉+

ε

c2

]
.

This formula relates intrinsic data (the scalar curvature) and extrinsic data (the mean curva-
ture vector field Hψ).

Section 5 is focussed on the case of surfaces which factorize through a light cone of the 4-
dimensional (anti)-de Sitter spacetime. In this case, we obtain an explicit formula for the
Gauss curvature in terms of a height function (see Cor. 5.2). Finally, in Section 5.1 we study
the compact case. In this case, the surface Σ must be a topological sphere and the above
formula for the scalar curvature can be integrated to give the integral formula∫

Σ
|Hψ|2 dA = 4π − ε

c2
Area(Σ).

This integral formula looks very similar to the equality case of the generalized Wintgen
inequality [12], [13]. However, in the Lorentzian setting, the generalized Wintgen inequality
is not satisfied in general. Finally, we deal with the first eigenvalue of the Laplace operator
of such kind of surfaces through light cones in (anti)-de Sitter spacetime. We obtain a Reilly
type inequality (17), which is used to characterize the total umbilical round spheres in a
light cone of (anti)-de Sitter spacetime (Th. 5.9). We also study the global geometry of the
surfaces. In particular, we give a Liebmann-type result for these surfaces, i.e., we have that a
compact spacelike immersion with constant Gauss curvature in a light cone of (anti)-de Sitter
spacetime must be totally umbilical (Th. 5.5).

2 Preliminaries

Let Ln+1 be the (n + 1)-dimensional Lorentz-Minkowski spacetime. That is, the real vector
space Rn+1 endowed with the Lorentzian metric 〈 , 〉 given by

〈 , 〉 = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2, (1)

where (x0, x1, · · · , xn) are the canonical coordinates of Rn+1. The n-dimensional de Sitter
spacetime of radius c > 0 is defined as the hyperquadric

Sn1 (c) = {x ∈ Ln+1 : 〈x , x〉 = c2}. (2)

As it is well known, Sn1 (c) inherits from Ln+1 a time orientable Lorentzian metric with constant
sectional curvature equal to 1/c2.

On the other hand, we denote by En+1
2 the (n+1)-dimensional real space Rn+1 endowed with

the indefinite metric of index 2

〈 , 〉′ = −(dx0)2 − (dx1)2 + (dx2)2 + · · ·+ (dxn)2, (3)
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Then, the n-dimensional anti-de Sitter spacetime of radius c > 0 is defined as

Hn
1 (c) = {x ∈ En+1

2 : 〈x , x〉′ = −c2}. (4)

Hn
1 (c) is a time orientable Lorentzian manifold with constant sectional curvature equal to
−1/c2. From now on, we will write Mn

1 (c) to refer to either Sn1 (c) or Hn
1 (c), and, in order to

simplify the notation, we will represent both metrics (1) and (3) by 〈 , 〉. Let ε = ±1 be
the sign of the sectional curvature of Mn

1 (c). Then, Mn
1 (c) is always defined by the equation

〈x, x〉 = εc2.

Unless otherwise were started, from now on, we assume n ≥ 4. Let Σ be an (n−2)-dimensional
connected manifold and ψ : Σ → Mn

1 (c) a smooth immersion such that the induced metric
on Σ is Riemannian. In this case, Σ is said to be a codimension two spacelike submanifold in
Mn

1 (c). The induced metric on Σ via ψ will be also denoted by 〈 , 〉. Let us write ∇ and ∇ for
the Levi-Civita connections of Mn

1 (c) and Σ respectively, and we denote by ∇⊥ the normal
connection of Σ in Mn

1 (c). With this notation, the Gauss and Weingarten formulae of ψ are
written respectively as

∇XY = ∇XY + II(X,Y ) and ∇Xξ = −AξX +∇⊥X ξ, (5)

for any tangent vector fields X,Y ∈ X(Σ) and any normal vector field ξ ∈ X⊥(Σ). Here, II
denotes the vector valued second fundamental form of Σ,

II : X(Σ)× X(Σ)→ X⊥(Σ).

The shape (or Weingarten) operator Aξ corresponding to ξ is related to the second funda-
mental form by

〈AξX,Y 〉 = 〈II(X,Y ), ξ〉. (6)

As usual, we define the mean curvature vector field of the submanifold Σ by

H =
1

n− 2
tr〈 , 〉II ∈ X⊥(Σ),

where tr〈 , 〉 denotes the trace with respect to the induced metric 〈 , 〉.

3 Light cones in (anti)-de Sitter spacetime

In this section we start introducing the notion of light cone in Mn
1 (c). Let p ∈Mn

1 (c) be a fixed
point, then the light cone of (anti)-de Sitter spacetime with vertex at p is the hypersurface

Λc(p) :=
{
q ∈Mn

1 (c) : 〈q − p , q − p〉 = 0, q 6= p
}
, (7)

or in an equivalent way, Λc(p) =
{
q ∈ Mn

1 (c) : 〈q, p〉 = εc2, q 6= p
}

. For each q ∈ Λc(p),
the tangent space at q is expressed as

TqΛc(p) =
{
v ∈ TqMn

1 (c) : 〈v , p〉 = 0
}

=
{
v ∈ Rn+1 : 〈v , q〉 = 〈v , p〉 = 0

}
. (8)

In this setting, it is easy to check that TqΛc(p) ∩
(
TqΛc(p)

)⊥
= Span{q − p}, and therefore

Λc(p) is a degenerate hypersurface in Mn
1 (c).
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Remark 3.1. For a general Lorentzian manifold (M, g), the light cone ΛM (p) with vertex
at p ∈ M is the image by means of the exponential map of the light cone at the tangent
space TpM . Thus, the light cone ΛM (p) collects the lightlike geodesics starting at p. Until
the first conjugate point, the light cone gives a smooth degenerate immersed hypersurface.
This is the situation in our setting, since every Lorentzian manifold of constant sectional
curvature has no conjugate points along its lightlike geodesics. On the other hand, recall that
the future and the past horisms of p ∈M are defined by E±(p) = J±(p)\ I±(p), where J+(p)
and I+(p) are the causal future and chronological future of p, respectively. The causal and
chronological past are denoted by replacing + by −. For a geodesically complete Lorentzian
manifold (M, g) of constant sectional curvature, E+(p) ∪ E−(p) = ΛM (p) holds. In fact, the
inclusion E+(p) ∪ E−(p) ⊂ ΛM (p) is a direct consequence of [9, Cor. 14.5] and the converse
is obvious.

Let us fix a point p ∈Mn
1 (c), we say that a codimension two spacelike immersion ψ : Σn−2 →

Mn
1 (c) factorizes through the light cone at p ∈ Mn

1 (c) when ψ(Σ) ⊂ Λc(p). From now on,
En+1
s will denote the (n+ 1)-dimensional semi-Euclidean space of signature s. Thus, we have

Sn1 (c) ⊂ En+1
1 and Hn

1 (c) ⊂ En+1
2 . From every immersion ψ : Σn−2 → Mn

1 (c) through the
light cone at p ∈ Mn

1 (c), we can consider p⊥ ⊂ En+1
s . It is clear that p⊥ is isometric to the

n-dimensional Lorentz-Minkowski spacetime. The light cone in p⊥ ' Ln with vertex at the
origin is the set

Λ = {x ∈ p⊥ : 〈x , x〉 = 0, x 6= 0}.

The translation T (x) = x− p in En+1
s induces an isometry from Λc(p) to Λ. By means of this

isometry, we have a one-to one correspondence between codimension two spacelike immersions
ψ : Σn−2 → Mn

1 (c) through Λc(p) and spacelike immersions ψ̄ := T ◦ ψ : Σn−2 → Λ ⊂ p⊥.
This correspondence can be summarized in the following commutative square.

Proposition 3.2. Let ψ : Σn−2 → Mn
1 (c) be a codimension two spacelike submanifold which

factorizes through the light cone Λc(p). Then, there exists a unique spacelike immersion
ψ̄ : Σn−2 → Λ ⊂ p⊥ such that makes commutative the following diagram,

Λ ⊂ p⊥ j // En+1
s

Σ

ψ

44
//

ψ̄

OO

Λc(p) //Mn
1 (c)

T

OO
(9)

where j is the inclusion. Moreover, the intrinsic geometries on Σ induced from ψ and ψ̄ are
the same.

This correspondence ψ ↔ ψ̄ allows us to obtain geometrical properties for ψ from the ones of
ψ̄. The rest of this note will develop several aspects of this point of view.

Remark 3.3. As consequence of [5, Cor. 7.6] (see also [3]) and the previous paragraph, we
can deduce that any Riemannian manifold Mn, n ≥ 3, is locally conformally flat if and only
if it can be locally isometrically immersed in the light cone Λc(p).
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If we fix a timelike vector W ∈ p⊥, we can consider the future light cone Λ+ ⊂ p⊥ and the
past lightcone Λ− of Λ with respect to W . Observe that, using the isometry T , we are able
to define the future and the past components of the light cone Λc(p) of Mn

1 (c) with respect
to W in a natural way.

Let ψ : Σn−2 → Mn
1 (c) be a codimension two spacelike submanifold through the light cone

at p ∈ Mn
1 (c). Then ψ̄ is a spacelike immersion through Λ ⊂ p⊥ and for every unit timelike

vector W ∈ p⊥, we introduce the height function on Σ as

hW (x) : Σn−2 → R
x→ −〈ψ̄(x),W 〉 = −〈ψ(x),W 〉.

(10)

Note that hW (x) 6= 0 for every x ∈ Σ and hW > 0 when ψ̄ factorizes through the future light
cone Λ+ ⊂ p⊥ corresponding to W in p⊥.

4 Codimension two submanifolds through a light cone of (anti)-
de Sitter spacetime

Let ψ : Σ→ Λc(p) ⊂Mn
1 (c) be a codimension two spacelike submanifold through a light cone.

As was stated in Proposition 3.2, the intrinsic geometries corresponding to ψ and ψ̄ are the
same. At this point we wonder what we can say about the extrinsic geometries of ψ and ψ̄.
Let us denote here with a subscript on H the mean curvature vector field corresponding to
every given immersion. With this notation we can state the next result.

Proposition 4.1. Let ψ : Σn−2 → Mn
1 (c) be a codimension two spacelike submanifold which

factorizes through the light cone at p ∈Mn
1 (c). Then

〈Hψ̄,Hψ̄〉 = 〈Hψ,Hψ〉+
ε

c2
, (11)

where ψ̄ is the corresponding immersion given in Proposition 3.2.

Proof. By the commutative diagram (9) we have Hj◦ψ̄ = HT◦ψ and, since T : Mn
1 (c)→ En+1

s

is a totally umbilical immersion, it follows HT◦ψ = T∗(Hψ)− ε
cN where N is the outward unit

normal vector field to T : Mn
1 (c) → En+1

s with 〈N,N〉 = ε. Finally, we obtain 〈Hψ̄,Hψ̄〉 =
〈Hψ,Hψ〉+ ε

c2
, as we wanted to prove.

The next corollary is a direct consequence of [10, Cor. 4.5] and previous Proposition 4.1.

Corollary 4.2. Let ψ : Σn−2 → Λc(p) ⊂ Mn
1 (c) be a codimension two spacelike submanifold

through the light cone Λc(p). Then, the scalar curvature S of Σ is given by

S = n(n− 1)
(
〈Hψ,Hψ〉+

ε

c2

)
. (12)

�
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In this instance, an immediate consequence of [10, Prop. 5.1] and the correspondence between
immersions through the light cone Λc(p) ⊂Mn

1 (c) and p⊥ is the following.

Corollary 4.3. Every codimension two compact spacelike submanifold in Sn1 (c) or Hn
1 (c) that

factorizes through a light cone is a topological (n− 2)-sphere Sn−2.

Remark 4.4. Even more, Corollary 4.3 implies that every compact spacelike submanifold
ψ : Σn−2 → Λc(p) ⊂Mn

1 (c) must be embedded. In fact, let us consider the spacelike immersion
ψ̄ : Σn−2 → Λ ⊂ p⊥ as in Proposition 3.2. Without loss of generality, we can assume that
ψ̄ factorizes through the future light cone Λ+ ⊂ p⊥. The proof of [10, Cor. 4.5] provides a
diffeomorphism F : Σn−2 → Sn−2 which is given by the composition F = π ◦ α ◦ ψ̄ where
α : Λ+ → (0,+∞)× Sn−2 is the diffeomorphism

α(v) = (v0, 1/v0(v1, · · · vn)) ,

and π is the projection on the second factor S2. The continuous map ψ̄ : Σn−2 → ψ(Σn−2) is
one-to-one from a compact manifold on a Hausdorff space and then ψ̄ is a homeomorphism.

Remark 4.5. There are compact spacelike submanifolds of codimension two in Mn
1 (c) which

are not topological spheres. For example in the case of Sn1 (c), we can consider the Euclidean
sphere Sn−1(c) embedded as a totally geodesic spacelike hypersurface in Sn1 (c) and then, every
hypersurface in Sn−1(c) can be seen as codimension two spacelike submanifold in Sn1 (c). In

the case of Hn
1 (1), we consider its universal cover H̃n

1 (1). A model for H̃n
1 (1) is given by

Rn = R×Rn−1 endowed with the Lorentzian metric obtained by the pull-back of the covering
map, [9, Exam. 8.27],

k : R× Rn−1 → Hn
1 (1), k(t, x) = (

√
1 + ‖x‖2 cos t,

√
1 + ‖x‖2 sin t, x),

where ‖x‖2 is the square of the Euclidean norm. In this picture, the slices at t constant
are totally geodesic spacelike hypersurfaces isometric to the hyperbolic Riemannian space
Hn−1(1). Now, every compact hypersurface in Hn−1(1) projects by means of k on a compact
spacelike submanifold in Hn

1 (1). In particular, when such a hypersurface is non-embedded,
the projected one is also non-embedded.

Remark 4.6. We would like to point out that Corollary 4.3 remains true when we replace
Hn

1 (c) by H̃n
1 (c). Namely, for every (t, x) ∈ H̃n

1 (c) the lightlike cone at (t, x) is the image

by means of the exponential map of the light cone at the tangent space T(t,x)H̃n
1 (c). Recall

that any Lorentzian manifold of constant sectional curvature has no conjugate points along
its lightike geodesics and then, the lightlike cone at (t, x) ∈ H̃n

1 (c) is a smooth degenerate
embedded hypersurface. Then, every compact codimension two spacelike submanifold in
H̃n

1 (c) through a light like cone is an embedded topological sphere. In fact, first we claim that

every light cone in H̃n
1 (c) is topologically two copies of I × Sn−2 where I ⊂ R is an interval of

the real line. Indeed, without loss of generality, we assume c = 1. Now, taking into account
the homogeneity of H̃n

1 (1), it suffices to show the above assertion at a single point. Let us fix

(0, 0) ∈ H̃n
1 (1), then k(0, 0) = (1, 0, · · · , 0) = p0 ∈ Hn

1 (1) and a direct computation shows that

k−1(Λ−1(p0)) =
{

(t, x) ∈ R× Rn−1 : ‖x‖2 = tan2 t, x 6= 0
}
.

Therefore, the light cone at (0, 0) ∈ H̃n
1 (1) is topologically two copies of (0, π/2) × Sn−2.

Now, the same proof of [10, Prop. 5.1] remains valid in this case and thus, every compact
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codimension two spacelike submanifold in H̃n
1 (c) through a light like cone is a topological

sphere Sn−2 which is also embedded by the same method as in Remark 4.4.

From [2, Prop. 5.2], we know that, under some assumptions on the height function, every
complete codimension two spacelike submanifold factorizing through the light cone in the
Lorentz-Minkowski spacetime is compact and conformally diffeomorphic to the Euclidean
sphere. By means of the correspondence given in Proposition 3.2, we have the following
consequence.

Proposition 4.7. Let ψ : Σ → Λc(p) ⊂ Mn
1 (c) be a codimension two complete spacelike

submanifold factorizing through the light cone Λc(p). If the height function hW defining in
(10) is bounded from above, then Σ is compact and conformally diffeomorphic to the Euclidean
sphere Sn−2.

Remark 4.8. Actually, from [2, Lem. 5.1] in Proposition 4.7 it is enough to assume that hW

satisfies condition
hW (p) ≤ C r(p) log(r(p)), r(p)� 1,

where C is a positive constant and r denotes the Riemannian distance function from a fixed
origin o ∈ Σ.

It is directly deduced from commutative diagram (9) that a codimension two spacelike sub-
manifold ψ : Σ→ Λc(p) ⊂Mn

1 (c) is totally umbilical if and only if, ψ̄ : Σ→ Λ ⊂ p⊥ is totally
umbilical. Then, the following result is a direct consequence of [2, Th. 5.1].

Proposition 4.9. Let ψ : Σn−2 → Λc(p) ⊂ Mn
1 (c) be a codimension two spacelike submani-

fold which factorizes through the light cone Λc(p). If ψ is totally umbilical, then there exist
v ∈ En+1 and τ > 0 such that

ψ(Σ) ⊂ Σ(v, τ) = {x ∈ Λc(p) : 〈x− p,v〉 = τ}.

5 Spacelike surfaces through a light cone of (anti)-de Sitter
4-dimensional spacetime

In this section we focus on the case n = 4, that is, we consider Σ a spacelike surface immersed
in M4

1(c). As a direct consequence of Corollary 4.2 or from [11, Cor. 3.7] we are now able to
give the following identity.

Corollary 5.1. Let ψ : Σ → M4
1(c) be a spacelike surface through a light cone Λc(p). Then,

the Gauss curvature of Σ may be expressed as

K = 〈Hψ,Hψ〉+
ε

c2
. (13)

�
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On the other hand, taking into account the definition of the height function hW in (10) and
[11, Cor. 3.7], we obtain the following expression for the Gauss curvature of Σ.

Corollary 5.2. Let ψ : Σ → M4
1(c) be a spacelike surface that factorizes through the light

cone at p ∈M4
1(c). Then, for every unit timelike vector W ∈ p⊥, the Gauss curvature of Σ is

given by

K =
1 + |∇hW |2

h2
W

− ∆hW

hW

. (14)

In particular, when ψ̄ factorizes through the future light cone Λ+ ⊂ p⊥ cooresponding to W ,
we have

K =
1

h2
W

−∆ log(hW ).

�

Remark 5.3. For example, the vector P = −εc2∂0 + 〈∂0, p〉p satisfies P ∈ p⊥ and it is not
difficult to show that, for ε = 1, P is timelike. Then, the height function hW for W :=

1√
−〈P,P 〉

P is given by,

hW (x) =
c√

c2 + ε〈∂0, p〉2
〈ψ(x)− p, ∂0〉, x ∈ Σ.

Now we can relate the sign of the Gauss curvature K with the existence of local extreme
points of the function hW by mean of [11, Prop. 3.11] as follows.

Proposition 5.4. Let ψ : Σ → M4
1(c) be a spacelike surface that factorizes through a future

(resp. past) light cone Λc(p) corresponding to W ∈ p⊥ and with Gauss curvature K ≤ 0.
Then, the function hW does not attain a local maximum (resp. minimum) value. �

5.1 Some results for the compact case

We focus now on the case of a compact surface ψ : Σ → Mn
1 (c) that factorizes through the

light cone Λc(p).

The correspondence expressed in the square (9) gives that a spacelike surface ψ : Σ→M4
1(c)

that factorizes through the light cone Λc(p) ⊂M4
1(c) is totally umbilical if and only if ψ̄ : Σ→

p⊥ is totally umbilical. This fact can be used to characterize the totally umbilical surfaces in
M4

1(c) through light cones from [11, Theor. 5.4].

Theorem 5.5. Let ψ : Σ→M4
1(c) be a compact spacelike surface that factorizes through the

light cone at a point p ∈M4
1(c). If K is constant, then Σ is a totally umbilical round sphere.

�

The totally umbilical compact spacelike surfaces that factorizes through the light cone Λ ⊂ p⊥
are given by the two-parameter family

S2(W, τ) = {x ∈ Λ : 〈x,W 〉 = τ}
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where τ > 0 and W ∈ p⊥ with 〈W,W 〉 = −1, [11]. As a direct application of Theorem 5.5,
we have the following.

Corollary 5.6. Let ψ : Σ→M4
1(c) be a compact spacelike surface that factorizes through the

light cone at a point p ∈M4
1(c). The following assertions are equivalent

1. K is constant.

2. ψ : Σ→M4
1(c) is totally umbilical.

3. There exist τ > 0 and W ∈ p⊥ with 〈W,W 〉 = −1 such that

ψ(Σ) = Λc(p) ∩ {x : 〈x,W 〉 = τ}.

Remark 5.7. Recall that a spacelike surface is called marginally trapped if its mean curvature
vector field H is null, i.e., 〈H,H〉 = 0 and H vanishes nowhere. For ψ : Σ → M4

1(c) a
marginally trapped spacelike surface that factorizes through the light cone Λc(p), we have from
(13) that K = ε/c2. If in addition Σ is compact, then Σ is a topological sphere S2. Therefore,
the Gauss-Bonnet formula implies ε = +1. Therefore there are no closed marginally trapped
surfaces that factorizes through a light cone in the anti-de Sitter spacetimes H4

1(c) (already
proved in a more general setting in [8]). It is known that there exist examples of closed
marginally trapped surfaces in the 4-dimensional de Sitter spacetime that factorizes through
a light cone (see for instance [6]).

As a direct consequence of (13) and the Gauss-Bonnet formula, the total mean curvature of
compact spacelike surfaces in a light cone Λc(p) ⊂M4

1(c) may be expressed as

∫
Σ
|Hψ|2 dA = 4π − ε

c2
Area(Σ). (15)

Remark 5.8. We recall that given an isometric immersion of a compact oriented surface
S into an orientable Riemannian 4-dimensional manifold with constant sectional curvature
ε/c2, the following inequality holds∫

S
|H|2 dV ≥ 2π χ(S) +

∣∣∣ ∫
S
KN dV

∣∣∣− ε

c2
Area(S), (16)

where H, KN , and χ(S) are, respectively, the mean curvature vector field, the normal cur-
vature and the Euler characteristic of S. This integral inequality is known as the generalized
Wintgen inequality [12], [13]. A similar proof as in [10, Rem. 4.2] shows that KN vanishes
identically in our setting. Hence Formula (15) gives the equality in (16) for compact spacelike
surfaces that factorize through a light cone in M4

1(c). However, in the Lorentzian setting, the
generalized Wintgen inequality is not satisfied, in general. We can see this even considering
a compact spacelike surface of the Lorentz-Minkowski space. For instance, we define the
isometric embedding

ψ : S2 ⊂ R3 → L4, ψ(x, y, z) =
(
cosh(x), senh(x), y, z

)
.
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Then, a straightforward computation (see details in [10]) shows∫
S2
|H|2 dV < Area(S2) = 4π,

and hence, the generalized Wintgen inequality is not met for ψ.

In order to analyse the spectrum of the Laplace operator of (Σ, 〈 , 〉), formula (15) is very
useful. First, let us recall that for an arbitrary Riemannian metric g on S2, the minimum non
zero eigenvalue of the Laplace operator λ1 of g satisfies the Hersch inequality [7] which states

λ1 ≤
8π

Area(S2, g)
,

and the equality holds if and only if (S2, g) has constant Gauss curvature. Therefore, taking
into account (15), Hersch inequality may be written for a compact spacelike surface Σ in
Λc(p) as

λ1 ≤
2
∫

Σ |Hψ|2 dA
Area(Σ)

+
2ε

c2
, (17)

and from Corollary 5.6, the equality holds if and only if ψ : Σ → M4
1(c) is totally umbilical.

This formula gives an extrinsic bound of the first non trivial eigenvalue of the Laplace operator
of (Σ, 〈 , 〉), and formally is the same expression of the well-known Reilly inequality in the
Euclidean space. However, Reilly equality is not true in general in a Lorentzian ambient (see
for instance [11]).

In the compact case, Corollary 5.2 gives the following integral formula for a compact spacelike
surface Σ through Λc(p) ∫

Σ

1

h2
W

dA = 4π, (18)

for every unit timelike vector W ∈ p⊥. Now, from Schwarz inequality and Theorem 5.5 we
come to the following result.

Proposition 5.9. Let ψ : Σ → M4
1(c) be a compact spacelike surface that factorizes through

the future light cone Λc(p) corresponding to the unit timelike vector W ∈ p⊥. Then, we have
the following upper bound for the area of Σ,

Area (Σ) ≤ 2
√
π ‖〈ψ ,W 〉‖,

where ‖ · ‖ is the usual L2 norm. Moreover, the equality holds for some W if and only if Σ is
the totally umbilical round sphere Λc(p) ∩ {x : 〈x,W 〉 = r} with r = −1/〈ψ,W 〉.

Finally, from (15), the Hersch inequality and Corollary 5.6 we get the next theorem.

Theorem 5.10. Let ψ : Σ → M4
1(c) be a compact spacelike surface that factorizes through

the future light cone Λc(p) corresponding to the unit timelike vector W ∈ p⊥. Then, for every
unit timelike vector w ∈ p⊥ with 〈w,W 〉 < 0, we have

λ1 ≤
2

minΣ

(
h2
w

) ,
and the equality holds for some w if and only if Σ is immersed as a totally umbilical round
sphere in M4

1(c). �
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