
An	Infrastructure	to	Deliver	Synchronous	
Remote	Programming	Labs	

Miguel	Garcia,	Jose	Quiroga,	Francisco	Ortin	
	

University	of	Oviedo,	Computer	Science	Department,	c/Federico	García	Lorca	18,	33007,	Oviedo,	Spain 

	
	
	
	
	
Notice:	This	is	the	authors’	version	of	a	work	accepted	for	publication	in	IEEE	
Transactions	on	Learning	Technologies.	Please,	cite	this	document	as:	
	
	
Miguel	Garcia,	Jose	Quiroga,	Francisco	Ortin.	An	Infrastructure	to	Deliver	Synchronous	
Remote	Programming	Labs.	IEEE	Transactions	on	Learning	Technologies,	volume	14,	
issue	2,	pp.	161-172,	2021,	doi:	10.1109/TLT.2021.3063298.	
	
	
	
	
	
	



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

1 

  
Abstract—With the abrupt nationwide lockdown caused by the 

COVID-19 pandemic, many universities suspended face-to-face 
activities. Some of them decided to continue their academic 
courses, adapting traditional approaches to online learning. An 
important challenge was to deliver programming labs over the 
Internet without important methodological changes, that might 
imply modifications of the learning outcomes. Most of the existing 
approaches to remote programming labs are based on 
asynchronous learning, where students work autonomously and 
contact the lecturers if they have any issues. The existing systems 
to provide synchronous programming labs are restricted to a 
single programming language or application type, and show 
significant interaction limitations. Therefore, we defined an 
infrastructure that allowed us to deliver synchronous 
programming labs over the Internet during the COVID-19 
lockdown, as we used to do face-to-face. After using it for both 
programming labs and exams, students showed a high level of 
satisfaction. Compared to previous years, the use of our system 
produced no statistically significant difference in student’s 
grades, pass and fail rates, or the number of students taking the 
lab exam. The network bandwidth, CPU, and memory resources 
consumed are sufficiently low to have allowed all the students to 
use it without any issues. Regardless of the pedagogical and 
methodological approach selected, our infrastructure provides 
the synchronous and remote delivery of programming labs, 
similar to the original face-to-face approach. Its features make it 
appropriate to deliver synchronous remote classes where strong 
lecturer–student interaction is required, and all the student work 
can be done with their computers. 
 

Index Terms—Remote programming lab, synchronous online 
learning, computer monitoring system, Web conferencing 
platform, resource consumption, Veyon. 
 

I. INTRODUCTION 
OVID-19 was originated in Wuhan (China) and spread 
rapidly across the globe, taking most of the world by 

surprise. In the absence of a vaccine, social distancing emerged 
as the most widely adopted strategy for its mitigation [1]. The 
social distancing measures caused the decision of governments 
to shut down schools and universities in most countries. In 
many places, nationwide lockdowns were imposed, 

 
This work has been partially funded by the Spanish Department of Science, 

Innovation, and Universities: project RTI2018-099235-B-I00. The authors 
have also received funds from the University of Oviedo through its support 
to official research groups, GR-2011-0040. (Corresponding author: 
Francisco Ortin.). 

Miguel Garcia, Jose Quiroga, and Francisco Ortin are with the Computer 
Science Department, University of Oviedo, c/Federico Garcia Lorca 18, 

suspending all the face-to-face activities of educational 
institutions. 

With students and lectures confined at home, most Spanish 
universities decided to continue their academic courses. 
Lecturers adapted their courses, methodologies, and evaluation 
systems to deliver their classes online. Those changes should not 
modify the learning outcomes to be achieved by students, and 
they should be assessed accordingly [2].  

At the Spanish University of Oviedo, a Programming 
Technology and Paradigms course is delivered as part of a 
Software Engineering degree [3]. In that course, the students 
learn object-oriented and functional paradigms, concurrent and 
parallel programming, and the basic meta-programming 
services provided by most dynamic languages [4]. The course is 
delivered through lectures and laboratory classes, summing 58 
class hours (30 hours for programming labs and 28 for lectures) 
along the second semester (6 ECTS). Lectures introduce the 
concepts of each paradigm, and labs are mainly aimed at solving 
programming problems, using different language features and 
paradigms [3]. 

The online delivery of lectures was undertaken with the aid of 
Web conferencing platforms (we used Microsoft Teams, mostly, 
and BigBlueButton). The recorded classes and additional course 
material were uploaded to the course learning management 
system (LMS) (Moodle). When necessary, the University of 
Oviedo provided students with the necessary resources to be 
able to attend online lectures. In this way, we were able to adapt 
our face-to-face learning approach to online lecturing. 

We found, however, laboratory classes much more difficult 
to be delivered online. In our labs, we pose different 
programming activities, that require strong lecturer–student 
interaction. Instructors need a system to not only communicate 
with students, but also see the code they are typing. When a 
student makes an important mistake, or they are not doing what 
they should, the lecturer could be able to see it and help them 
out straightaway—that is how we do it in face-to-face labs. 
Sometimes, it might also be beneficial to take control of the 
student’s computer (after their explicit consent) to assist them 
with their work. This kind of system would provide students 
with robust assistance and guidance, while they are in the 

33007, Oviedo, Spain (e-mail: garciarmiguel@uniovi.es; 
quirogajose@uniovi.es; ortin@uniovi.es). Francisco Ortin is also an adjunct 
lecturer of the Department of Computer Science, Cork Institute of 
Technology, Rossa Ave., Bishopstown, Cork, T12 P928, Ireland. 

 

An Infrastructure to Deliver Synchronous 
Remote Programming Labs  

Miguel Garcia, Jose Quiroga, and Francisco Ortin 

C 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

2 

programming labs. Likewise, the ability to monitor and record 
students’ computers in programming exams represents a 
valuable tool for cheating detection—a worrying factor in online 
teaching [5]. 

Most of the existing approaches to online programming labs 
are based on detailed specifications of programming 
assignments that the students undertake asynchronously [6]. If 
they have questions about the assignments, they mainly use 
email and discussion forums to ask lecturers and other students 
about the problems found [6]. Different tools allow students to 
upload their code and receive some feedback about it [7]; virtual 
programming labs that provide Web IDEs with features aimed 
at improving programming [8]; and multiple systems for the 
automated online evaluation of programming assignments [9]. 
However, such approaches do not mimic the way face-to-face 
programming labs are delivered in the physical computer 
laboratory. Therefore, the use of those approaches would 
represent important changes in the original methodology, most 
likely altering the learning outcomes if the whole course were 
not modified.  

For all these reasons, we defined an infrastructure to deliver 
synchronous online programming labs in the same way it is 
commonly done in face-to-face sessions, regardless of the 
pedagogical and methodological approach used by lecturers. 
The infrastructure comprises a modification of a computer 
monitoring system; a virtual private network (VPN) 
configuration system to facilitate the use of our infrastructure 
over the Internet; a collection of scripts that makes it very easy 
for students to (un)install, start, and stop the system; a Web 
conferencing platform; and some other scripts to allow the 
lecturer to create the programming labs. We successfully used it 
for both programming labs and exams, with a high level of 
student satisfaction and reasonable resource consumption. Our 
system is particularly suitable for synchronous remote labs and 
classes that mimic face-to-face interaction, and all the student 
work could be done with their computers. 

The rest of this paper is structured as follows. The next 
section discusses related work and the architecture of our 
infrastructure is depicted in Section III. Section  IV describes 
different use cases of our system. We evaluate our 
infrastructure in Section V and conclusions are presented in 
Section VI. 

II. RELATED WORK 
There are different works about remote and virtual laboratory 

implementations in different disciplines [10]. Most of such 
works are focused on the asynchronous approach, where there is 
not real-time student–instructor interaction through the lab 
sessions [10]. 

One synchronous remote lab platform is that implemented by 
Böhne, Rütters, and Wagner [11]. They developed and 
evaluated a Web-based lab environment that supports 
synchronous tele-tutorial assistance by a human tutor. Their 
work emphasizes the importance of a remote tutor, especially in 
situations where learners have problems and questions. Without 
the possibility to get immediate feedback, many learners may 
become demotivated and abort their learning. Their Web system 

allows the compilation and execution of Java code and 
communication via audio, video, and text chat. When learners 
want to share their screen with the tutor, they use VNC [12]. 
They conducted an experiment with 19 electrical engineering 
students. The students worked on different programing tasks, 
while a tutor assisted them via videoconference, text chat, and 
desktop sharing. The evaluation showed that synchronous tele-
tutorial support has the potential to assist students effectively 
during the remote laboratories [13]. The main difference with 
the infrastructure presented in this article is that Web lab uses a 
constrained Java programming environment. Students can only 
implement embedded Java code, and it is not allowed the use of 
any IDE, library, compiler, or component installed in the local 
computer. Additionally, lectures cannot see what all the students 
are doing in the labs. 

Jara et al. developed synchronous collaborative virtual and 
remote laboratories within a Web course [14]. They modified 
the Moodle LMS to offer the Web environment, and used Easy 
Java Simulations (EJS) for the virtual and remote laboratories 
with collaborative support. EJS is an open-source Java tool for 
the creation of discrete computer simulations [15]. All the code 
should be implemented as Java applets. With this system, the 
instructor prepares virtual remote labs and add them to the 
online Web course. Any student enrolled in the course can be 
invited to the synchronous lab. Lab attendants communicate 
through the online user messages feature provided by the LMS. 
Compared to our approach, this communication mechanism 
limits highly interactive labs. Moreover, the approach of Jara et 
al. is restricted to a particular programing language (Java), 
programming environment (EJS), and application type 
(applets). Popović and Naumović took the approach defined by 
Jara et al. and used EJS embedded in Moodle to deliver optional 
control theory labs [16]. An anonymous survey showed that 
91% of students were satisfied with the virtual remote labs. 

Bakonyi, Illés, and Verma used the Veyon computer 
monitoring system [17] for delivering non-remote programming 
labs [18]. They obtained some of the benefits we were looking 
for, but not in a remote environment. Using Veyon, the 
instructor can show the lab attendants the work of one student to 
emphasize good programming practices or solve common 
errors. Lecturers can also share their screen with one single 
student, when it should not be seen by the rest of them (e.g., a 
solution excerpt). If necessary, instructors may lock the 
students’ computers to draw their attention. Unfortunately, the 
use of Veyon is much easier in a local area network than over 
Internet, since open ports, firewall exceptions, remote user 
authentication, student IP identification, and encrypted 
communication are not important issues (see Section III-B). 
Therefore, we present in this article an approach to overcome 
these issues. We will see how Veyon represents an important 
asset to deliver remote programming labs. 

There are multiple works about virtual labs [10]. In a virtual 
lab, a distributed software simulates laboratory environments 
whereby students conduct experiments in a virtual space [10]. 
Prieto-Blazquez et al. propose the design of virtual 
programming labs (VPLab) [6]. One of the key components of 
VPLab is its technological resources. Those are technology 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

3 

artifacts that can be used to simulate virtual laboratories, 
including a virtual communication environment (VCE), a 
simulator (SIM), a remote laboratory (REM), a virtual machine 
(VM), and an automatic assessment tool (AET). The students 
work autonomously and they ask instructors if they have any 
issue with the activities. Evaluation is performed with an 
automatic assessment tool that provides the test reports to the 
lecturer. They conducted a survey showing that the students 
grant more importance to human factors than to technological 
elements [6]. Tareq M. Alkhaldi adds pedagogical 
considerations to virtual labs, designing a framework to deliver 
a systems-level course in computing [19]. An evaluation showed 
that students improved their assessment scores and they 
obtained higher learning outcomes [19]. Besides the software 
limitations of these systems, they do not support the strong 
student–instructor interaction we were looking for. 

A-VPL is a virtual programming lab Web system 
implemented at Athabasca University, Canada [8]. In Web-
based distance education, remote virtual labs represent a 
challenge for both students and instructors. Fixing code errors is 
commonly a difficult task for beginners, and they need aid from 
instructors. A-VPL is a Web application where registered 
students can program in multiple languages, such as Java, C++, 
and JavaScript [20]. All the participants in a virtual lab are 
shown, and a chat area allows the class participants to 
communicate with each other. A-VPL provides neither audio 
nor video support, and participants’ screens could not be shared.  

VPL is a Virtual Programming lab plugin for the Moodle 
LMS [21]. VPL provides an online code editor (Java applet) that 
supports Ada, C, C++, C#, Fortran, Haskell, Java, Matlab, 
Octave, Pascal, Perl, Php, Prolog, Python, Ruby, Scheme, SQL, 
and VHDL. Programs can be compiled and run in a sandboxed 

environment executed in a jail Linux server [22]. VPL provides 
a powerful automatic grading system [23]. Instructors define 
how the student program is evaluated, allowing different kinds 
of tests. They can also define the rubric used to grade each 
assignment, which is automatically incorporated in the student 
record. VPL also provides a plagiarism test to detect programs 
with a high level of similarity [24]. The main inconvenience of 
VPL is that it does not support communication among lab 
attendants. 

eLaboratory combines remote lab technologies and 
collaboration-based eLearning to improve the learning process 
in remote labs [25]. The eLaboratory architecture consists of 
four modules: remote experiment, engineering portal, 
telepresence, and application publishing modules. The remote 
experiment module allows students to access the hardware 
resources in the physical lab. The engineering portal module is 
the central Web component, which enables students and 
instructors to access the eLaboratory. Telepresence module 
comprises a video and a collaborative communications layer. 
The application publishing module allows students to access the 
laboratory software. The approach of eLaboratory is based on 
asynchronous remote access to laboratories. In the evaluation, 
the students indicated that the main limitations were the user 
interface and the insufficient communication support between 
students and teaching assistants [25]. This work was later 
adapted to test electric motors over the Internet [26]. 

WebVPL is a Web-based virtual programming lab for on-
line distance learning [27]. WebVPL provides the students 
with access over the Internet to a collection of lab server 
computers hosting programming software. The design of the 
WebVPL system includes a user interface, an agent-based 
client, a mechanism to locate user-requested software 

 
Fig. 1. Architecture of the synchronous remote programming lab infrastructure. 
 

VPN

Cloud Web Conferencing
(e.g., MS Teams, Zoom, Adobe Connect)

VPN 
Server

LDAP 
Server

Hosted Web 
Conferencing

(e.g., BigBlueButton)

University 
Network

Internet

Lecturer

Students

Veyon
master

Veyon
service

Web 
conferencing 

client

Web 
conferencing 

client
Student

database

Virtual lab 
scripts 

(student)

Virtual lab
scripts

(lecturer)

Virtual Private Network

Firewall

Lecturer’s 
public key

LMS 
(e.g., Moodle)



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

4 

packages/services, and the interfaces to various programming 
software packages. Demaidi et al. took Moodle and WebVPL 
to deliver a blended-learning C programming course at An-
Najah National University [28]. Students’ performance was 
significantly higher than the previous traditional approach. 
Students found the system easy to use, suitable for writing 
code, and practical for homework submissions. Unfortunately, 
WebVPL provides no interaction among users. 

Although not in a didactic setting, the work and technologies 
used in the field of distributed teamwork are significantly 
related to synchronous remote teaching [29]. There has been a 
recent increase in the use of Web conferencing tools such as 
Zoom, Abobe Connect, Google Meet, and Webex Meetings for 
remote teaching [30]. This kind of software allows instructors 
and students to conduct training sessions remotely, via the 
Internet. Teamwork communication platforms (e.g., Microsoft 
Teams, Slack, and Webex Teams) commonly include 
additional features to improve teamwork, such as persistent 
chat rooms or channels, third-party application integration, 
direct messaging, and private groups. Teamwork 
communication platforms have been used as both web 
conferencing and collaborative learning tools [31]. Virtual 
classroom software packages (e.g., BigBlueButton, Adobe 
Connect, and Blackboard Collaborate) are customizations of 
the previous tools for online learning. For the particular case 
of programming courses, source code repositories hosting 

services, such as GitHub and Bitbucket, have been utilized for 
managing student course work, and as communication and 
collaboration tools, in an asynchronous fashion [32]. 

III. ARCHITECTURE 
Fig. 1 shows the architecture of the remote programming lab 

infrastructure we designed. Lecturers and students (participants) 
are connected to the system through the Internet, but a VPN is 
created to include all the lab participants in the same private 
network. A VPN server, placed in the University network, 
accepts connections from the lab participants. The VPN server 
permits the authentication of students in different ways, 
including the use of the university LDAP server. Student 
monitoring is undertaken with a fork we implemented of the 
Veyon project [33]. Such fork provides video recording of all 
the students attending the remote lab and some extensions to 
comply with the general data protection regulation (GDPR) of 
the European Union [34].  

Communication among students and lecturers is mainly 
supported by a Web conferencing system. We used both cloud-
hosted Microsoft Teams and an instance of BigBlueButton 
deployed in servers inside our university network. We 
developed different scripts for both students and lecturers, 
providing different functionalities such as (re)starting, 
stopping, (un)installing the remote lab, gathering the 
information of all the lab attendants, and remote lab creation 

 
 
Fig. 2. Screenshot of an example remote lab with 9 students (student IDs and names were changed for the sake of anonymity). 
 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

5 

(just for instructors). 

A. Computer Monitoring System 
An important element of the proposed infrastructure is the 

software used to monitor students’ computers, while they are 
attending a remote lab or taking an exam. For this purpose, we 
used the Veyon open source monitoring system for Windows 
and Linux [35]. 

With Veyon, the lecturer can see all the screens of the students 
in the remote lab, as shown in Fig. 2. Lecturers can display one 
remote computer screen in full size, in a separate window. It also 
allows taking control of a student’s computer if needed, and 
locking all the computers to draw students’ attention to the 
lesson being delivered. Some other features are provided, such 
as transferring files, sending text messages, opening websites, 
and broadcasting screen contents. 

Veyon consists of two components: service and master for, 
respectively, students and lecturers. Veyon service is a non-
graphical application that runs as a server, sending monitoring 
information to the master. Veyon master is a graphical 
application used by the lecturer to monitor student’s work, 
offering the additional features mentioned above. 

We created a fork of the Veyon open source project to add 
some functionalities to it [33]. An important feature we 
demanded lab exams is the capability of recording the students’ 
work during one session. This feature is important in our case, 
because the University of Oviedo requests some kind of proof 
to penalize cheating in exams. In fact, they recommend 
recording the online exams when possible. Therefore, we 
initially tried to record Veyon master sessions using a video 
recording software, but different issues appeared. First, views of 
labs with more than 12 students are not sufficiently detailed. 
Second, when the lecturer zooms the view of one student or 
interacts with him/her, the software does not record the rest of 

the students. We also considered the use of different monitors, 
but it turned out to be more difficult than expected for labs with 
more than 12 students. 

Therefore, we modified the implementation of Veyon to 
include video recording as part of its functionality [33]. The 
VeyonMaster.json configuration file is modified to specify 
the parameters about how the video should be recorded. In that 
file, the lecturer indicates video frame size (in pixels), frames 
per second, and location. It also allows the storage of a 
sequence of screenshots instead of a video. We added a new 
button for video recording to the toolbar (Fig. 2). When the 
button is clicked, the system records one video per lab 
attendant. 

Monitoring and recording the student’s activity, and taking 
control of a student’s computer, involve privacy issues that 
must be considered. According to the EU regulation 2016/679 
about general data protection (GDPR), those actions require 
the students to provide consent explicitly [34]. Thus, we 
included in our modification of Veyon different functionalities 
to comply with GDPR [33]. The first time the lecturer is about 
to view the student’s screen, the informative message in Fig. 3 
is showed to the student. If consent is given, the lecturer is 
granted view (but not control or recording) privileges. Later, if 
the lecturer tries to control the student’s computer or record 
his/her activity, another window appears asking for consent. If 
consent is not provided, that action is not performed. 
Moreover, as informed by the window in Fig. 3, the students 
are provided with a script to stop the monitoring service at any 
time (Section III-C).  

B. Virtual Private Network 
The use of Veyon through the Internet involves multiple 

issues. First, the Veyon service to be installed in the student’s 
computer listens for incoming connections in its primary service 
port (its default value is 11100). To make it work, students 
should change their router settings to open/forward the TCP port 
used by the Veyon service. Although that is not actually an 
impediment, we had reservations about whether all the students 
would be able to do it successfully. Second, Veyon master 
(lecturer) needs to know the IP of all the Veyon services 
(students) included in the remote lab. However, many ISPs do 
not provide static IP addresses to home customers. Another 
drawback is that the Veyon primary service port exposes all the 
transmitted information with no encryption.  

For all these reasons, we decided to use a VPN in order to 
make it easier the use of Veyon over the Internet. As shown in 
Fig. 1, we hosted an instance of the SoftEther open-source VPN 
server in the university network [36]. SoftEther provides AES 
256-bit and RSA 4096-bit traffic encryption. It also implements 
a versatile user authentication service that may rely on the 
university LDAP server through RADIUS, Active Directory, 
and NT Domain controllers [36]. Therefore, we can assign the 
VPN server the tasks of student authentication, using their 
university credentials. Moreover, students get rid of modifying 
their router settings. 

In this way, students only need two actions to join a remote 
lab: 1) connect to the VPN through any VPN client (most of 

 
 
Fig. 3. Window asking for explicit consent when the lecturer is about to view 
the student’s screen. 
 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

6 

them use the one included in Windows 10); and 2) run the 
start script provided as part of our infrastructure (see 
Section III-C) that launches the Veyon service. 

C. Remote Lab Scripts 
Our remote lab infrastructure is provided with two sets of 

Windows and Linux scripts, for both students and lecturers 
(Fig. 1). What follows is a brief description of the five scripts 
provided for students: 

1) (un)install. The install script installs the Veyon 
service, opens the 11100 port in the firewall, includes the 
public certificate of the lecturer delivering the lab, and 
sets the authentication method as public-key file 
authentication. 
In order to access the student’s computer, the accessing 
lecturer must first authenticate himself. Access without 
authentication is not supported in Veyon. The simplest 
approach is to include the lecturer’s public key file in the 
install script and set the authentication mode of the 
Veyon service to key-file authentication. In this way, 
only the lab lecturer assigned to each student could 
monitor their work. 
The uninstall script performs the reverse process. 

2) (re)start. One script runs the Veyon service as a 
background process, and the other one restarts it. 

3) stop. This script stops the Veyon service running in the 
student’s computer. In this way, students control exactly 
when they could be monitored. In the install script, 
we set the autostart property to false, meaning that the 
student must run the Veyon service explicitly (i.e., with 
start). 

In the case of lecturers, the scripts to be run need information 
about students, which are taken from the university enterprise 
resource planning (ERP). That information is stored in a 
database (student database in Fig. 1) that includes student name 
and surname, their unique university ID, and the lab they belong 
to. 

These are the four scripts we provide for lecturers: 
1) (un)install. Very similar to student scripts. The main 

difference is that this script installs the lecturer’s public 
and private keys, so he/she must provide these two files 
before installation. 

2) create_labs. This script connects to the VPN server to 
know all the computer IPs connected to the VPN. For 
each IP, it searches in the student database for the 
University ID used by each student connected to the 
VPN. Then, it calls the parse script (below) to create 
the remote lab configuration file that is passed to the 
Veyon master application. The outcome is that the 
Veyon master shows the lecturer all the students’ screens 
and identification data (name, surname, and ID) 
attending the remote lab. An example lab for 9 students 
is shown in Fig. 2, where student name, surname, and ID 
are written below each screen. 

3) parse. This script parses all the information returned by 
the VPN server. For each IP, it retrieves the associated 
student ID and takes from the student database their 

name, surname, and the lab they belong to. Finally, it 
writes all that information in a CSV file used to 
configure Veyon master through its common line 
interface (CLI) [35]. 

D. Web Conferencing Platform 
The same as with online lectures, a Web conferencing 

platform is used to deliver remote labs synchronously. The 
University of Oviedo provides both cloud-hosted Microsoft 
Teams and a BigBlueButton instance deployed in various 
servers inside the university network (we mainly used Teams). 
Lecturers use a Web conferencing platform to explain the work 
to be done in the remote lab, interact with students through audio 
and chat, speak to a single student without disturbing the other 
ones, share lab resources, allow students to upload their work, 
and share the lecturer’s screen and whiteboard [37].  

IV. CASE SCENARIO: PROGRAMMING TECHNOLOGY AND 
PARADIGMS 

As mentioned, we used the proposed remote lab infrastructure 
to deliver the programming labs of the Programming 
Technology and Paradigms course of a Software Engineering 
degree [4]. On March 13, the Spanish Government announced 
the state of alarm, which implied mandatory confinement. Next 
week, we delivered labs just using Teams, and started the 
definition of the remote lab infrastructure presented in this 
paper. We first used it the following week, improving it day after 
day. On May 2 remote labs ended, and we started using our 
infrastructure for programming lab exams. 

There were 136 students enrolled in the course, distributed in 
11 labs (12.4 students per lab). Four different lecturers acted as 
lab instructors. As mentioned, all the labs are aimed at solving 
programming problems using object-oriented and functional 
paradigms, and concurrent and parallel programming [4]. 
Students must use the C# multiparadigm programming language 
and Visual Studio. 

What follows is a brief description of how we used the 
different elements of the architecture presented in Fig. 1, for 
some recurring scenarios. 

A. Lab Introduction 
At the beginning of each lab, lecturers explain the 

programming problems to be solved. They use different features 
of the Web conferencing platform (e.g., screen and whiteboard 
sharing, audio interaction, and chat participation). By taking a 
look at the students’ screens (Veyon), the lecturer can warn 
students and ask them to pay attention. Instructors can even lock 
students’ computers to draw their attention. 

B. Lab Work 
After explaining the programming lab, students work on the 

lab activities. Veyon is used by the lecturer to check if any 
student has important issues, communicating just with him/her 
through Teams. If needed, and after explicit consent, the lecturer 
takes control of the student’s computer to help him/her out.  

It sometimes happens that many students have the same 
mistake (noticed with Veyon). In that case, the lecturer uses the 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

7 

Web conferencing platform to clarify that issue to all the lab 
attendants. 

Throughout the programming lab, students call the lecturer 
to ask for help (Teams), while their screen is being monitored 
(Veyon). 

C. Lab Exam 
Lecturers check what the students are doing in the exam. If 

some student accesses one resource that is not allowed or 
performs any other forbidden action, he/she is warned with a 
popup message (Veyon) or orally (Teams). In case the lecturer 
realizes one student does not understand the exam, that student 
is contacted to clarify the exam. 

D. Lab Assessment 
While evaluating the students’ work, lecturers may find some 

signs of plagiarism or cheating. If that is the case, the recorded 
videos generated by our Veyon fork can be analyzed to find 
some evidence. As mentioned, our university requests proof to 

give a failing grade for plagiarism, and encourages the use of 
recorded videos for online exams. 

V. EVALUATION 
We present an evaluation of our remote lab infrastructure, 

including students’ opinion, resource consumption, and the 
analysis of various data compared to previous years. 

A. Students’ Opinion 
After using the infrastructure for both programming labs and 

exams, we asked the students to fill in a questionnaire. In this 
way, the students evaluated our system by answering various 
questions related to the different hypotheses of our work. The 
anonymous questionnaire was published online with Google 
Forms. Out of 99 students attending the remote labs and taking 
the programming exam (73 males and 26 females), 50 filled in 
the survey. 

The questionnaire consists of eight questions in a 5-point 
Likert scale, ranging from 1 = “completely disagree” to 
5 =  “completely agree”. It is also asked the download and 
upload speed of their Internet connection—a link to a Web speed 
test is provided [38]. The purpose of these two last questions is 
to check if poor network connections could involve issues with 
the use of our remote lab infrastructure. These are the questions 
asked: 

1) The system used for the remote labs is very easy to 
install and use. 

2) The system is not intrusive. That is, it lets me work with 
my computer as usual. 

3) I have not noticed that the system slows down my 
Internet connection significantly. 

4) I think the remote lab system prevents students from 
cheating in the exams. 

5) I know exactly when my computer is being monitored, 
so my privacy is assured at all times. 

 
 
Fig. 4. Student’s answers to the Likert scale questionnaire (N = 50). 

0%

Completely agree

25% 50% 75% 100%-25%-75% -50%-100%

AgreeNeither agree nor disagreeDisagreeCompletely disagree

53.3%26.7%13.3%6.7%

12.5%

2.5%

46.7% 53.3%

5%

6.7% 46.7% 46.7%

7.5% 7.5% 37.5% 47.5%

5%

20% 35% 32.5%

17.5% 37.5% 40%

10% 40% 45%

2.5% 35% 60%Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

TABLE I 
SUMMARY OF STUDENTS’ ANSWERS TO THE QUESTIONNAIRE  

Question Arithmetic 
mean (μ) 

Standard 
deviation (σ) Mode Median 

Q1 4.53 0.68 5 5 
Q2 4.25 0.84 5 4 
Q3 4.13 0.88 5 4 
Q4 3.88 1.02 5 4 
Q5 4.25 0.90 5 4 
Q6 4.40 0.63 5 4 
Q7 4.53 0.52 5 5 
Q8 4.27 0.96 5 5 
Download Mbps 89.90 87.27 100 67.45 
Upload Mbps 57.72 63.38 100 35.5 

N = 50; 1 = completely disagree, 2 = disagree, 3 = neither agree nor disagree, 
4 = agree, 5 = completely agree. 

 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

8 

6) Compared to previous face-to-face labs, the content of 
online lessons and their learning outcomes have not been 
reduced in remote labs. 

7) In my opinion, the infrastructure used by the lecturers to 
deliver remote labs has been appropriate to achieve the 
objectives of each session. 

8) In the remote labs, lecturers have successfully used 
different online technologies to help me out with the lab 
activities. 

Fig. 4 and Table I show the students’ answers. The 
Cronbach's α coefficient [39] obtained is α = 0.8543, showing 
good reliability of the questionnaire [40]. For all the questions, 
the most common response (mode) is “completely agree”. All 
the questions but one (Q4) have an average value greater than 4, 
so students “agree” with the sentences stated in the 
questionnaire. Two questions, Q1 and Q7, are closer to 
“completely agree”: the first one, about how easy it is to install 
and use; for Q7, the students strongly agree that the 
infrastructure is appropriate to achieve the objectives of each 
session. The question about the use of remote lab to prevent 
cheating (Q4) was the one with the lowest average result (3.88), 

but on average they “agree” with it (4 is the closest value in the 
Likert scale). 

Regarding the Internet connection, the median bit rate is 
67.45/35.5 Mbps and the average value is 89.9/57.7 Mbps. 
There is a weak correlation between the question about noticing 
Internet speed slowdown (Q3) and download speed 
(Spearman’s correlation coefficient rs = 0.374, p < 0.01), and 
between Q3 and upload speed (rs = 0.288, p < 0.01) [41]. The 
only students answering “disagree” in Q3 have Internet 
connections equal or slower than 3/2 Mbps. 

B. Comparison with Previous Years 
We also analyze students’ marks in the last nine years, to see 

if there is any significant difference with the last academic 
course. Table II presents the number of students enrolled in the 
course, how many took the lab exam, pass and fail rates, and 
average marks. Both Table II and Fig. 5 show the 95% 
confidence intervals (Student’s t distribution) from 2011-2012 
to 2018-2019, not including the last academic year when we 
used the remote lab infrastructure (2019-2020). We can see how 
all the values of the last academic course are within the 95% 

TABLE II 
COMPARISON WITH PREVIOUS ACADEMIC YEARS 

 
Academic years 2011-

2012 
2012-
2013 

2013-
2014 

2014-
2015 

2015-
2016 

2016-
2017 

2017-
2018 

2018-
2019 

2019-
2020 

95% IC, 2011-12 
to 2018-19 

 N (enrolled) 80 81 138 133 153 188 147 140 136 (94.1, 161.2) 

La
bs

 

Took lab exam 39 49 80 93 123 153 121 108 99 (51.9, 123.5) 
Pass 29 38 54 63 61 112 95 63 71 (33.9, 84.7) 
Fail 10 11 26 30 62 41 26 45 28 (10,5, 42.9) 
Taking lab exam 48.8% 60.5% 58.0% 69.9% 80.4% 81.4% 82.3% 77.1% 72.8% (57%, 80.4%) 
Pass rate 74.4% 77.6% 67.5% 67.7% 49.6% 73.2% 78.5% 58.3% 71.7% (58.4%, 76.9%) 
Fail rate 25.6% 22.4% 32.5% 32.3% 50.4% 26.8% 21.5% 41.7% 28.3% (21.1%, 39.7%) 
Average mark 6.5 6.4 6.1 6.2 4.9 6.0 6.3 5.8 6.1 (5.54, 6.47) 

Fi
na

l 
Ev

al
. Took any exam 48.8% 61.7% 58.0% 69.9% 80.4% 81.4% 82.3% 84.3% 72.8% (57.3%, 82%) 

Pass rate 87.2% 76.0% 47.5% 72.0% 53.7% 77.1% 91.7% 55.1% 75.8% (53.3%, 83.4%) 
Fail rate 12.8% 24.0% 52.5% 28.0% 46.3% 22.9% 8.3% 44.9% 24.2% (10.4%, 40.5%) 
Average mark 6.5 6.1 5.1 6.2 5.1 6.1 6.3 5.9 6.0 (5.41, 6.38) 

 

 
 
Fig. 5. Students taking the lab exam, and pass and fail rates for the last academic years.  
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Students taking the lab exam Pass rates Fail rates

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020

95% Confidence intervals of courses 2011-2012 to 2018-2019



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

9 

confidence intervals, so the remote lab approach does not cause 
any significant difference with previous years [42]. In the last 
course, the percentage of students taking the lab exam (72.8%) 
and the pass rate (71.7%) are greater than the average values for 
the previous eight years (69.8% and 68.3%, respectively). 

Fig. 6 presents the 95% confidence intervals of student’s 
marks for the programming labs, for each year. To find 
statistically significant differences, we perform an independent 
sample t test to each previous academic year and the last one—
lab marks are normally distributed for all years (Shapiro–Wilk 
p > 0.8). There are significant differences only for the 2015-
2016 academic course (a = 0.05, p > 0.05), which also has 
significant differences with all the remaining years. The average 
lab mark for the last course is 6.1, while the average value for 
the rest of the academic courses is 6.0. Therefore, our 
infrastructure shows no significant influence on students’ marks 
for programming labs. 

We also analyze whether the use of our infrastructure to 
deliver remote labs influences the final evaluation of students 
(the final grade for this programming course is 70% lab mark 
and 30% theory exam). The last four rows in Table II show data 
regarding the final evaluation, including the number of students 
taking any exam (lab or theory), pass and fail rates, and marks 
of the final evaluation. As in labs, the values of the last year are 
within the 95% confidence intervals of the previous eight 
academic courses. Thus, our remote programming lab approach 
has not caused significant differences in final grades. Indeed, the 
rate of students taking any exam, the average mark, and the pass 
rate of the last year are slightly higher than the average values of 
the previous courses. 

C. Resource Consumption 
We measure memory, CPU, and network consumption of our 

remote lab infrastructure. 
1) Methodology 

A programming lab with 15 students and one instructor was 
created to measure the resources consumed by the different 
elements of the architecture detailed in Fig. 1. All the attendants 

used a full HD screen resolution (1920x1080 pixels), audio was 
enabled, and no webcams were used. The lecturer shares his/her 
screen and the students ask questions with their microphones. 
We measured two configurations, with two different Web 
conferencing platforms: Microsoft Teams and BigBlueButton. 

The computer used by the lecturer was a 3.6 GHz Intel Core 
i7 7820X (8C/16T) system with 16 GB of DDR4 3200 MHz 
RAM, running Windows 10 pro 1909. Students used different 
computers and laptops, all of them running Windows 10. 

We developed a portable .NET core 3.0 application in C# to 
measure the resources consumed by our infrastructure—its 
source code is available for download at [43]. For network 
consumption, we used the TraceEvent library developed by 
Microsoft [44], which allows tracing and collecting many data 
about processes. Memory and CPU usage are measured with the 
Process class in the System.Diagnostics namespace of the 
.NET platform, which provides interaction with local and remote 
processes, event logs, and performance counters. 

CPU consumption was measured with the following 
equation: 

𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑡𝑖𝑚𝑒 𝑐𝑙𝑜𝑐𝑘	𝑡𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑒𝑠⁄⁄  (1) 
Processor time is the amount of time that the microprocessor 

actually spends working on a task (it is the sum of user and 
privileged processor time). Clock time (wall time) is the elapsed 
execution time for the process, from its start to its end. The 
division of these two values gives us the percentage of CPU used 
by the process. The previous expression is divided by the 
number of cores (ProcessorCount property of the  
Environment class), because TotalProcessorTime 
represents the sum of processor times for all the cores. 

For memory consumption, we used the maximum size of 
working set memory employed by a process since it was started 
(the PeakWorkingSet property). The working set of a process 
is the set of memory pages currently visible to the process in 
physical RAM memory [45]. Those pages are resident and 
available for an application to be used without triggering a page 
fault. The working set includes both shared and private data. The 
shared data comprises the pages that contain all the instructions 
that the process executes, including those from the process 
modules and the system libraries.  

Event tracing for Windows (ETW) is a kernel-level tracing 
facility to log kernel and application-defined events, including 
those produced by network communication [46]. TraceEvent is 
a library to make it easy the use of ETW [44]. This library 
provides the TcpIpSend and TcpIpRecv delegates of the 
KernelTraceEventParser class that are called when a 
TCP/IP package is sent and received by a process. We used such 
functionality to measure the network data sent and received by 
the different processes comprising our remote lab infrastructure. 
2) Results 

The first six rows in Table III show the resources consumed 
by each element of the infrastructure. For memory and CPU 
consumption, we can see how Veyon (both service and master) 
consume significantly fewer resources than the two Web 
conferencing platforms (Teams and BigBlueButton). Microsoft 
Teams consume more CPU, memory, and network bandwidth 
than BigBlueButton. Differences are particularly significant for 

 
Fig. 6. Student’s lab marks for the last academic years. 
 

0

1

2

3

4

5

6

7

8
Pr

og
ra

m
m

in
g 

la
b 

m
ar

ks

Academic Course



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

10 

memory (96.2% higher) and student download traffic (94.9% 
more). 

The last four rows in Table III show resource consumptions 
of the two configurations, for both students and lecturers 
(15 students per lab). CPU usage is low, ranging from 2.56% 
(student) to 3.51% (lecturer). The required memory resources go 
from 0.78 GB (student with BigBlueButton) to 1.66 GB 
(lecturer with Teams). Regarding network connection, the 
maximum bandwidth required for students is 0.94/0.18 Mbps 
(0.5/0.16 Mbps if BigBlueButton is used). Lecturers require 
1.37/0.67 Mbps for remote labs with 15 students using full HD 
resolution. 
3) Scalability 

We measure how values in Table III vary depending on the 
number of students per class. Memory, CPU, and network traffic 
of both Web conferencing platforms remain constant. This is 
because audio and video are broadcasted from the lecturer’s 
computer to all the students at the same time1. Although Veyon 
service for students remains constant, Veyon master needs more 
bandwidth as the number of students per lab increases.  

Fig. 7 shows the download and upload bandwidth per student 
consumed by Veyon Master. For 15 students, the lecturer 
requires a 1.3/0.006 Mbps Internet connection. To analyze the 
scalability of Veyon master, we built two regression models that 
estimate the download and upload bandwidths per student. As 
shown in Fig. 7, both bandwidths show a linear increase in the 
number of students in the lab (R2 coefficient of determination 
 

1 As mentioned, students use no webcams in the configurations measured. 

for download and upload regression models are, respectively, 
0.981 and 0.944). The download and upload bandwidth increase 
per student (i.e., the slope of both models) are, respectively, 90.8 
and 0.37 Kbps. Thus, for a remote lab with 100 students, the 
instructor requires a 9.08/0.37 Mbps Internet connection. 

The use of a VPN makes all the network traffic pass through 
the VPN server. This could represent scalability issues if 
multiple classes are delivered at the same time over the same 
VPN. Under these circumstances, it is advisable to use the 
clustering capability provided by many VPN servers, including 
SoftEther [36]. Load balancing is performed across multiple 
VPN servers, decreasing the load of each server, and increasing 
the overall throughput of the system. 

VI. CONCLUSION 
The infrastructure defined allows the synchronous delivery of 

programming labs over the Internet with easy installation and 
configuration, and affordable resource consumption. We used it 
during the COVID-19 lockdown for programming labs and 
exams, and it allowed us to keep the face-to-face method we 
were utilizing before the abrupt confinement. Our technological 
proposal is focused on synchronous online labs, regardless of the 
pedagogical and methodological approach selected by lecturers. 
Students can use any programming language, IDE, and tool 
installed on their computers. 

Students showed high satisfaction with the infrastructure. 
They agree it is easy to install and use, is not intrusive, causes 

TABLE III 
RESOURCE CONSUMPTION OF THE DIFFERENT ELEMENTS OF THE INFRASTRUCTURE AND DIFFERENT CONFIGURATIONS 
 

 CPU usage  
(%) 

Memory  
(MB) 

Network download 
 (Kbps) 

Network upload 
 (Kbps) 

Elements of the 
architecture 

Veyon service (student) 0.31% 98 46.3 93.2 
Veyon master (15 students) 0.22% 202 1290.3 5.9 
Teams student 2.26% 1375 893.6 89.6 
Teams lecturer (15 students) 3.29% 1462 79.3 664.2 
BBB student 2.25% 686 458.4 67.8 
BBB lecturer (15 students) 3.13% 761 70.3 507.8 

Configurations 

Student with Teams 2.57% 1473 939.9 182.8 
Student with BBB  2.56% 784 504.7 161.0 
Lecturer with Teams (15 students) 3.51% 1664 1369.5 670.1 
Lecturer with BBB (15 students) 3.35% 963 1360.5 513.7 

“BBB” stands for BigBlueButton. 
 

 
 
Fig. 7. Network download and upload traffic generated by Veyon master, for an increasing number of students (all of them with full HD screen resolution).  
 
 

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of students in the lab Number of students in the lab

N
et

w
or

k 
do

w
nl

oa
d 

(K
bp

s)

N
et

w
or

k 
up

lo
ad

 (K
bp

s)



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

11 

no significant slowdown in their Internet connection, ensures 
their privacy, and prevents them from cheating in exams. In their 
opinion, the online approach does not reduce the contents and 
learning outcomes of the labs, and the technologies used are 
appropriate to achieve the lab objectives and to help them out 
with the lab activities. The use of the remote infrastructure 
caused no significant difference in students’ grades, the pass and 
fail rates, or the number of students taking the lab exam. The 
resource requirements of the platform allowed all the students to 
attend the labs, using different computers and bandwidths. 

Our system can be used in other scenarios different from 
programming labs. Its features make it suitable for any 
synchronous remote lab and class where all the student work can 
be done with their computers. It is particularly appropriate in 
those scenarios where strong lecturer–student interaction is 
required, and it is beneficial to monitor students’ work. 
Examples are other computer science courses (software design, 
databases, or artificial intelligence), engineering courses 
(electronics, electricity [47], or process control [11]), and labs 
where simulations are performed with software tools (biology 
[48], chemistry [49], or physics [50]). Indeed, our system is 
currently been used in other two courses (programming 
languages design [51] and operating systems) that are been 
delivered online because of the pandemic. Moreover, it has also 
been installed in all the laboratories of the School of Computer 
Science Engineering at the University of Oviedo to keep the 
social distance between lecturers and students. 

We plan to work in the creation of different predictive models 
to identify undesired student behavior, such as lack of attention 
and cheating [52]. Since we modified Veyon to record student’s 
activity [33], we could deploy such models in our system to 
warn lectures as they are delivering the labs or the exam is being 
done. We also plan to include in our programming labs the 
output of other research works aimed at measuring the quality 
of source code [53] and detecting bad programming practices 
[54], so that students could learn how to improve their code 
autonomously.  

All the infrastructure presented in this article is available for 
download [43]. We include the source code of all the Windows 
and Linux scripts (Section III-C), the Veyon fork we 
implemented to record student sessions (Section III-A), and the 
.NET core application developed to measure CPU, memory, and 
network bandwidth consumption (Section V-C). 

REFERENCES 
[1] R. Singh and R. Adhikari, “Age-structured impact of social distancing 

on the COVID-19 epidemic in India,” 2020, arXiv:2003.12055. 
[2] E. Nordmann, C. Horlin, J. Hutchison, J. A. Murray, L. Robson, M. 

Seery, and J. MacKay, “10 simple rules for supporting a temporary 
online pivot in higher education,” PLOS Comput. Biol., vol. 16, no. 10, 
pp. 1–18, Oct. 2020, doi: 10.1371/journal.pcbi.1008242. 

[3] F. Ortin, J. M. Redondo, and J. Quiroga, “Design and evaluation of an 
alternative programming paradigms course”, Telematics Inform., vol. 
34, no. 6, pp. 813–823, Sep. 2017, doi: 10.1016/j.tele.2016.09.014. 

[4] F. Ortin, J. M. Redondo, and J. Quiroga, “Design of a programming 
paradigms course using one single programming language”, in Proc. 
World Conf. Inf. Syst. Technol., Recife, Brazil, 2016, pp. 179–188, doi: 
10.1007/978-3-319-31307-8_18. 

[5] M. Asadullah and Shibli Nisar, “An automated technique for cheating 
detection,” in Proc. Int. Conf. Innov. Comput. Technol., Dublin, Ireland, 
2016, pp. 251–255, doi: 10.1109/INTECH.2016.7845069. 

[6] J. Prieto-Blázquez, J. Herrera-Joancomartí, and A. E. Guerrero-Roldán, 
“A virtual laboratory structure for developing programming labs,” Int. 
J. Emerg. Technol. Learn., vol. 4, pp. 47–52, 2009, doi: 
10.3991/ijet.v4s1.789. 

[7] M. Cardoso, A. V. de Castro, and A. Rocha, “Integration of virtual 
programming lab in a process of teaching programming EduScrum 
based,” in Proc. Iberian Conf. Inf. Syst. Technol., Caceres, Spain, 2018, 
pp. 1–6, doi: 10.23919/CISTI.2018.8399261. 

[8] H. Wang and D. Philips, “Implement virtual programming lab with 
cloud computing for Web-based distance education,” in Cloud 
Computing for Teaching and Learning: Strategies for Design and 
Implementation. Hershey, PA, USA: IGI Global, 2012, pp. 95–110, doi: 
10.4018/978-1-4666-0957-0.ch007. 

[9] K. M. Ala-Mutka, “A survey of automated assessment approaches for 
programming assignments,” Comput. Sci. Educ., vol. 15, no. 2, pp. 83–
102, Feb. 2007, doi: 10.1080/08993400500150747. 

[10] T. Alkhaldi, I. Pranata, and R. I. Athauda, “A review of contemporary 
virtual and remote laboratory implementations: Observations and 
findings,” J. Comput. Educl, vol. 3, pp. 329–351, Jun. 2016, doi: 
10.1007/s40692-016-0068-z. 

[11] A. Böhne, K. Rütters, and B. Wagner, “Evaluation of tele-tutorial 
support in a remote programming laboratory,” Learn. Lab Lower 
Saxony (L3S), Hanover, Germany, 2004. 

[12]  “VNC, secure and reliable screen sharing,” 2021. [Online]. Available: 
https://www.realvnc.com 

[13] A. Böhne, N. Faltin, and B. Wagner, “Synchronous tele-tutorial support 
in a remote laboratory for process control,” in Proc. World Innov. Eng. 
Educ. Res., Valencia, Spain, 2004, pp. 317–329. 

[14] C. A. Jara, R. Heradio, L. Torre, J. Sanchez, S. Dormido, F. Torres, and 
F. A. Candelas, “Synchronous collaboration with virtual and remote 
labs in Moodle,” in Proc. Symp. Adv. Control Educ., Novgorod, Russia,  
2012, pp. 270–275, doi: 10.3182/20120619-3-RU-2024.00030. 

[15]  “EJS, Easy Java/JavaScript Simulations,” 2021. [Online]. Available: 
https://fem.um.es/Ejs 

[16] N. Popović and M. B. Naumović, “Virtual laboratory and learning 
management system in optimal control theory education,” Int. J. of 
Elect. Eng. Educ., vol. 53, no. 4, pp. 357–370 , Apr. 2016, doi: 
10.1177/0020720916639321. 

[17] T. Junghans, “Veyon – cross-platform computer monitoring and 
classroom management,” 2021. [Online]. Available: https://veyon.io 

[18] V. Bakonyi, Z. Illés, and C. Verma, “Towards the real-time analysis of 
talks,” in Proc. Int. Conf. Comput., Automat. Knowl. Manage., Dubai, 
United Arab Emirates, 2020, pp. 322–327, doi: 
10.1109/ICCAKM46823.2020.9051507. 

[19] T.M. Alkhaldi, “Design and evaluation of a technological-enhanced lab 
environment for a systems and network administration course,” Ph.D. 
dissertation, Univ. Newcastle, Newcastle , UK, 2019. 

[20] “Virtual programming lab,”, 2021. [Online]. Available. 
http://vpl.athabascau.ca 

[21] J. C. Rodríguez-del-Pino, E. Rubio-Royo, and Z. H. Figueroa, “A 
virtual programming lab for Moodle with automatic assessment and 
anti-plagiarism features,” in Proc. of the Int. Conf. on e-Learn., e-Bus., 
Enterprise Inf. Syst., e-Government, Las Vegas, USA, 2012, pp. 1–6. 

[22] J.C. Rodríguez-del-Pino, “VPL jail system’s documentation,” 2021. 
[Online]. Available: https://vpl.dis.ulpgc.es/documentation/vpl-jail-
system-2.6.0 

[23] D. Thiébaut, “Automatic evaluation of computer programs using 
Moodle's virtual programming lab (VPL) plug-in,” J. Comput. Sci. 
Colleges, vol. 30, no. 6, pp. 141–151, Jun. 2015. 

[24] J.C., Rodríguez-del-Pino, “Integridad académica en la docencia 
universitaria actual con énfasis en el plagio del código fuente: modelo, 
propuesta de intervención y herramientas,”, Ph.D. dissertation,  Univ. 
Palmas Gran Canaria, Spain, 2016. 

[25] M. G. Helander and R. Emami, “Engineering eLaboratories: Integration 
of remote access and eCollaboration,” Int. J. Eng. Educ., vol. 24, no 3, 
pp. 466–479, 2008. 

[26] M. A. Tedesco and R. Emami, “A modular and turn-key remote-access 
hardware-in-the-loop platform for testing electric motors,” J. Adv. 
Mech. Des., Syst., Manuf., vol. 8, no.1, pp. 1–8, Mar. 2014, doi: 
10.1299/jamdsm.2014jamdsm0008. 

[27] J. Cao, A. Chan, W. Cao, and C. Yeung, “Virtual programming lab for 
online distance learning,” in Proc. Int. Conf. on Adv. Web-based Learn., 
2002, pp. 216–227, doi: 10.1007/3-540-45689-9_18. 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

12 

[28] M. N. Demaidi, M. Qamhieh, and A. Afeefi, “Applying blended 
learning in programming courses,”, IEEE Access, vol. 7, pp. 156824–
156833, Oct. 2019, doi: 10.1109/access.2019.2949927. 

[29] “UNITWIN/UNESCO Chair Holders Institutional Responses to 
COVID-19,” 2021. [Online]. Available: 
https://apa.sdg4education2030.org/sites/apa.sdg4education2030.org/fil
es/2020-
05/HED%20UNITWIN%20_COVID19_SURVEY%20REPORT%20
02.04.20.pdf 

[30] S. Cornelius, “Facilitating in a demanding environment: Experiences of 
teaching in virtual classrooms using web conferencing,” Brit. J. Educ. 
Technol., vol. 45, no. 2, pp. 260–271, Mar. 2014, doi: 
/10.1111/bjet.12016. 

[31] X. Zhang, Y. Meng, P. Ordóñez de Pablos, and Y. Sunc, “Learning 
analytics in collaborative learning supported by Slack: From the 
perspective of engagement,” Comput. Human Behav., vol. 92, Mar. 
2019, pp. 625–633, doi: 10.1016/j.chb.2017.08.012. 

[32] R. Glassey, “Adopting Git/Github within teaching: A survey of tool 
support,” in Proc. Conf. Global Comput. Educ., Chengdu, China, 2019, 
pp. 143–149, doi: 3300115.3309518. 

[33] M. Garcia, J. Quiroga, and F. Ortin, “Veyon Fork to comply with the 
EU general data protection regulation and record remote lab sessions,” 
2021. [Online]. Available: 
https://github.com/ComputationalReflection/veyon 

[34] Official journal of the European Union, (2016, Apr. 27). Regulation 
(EU) 2016/679 of the European Parliament and of the Council, on the 
protection of natural persons with regard to the processing of personal 
data and on the free movement of such data, and repealing Directive 
95/46/EC (general data protection regulation). [Online]. Available: 
https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679 

[35] T. Junghans, “Veyon documentation, release 4.3.5,” 2021. [Online]. 
Available: 
https://github.com/veyon/docs/releases/download/v4.3.5/veyon-
admin-manual-en_4.3.5.pdf 

[36] D. Nobori, T. Sugiyama, G. Hatakeyama, and C. Smith, “SoftEther 
VPN project, ” 2021. [Online]. Available: https://www.softether.org 

[37] M. Bower, “Synchronous collaboration competencies in Web‐
conferencing environments – their impact on the learning process,” 
Distance Educ., vol. 32, no.1, pp. 63–83, May 2011, doi: 
10.1080/01587919.2011.565502. 

[38] “OOKLA, the global broadband speed test,” 2021. [Online]. Available: 
https://www.speedtest.net 

[39] L. J. Cronbach, “Coefficient alpha and the internal structure of tests,” 
Psychometrika, vol. 16, pp. 297–334, Sep. 1951, doi: 
10.1007/BF02310555. 

[40] J. R. Warmbrod, “Reporting and interpreting scores derived from 
Likert-type scales,” J. Agricultural Educ., vol. 55, no. 5, pp. 30–47, 
2014, doi: 10.5032/jae.2014.05030. 

[41] M. M. Mukaka, “Statistics corner: A guide to appropriate use of 
correlation coefficient in medical research,” Malawi Med. J, vol. 24, no. 
3, pp. 69–71, Sep. 2012. 

[42] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous Java 
performance evaluation,” in Proc. Annu. Conf. Object-Oriented 
Program. Syst. Appl., New York, USA, 2007, pp. 57–76, doi: 
10.1145/1297105.1297033. 

[43] M. Garcia, J. Quiroga, and F. Ortin, “An infrastructure to deliver 
synchronous remote programming labs (support material website),” 
2021. [Online]. Available: 
http://www.reflection.uniovi.es/download/2020/tlt 

[44] “Microsoft TraceEvent library,” 2021. [Online]. Available: 
https://github.com/Microsoft/perfview/blob/master/documentation/Tra
ceEvent/TraceEventLibrary.md 

[45] J. M. Redondo and F. Ortin, “Efficient support of dynamic inheritance 
for class- and prototype-based languages,” J. Syst. Softw., vol. 86, no. 
2, pp. 278–301, Feb. 2013, doi: 10.1016/j.jss.2012.08.016. 

[46] “Microsof event tracing for Windows,” 2021. [Online]. Available: 
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-
portal 

[47] M. A. Marques, M. C. Viegas, M. C. Costa-Lobo, A. V. Fidalgo, G. R. 
Alves, J. S. Rocha, and I. Gustavsson, “How remote labs impact on 
course outcomes: Various practices using VISIR,” IEEE Trans. Educ., 
vol. 57, no. 3, pp. 151–159, Aug. 2014, doi: 10.1109/TE.2013.2284156. 

[48] Z. Hossain, X. Jin, E. W. Bumbacher, A. M. Chung, S. Koo, J. D. 
Shapiro, C. Y. Truong, S. Choi, N. D. Orloff, P. Blikstein, and I. H. 

Riedel-Kruse, “Interactive cloud experimentation for biology: An 
online education case study,” in Proc. Annu. Conf. Human Factors in 
Comput. Sys., Seoul, Korea, 2015, pp. 3681–3690, doi: 
10.1145/2702123.2702354. 

[49] B. F. Woodfield, H. R. Catlin, G. L. Waddoups, M. S. Moore, R. Swan, 
R. Allen, and G. Bodily, “The virtual ChemLab project: A realistic and 
sophisticated simulation of inorganic qualitative analysis,” J. Chem. 
Educ., vol. 81, no. 11, pp. 1672–1678, Nov. 2004, doi: 
10.1021/ed081p1672. 

[50] Y. Ding and H. Fang, “Using a simulation laboratory to improve 
physics learning: A case exploratory learning of diffraction grating,” in 
Int. Workshop Educ. Technol. Comput. Sci., Wuhan, China, 2009, pp 
3–6, doi: 10.1109/ETCS.2009.523. 

[51] F. Ortin, D. Zapico, and J. M. Cueva, “Design patterns for teaching type 
checking in a compiler construction course,” IEEE Tran. Educ., vol. 50, 
no. 3, pp. 273–283, Aug. 2007, doi: 10.1016/j.chb.2017.08.012. 

[52] A. Arinaldi and M. I. Fanany, “Cheating video description based on 
sequences of gestures,” in Proc. Int. Conf. Inf. Commun. Technol., 
Malacca City, Malaysia, 2017, pp. 1–6, doi: 
10.1109/ICoICT.2017.8074679. 

[53] F. Ortin, O. Rodriguez-Prieto, N. Pascual, and M. Garcia, 
“Heterogeneous tree structure classification to label Java programmers 
according to their expertise level,” Future Gener. Comput. Syst., vol. 
105, pp. 380–394, Apr. 2020, doi: 10.1016/j.future.2019.12.016. 

[54] O. Rodriguez-Prieto, A. Mycroft, and F. Ortin, “An efficient and 
scalable platform for Java source code analysis using overlaid graph 
representations,” IEEE Access, vol. 8, pp. 72239–72260, Dec. 2020, 
doi: 10.1109/access.2020.2987631. 

 
 
 

Miguel Garcia was born in La Caridad, El 
Franco, Asturias, Spain in 1979. He 
received his B.S. degree in computer 
science in 2005. In 2008 he was awarded 
an M.S. in Web engineering and, in 2010, 
an M.S. by research in computer science. 
In 2013 he presented his Ph.D. dissertation 
at the University of Oviedo, Spain. 

He worked in the CTIC foundation 
from 2006 to 2009. Since 2009, he has 

been an Assistant Professor with the Computer Science 
Department, University of Oviedo. His research interests 
include big data, software development, machine learning, and 
programming languages. 

 
 
 
 
 

Jose Quiroga was born in Oviedo, 
Asturias, Spain in 1982. He received his 
B.S. degree in computer science in 2004. 
In 2009 he was awarded an M.S. in 
computer engineering. In 2016 he 
presented his Ph.D. dissertation at the 
University of Oviedo, Spain. 

He worked in the CTIC foundation 
from 2007 to 2012. Since 2012, he has been an Assistant 
Professor with the Computer Science Department, University 
of Oviedo. His research interests include machine learning, 
distributed multimedia systems, dynamic languages, and big 
code. 

 
 
 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 
 

13 

Francisco Ortin was born in Oviedo, 
Asturias, Spain in 1973. He received his 
B.S. degree in computer science in 1994. 
In 1996 he was awarded an M.S. in 
computer engineering. In 2002, he was 
awarded his Ph.D. degree at the University 
of Oviedo, Spain. 

From 1998 to 2002, he was an Assistant 
Professor with the Computer Science 

Department, University of Oviedo. In 2002, he became an 
Associate Professor, and from 2018 he works as a Full 
Professor. Since 2016, he is also an Adjunct Lecturer at the 
Computers Science Department of the Cork Institute of 
Technology, Muster Technological University, Ireland. His 
research interests include big code, dynamic languages, type 
systems, aspect-oriented programming, and runtime adaptable 
applications. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


