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Objectives

This research has pursued several goals. A motivation to the research constitutes the �rst chapter

of this work, which has been written looking for a pedagogical result. The necessary knowledge

of the basics in topology is part of a dicotomy in which the focus on physics plays the other role.

In addition, since a topological �eld theory approach is out of the scope of this work, a careful

analysis on the major features of topology in condensed matter physics and a concise explanation

have been pretended to o�er the reader a suitable picture. Chapter 2 deals with the basics to

understand the main concepts which relate topology with condensed matter physics. A lot of

algebra has been computed by the author to obtain almost all the results that appear through

the text. Among these calculations, some of them appear in the appendices, but many others

are part of pages and pages of personal manuscripts. In example, a lot of time was devoted

to obtain the electron dynamics equations with and without magnetic �eld as well as the same

equations under the wave packet approach. Due to the size of these derivations and the fact that

a pedagogical focus is pursued, they are omitted in this text.

A third chapter is devoted to show some relevant examples of topological phases. Some others

could have been chosen, but the ones in this work are expected to be enough to communicate the

main ideas. With a suitable overview, a research in Transition Metal Dichalcogenides (TMDC's)

is detailed in Chapter 4. A Tight Binding approach has been performed in order to obtain the

band structure, the Berry curvature and the degree of circular polarization in several TMDC's.

This is pretended to show the power of these materials as well as their link with topology.

A �nal research is devoted to the Armchair Graphene Nanoribbons (AGNR's) in Chapter 5. The

work that has been developed consists of the study of the band structure of AGNR's depending

on the number of dimer lines, as well as a topological characterization through the Z2 topological

invariant. Conclusions to the research are exposed in the last chapter of this text.
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1 MOTIVATION

In 1980 K.V. Klitzing [1] discovered the Hall conductance quantization in an experiment which

determined the hyper�ne structure constant in a remarkable accurate fashion. This experiment

can be thought as the cornerstone from which latter succesful results were found leading to

determine a relation between topology and semiconductor physics [2-8]. A remarkable calculation

[3] found a direct relation between topological invariants and the Hall conductance quantization.

This computation, though genuine, had a lack of formalism. M. V. Berry's work [8] set a new idea

that can be thought as the fundamental theory from which topology can be related to condensed

matter physics in a formalized fashion in modern days.

The classi�cation of the states of matter play a fundamental role in physics. In order to stablish

a robust classi�cation of the phases of matter, Ginzburg-Landau theory deals with local order

parameters which have a �nite expectation value in some phase. Landau's theory of phase

transitions allows to describe symmetry-broken states through this parameter such as, in example,

the overall magnetization in ferromagnets. However, the local nature of the order parameters

seems to be insu�cient to describe phases in which a local order parameter cannot be de�ned.

Some of these phases which do not have a local order parameter are topological phases in the

sense that a topological �eld theory can describe their low-energy �eld theory. These phases are

described by a non-local order parameter called the topological invariant.

Topology describes manifolds in terms of how they can be deformed. A manifold has a given

topology while deformations on it can be performed continuously. Di�erent topologies imply that

no continuous deformations can occur between manifolds belonging to each di�erent topological

space. Thus, topological invariance is said to happen when a deformation on a manifold can

be performed in a continuous fashion, which is also known as homotopy. Two spaces are said

to be homotopic if one can be deformed into another without discontinuities. A parameter,

called topological invariant, can be set to describe the topology of a system. However, it is not

always straight-forward to determine which parameter can de�ne the topology of our system;

in fact, this can be a time-consuming issue. A well-known invariant for some physical systems

is the so-called Z2 invariant, which de�nes a system as trivial (i.e, a conventional insulator) or

non-trivial, such as a Topological Insulator (TI). However, this is not always the invariant we

need nor the invariant that works properly in order to stablish a topological characterization.

At this point, one may ask what is the di�erence between a topological and a normal system.

A �rst comment must be done: there is no �normal� system, considered as part of a dichotomy

between topological and non�topological systems. One can give a topology to any system, and

this one can be trivial or non-trivial as well. Conventional insulators and semiconductors have

a trivial topology, usually characterized by a Z2 = 0 invariant, while those that are named as

topological phases have a non-trivial topology, described by a Z2 = 1 invariant (in case this is

the useful one). There are several non-trivial (topological) phases; Quantum Hall E�ect (QHE),

Quantum Spin Hall E�ect (QSHE) and TI's are some of them. The physical meaning is that

they are protected; this means that, at low energies, perturbations to the system such as de�ects

or impurities do not modify the phase characteristics since the states of such a system are strong.
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These protected states give rise to a new physics which can be implemented in semiconductors

business. Spintronics and Valleytronics are two powerful �elds to exploit this idiosyncrasy. But

how does topology connect with physics? A useful example [9] is the following. Consider an

orange such as an ideal sphere. One can deform it continuously into a di�erent object such as an

ovoid, but it would not be possible to convert the orange into a doughnut, since a doughnut has a

toroidal geometry. However, one could deform the doughnut continuously into, let us say, a cup

of co�e. This is also related to the number of holes the geometry has, and has to do with the so-

called genus. Gauss and Bonnet stablished a connection between geometry and topology in terms

of this genus (the famous Gauss-Bonnet theorem) or the Euler characteristic as well. In the case

of the QHE, in example, a result for the Hall conductance quantization will be found, which can

be seen conceptually related to this famous theorem. If these deformations are now thought as

variations in a parameter space of the hamiltonian, then a continuous variation of its parameters

will lead to a di�erent hamiltonian and eigenstates which preserve the same topology. Thus, a

hamiltonian describing a phase of matter can have the same topology as another one which has

been modi�ed through its internal parameters (continuously and usually in a smooth fashion). In

addition it is also possible to �nd changes that induce a discontinuous variation and so a change

in the topological phase classi�cation. This implies a variation in the topology and re�ects itself

in the hamiltonian, eigenvalues and eigenstates as well. As an example, in the Su-Schrie�er-

Heeger model (SSH) a variation in the parameter space through the hopping amplitudes leads

to a change in the topology of the system, and, particularly, there are some values for which

the transition occurs. This is also true for other models such as Haldane's model or the QSHE.

Speci�cally, this transition regions are characterized by a gap closure, which allows for a non-zero

conductance and the appearance of special states known as edge or boundary states depending on

the dimensions of the system. These states are strongly protected by symmetries which depend

on the system we are studying, and this protected-like behavior endows semiconductor physics

with a beautiful paradigm.

Topological-related concepts appear in a natural fashion in Transition Metal Dichalcogenides

(TMDC's) due to its lack of inversion symmetry. A non-vanishing Berry curvature at the valleys

in the ±K points of the First Brillouin Zone (1BZ) and the separation between these points which

prevents the existence of intervalley scattering allows valley-dependent phenomena to occur if

a correctly polarized light is applied, creating interband excitons and a non-zero transverse

conductivity.

These issues are also interesting for Graphene Nanorribbons. Graphene's world arose as the

cornerstone of 2D materials and the hope placed on this material was related to its room-

temperature ballistic electronics, its high electron mobility and its long coherence length. How-

ever, graphene-based �eld-e�ect transistors (FET) development has experienced a major setback

due to its metallic behavior. A suitable option to overcome this problem is to open the band gap

in graphene, which can be performed by means of graphene nanoribbons due to its boundary

conditions. This is a hot topic that can also be related to topological phases and topological

invariant calculations.
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2 PHYSICS AND TOPOLOGY

The First Brillouin Zone (1BZ) has the topology of a TD torus in D dimensions. It can be useful

to think of a rectangular 2D 1BZ and consider the periodicity in both the horizontal and vertical

axes. One is then able to join equivalent points (which are those in the horizontal and vertical

axes), obtaining a torus. Gauss-Bonet theorem stablishes that the topology of a torus is di�erent

from that of a sphere, and it is characterized by the so-called genus, related to the number of holes

in the �gure. This genus can be thought as a topological invariant of the system, but topological

invariants (which are the main tool needed to determine the topology of a system) are not easy to

stablish. In order to do so, some concepts must be introduced before. K.V. Klitzing's discovery

[1] laid the cornerstone from which topology and physics became closer during the 80's. Later

works like those of R. B. Laughlin [2] or D. J. Thouless [3-5] tried to set a formalism for this

new physics. But the theoretical cornerstone was set by the work of M. V. Berry [8] on the

adiabatic variation of the parameters of the time-dependent Schrödinger equation. He showed

that apart from a dynamical phase, a geometrical one appears as a constituent of the solution

to the instantaneous eigenstates of a parameter-dependent hamiltonian. Actually, this phase

had been known from the beginning of quantum mechanics, but had been supressed since it was

considered as arti�cial [10]. This is the so-called Berry phase, which is also known as Zak's phase

in the context of Bloch bands [11]. The connection with topology is readily stablished from this

factor, as will be shown latter [12]. In order to obtain this phase, two quantities appear; the

Berry connection and the Berry curvature, which are essential to describe the electron dynamics

under an electric �eld (or even a magnetic �eld). The Berry curvature is also a suitable tool to

study the topology of a system, as will be shown. Likewise, the connection between topology

and condensed matter physics through the Berry phase also implies a close relationship between

topology and valleytronics, since the Berry curvature is a fundamental quantity in the frame of

this new physics.

2.1 Berry phase, Berry connection and Berry curvature

Let Ĥ = Ĥ(R) be a time-dependent hamiltonian through the parameter R = R (t). Its eigen-

values and eigenvectors do not have a concrete Hilbert space but an instantaneous one, so they

will also depend on this variable through the parameter R. An instantaneous orthonormal basis

|n (R)〉 can be de�ned. We can set the Schrödinger equation for a system like this as

Ĥ(R) |n (R)〉 = En (R) |n (R)〉 (2.1)

Eq. (2.1) describes the adiabatic evolution as R moves slowly along a path C in the parameter

space. Since we are allowed to introduce a phase factor, the states |n (R)〉 are not completely

determined. A smoothly variating and single-valued phase along the parameter space is required.

The state |ψ〉 at time t can be built from a linear combination such as

8
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|ψ〉 =
∑
n

eiφncn |n (R)〉 (2.2)

where a phase factor with φn = φn(t) has been introduced. The phase is described as

φn(t) = −1

~

ˆ t

to

En (R) dt′ (2.3)

where R = R (t′), and it is called the dynamical phase since it is related to the energy of the

system. Another phase-dependent term cn = cn(t) has been introduced. This one is known as

the geometrical phase term since it depends on the path along the temporal evolution. This term

is related to the famous Berry phase [8] and has the following form:

cn = eiγn |cn| (2.4)

where γn = γn (t) is the Berry phase. Appendix A.1 is devoted to perform this calculation, which

leads to

γn = i

ˆ
〈n (R)| ∂t′ |n (R)〉 dt′ (2.5)

It is clear that the Berry phase has an implicit dependence on the parameters R which depend

on the path C. Taking into consideration

∂t′ |n (R)〉 = ∂R |n (R)〉 Ṙ (2.6)

the expression for the Berry phase through a close loop C can be recast into1

γn = i

˛
C
〈ψn (R)|∂R |ψn (R)〉 dR =

˛
C

An (R) dR (2.7)

for a closed loop. We have just introduced a new quantity An (R) known as Berry connection or

Berry potential. A problem arises since the Berry connection is gauge dependent, as we can see

below. After performing a gauge transformation such as

An (R) −→ An (R)− ∂Rξ (R) (2.8)

where ξ (R) is the phase of the gauge transformation such that the eigenstates transform as

|n (R)〉 −→ eiξ(R) |n (R)〉, we get the following transformation for the Berry phase:

γn −→ γn − [ξ (R)− ξ (R0)] . (2.9)

In the case of a closed path, due to the monovaluated character of the basis functions (|n (R)〉 =

|n (R0)〉), the following condition must be satis�ed:

1Notice that for Ṙ −→ 0, the Berry phase goes to zero, which implies that the coe�cient for the n-th eigenstate
is constant.
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ξ (R)− ξ (R0) = 2πn, n ∈ N (2.10)

Thus, although the Berry connection is gauge dependent, the integral in eq. (2.7) will be gauge

invariant; and so the exponential in the phase term cn. The fact that ξ (R)− ξ (R0) is non-zero

implies that the Berry phase cannot be removed2. In analogy to the stress-energy tensor Fµν

in the context of electrodynamics, we are able to de�ne a new tensor derived from the Berry

connection as

Ωn
µν (R) = ∂µA

n
ν − ∂νAnµ (2.11)

This tensor is known as Berry curvature3. A further expression can be given for this tensor as

Ωn
µν (R) = i

[〈
∂µn (R) |∂νn (R)〉 −

〈
∂νn (R) |∂µn (R)〉

]
(2.12)

We can write it as a vector through the following vectorial product:

Ωn (R) = ∂R ×An (R) (2.13)

Eq. (2.13) allows to write the Berry phase in terms of the Berry curvature vector by applying

Stoke's theorem as follows:

γn =

˛
C

An (R) dR =

ˆ
S

(∂R ×An (R)) dS =

ˆ
S

Ωn (R) dS (2.14)

This curvature vector can be seen as an e�ective magnetic �eld in the parameter space (think of

electrodynamics and the relation between the magnetic �eld and the magnetic potential).

There is a di�erent approach to write Ωn
µν (R) (see Appendix A.2):

Ωn
µν (R) = i

∑
n′ 6=n

[
〈n (R)| ∂µH (R) |n′ (R)〉 〈n' (R)| ∂νH (R) |n (R)〉 − c.c

(En − E′n)2

]
(2.15)

Eq. (2.15) is an alternative way to write the Berry curvature in terms of the derivatives of the

hamiltonian, which has been proven to be much more e�cient in numerical calculations.

2.2 Degeneracies and the Berry curvature

The Berry curvature is a local quantity since it provides a local description of the geometric

properties of the parameter space [10]. In addition, it is shown that the Berry curvature vanishes

for each value of R as follows:

2Fock (1928) argued to choose a ξ (R) such that the phase gets cancelled at the end of the loop. This implied to
delete this phase term since it was seen as an arti�cial factor. However, Berry's work [8] showed that considering
a non-vanishing phase had deep physical consequencies.

3This quantity has played a crucial role in the work performed on the electronic properties of TMDC's materials.
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∑
n

Ωn
µν (R) = 0 (2.16)

The sum runs over the number n of �lled bands. This equation proves the local conservation law

for the Berry curvature. It is also seen that a singularity appears if two energy levels coincide

for a same R, this is, if they are degenerate. The classi�cation of degeneracies is one the most

relevant applications of Berry's work, being a crucial tool in topological band theory. This

situation where a singularity appears corresponds to a monopole in the parameter space [10]. In

order to explain it, let us set a 2-band parameter-dependent hamiltonian H = H (R) such that

H (R) = h · σ (2.17)

with h = h (sinθcosφ, sinθsinφ, cosθ). A straightforward calculation leads to

H =

(
hz hx − ihy

hx + ihy −hz

)
(2.18)

whose eigenvalues are λ± = ±
√
h2
x + h2

y + h2
z. The conduction and valence band eigenvectors

are found to be

(
u+

v+

)
=

(
cos
(
θ
2

)
sin
(
θ
2

)
eiφ

)
(2.19)

(
u−

v−

)
=

(
sin
(
θ
2

)
e−iφ

−cos
(
θ
2

) )
(2.20)

being orthonormal to each other. It can be seen that for the valence band there is a singularity if

hz+ |h| = 0, which is satis�ed if θ = π. In addition, a singularity appears in the conduction band

eigenvector when hz − |h| = 0, this is, if θ = 0. Thus, the wavefunctions are not well-de�ned on

the whole Bloch sphere. One is able to add a gauge factor to, let us say, the valence band, in order

to �x its singularity at the south pole of the sphere. In fact, this gauge transformation changes

the Berry connection but leaves the Berry curvature invariant. This allows to con�rm that the

Berry curvature is gauge-invariant. After some algebra one can obtain the Berry curvature for

the valence and the conduction band:

Ωv(c) = +(−)
1

2

h

h3
(2.21)

The previous equation is analogous to the �eld generated by a monopole at the origin, where the

2 bands are degenerate, which shows that the degeneracy points (h = 0) are sources and drains

of the Berry curvature [10]. If an integration over the whole sphere containing the monopole

is performed, a factor 2π is obtained. If the integration is performed over a di�erent closed

manifold containing a number n of monopoles, then the result wil be 2πn. In the context of

Chern insulators (discussed in Chapter 3), since we are not able to �nd a gauge that �xes the
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singularities of both wavefunctions, a non-zero Hall conductance can appear. The n number is,

in the context of Chern insulators, the Chern number.

2.3 Electron dynamics under adiabatic perturbations

One can obtain that a �rst-order approximation of the eigenstates of a general hamiltonianH (R)

can be written as4

|ψ〉 = e−
i
~
´ t
to
Endt′

|n〉 − i~ ∑
n6=n′

|n′〉 〈n′| ∂tn
〉

En − En′

 (2.22)

Since we are interested in Bloch states such that

∣∣ψnk (r)
〉

= eikr
∣∣un (k, t)

〉
(2.23)

one can consider the periodic part of a Bloch state and apply eq. (2.22) on it:

∣∣un (k, t)
〉
−→

∣∣un (k, t)
〉
− i~

∑
n6=n′

|un′ (k, t)〉 〈un′ (k, t)| ∂tun (k, t)
〉

En − En′
(2.24)

up to a factor e−
i
~
´ t
to
dt′En(t′). On the other hand, it is well-known that the velocity operator in

the real space is de�ned by v̂ = i
~

[
Ĥ, r̂

]
, which can be written in the k-space by just performing

an unitary transformation such that

v̂ (k) = e−ikr
i

~

[
Ĥ, r̂

]
eikr (2.25)

which is the same that

v̂ (k) =
1

~
∂kĤ (k, t) (2.26)

The calculation performed in Appendix A.3 allows to obtain the expectation value of the velocity

operator in the �rst-order perturbated basis {
∣∣∣u′n (k, t)

〉
} (which is our new basis):

ṙ =
1

~
∂kEn (k)− Ωn

kt (2.27)

Two important cases shall be studied, which are the perturbations through a weak electric �eld

E and a more general case where both electric and magnetic �eld are present. The addition

of an electric �eld implies the existence of an electrostatic potential whose dependence on r

makes the translational symmetry to be broken in the context of Bloch's theorem. In order to

overcome this symmetry rupture one can use Peierls substitution and introduce the electric �eld

considering a gauge tranformation from real space to a q-space by a gauge transformation such

that k = k(q, t) by k = q+ e
~A (t), where A (t) is the gauge potential that introduces the electric

4See Appendix A.1.
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�eld as E = −∂tA (t) and k is the gauge-invariant crystal momentum. If, as it has been stated,

the gauge potential only depends on time, it preserves translational symmetry, which implies

that q is a constant of motion such that q̇ = 0. Then one �nds that k̇ = − e
~E. A tedious algebra

has to be computed in order to obtain the following result. Due to the size of this calculus, it is

omitted in this text5. An equation for the velocity is presented below:

ṙ =
1

~
∂kEn (k)− e

~
E×Ωn (k) (2.28)

In addition to the usual term, a new one arises from the preceeding perturbative treatment,

which corresponds to the famous anomalous velocity. This velocity is transverse to the electric

�eld ensuring the appearance of a Hall current (see later chapter)6. A more general result can be

obtained considering the semiclassical dynamics of the electrons in magnetic Bloch bands [13,14]:

ṙ =
1

~
∂kεn (k)− k̇×Ωn (k) (2.29)

~k̇ = −eE− eṙ×B (r) (2.30)

An orbital magnetic moment can be de�ned as

m (k) = −i ~2

2m2

∑
n′ 6=n

Pnn′ (k)×Pn′n (k)

En′ (k)− En (k)
(2.31)

where Pnn′ (k) = 〈unk| v̂ (k) |unk〉 is the matrix element of the velocity operator. For a null

magnetic �eld, the previous equations reduce to the ones in the weak electric �eld perturbation

case straight-forwardly. It must be pointed out that the energy is not the one in eq. (2.28)

but εn (k) = En (k) −m (k) B (r). A correction due to the orbital magnetic moment appears7

[13,14]. The anomalous velocity gives rise to the Hall conductivity in ferromagnets.

Symmetries have a crucial in�uence on the Berry curvature, and thus on the topology of the

system. Systems with di�erent symmetries will be considered in the next chapter, and depending

on them, di�erent topological phases arise. It is remarkable that systems with both parity and

time-reversal symmetries have a vanishing Berry curvature, since Ω (k) = Ω (−k) (parity) and

Ω (k) = −Ω (−k) (time-reversal) have to be simultaneously satis�ed. A null Berry curvature is

characteristic of topologically trivial systems. However, when one of these symmetries is broken,

the Berry curvature has a non-zero value over some point in the 1BZ, even although it is globally

null8. Particularly, a system which preserves only time-reversal symmetry may have di�erent

values of the Berry curvature at each k in the 1BZ, while the integral over this 1BZ of this

curvature remains zero. Conversely, a system which only preserves inversion symmetry may have,

5In fact, it is easier to go backwards from the result in order to obtain the left-hand-side terms.
6Another approach can be followed to obtain eq. (2.28), the so-called wave packet formalism.
7An important work was developed in the 90's using the wave packet approach. In fact, the previous equations

where obtained this way.
8This is the case of TMDC's.
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in addition to the locally non-zero values of the Berry curvature, a non-zero value of the integral

of the Berry curvature over the 1BZ. A phase with both broken inversion and time-reversal

symmetries is the QSHE in graphene [15-17]. Phases with broken inversion symmetry (preserving

time-reversal symmetry) are particularly of interest for our purposes, since valleytronics arises

in this context. The orbital magnetic moment also arises from this broken inversion symmetry9.

Note that Pnn′ (k) in eq. (2.31) is also related to the degree of optical polarization [18,20]. The

Berry curvature can be also formulated in terms of these matrix elements [19,21].

2.4 Time-reversal symmetry (TRS) and Z2 invariant

Time-reversal symmetry (TRS) is crucial for topological condensed matter since materials with

time-reversal invariance are experimentally realizable. Systems which are not time-reversal (TR)

invariant may exhibit Hall voltages or other interesting physics. However, although TR invariant

systems do not display Hall e�ects, they are able to show other topologically-related properties

related to the Z2 invariant.

Spinless particles and spinful particles have di�erent TR operators. The TR operator is usually

de�ned as T̂ = UK where U is a unitary matrix and K is the complex conjugation operator10.

For spinless particles, the U matrix has no deep importance since U = UT , condition which

guarantees that T̂ 2 = +1. The time evolution operator T̂ is antiunitary and its action on the

Bloch bundle11 behaves as a map connecting �bers in k with �bers in −k as12

T̂ h (k) T̂−1 = h(−k) (2.32)

which means that for an eigenstate |un (k)〉, T̂ |un (k)〉 is an eigenstate at −k. In addition, for

spinless particles no double degeneracy is necessary at the time-reversal invariant momentum

points (TRIM), since 〈ui (k)| T̂ |uj (k)〉 6= 0. This means that both wavevectors can belong to

the same band. In fact, for spinless particles, a 1-band system can be a suitable option.

A di�erent physics arise when dealing with the spin. As an angular momentum, it must obey

T̂ST̂−1 = −S, which describes a spin direction �ipping. This allows to represent the TR operator

as (apart from the conjugation) a rotation around an arbitrary axis. Choosing the y axis a general

result can be obtained:

= e−iπSyK (2.33)

9The Berry curvature has also an e�ect on the phase-space volume and thus on the electron density of states
[10]. However, this is not crucial for this work, so this will not be adressed.

10The presence of the K operator is readily found necessary from the TR transformation of [x̂, p̂]. Note that
T x̂T−1 = x̂ while T p̂T−1 = −p̂.

11As mentioned previously, 1BZ has a toroidal topology, which makes the 1BZ to be known as Brillouin torus
T d for d−dimensions. For each k there exists a Bloch hamiltonian Ĥ (k) related to a in�nite dimensional Hilbert
space that can be represented as Hk. A bloch bundle is a �ber bundle such that

π : Hk −→ T d

12This stands for both spinless and spinful particles.
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Calculating twice the TR operator a fundamental result is found:

T̂ 2 = e−i2πSy (2.34)

Note that for integer spin particles, twice the action of the TR operator over a wavefunction

describes a 2π rotation, which is equivalent to the identity operator. However, half-integer spin

particles experiment a π rotation, which gives a factor T̂ 2 = −1. Performing the exponential of

−iπSy with Sy =
σy
2 the following formula for the TR operator is obtained:

T̂ = −iσyK̂ (2.35)

Because of antiunitarity, it ful�lls T̂ 2 = −1. Since this condition must be satis�ed, eigenvalues

of |uk〉 and T̂ |uk〉 have to be di�erent; otherwise T̂ 2 |uk〉 = |uk〉. In fact, they are distinct but

have the same energy. This result is remarkable and is known as Kramer's degeneracy. For a TR

invariant hamiltonian, [Ĥ, T̂ ] = 0 and then |uk〉 and T̂ |uk〉 are eigenstates of the hamiltonian.

In addition, they are orthogonal since 〈uk| T̂ |uk〉 = 0. We can also prove that the scattering

probability of the state |uk〉 into its partner T̂ |uk〉 is

〈
T̂ uk

∣∣∣ Ĥ |uk〉 = −
〈
T̂ uk

∣∣∣ Ĥ |uk〉 = 0 (2.36)

It can be thought as an energy degeneration E (k) = E (−k) for the hamiltonian bundles so that

the energy for |uk〉 and |u−k〉 is the same, which results in a bundle double degeneracy at some

points of the Brillouin torus, the so-called Time Reversal Invariant Momenta (TRIM).

For a single-band below the Fermi energy in a spinless system we can obtain that the Berry

curvature behaves as Ωµν (−k) = −Ωµν (k), which leads to a vanishing value upon integration

over the 1BZ. The same can be obtained for a spinful system13.

Kramer's pairs ful�ll

E(k) = E(−k) (2.37)

which implies that they have the same energy for opposite k. A cornerstone example is graphene

with spin-orbit coupling (SOC)14. These Kramer's pairs are formed by the so-called edge states.

The number of Kramer's pairs is related to the topological invariant of the phase. It must be

pointed out that Chern's number for a TRS model is zero, since each band's Chern's number

can only be

C↑(↓) = +(−)1 (2.38)

and the total Chern's number is the sum of all of them. This is a good moment to introduce the

previously mentioned Z2 invariant. For the case of a TRS system, this can be de�ned (in terms

13This is crucial to understand why TR invariant systems cannot exhibit a non-zero Hall conductance.
14See later chapters.
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of the Chern's total number) as

Z2 =
C↑ − C↓

2
mod(2) (2.39)

and it can take values 0 or 1, depending on the number of Kramer's pairs (this is, if it is even or

odd respectively). One can also relate the invariant to the number of Kramer's pairs as

Z2 = Nmod (2) (2.40)

Although this is an important result, a general vision on the Z2 invariant is prefered to be pre-

sented related to a general symmetry. There is a lot of work developed to compute Z2 invariants

for physical systems [9,15-17,22]. Two remarkable approaches are of theoretical interest. The �rst

method to calculate a Z2 invariant
15 is from the Time Reversal Polarization (see Appendix A.4).

It is de�ned as

Pθ =
1

iπ
ln

[
w (π)

w (0)

√
w2 (0)√
w2 (π)

]
(2.41)

where w is the matrix representation of the time-reversal operator. We can rewrite the Time

Reversal Polarization as

(−1)Pθ =

√
det [w (0)]

Pf [w (0)]

√
det [w (π)]

Pf [w (π)]
(2.42)

This result can be generalized to a torus (the 1BZ) in which the 4 TRIM are considered:

(−1)Z2 =
4∏
i=1

Pf [w (Λi)]√
det [w (Λi)]

(2.43)

which is appropiate for a 2D system.

A di�erent approach is to consider that enforcing the time reversal constraint implies a Z2

invariant to be an obstruction such that the gauges for wavefunctions at ± (k, t) are not inde-

pendent. Considering the four TRIM, a transformation such as |uk,n〉 −→
∑

m Unm (k) |uk,m〉
has to be symplectic. A non-zero Z2 invariant is not consistent with the constraint since thus

Det (w (k, t)) = 1∀k, t and Pf [w (Γi)] = 1, which gives (−1)Z2 = 0 in eq. (2.43). A formula

for the Z2 invariant as an obstruction to the constraint is given below in terms of the Berry

connection and the Berry curvature. In order to do so one has to guess wavefunctions de�ned

smoothly on two patches A and B in the 1BZ:

15Since Z2 calculations may be di�erent depending on the system, two di�erent approaches have been used in
this work. A numerical method is employed in order to obtain the Z2 invariant in TMDC's, while a symmetry-
based approach has been used in AGNR's.
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Figure 1: 1BZ torus and patches A and B are shown. τ1 is the boundary of the A region, while τ2 is the

boundary of B. A boundary τ1/2 is the one of the shaded region.

We are able to de�ne wavefunctions for regions A and B such that they are related at the

overlapping regions by a U (2N) transition matrix UAB. Then a change in the U (1) phase of

this matrix can be de�ned around a closed loop ∂τ1 as

D =
1

2πi

˛
∂τ1

Tr[UAB†∂UAB]dl =
1

2π

˛
dτ1

[
AB −AA

]
dl (2.44)

which can be related to the Berry �ux by Stoke's theorem:

˛
∂τ1

AAdl =

ˆ
τ1

FAdτ (2.45)

Wavevectors of B are not necessarily well-de�ned in A, but the can be related to the Berry �ux

as follows:

˛
dτ1

ABdl = −
˛
∂τ2

ABdl +

˛
∂τ1/2

ABdl = −
ˆ
τ2

FBdτ +

˛
∂τ1/2

ABdl (2.46)

A �nal result is given:

D =
1

2π

[˛
∂τ1/2

Adl −
ˆ
τ1/2

Fdτ

]
mod (2) (2.47)

The �nal result in eq. (2.47) is the basis of the calculations performed in order to obtain the

topological invariant in TMDC's.
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3 TOPOLOGICAL PHASES

In order to understand the nature of topological materials it is compulsory to consider that,

though there are topologically trivial models, this does not imply that their behaviour cannot

be related to some kind of trivial topology. This chapter is devoted to study some remarkable

systems whose features are related with non-trivial topologies and topological phases. These ones

are the Quantum Hall E�ect (QHE), the Su-Schrie�er-Heeger model (SSH), Haldane's model and

the Quantum Spin Hall E�ect (QSHE). The �rst section is devoted to motivate the study of QHE

systems and its relation with the Berry potential and curvature, as well as the characterization

of its topological invariant. The second section, devoted to the SSH model, shows how edge

states appear and bulk-edge correspondence adquire a major importance. A third section shows

the features of Haldane's model, from a graphene system with both inversion and time-reversal

symmetries to a system with both of them broken. Haldane's model is essential to understand

the QSHE, which is studied in the fourth section. QSHE sets the framework in order to study

TI's. The calculation of the Z2 and its relation to QSHE is also detailed.

3.1 Quantum Hall E�ect (QHE)

The QHE is quite important for this purpose since, historically, its study lead to a �rst attemp

to unify topological issues with condensed matter physics [2,3,6,7]. Its relation to the QSHE is

also a strong reason to deeply study it.

Focusing in 2D systems, the classical Hall E�ect (HE) lies on the emergence of an electric �eld

(thus, a voltage) in a conductor plane due to a charge polarization when a magnetic �eld is

applied perpendicular to the plane. The HE introduces a tensorial representation for the Ohm's

law j = σE where σ is a 3× 3 tensor with σii = nq2τ
m and

σ12 = σ21 =
nq

B
(3.1)

are the non-zero elements. These components of the conductivity tensor are described in terms

of the electron concentration n, charge q and mass m, as well as the relaxation time τ and the

applied magnetic �eld B. The term σii is known as Drude conductivity an is usually denoted by

σD. In the HE another component σ12 appears, known as Hall conductivity and usually written

as σH . This Hall conductivity (or the resistivity, since σH = ρ
−1

H ) takes continuous values in the

HE.

However, when we work on the QHE, the experimental observations conclude that the Hall

resistivity is quantized, as studied by [1].
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Figure 2: Longitudinal and transverse resistivity measurements for the QHE. It is observed that while

the longitudinal resistivity can be aproximated as a delta function, the transverse component is a constant

piecewise-de�ned function. This quantization is one of the most important features of the QHE and a

historically remarkable result which opened a new workline at the beginning of the 80's [1,3,4]. Image

created by D.R. Leadley, Warwick University (1997).

Figure 2 shows a non-linear relation between the resistivity components and the magnetic �eld in

a high magnetic �elds domain. This is also true for low temperatures as well. In order to obtain

an analytical result for the Hall conductivity a perturbative method is applied below.

Let us focus on a free electron hamiltonian with a source of perpendicular magnetic �eld B. A

non-perturbative treatment is shown in Appendix B.1. However, one can also perform a di�erent

approach by doing perturbation theory. In order to do so, let us guess a perturbative model

in which a perturbation V = −eEy is applied to a fundamental hamiltonian Ho. Denoting its

eigenstates by {|n〉}, we can de�ne the eigenstates of the perturbated hamiltonian H = H0 + V

as follows from �rst-order perturbation theory like

∣∣n′〉 = |n〉+
∑
m 6=n

〈m| − eEy |n〉
En − Em

|m〉 (3.2)

Since the main goal is to compute the expectation value for the current density on the x axis,

the following calculus is performed. Note that a Fermi-Dirac distribution function f(En) has to

be introduced for a �nite-temperature system:

< J ′x >=
〈
n′
∣∣ J ′x ∣∣n′〉 =

1

L2

∑
n

f(En)
〈
n′
∣∣ evx ∣∣n′〉 =

=< Jx > +
∑
n,m 6=n

f(En)
〈m| − eEy |n〉
En − Em

〈n| evx |m〉+

+
∑
n,m 6=n

f(En)
〈n| − eEy |m〉
En − Em

〈m| evx |n〉 (3.3)
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Given that the expectation value for the current density has to be zero for E = 0, we need 〈Jx〉
to be zero too since it is the non-perturbative term. Considering also that

〈m| y |n〉 = i~
〈m| vy |n〉
En − Em

(3.4)

one obtains the following:

〈
J
′
x

〉
=
−i~e2E

L2

∑
n

f(En)
∑
m 6=n

[Bm,n] (3.5)

where

Bm,n =
〈m| vy |n〉 〈n| evx |m〉

(En − Em)2 − 〈n| vy |m〉 〈m| evx |n〉
(En − Em)2 (3.6)

In order to obtain the previous expression in momentum space for a periodic lattice, one can

take {|unk〉} wavefunctions. Given that y = i∂ky in momentum space, the expectation value for

the current density can be rewritten as follows:

〈
J
′
x

〉
=
−ie2E

~L2

∑
n,k

f(Enk)
∑
m 6=n

[
〈umk′ | ∂ky |unk〉 〈unk| ∂kx |umk′〉 −m←→ n

]
(3.7)

which clearly stands for

−e2E

~L2

∑
n6=m

∑
k

f(Enk)
[
∂kxAny − ∂kyAnx

]
(3.8)

where
[
∂kxAny − ∂kyAnx

]
= Ωnz (k). Thus the �nal result is obtained:

−e2E

~L2

∑
n 6=m

∑
k

f(Enk)Ωnz (k) (3.9)

The density current is found to depend on the Berry curvature Ωnz (k) for the n-th band in a

vectorial representation. Note that Anj = i 〈unk| ∂kj |unk〉 is the Berry potential. Since the sum

(or the integration) of the Berry curvature in the whole 1BZ has to be a constant, we are allowed

to write the current density as

〈
J
′
x

〉
=
e2E

~
ν (3.10)

From the de�nition of Jx one gets

σxy =
e2

~
ν (3.11)

This is the same result obtained without perturbation theory for the Hall conductivity of the

QHE. It can be observed that the integral along the whole 1BZ over the �lled bands of the

Berry curvature gives rise to a number ν known as the TKNN invariant (Thouless, Kohmoto,
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Nightingale y den Nijs) [3]. This result is analogous to the Gauss-Bonet theorem in topology for

a band model, which shows the relation between condensed matter physics and topology.

3.1.2 Chern number

Since the 1BZ is a torus, it has no boundary. This implies that applying Stoke's theorem to

calculate the Berry curvature integral along the 1BZ by performing the integral of the Berry

potential (which is supossed to be well-de�ned) through the boundary ∂BZ will carry to a

zero Hall conductivity. A non-zero Hall conductivity appears only if the Berry potential has

any singularity at some point in the 1BZ (as in the Bloch sphere monopole case), which is a

consequence of the fact that no global gauge can be obtained over the entire 1BZ Thus, a non-

zero Chern number can be seen as an obstruction to the application of Stoke's theorem over the

whole 1BZ.

Since a non-zero Hall conductivity is related to a non-zero Chern number, the may be some cases

for which, through a U (1) gauge transformation eiξ(k) such that An (k) −→ An (k) − ∂kξ (k),

the Berry potential is not well-de�ned. Consider that the wavefunction of the n-th energy level

can be transformed as

|u1n (k)〉 −→ eiξ(k) |u1n (k)〉 (3.12)

We are able to de�ne a di�erent gauge for the points where the singularities appear, considering

a small region around them on which

|u2n (k)〉 −→ eiγ(k) |u1n (k)〉 (3.13)

is well-de�ned. Particularly at the boundary between the di�erent regions, the wavefunctions are

related by the following gauge transformation:

|u2n (k)〉 = eiχ(k) |u1n (k)〉 (3.14)

where χ (k) = γ (k)−ξ (k). This allow to relate the Berry potentials of the di�erent wavefunctions

as

A2 (k) = A1 (k) + i∂kχ (k) (3.15)

Since the Hall conductivity is an observable quantity, it must be gauge invariant. Then we should

have smoothly di�erentiable wavefunctions in order to compute the Hall conductivity through

the integration of the Berry curvature ∂k×A (k). With the previous gauges, this can be achieved

by patches as follows. Denoting the boundary points of the 1BZ where the u1n wavefunction is

well de�ned as ∂BZ1 and the rest by ∂BZ2, we have

σxy =
e2

h2πi

[ˆ
∂BZ1

A1 (k) dk +

ˆ
∂BZ2

A2 (k) dk

]
(3.16)
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Since the Brillouin torus does not have a boundary, ∂BZ1 = −∂BZ2, which implies opposite

orientation. This allows to write the conductivity as

σxy =
e2

h2πi

˛

∂BZ2

[A2 (k)−A1 (k)] dk (3.17)

which is clearly

σxy =
e2

h2πi

˛

∂BZ2

∂kχ (k) dk (3.18)

The Chern number is �nally de�ned as

n =
1

2π

˛

∂BZ2

∂kχ (k) dk (3.19)

which can be seen as the winding number of the gauge transformation on the boundary ∂BZ2.

Thus, the Chern number is an obstruction to Stoke's theorem which leads to a quantized Hall

conductivity.

3.2 Su-Schrie�er-Heeger model (SSH)

The SSH model describes a 1D system with a dimerized unit lattice and staggered �rst-neighbor

interactions. Denoting the sublattices by A and B, and writing the interactions as v and w, the

SSH hamiltonian is set to be

Ĥ = v
N∑
m=1

(|m,B〉 〈m,A|+ h.c) + w
N−1∑
m=1

(|m+ 1, A〉 〈m,B|+ h.c) (3.20)

where the �rst term describes the interaction between elements inside the same cell while the

second term represents the intercell interaction. Indexes m are for the m-th unit cell. This is

a simpli�ed model for polyacetyle, given that a spin-polarized model is being considered here.

Writting |m,Ai〉 ≡ |m〉 ⊗ |Ai〉 and considering the 2D Pauli matrices16, the hamiltonian can be

recast into the following:

Ĥ = v

N∑
m=1

(|m〉 〈m|σx) + w

N−1∑
m=1

(
|m+ 1〉 〈m| ⊗ σx + iσy

2
+ h.c

)
(3.21)

In Fourier representation, this last expression can be described by a Tight-Binding (TB) hamil-

tonian in k-space which satis�es

16The Pauli matrices are chosen as

σ0 =

(
1 0
0 1

)
≡ I;σx =

(
0 1
1 0

)
;σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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Ĥ |un (k)〉 = En |un (k)〉 (3.22)

with periodic boundary conditions for the bulk states. In the simplest situation, a 2-band model,

the hamiltonian reads as follows:

Ĥ (k) =

(
0 v + we−ik

v + weik 0

)
(3.23)

On-site energies are set to zero. The dispersion relation is given by

E =
√
v2 + w2 + 2vwcos (k) (3.24)

Since any 2-band model bulk hamiltonian can be generically described by

Ĥ (k) = dx (k)σx + dy (k)σy + dz (k)σz = d0 (k)σ0 + d (k) · σ (3.25)

one can rewrite the SSH k-space hamiltonian in this fashion:

(v + wcos (k))σx + wsin (k)σy (3.26)

Thus, the components for d (k) in the SSH model are d0 (k) = dz (k) = 0, d (k) = v+wcos (k) and

dy (k) = wsin (k). It is important to understand the meaning of d (k).Consider N parameters

{d1, d2, ..., dN−1, dN}

grouped in d (k). This is the vector smoothly variated along a path in the parameter space such

that

Ĥ = Ĥ (d) ; d ∈ R3 \ {0} (3.27)

It is obvious that R3 is the parameter space. One can use Bloch's sphere to represent the hamil-

tonian. By doing so one �nds

cos (θ) =
dz
|d|

; eiφ =
dx + idy√
d2
x + d2

y

(3.28)

Given that we are working on a 2-band model, the eigenvalues will be ± |d|, such that

Ĥ |±d〉 = ± |d| |±d〉 (3.29)

The structure of the eigenstates in momentum space is determined by the direction of d. Due to

periodicity (k = 0 −→ 2π), joining all the points from di�erent orientations of this vector will

give rise to a closed loop in the parameter space. Particularly, it will be a circle of radius w since

dz = 0; thus, the vector d will be contained in R2. The topological invariant for the SSH model
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is the winding number, which de�nes how many times the trajectory wraps around the origin.

This fact is related to a quiral symmetry whose quiral operator must obey

Γ̂Ĥ (k) Γ̂† = −Ĥ (3.30)

The previous condition is satis�ed by σz. Considering a common 2-band hamiltonian and applying

the quiral symmetry:

σzĤ (k)σ†z ==

(
do + dz −dx + idy

−dx − idy do − dz

)
(3.31)

Hence the following relations must be ful�lled:

do + dz = − (do + dz) (3.32)

do − dz = − (do − dz) (3.33)

which implies do = dz = 0. This result is something already mentioned, but we have proven that

the origin for this terms to vanish has a quiral nature. A necessary analysis has to be performed in

order to understand the di�erence between bulk and edge states. Invariance under traslations is a

property of the bulk, which allows to consider its states as delocalized. However edge states have

a localized character in the thermodynamic limit. Di�erent hopping amplitudes combinations

are studied below. Taking v = 1, w = 0 one has

E = ±1 (3.34)

where k independence is observed (�at band limit). This parameter combination descibes a model

with no interactions between di�erent unit cells. If one thinks about the real edges of the chain,

it is clear that no changes respect to the bulk states will arise. If, on the contrary, one chooses

v = 0, w = 1, although the eigenvalues remain being E = ±1, a notorious di�erence shows up.

Given that intracell interactions are being neglected while intercell interactions are not, edge

atoms will not have a neighbor atom to interact with. This corresponds to, in example,

Ĥ |N,B〉 = 0; Ĥ |1, A〉 = 0 (3.35)

Thus, edge states will have zero-energy eigenvalues. The fact that they di�er from the bulk states

has exceptional consequencies. The election for v y w has a topological implication. Since vector

d (k) depends on the hopping amplitudes, its orientation on every 1BZ point will also depend on

them. Consider di�erent combinations for v and w:
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Figura 3: dy vs dx picture for v = 1, w = 0. This implies that, for these combination, vector d (k)

reduces to a point. No wrapping exists around the origin.

Figura 4: a) dy vs dx picture for v = 1, w = 0,5. As expected, no wrapping happens at the origin. b)

dy vs dx picture for v = 1 and w = 1. This is a special situation where the origin is touched an in�nite

number of times, but not wrapped. c) dy vs dx picture for v = 0,5 and w = 1. The winding number is the

unit under this conditions. d) dy vs dx picture for v = 0 and w = 1. As in the previous parametrization

the winding number is the unit.

As shown in Figure 4, there is a situation where the winding number is not well-de�ned, which

occurs for v = w = 1. This corresponds to a topological phase transition. For v > w, the winding

number is null, which describes a trivial topological phase. However, for v < w, one �nds that

the winding number is the unit, which is associated to a non-trivial topological phase. This
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Figura 5: a) Band structure in the 1BZ for the SSH model with parameters v = 1, w = 0. b) Band

structure in the 1BZ for the SSH model with parameters v = 1, w = 0.5 . c) Band structure in the 1BZ

for the SSH model with parameters v = 1, w = 1. d) Band structure in the 1BZ for the SSH model with

parameters v = 0,5, w = 1.

topological variation from one situation to another implies that no smooth deformations can be

performed on the hamiltonian to change from one phase to the other, which is the basis of a

topological phase transition: one cannot deform continuously a system with a given topological

invariant into another with a di�erent one; this is, no homotopy can be stablished between the

hamiltonians. Hence no adiabatic deformations on the hamiltonian can be performed to change

the topological phase. Another contribution to the explanation is the appearance of edge states,

which di�erent from those of the bulk.

Figure 5 shows the band structure in the SSH model depends on the hopping amplitudes v

and w. A topologically trivial phase occurs for Figure 5.a and Figure 5.b while a non-trivial

phase happens for Figure 5.d. Figure 5.c shows a transition between topologically trivial and

topologically non-trivial phases. As expected, a band gap closure is observed.

When dealing with non-zero eigenvalues, it is known that the eigenstate have a quiral partner on

the same lattice, while if the eigenvalue is null, the eigenstates with this same energy belong to

di�erent lattices. When an adiabatic variation is performed to the parameter vector d, an edge

state can appear, in example,

|ψ〉 −→d |ψ0〉 , E0 = 0 (3.36)
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Due to the quiral symmetry of the system, a modi�cation on the eigenstate also implies a variation

over its quiral partner with an eigenvalue that is the zero energy. Because of this, no change in the

di�erence between the number of states NA−NB occurs. An inverse consideration can be done.

One can start from the edge states with zero energy and perform an adiabatic transformation

which creates non-zero energy states. Quirality is responsible for the reduction of the number of

states in sublattice A as well as in sublattice B. Thus, NA −NB remains constant. Considering

that an adiabatic deformation can only occur at the same topological phase, the di�erence in the

number of states NA −NB can be viewed as a topological invariant: it remains constant during

the whole transformation inside a given phase.

Two topological invariants have been de�ned in the SSH model. A �rst one, the winding num-

ber, describes the wrapping around the origin in the parameter space. It is also known as the

bulk winding number. A second one measuring the di�erence in the number of states between

sublattices has also been introduced. In fact, a bulk topological invariant can be related to the

number of edge states. This is the well-known bulk-edge correspondence, a phenomenon which

is fundamental in topological condensed matter physics.

3.3 Graphene

Since graphene physics is a poweful framework to study theoretical issues such as symmetries and

their relation to trivial or non-trivial topological states, di�erent graphene systems are studied

below in terms of their symmetries, which are inversion and time reversal.

3.3.1 Inversion and time-reversal symmetric model for graphene

A graphene honeycomb lattice is shown below17:

Figura 6: Honeycomb lattice for graphene and lattice vectors [23].

The hamiltonian is the following:

17Note that the reference system can be chosen such that the x axis goes along the vector a1 while the y axis
is perpendicular to it. Other choices are also plausible.
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Ĥ =
∑
i

ε
(
â†i âi + b̂†i b̂i

)
− t

∑
<i,j>

(
â†i b̂j + b̂†i âj

)
(3.37)

where ε describes the on-site energy of the electrons and t the �rst-neighbor hopping amplitude.

Thus, the �rst term describes the electron energy while the second one denotes the hopping

energy, where t is the hopping integral between 2 neighbouring lattice positions. The Fourier

representation for this hamiltonian is the following:

Ĥ =
∑
k

ε
(
â†kâk + b̂†k b̂k

)
− t
∑
k

f(k)â†k b̂k + h.c. (3.38)

The Fourier representation of the hamiltonian can be decomposed as

Ĥ =
∑
k

(
â†k b̂†k

)( ε −tf(k)

−t∗f∗(k) ε

)(
âk

b̂k

)
=

=
∑
k

(
â†k b̂†k

)
h(k)

(
âk

b̂k

)
(3.39)

In order to obtain the dispersion relation, one has to diagonalize h(k), getting this result:

ε(k) = ε± |t| |f(k)| (3.40)

where the gap energy is de�ned as 4ε (k) = 2 |t| |f(k)|. The factor f(k) is obtained to be

f(k) = 1 + e
ic
(
−kx+

ky√
3

)
+ e
−ic
(
kx+

ky√
3

)
(3.41)

where c =
√

3a
2 is the lattice constant. Thus, the energy gap can be expressed as

4ε (k) = 2 | t |

√
1 + 4cos

(
1√
3
kyc

)[
cos

(
1√
3
kyc

)
+ cos (kxc)

]
(3.42)

A non-zero gap means that our material is an insulator, but there can be some points in the 1BZ

where the gap closes. These are the ±K points, where the two bands get together, also known

as Dirac points or Dirac nodes. A Taylor expansion can be performed around the Dirac points

as k = ±K + q :

f(±K + q) ' f(±K) + ∂kf(k) |±K .q (3.43)

It is clear that f(K) = 0 and ∂kf(k) |±K ·q = −
√

3c (qx − iqy). Doing the same around the

other point one gets a similar result. Evaluating at a point near the Dirac nodes, the hamiltonian

transforms like this:

h(k) |qw

(
ε

√
3ct (qx − iqy)√

3ct (qx + iqy) ε

)
(3.44)
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Since we are dealing with a 2-band model, one can always rewrite the hamiltonian in terms of

the Pauli matrices:

h(k) |q= εI + vfq · σ

where vf =
√

3ct, which is in the order of 106
(
m · s−1

)
. Avoiding the on-site contribution, we

obtain the well-known Dirac equation for massless fermions, also known as the Weyl equation.

Electrons behave as massless particles at the Dirac points, this is, as Dirac particles.18.

There are no other independent Dirac nodes in the problem. The presence of these nodes renders

graphene to be a semimetal, with fundamentally di�erent properties from an insulator, because

low-energy excitations are always present in such a system. The question one should now ask is

whether these Dirac points are stable to perturbations. Our expansion of the Hamiltonian has

shown us the existence of two Dirac fermions. However, the Hamiltonian we used was by no

means generic. For example, it contained only nearest-neighbor coupling with C3 symmetry, and

it did not allow for di�erent on-site energies of the A and B sites in the unit cell, etc. Would

adding small perturbations to the graphene lattice result in the gapping of these Dirac fermions?

What are the perturbations we are allowed to add while keeping the system a semimetal? What

kind of perturbations open a gap? For all these questions, we need to look at the symmetries of

graphene.

3.3.2 Broken inversion symmetry model for graphene

In order to break inversion symmetry, one can do several changes. A simple one19 is to change

the on-site contributions, in example, as follows:

εA = ε, εB = −ε −→
∑
k

ε
(
â†kâk − b̂

†
k b̂k

)
(3.45)

It is straightforward to calculate the Fourier representation and the dispersion energy:

h (k) =

(
ε −tf(k)

−t∗f∗(k) −ε

)
(3.46)

ε(k) = ε±
√
|t|2 |f(k)|2 + ε2 (3.47)

Now the gap obtained is ε (k) = 2ε. Since there is no dependence on k, one can conclude that

the material will behave as a conventional insulator: there is no way for the bands to close.

Performing the same Taylor expansion as the one in the previous section, it is clear that

h(k) |q= ε

(
1 0

0 −1

)
+ t

3a

2

(
0 qx − iqy

qx + iqy 0

)
= εσz + ~vfq · σ (3.48)

18This model is just a nearest-neighbor approach, but it is enough accurate to show the in�uence of the
symmetries on the system.

19Some others such as considering second nearest-neighbor interactions can also break this symmetry.
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Eq. (3.48) is the Dirac hamiltonian for electrons with mass, where the mass term is given by εσz.

3.3.3 Haldane's model

Haldane's model describes the behaviour of a graphene model and gives rise to important pe-

dagogical results that can be applied to topological materials such as TI's or TMDC's. In fact,

at �rst sight graphene can be viewed as a TI but its low energy characteristics (in example, its

low SOC gap) di�cults its application as TI. Haldane's model is a powerful tool to get a �rst

insight into 2D topological physics. In addition, it can be also useful since TMDC's are also

honeycomb-like materials with 2 sublattices.

Haldane's model [24] breaks temporal inversion symmetry by adding second nearest interactions

while applying a perpendicular e�ective magnetic �eld such that the net �ux through the unit

cell is zero. Considering a second-neighbor term like

−t′
∑

<<i,j>>

(
â†i âj − b̂

†
i b̂j

)
(3.49)

the second-neighbor interactions are only possible for identical atoms (this is, atoms with the

same sublattice index). In addition, a magnetic �eld implies a phase factor to appear in the

hopping integrals, known as Peierls substitution. A magnetic �eld, and thus, a space-dependent

potential vector, breaks the commutation between the hamiltonian and the translation operator,

whose consequence is the loose of periodicity and thus the validity of Bloch's theorem. In order to

solve this situation, it becomes necessary to use new traslation operators which do commute with

the hamiltonian. These are the so-called magnetic traslation operators. They act on a position

Ri destroying an electron on it and creating it at Ri + Rj at the expense of adding a path- and

magnetic �eld-dependent phase as

θi =

ˆ Ri+Rj

Ri

A(x, y)dr (3.50)

Magnetic traslation operators are, then:

TRj = â†Ri+Rj
âRiie

iθi (3.51)

and the new Bloch states will be the following:

|ψk〉 =
1

N

∑
R

ei(kR+ q
~ θ) |ψR〉 (3.52)

Appendix B.2 proves the following results. The �nal hamiltonian is this:

Ĥ =
∑
i

ε
(
â†i âi − b̂

†
i b̂i

)
− t

∑
<i,j>

(
â†i b̂j + b̂†i âj

)
− t′

∑
<<i,j>>

ei
q
~ θij

(
â†i âj − b̂

†
i b̂j

)
(3.53)

which, in Fourier representation looks like follows :
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Ĥ =
∑
k

(
â†k b̂†k

)( ε −tf(k)

−t∗f∗(k) −ε

)(
âk

b̂k

)
−

−t′
∑
k

(
â†k b̂†k

)( f(k)t′ei
q
~ θij + h.c. 0

0 f∗(k)t′ei
q
~ θij + h.c.

)(
âk

b̂k

)
(3.54)

with

h0 (k) =

(
ε −tf(k)

−t∗f∗(k) −ε

)
(3.55)

h1 (k) =

(
f(k)t′ei

q
~ θij + h.c. 0

0 f∗(k)t′ei
q
~ θij + h.c.

)
(3.56)

Diagonal terms for h1 (k) are worked in Appendix B.3. One �nds the whole hamiltonian h (k)

can be rewritten as a 2-band hamiltonian like Ĥ =

(
do + dz dx − idy
dx + idy do − dz

)
. The diagonal terms

are:

do = −2t′cos
( q
~θij

)
(cos (kδ1) + (kδ2) + (kδ3))

dz = ε+ 2t′sin
( q
~θij

)
(sin (kδ1) + (kδ2) + (kδ3))

(3.57)

while the o�-diagonal ones are:

dx = tRe (f (k)) = t (cos (ka1) + cos (ka2) + cos (ka3))

dy = tIm (f (k)) = t (sin (ka1) + sin (ka2) + sin (ka3))
(3.58)

By solving the characteristic equation the following dispersion relation is found

ε = do ± |d (k)| (3.59)

Appendix B.4 shows the calculation of the valence band eigenstate:

|ψ−〉 =
1

2d (k) [d (k)− dz]

(
dz − |d (k)|
dx + idy

)
(3.60)

It is important to note that, as for the generic case, there is a singular situation if dx = dy =

0, dz > 0. A gauge transformation which conserves the probability amplitude has to be performed

in order to avoid this problem:

∣∣∣ψ′−〉 =
1

N ′

(
−dx + idy

dz + |d (k)|

)
(3.61)

But now the same problem arises for dx = dy = 0, dz < 0. This has to do with the topology of

the parameter space. The election of one or another wavefunction will depend on the region (as

the problem of the magnetic monopole). Speci�cally, the points where these situations happen
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Figura 7: Picture describing the topological order by the Chern number in terms of the mass and the

phase [25]. In this picture, M denotes what we have named ε , while K y K ′ are the symmetry points

(denoted by ±K in this work).

are ±K. Evaluating the hamiltonian at these points one gets

dx = dy = 0 (3.62)

dz (K) = 3
√

3t′sinφ+ ε (3.63)

dz (−K) = −3
√

3t′sinφ+ ε (3.64)

where φ is the gauge phase from the gauge transformation made in eq. (3.61). As well as in

the QHE, a topological invariant, the Chern number, can be de�ned and studied for Haldane's

model. Working with just one band (on the contrary, the topological invariant would be the sum

of every Chern number) and considering sinφ > 0, one gets the following Chern number :

C = 1 (3.65)

while if sinφ < 0 had been considered, the result would have been

C = −1 (3.66)

Chern's number is the topological invariant of the system. Figure 7 depicts the relation between

di�erent topological phases and the mass and phase parameters ε and φ (note that the dz term

is the one that will determine the topological nature of the system) in the Chern number for the

Haldane's model. Given that two values are possible, a third transition value C = 0 can be also

possible.

Regions with Chern number C1 = 0 are those associated with a conventional insulator. Those
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ones in which the Chern number is non-zero (C1 = ±1) are related to a topological insulator,

known as Chern insulator in this context. In the limit case

|ε| = 3
√

3
∣∣t′sinφ∣∣ (3.67)

the gap is broken and thus the bands close. This is the situation for which a singularity in the

wavefunction occurs (dx = dy = dz = 0) at K and −K.

We may be interested in the edge states and the way the hamiltonian behaves at those points.

As done before at K, but now considering the do and dz components (notice that the behaviour

of ho (k) is already known):

do(K + q)± dz(K + q) ' do(K)± dz(K) + ∂kdo(k) |K .q± ∂kdz(k) |K .q (3.68)

Finally, after calcuting ∂kdo(k) |K and ∂kdz(k) |K the result is found to be

do(K + q) + dz(K + q) ' do(K)± dz(K) (3.69)

and thus

h1 (k) '

(
do(K) + dz(K) 0

0 do(K)− dz(K)

)
(3.70)

for points near K. A �nal expression for the Dirac hamiltonian can be written as follows:

Ĥ = do(K)I + ~vfq · σ + dz(K)σz (3.71)

where dz(K) is a term that can be implemented as, in example, a magnetization.

3.4 Quantum Spin Hall E�ect (QSHE). Topological Insulators (TI's)

The QSHE phase is introduced in the following section, considering the Kane-Mele model [15,16]

for graphene with SOC. It is remarkable that the SOC in graphene is so small that it cannot

provide (by now) a suitable experimental implementation, but this is a cornerstone model in

order to study topological insulators and topological phases in general.

Although a lot of work has be performed, TI's have still not been introduced. In order to have

a TI, a SOC has to appear (and be strong enough). The QHSE can be viewed as a duplication

of the QHE with opposite conductances. Materials with QSHE have TRS since Ĵsx = σ̂sxyÊx is

even under T̂ . A common TI has a band structure with a gap in the bulk between the valence

band and the conduction band. However, there will be edge states (as in QHE) with a non-zero

conductivity. Since the QSHE is a doubled version of the QHE, two Hall conductivities will

appear depending on the spin. As one can �gure out, this will lead to the appearance of two
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opposite Chern numbers. If one is looking for a topological invariant, then the Chern number

cannot be a good number. However, a spin Chern number can be de�ned such that its di�erence

describes the current on the edges.

Based on Haldane's work [24], Kane y Mele [15] proposed a �rst version for the QHSE based on

a model for graphene with SOC and without second-neighbours interactions. The SOC term is

the following:

ĤSOC = λSO
∑
i,j,σ

iσυij

(
ĉ†iσ ĉjσ + b̂†iσ b̂jσ

)
(3.72)

where ĉ†iσ, b̂
†
iσ are the creation operators for every sublattice, respectively, and i, j denote unit

cells . The factor υij is ±1 depending on symmetric (i to j) or antisymmetric (j to i) transitions:

ĤSOC = λSO
∑
i,j,σ

iσυij

(
ĉ†iσ ĉjσ + b̂†iσ b̂jσ

)
=

= −λSO
∑
i,σ

iσĉ†iσ (ĉi+a1,σ − ĉi+a2,σ + ĉi−a1+a2,σ − ĉi−a1,σ + ĉi−a2,σ − ĉi+a1−a2,σ)−

−λSO
∑
i,σ

iσb̂†iσ

(
b̂i+a1,σ − b̂i+a2,σ + b̂i−a1+a2,σ − b̂i−a1,σ + b̂i−a2,σ − b̂i+a1−a2,σ

)
(3.73)

Performing a Fourier transformation as in the previous sections one �nds:

HSOC = −λSO
∑
k,σ

iσ
(
ĉ†kσ ĉkσ − b̂

†
kσ b̂kσ

)
·

·
(
e−ika1 − e−ika2 + e−ik(a2−a1) − eika1 + eika2 − eik(a2−a1)

)
=

= −λSO
∑
k,σ

iσ
(
ĉ†kσ ĉkσ − b̂

†
kσ b̂kσ

)
·

·F
(
e−ika1 − eika1 − e−ika2 + eika2 − eik(a2−a1) + e−ik(a2−a1)

)
=

= 2λSO
∑
k,σ

σ
(
ĉ†kσ ĉkσ − b̂

†
kσ b̂kσ

)
[sin(ka1)− sin(ka2)− sin(k(a1−a2))] (3.74)

De�ning C = sin(ka1)− sin(ka2)− sin(k(a1−a2)) and expanding on σ one �nds

h (k) =


2λSOC 0 0 0

0 −2λSOC 0 0

0 0 −2λSOC 0

0 0 0 2λSOC

 (3.75)
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The hamiltonian of the QSHE is a box hamiltonian. Adding the SOC term to the rest of the

hamiltonian, which implies to double the latter, one gets

Ĥ =


do + dz + 2λSOC dx − idy 0 0

dx + idy do − dz − 2λSOC 0 0

0 0 do + dz − 2λSOC dx − idy
0 0 dx + idy do − dz + 2λSOC

 (3.76)

Working at the edge points of the 1BZ it is shown that a mass term appears as ±2λSOCσz for

spin up and down respectively.

Figura 8: Schematic comparison between QHE and QSHE [26]. Since QSHE is made of two copies of

the QHE, the edge states are also duplicated, and have di�erent quiralities.

There are two helical modes on each edge. No scattering is allowed as in QHE, since in order to

be re�ected, the electron has to �ip its spin (this is the only fashion to change the propagation

direction), and TRS has to be broken in order to do so. Impurities have to be non-magnetic

in order to make this change, because if not, TRS would be broken. Spatial separation of the

edge states is now produced by SOC, and no external magnetic �eld is needed (in fact, magnetic

�eld would break TRS). Edge states have opposite group velocities, constituting a topologically

protected quiral edge states. As well, each band has a Chern number C↑(↓) = 1(−1), and thus

the total Chern number will be zero. QHSE has strong edge states and a gap in the bulk, so it

is a topological phase of matter. But in order to characterize its topology, a di�erent topological

invariant is needed; the spin Chern number.

2D TI's were predicted by Kane and Mele in 2005 [15]. Their idea was that graphene could

behave as a TI through QSHE, which is a reason for naming the TI's as QSHE insulators. Since

the energy gap in graphene is quite small, it is not a good candidate. But a di�erent material, the

quantum well system made of HgCdTe was shown to behave as a good TI. After this discovery,

a big e�ort has been made and also 3D TI's have been implemented [27], but since 3D materials

are out of the scope of this work, they will not be explained here.
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4 2D TRANSITION METAL DICHACOGENIDES (TMDC's)

Transition Metal Dichalcogenides (TMDC's) are materials constituted by a transition metal M

and a chalcogen X as MX2. Although other point symmetries can occur, those TMDC's with

D6h point group symmetry are made of weakly interacting stacked layers of 2D MX2 which are

often named as 2H-type MX2, where 2H denotes trigonal prismatic symmetry.

Figure 9: 2H-type structure [28]. This is the 2D TMDC model this research has dealed with. The top

picture shows the lattice vectors between metal atoms, which are denoted by grayish spheres. The blue

and smallest spheres depict the chalcogen atoms.

The bottom picture in Figure 9 shows that chalcogens occupy a position A and are located in the

top of each other in a direction that is normal to the layer. The metal atoms at B are between

them, and are located at the geometrical center of a trigonal prismatic lattice in which chalcogens

are at its vertices positions. The most popular TMDC's are those made of group V I transition

metals (mainly Mo and W ) in combination with chalcogens S, Se or Te. Since these kind of

2D TMDC's are semiconductors in the termodynamically stable 2H phase, they are regarded

as good candidates for electronic devices. 2D TMDC's have a direct gap at ±K high symmetry

points (which are corners of the 1BZ) while bilayer or bulk structures do not. A consequence

is that since these are inequivalent high-symmetry points, valley-dependent features can arise.

They also lack of inversion symmetry, which causes SOC to split the bands. In addition, the

inversion symmetry breaking is responsible for a valley-dependent optical transition selection

rule, according to which transitions between the valence and the conduction band (interband

transitions) couple to left- (at K) or right- (at −K) circularly polarized light.

A work on the band structure of monolayer TMDC's and its topological characterization has

been performed. The central interest in monolayer TMDC's is related to the direct gap existing

at the ±K points in the 1BZ. While bulk TMDC's do have an indirect gap, monolayer TMDC's

have a direct gap that is responsible for the valleytronics. The work that has been developed
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on TMDC's lies in the implementation of a module of programs that allow to study the band

structure of several 2D TMDC's20 In order to do so, a particular model has been considered,

based in [18]. This model is a 3-band TB model with dz2 , dxy and dx2−y2 orbitals which belong

to the metal in the TMDC21. Z2 invariant computation, a major role in this research, has been

performed from the band structure information. In addition, a calculation of the Berry curvature

and the circular degree of polarization has been obtained.

4.1 TB model with M − dz2, dxy and dx2−y2 orbitals

Although the unit cell of aMX2 TMDC is 3D, one can consider a 2D hexagonal lattice as a �rst

approximation, which is accurate enough to describe the monolayer properties in the low-energy

regime. There are 3 types of high symmetry points, depicted below:

Figure 10: 2D MX2 structure for TMDC's [18]. a) Top view of a MX2 layer. The green-coloured

region is the 2D unit cell. Dark spheres represent the metal M while yellow ones depict the chalcogen

X. Vectors {Ri} describe the position of the 6 nearest-neighbor atoms. The chalcogen nearest-neighbor

vectors are not considered in this model. b) A 3D view of the trigonal prismatic lattice. c) 1BZ and high

symmetry points Γ, ±K and M .

The points depicted in Figure 10.c play a major role in the symmetry properties of the TMDC's

and in the calculation of the Z2 invariant. In order to study the band structure, the path

M −→ −K −→ Γ −→ K −→ M is depicted. In adition, in order to calculate the Z2 invariant,

a rectangular trajectory involving Γ and M points is used.

Due to the D3h point-group symmetry of the trigonal lattice, 2H-type TMDC's are studied

here (Figure 10.a is a good picture of this kind of structures). This symmetry also conditions

the following classi�cation of the orbitals in terms of the Mulliken notation for the irreducible

representations of the D3h point-group:

20Although the research has been focused on MoS2, the band structure of the following TMDC's has also been
computed: MoSe2, MoTe2, WS2, WSe2 and WTe2.

21A work on a 6-band TB model with dz2 , dxy , dx2−y2 orbitals from M and px, py , pz orbtitals from X has
been pursued. Di�erent approaches have been published, such as those in [29,30], in which the whole orbitals of
the highest levels of the 3 atoms of a 3D unit cell are considered. However, the 6-band calculations have been
conditioned by the unavailable ab-initio information related to the hopping amplitudes between p and d orbitals
found in the references.
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A′1 {dz2} ;E′
{
dxy, dx2−y2

}
;E′′ {dxz, dyz}

Since trigonal prismatic cells have a re�ection symmetry by the XY plane, only hybridization

between orbitals in A′1 and E′ is allowed, which implies that orbitals in E′′ are decoupled from

the other groups and then these can be despised. This justi�es the use of a 3-band approximation

based on the dz2 , dxy and dx2−y2 orbitals22.

4.1.1 First-neighbor hoppings 3-band TB model for TMDC's

As a �rst approach, a model with only nearest-neighbor interactions is calculated for di�erent

TMDC's. A TB model with dz2 , dxy and dx2−y2 orbitals from the metal M is used, taking into

account the in�uence of the p orbitals in the chalcogen X. A numerical simulation is performed

in order to obtain the band dispersion for di�erent MX2 TMDC's. Although the results found

are not accurate in the whole 1BZ in comparison to the GGA calculations from [18], its accuracy

at the ±K is enough to �nd some remarkable results. Since TMDC's are considered to be free

from impurities, they are considered to be intrinsic semiconductors. The Fermi level is set to

zero energy, so the bands are plotted taking into account their distance to the Fermi energy.

Figure 11 shows that a direct gap between the valence and the conduction band is found at

±K in MoS2, which is qualitatively accurate with the GGA calculations. However, away from

this points the results are not as accurate as in the GGA aproximation. This is a re�ection of

the nearest-neighbor approach. In MoSe2 no direct gap is found in this material at the ±K
points, which is due to the approach considerer in this section. This indirect gap is due to a

spurious eigenvalues of the conduction band, which show di�erent behavior than expected. A

bigger problem happens for MoTe2, since the valence band has a soft maximun at ±K while

there is no direct gap due to the behavior of the conduction band.

On the contrary, WS2 has well-de�ned valleys through a direct gap at ±K, as in MoS2. For

WSe2, a direct gap at ±K points is observed, while in WTe2 the result is not accurate with the

predictions since the conduction band does not have a minimum at ±K.

It is shown that MoS2 and WS2 have a well-de�ned direct gap at the ±K points, which causes

the appearance of a valley at each. However, even at these points, results for the rest of TMDC's

are not accurate at this points, which is a consecuence of the �rst-neighbor approximation.

Generally, far from the ±K points every �gure indicates that a better accurate model has to be

introduced in order to obtain a good behavior, at least at Γ and ±K.

22This is partially true, since the ab-initio amplitudes and hamiltonian elements have also implicit the contri-
bution of the p orbitals in the chalcogen. However, a good agreement with GDA and LDA information occurs.
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Figure 11: Band structure in the 3-band model with nearest-neighbor hoppings for di�erent TMDC's

across the path M −→ −K −→ Γ −→ K −→M . Fermi energy is set to zero.
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4.1.2 Up to third-neighbor hoppings 3-band TB model for TMDC's

Since there is not a good �t between the TB band structure and the GGA band structure at

other 1BZ points but the ones near ±K, an up to third-neighbor hoppings 3-band TB model is

computed. Results for di�erent TMDC's are shown in Figure 12. A good �t is found at ±K and

Γ in MoS2, which shows the improvement of the calculations. It must be pointed out that other

k points are not accurate, which is a consequence of the p orbitals strength at these regions. It

is also shown that a direct gap is found at ±K for MoSe2, which is a consequence of the up to

third-nearest-neighbor approach. A similar improvement is also observed in MoTe2. For WS2

the gap between the valence and conduction band is extended in comparison with the nearest-

neighbor approach, which is a good symptom and a consequence of this new model; in fact, this

is observed in all the TMDC's. In the case of WSe2 and WTe2 a direct gap is also stablished.

These approach has improved the behaviour at ±K and valleys have been accurately de�ned.

In addition, a better approach to the GGA information at Γ is found when compared to the

nearest-neighbor model. A �nal comparative table is shown in Figure 13, in which results from

the nearest-neighbor and the up to third-neighbor models are compared with the GGA results

from [18] for MoS2. The accuracy is enough to perform calculations such as the Berry curvature

or the degree of circular polarization, but before going on, let us study SOC in 2H-type 2D

TMDC's.

4.1.3 Up to third-neighbor hoppings 3-band TB model with SOC for TMDC's

In order to study the SOC e�ect in the previous model, an up to third-neighbor hoppings 3-band

TB model with SOC is implemented. Since the metal atom in MX2 is su�ciently heavier than

the chalcogen, only on-site contributions from the M atom are used to introduce the SOC. As

any SOC TB model, the matrix dimensions double, since the basis orbitals are now

{∣∣∣dz2 ↑〉, ∣∣∣dxy ↑〉, ∣∣∣dx2−y2 ↑〉, ∣∣∣dz2 ↓〉, ∣∣∣dz2 ↓〉, ∣∣∣dz2 ↓〉}
Taking only the z-direction, the usual term L · S from the SOC reduces to

L · S = LzSz =
1

2

(
Lz 0

0 −Lz

)
(4.1)

This makes our new TB hamiltonian to be

HSOC =

(
H + λ

2Lz 0

0 H − λ
2Lz

)
(4.2)

where H is a 3 × 3 hamiltonian. A comparison between the nearest-neighbor and the up to

third-nearest-neighbor models with SOC in MoS2 is shown:
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Figure 12: Band structure for the 3-band model with up to third-neighbor hoppings in di�erent TMDC's

across the path M −→ −K −→ Γ −→ K −→M . Fermi energy is set to zero.
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Figure 13: Comparison between the GGA calculations from [18] (left) and the results for the nearest-

neighbor (top right) and the up to third-neighbor (bottom right) models.

Figure 14: Nearest-neighbor 3-band TB model (left) and up to third-nearest-neighbor 3-band TB model

(right) with SOC in MoS2. Fermi energy is set to zero.

For the nearest-neighbor 3-band TB model with SOC, results were only accurate at the ±K
points. Including SOC shows how at this points a notorious splitting happens at the valence

band, while no splitting is seen at the conduction band. Anyway, the gap between the spin-

up and spin-down gap has to be smaller at these points, so this result can be considered as

an example of futility. Including SOC in the up to third-nearest-neighbor 3-band TB model

shows how at this points a splitting happens at the valence band, while no splitting is seen at

the conduction band. This splitting is lower that the one in the nearest-neighbor model, which

re�ects the accuracy of this model since SOC splitting is in the order of 10−1 (eV ) [28]. A wider

separation is found between valence and conduction band pairs, which is also a good sympton if

compared with the GGA results in [18].

One expects from [18,28] that the conduction band has a splitting, but this is not found in these

calculations, even performing a numerical check. It is related to the in�uence of the rest of

orbitals that are not considered here23. However, the conduction band splitting is approximately

23A better approach can be obtained by a 5-band model which also includes the E′′; unsatisfactory, the lack of
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one order of magnitude lower in the conduction band, and TB models use to give rise to these

null splittings. A more insatisfactory result is found when computing the SOC model for WS2:

Figure 15: Up to third-nearest-neighbor 3-band TB model with SOC in WS2 . Results of interest are

found at ±K. Including SOC shows how at this points a splitting happens at the valence band, while no

splitting is observed at the conduction band. Femi energy is set to zero.

A null splitting is shown and calculated numericaly at ±K in the conduction band. As explained

above, this is a consequence of the TB approximation. However, it is experimentally known

that in MoS2 there is a splitting where the spin-up conduction band is lower in energy that the

spin-down conduction band at K. This splitting changes its sign at −K. The same happens in

WS2 but in an inverse way; the spin-up conduction band is higher in energy than the spin-down

conduction band at K and the splitting changes sign at −K. This cannot be seen in Figure 15.

The valence band shows a better behaviour since one is able to compute that the valence band

splitting is | 4v
SOC |= 0.146 (eV ) in MoS2 while | 4v

SOC |= 0.422 (eV ), which agrees with [28].

However one should have found that the spin-down valence band at −K to be higher in energy

that the spin-up valence band, while the opposite should happen at K for both MoS2 and WS2

[18].

4.2 Z2 invariant calculation in TMDC's

A theoretical introduction on the Z2 invariant has been developed in Chapter 2. Eq. (2.47) is

the one these calculations have been based on. A rectangular path has been integrated as shown

below:

ab initio information about their hopping amplitudes prevents this calculation.
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Figure 16: Schematic representacion of the region integrated following eq. (2.47) [31]. One can chose

either the green-shaded region or the white one. A summation through the contour of the region has been

performed in order to integrate the Berry connection while a summation of the grid squares was performed

for the Berry curvature.

In fact, the method presented here is valid for 2D systems (which have 4 independent TRIM's)

[31]. It must be noted that a system is a TI if the number of zeros of the pfa�an in half the 1BZ

is 1mod (2) while a conventional insulator otherwise. This is the Z2 invariant. A line and surface

integration of the green shaded region in Figure 16 has been performed following eq. (2.47) and

[31]. A result was found for every TMDC: Z2 = 0 24. This is a consequence of the opposite Berry

curvature at the points K and −K that will be calculated in the next section, and is related

to the TRS and the broken inversion symmetry as explained in Chapter 2. This shows that a

trivial topological invariant can led to interesting non-trivial physics such as valley-dependent

phenomena since the Berry curvature can take (locally) di�erent non-zero values.

4.3 Valleytronics in TMDC's

As discussed in Chapter 2, TRS materials with broken inversion symmetry have a (locally)

non-zero Berry curvature. In TMDC's this rupture of the inversion symmetry is due to the

non-centrosymmetric nature of the honeycomb lattice [32]. This guarantees the Berry curvature

to be odd. The Berry curvature at ±K has opposite values, which is related to the opposite

sign of the anomalous velocity of the charge carriers at each valley. This fact makes each car-

rier to cancel each other's contribution to the Hall current. The interestinf fact of TMDC's in

relation to valleytronics is that one can selectively populate valleys by valley polarization, since

the separation in momentum space between ±K points supresses the intervalley scattering pos-

sibility25. This is achieved by populating a valley with excitons by means of circularly polarized

light. Since valley-selective circular dicroism is present, this can lead to a non-vanishing charge

carrier population in one valley, which is translated into a magnetization and a Valley Hall E�ect

24These calculations have been performed through the main code developed in this research.
25In fact this allows the valley index τ = ±1 to be a good quantum number.

44



Electronic Properties in TMDC's Christian Lanza

with no need of an external magnetic �eld source. It is important that the mean lifetime of this

exciton is greater that the mean measurement time, which constitutes a hard experimental task.

The Berry curvature has been computed for di�erent TMDC's by implementing eq. (2.15). A

di�erent approach can be used by means of eq. (2.12), but it is computationally quite time-

consuming. It is important to note that the Berry curvature implemented is based in the up to

third-nearest-neighbor model, where no SOC is considered. The calculation for MoS2 is shown

below26:

Figure 17: Berry curvature calculation in MoS2 across the path M −→ −K −→ Γ −→ K −→M in the

frame of the up to third-neighbor hoppings 3-band TB model.

The values at ±K are opposite, and thus a valley-dependent phenomena can occur if we populate

one of the valleys with the appropiate circularly polarized light. In order to study this a degree

of optical polarization can be de�ned as

η =
| P cv+ (k) |2 − | P cv− (k) |2

| P cv+ (k) |2 + | P cv− (k) |2
(4.3)

where P cv (k) stands for 〈uck| v̂ |uvk〉. In the case of circular polarized light, one shall de�ne the

polarization in terms of left-handed or right handed polarization as

P cv± (k) =
1√
2

[
P cvx ± iP cvy

]
(4.4)

where

P cvx/y = 〈uck| v̂x/y |uvk〉 (4.5)

26You can �nd in Appendix C the calculations for the rest of TMDC's.
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The following result is found for the degree of circular polarization in MoS2:

Figure 18: Degree of circular polarization η calculation in MoS2 across the path M −→ −K −→ Γ −→
K −→M in the frame of the up to third-neighbor hoppings 3-band TB model.

The highest degree of polarization is found at ±K points, and stability is shown around these

points in the 1BZ. The degree of polarization is found to be high at every region in the plotted

domain. In fact, values around ±K are accurate while a null polarization is found at Γ, which

should not be if compared with [33]. However, since GGA calculations [18] are also di�erent at

these region, these spurious results are expected. The important valley-dependent behaviour is

found at the ±K points and its experimental possibilities are proven.
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5 ARMCHAIR GRAPHENENANORIBBONS (AGNR's): TOPO-

LOGICAL PROPERTIES

Graphene nanoribbons (GNR's) are quasi-1D systems where dangling σ orbitals are passivated

so the relevant orbitals are π-like (this approach is enough for our purposes). GNR's may have

two shapes depending on the cutting direction in order to prepare them which are the following

ones:

Figure 19: Two prototypical shapes for GNR's [34]. a) A zizgag graphene nanoribbon (ZGNR) where the

unit cell is depicted by a rectangle. N de�nes the number of zigzag lines in the unit cell. b) An armchair

graphene nanoribbon (AGNR). A di�erent unit cell is depicted by a rectangle, where N stands for the

number of dimer lines inside.

A 30o di�erence exists between the AGNR and the ZGNR edges27. This work is devoted to

AGNR's. In order to calculate the band structure one has to impose open boundary conditions,

whose consequences are crucial to obtain non-trivial topological phases.

Since topology is related to symmetries in the 1BZ, trivial and non-trivial topologies appear

for di�erent conditions which depend on the parity symmetry present in the AGNR's. In this

study a calculation of the band structure has been performed for di�erent N values, as well as a

topological characterization following [23]. A TB hamiltonian as h(k) in graphene is used for π

orbitals with only nearest-neighbor interactions with vanishing on-site energies. One is able to

write it as a 2-band hamiltonian as

h (k) · σ = h(k) =

(
0 hx − ihy

hx + ihy 0

)
(5.1)

where

hx = 1 + 2cos(

√
3

2
kxa)cos

(
1

2
kya

)
(5.2)

hy = 2sin(

√
3

2
kxa)cos(

1

2
kya) (5.3)

27More complex shapes can be obtained from this 2 basic shapes, which is out of the scope of this work.
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The eigenstates are found to be

u± (k) =
1√
2

(
e−iφ(k)

∓1

)
(5.4)

with e−iφ(k) =
hx−ihy
|h(k)| .

In order to obtain open boundary conditions, one has to de�ne the general hamiltonian eigen-

states as a linear combination of Bloch waves where one has to combine k = (kx, ky) and

k = (kx,−ky), since periodicity is along the x axis. Thus, a general expression can be the

following:

|un (k)〉 =
1√
2

(|un(kx, ky)〉 − |un(kx,−ky)〉) (5.5)

where |un (ki, kj)〉 are the Bloch waves, whose exponential terms are the ones that will give us

the quantization condition. Since one can write eq. (5.5) as

|un (k)〉 =
1√
2

∑
j

eikxxj
(
eikyyj − e−ikyyj

)
|φ (Rj)〉 (5.6)

the following quantization is obtained, since eikyyj − e−ikyyj = 2isin (kyyj):

nπ =
(N + 1)a

2
ky ←→ ky =

2nπ

(N + 1)a
(5.7)

The n determines the position (in a vertical sense) in the AGNR.

In order to study the topology of the AGNR, the argument in [23] is followed. Remember that

Zak's phase is related in 1D systems to the topological invariant Z2 as ei
∑
n γn = (−1)Z2 , where

one can compute (−1)Z2 as the product of the eigenvalues of the parity operator at the high

symmetry points Γ and X; that is

(−1)Z2 =
∏
n

Pn (Γ)Pn (X) (5.8)

Thus, the goal is to obtain the parity operator eigenvalues at the given points. In order to do so,

one has to �rst obtain the eigenstates of the TB model, which are given, after some algebra, by

|un (k)〉 =
1√
N


ie−i

√
3

2
kxasin

(
1
2kya

)
ie−iφ(k)e−i

√
3

2
kxasin

(
1
2kya

)
ie−iφ(k)sin(kya)

...

 (5.9)

Let us �rst evaluate the eigenstate at the high-symmetry point Γ. By substitution in eq. (5.2)

and eq. (5.3) one �nds hx (Γ) = 1 + 2cos
(

nπ
N+1

)
and hy (Γ) = 0. A subtlety has to be considered

when calculating e−iφ(Γ), since hx can be either positive or negative depending on n (so it depends

on the AGNR arrow we are considering). A limit is found for n = 2(N+1)
3 , so one concludes that
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e−iφ(Γ) =

 1

−1

n < 2(N+1)
3

n > 2(N+1)
3

(5.10)

and thus the eigenstates can be expressed as

|un (Γ)〉 =
1√
N


isin

(
nπ
N+1

)
±isin

(
nπ
N+1

)
±isin

(
2nπ
N+1

)
...

 (5.11)

These are also eigenstates of the parity operator, so Pn (Γ) |un (Γ)〉 = ± |un (Γ)〉 and thus, de-

noting the eigenvalues by λn, one obtains

∏
λn = (−1)m (5.12)

for N = 3m, N = 3m+ 1 and28 N = 3M + 2.

A more subtle calculation has to be performed for the X point. In this case one has hx (X) = 1

and hy (X) = 2cos
(

nπ
N+1

)
, so then

e−iφ(X) =
1− 2icos

(
nπ
N+1

)
√

1 + 4cos2
(

nπ
N+1

) (5.13)

A problem arises because

|un (X)〉 =
1√
N


sin
(

nπ
N+1

)
−e−iφ(X)sin

(
nπ
N+1

)
e−iφ(X)isin

(
2nπ
N+1

)
...

 (5.14)

is not an eigenstate of the parity operator. Instead, one can see that band n and N + 1 − n
are orthogonal and can be stablished by an unitary transformation as opposite parity partners

at X, so its eigenvalues product gives −1. We can �nd by inspection that the bands for n and

N + 1− n are double degenerate for an even N while for an odd N there is an only degenerate

band, which happens for n = N+1
2 .

The product of the parity eigenvalues at the high symmetry points is given by

∏
λn(Γ)λn(X) = (−1)b

N
3 c (−1)b

N+1
2 c (5.15)

28The latter is more complicated. For N = 3M + 2 no gap is found in this simpli�ed TB model, but DFT
calculations show that a gap exists even for this N , which also ful�lls eq. (5.12).
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Figure 20: AGNR band structure with N ∈ {5, 6, 7, 8, 9, 10} along the path −K −→ Γ −→ K.
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Note that the exponents contain the �oor function (it is not a modulus). Thus one can conclude

after some algebra that the Z2 has the following expressions for even and odd N (only zigzag

terminations are considered here, although bearded ones could also be of interest):

Z2 =
1− (−1)b

N
3 c+bN+1

2 c

2
(5.16)

Z2 =
1 + (−1)b

N
3 c+bN+1

2 c

2
(5.17)

A band structure calculation has been �nally performed for di�erent N values from 5 to 10 in

Figure 20. It can be inferred that a gapped electronic structure is observed for N = 3p and

N = 3p + 1 with p ∈ N, while a gapless behavior appears for N = 3p + 2. We can set the

following Z2 index classi�cation:

N = 5, 6, 7, 9 −→ Z2 = 1 (5.18)

N = 8, 10 −→ Z2 = 0 (5.19)

The appearance of edge states for N = 5 and N = 8 is remarkable. For N = 5 edge states

appear and Z2 = 1. However we can see that, following the arguments that gave rise to eq.

(5.16) and eq. (5.17), although N = 8 seems to have edge states, Z2 = 0. The topology for the

cases in eq. (5.18) and eq. (5.19) has been proven with DFT according to [23]. The number of

end states at the AGNR termination is even for a trivial topology and odd for a non-trivial one.

In addition, the number of localized end states uses to increase with N . The topological phases

are protected by spatial symmetries. It seems reasonable trying to change the associated end

states by breaking these symmetries at the terminating unit cells in order to induce a topological

transition. An example is the N = 7 AGNR as argued in [23]. Note that for N < 7 the midgap is

in the order of the eV , so it would be even harder to perturbate the gap. Its topological invariant

is Z2 = 1, and this AGNR has one end state at each termination. Local perturbations from 0

eV to 4 eV are not enough to destroy the end states as discussed in [23], which seems to prove

the robustness of the topological phase.
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6 CONCLUSIONS

This research has focused on the band structure and the topological properties of TMDC's. A

detailed theoretical introduction has been performed in order to show the utilities of topology

in condensed matter physics without the topological band theory formalism, which is out of the

scope of this text. A historical point of view has been followed during the three �rst chapters.

A theoretical study on TMDC's has been performed with the preceeding knowledge. Several

TB band structure calculations have been performed for di�erent TMDC's with di�erent levels

of accuracy. A nearest-neighbor approach showed a good agreement with GGA calculations at

the ±K points for some materials where a direct gap and well-de�ned valleys appeared, while

a di�erent behavior with an indirect gap and bad-de�ned valleys arose for some other TMDC's.

A non-accurate behavior was found for regions far from the ±K points as well as a narrow gap

was found for every TMDC. A more accurate version was calculated through an up to third-

neighbor model by which well-de�ned direct gaps and valleys where found at the ±K points as

well as a wider gap between the valence and the conduction bands. GGA calculations showed a

di�erent behavior at Γ andM points. This is a consequence of the p orbitals from the chalcogen,

which are not taken into account in these models. A SOC calculation has also been performed

in both models. In the nearest-neighbor approach a splitting is found at the ±K points in the

valence band which is not accurate with the expected values. The up to third-neighbor model

shows a quite accurate splitting. In any of these models no splitting is found at the conduction

band, which is a consequence of the E′′ orbitals, whose hopping amplitudes were absent in the

references. In addition a di�erent splitting should occur at the valence bands for MoS2 and

WS2, which is not observed due to the same reason. A calculation of the Berry curvature has

been performed showing a good agreement with eq. (2.16). In addition, well-de�ned opposite

maximum values for the Berry curvature at the ±K points are observed. This is the fundamental

result of this research, which shows the possibility to selectively populate valleys with circularly

polarized light in order to create excitons allowing interband transitions at these points. The

degree of circular polarization also shows a maximum at the valleys and stable values around the

±K points, which strengthens these arguments.

A �nal calculation has been performed on AGNR's. Since graphene can be considered as a

semimetal, the need to open a gap for semiconductor devices can be achieved with AGNR's. In

addition, a topological study has been performed showing that for N = 5, 6, 7, 9 the topological

phase is non-trivial while for N = 8, 10 it is a trivial one. The topological phases are found to be

robust. An open way is then left for the study of Transition Metal Dichalcogenides Nanoribbons

(TMDCNR's), which can lead to similar properties as those in graphene with a stable behavior

at room temperature and a bigger gap.
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Outlook

Half of the time devoted to this research has been conditioned by the co�nement due to the

Covid-19 pandemic. However, it helped to focus on this work and to devote the appropriate

time. The author thinks that a wide overview on topology and physics has been o�ered as

well as an accurate approach to valleytronics in TMDC's. A personal comment must be done.

While valleytronics is a powerful tool which is thought as a complement or even as a substitute

of spintronics, the lifetime of the excitons is short enough to give rise to several experimental

problems. This makes another recent options to arise, such as using twisted bilayers instead

of monolayers. By twisting a given angle one of the layers in the heterostructure, the exciton

lifetime can be increased to 3 or 4 orders of magnitude, although the direct gap is lost. Anyhow,

this �eld is a hot topic that seems to be very promising in the following years.

The author wants to point out that nanoribbons made up from TMDC's are the materials that

can give a continuity to this research. This is a �eld in which the author is starting to work

and seems to be a rising and promising area involving topology and (who knows yet?) even

valleytronics.
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APPENDICES

A Berry phase calculations

A.1 Berry phase

Taking Schrödinger equation

i~∂t |ψ (R)〉 = Ĥ |ψ (R)〉 (A.1)

and inserting eq. (2.1) and eq. (2.2) into eq. (2.3) we get:

i~∂t |ψ (R)〉 = i
∑

n e
iφn [∂tcn |n (R)〉+ cn∂t |n (R)〉+ icn |n (R)〉 ∂tφn] =

=
∑
n

eiφncnĤ |n (R)〉 (A.2)

Since

i
∑
n

eiφn [icn |n (R)〉 ∂tφn] =
∑
n

eiφncnEn |n (R)〉 =

=
∑
n

eiφncnĤ |n (R)〉 (A.3)

it is simpli�ed as follows:

i
∑
n

eiφn [∂tcn |n (R)〉+ cn∂t |n (R)〉] = 0 (A.4)

Applying 〈m (R)| and considering orthonormality:

∑
n

eiφnδmn∂tcn = −
∑
n

eiφncn 〈m (R)| ∂t |n (R)〉 6= 0 =⇒ m = n; (A.5)

∂tcm = −
∑
n

cn 〈m (R)| ∂t |n (R)〉 ei(φn−φm) (A.6)

Derivating on Schrödinger equation

∂tĤ |n (R)〉+ Ĥ∂t |n (R)〉 = ∂tEn |n (R)〉+ En∂t |n (R)〉 (A.7)

and applying 〈m (R)| again

〈m (R)| ∂tĤ |n (R)〉+ 〈m (R)| Ĥ∂t |n (R)〉 =

= ∂tEnδmn + En 〈m (R)| ∂t |n (R)〉 ←→
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←→ 〈m (R)| ∂tĤ |n (R)〉+ Em 〈m (R)| ∂t |n (R)〉 =

= En 〈m (R)| ∂t |n (R)〉 ←→ {n 6= m} ←→

←→ 〈m (R)| ∂tĤ |n (R)〉 = (En − Em) 〈m (R)| ∂t |n (R)〉 ←→

←→ 〈m (R)| ∂t |n (R)〉 =
〈m (R)| ∂tĤ |n (R)〉

(En − Em)
(A.8)

we now substitute into ∂tcm to obtain the coe�cients:

∂tcm = −
∑
n,m

cn 〈m (R)| ∂t |n (R)〉 ei(φn−φm) =

= −
∑
n=m

cm 〈m (R)| ∂t |n (R)〉−

−
∑
n6=m

cn
〈m (R)| ∂tĤ |n (R)〉

(En − Em)
ei(φn−φm) (A.9)

Performing the adiabatic approximation

〈m (R)| ∂tĤ(t) |n (R)〉
(En − Em)

� 1 (A.10)

∂tcm is converted to the following:

∂tcm ' −
∑
n=m

cm 〈m (R)| ∂t |n (R)〉 ←→ cm =
∑
n=m

c0,me
iγm (A.11)

where

γm = i

ˆ
〈m (R)| ∂t′ |m (R)〉 dt′ (A.12)

is the Berry phase. Note that since m is a dummy index, we can also write (as in the main text)

γn = i

ˆ
〈n (R)| ∂t′ |n (R)〉 dt′ (A.13)

A.2 Alternative form of the Berry curvature

Derivating the Schrödinger equation in terms of the parameter R:

∂RĤ (R) |n (R)〉+ Ĥ (R) |∂Rn (R)〉 = En |∂Rn (R)〉 (A.14)

55



Electronic Properties in TMDC's Christian Lanza

If we take the adjoint of the previous equation and multiply by |n′ (R)〉 on the right of both sides

we get the following:

〈n (R)|∂RĤ (R) |n′ (R)〉+ 〈∂Rn (R)| Ĥ (R) |n′ (R)〉 = En
〈
∂Rn (R) |n′ (R)〉 ←→

←→ 〈n (R)|∂RĤ (R)
∣∣n′ (R)

〉
= (En − En′)

〈
∂Rn (R)

∣∣n′ (R)
〉

(A.15)

We can identify
〈
∂Rn (R) |n′ (R)〉 as the adjoint of a Berry connection. Considering the same

for
〈
n′ (R) |∂Rn (R)〉 and summing over n′ to obtain completeness

Ωn
µν (R) = i

∑
n′ 6=n

[〈
∂µn (R) |n′ (R)〉

〈
n′ (R) |∂νn (R)〉 −

〈
∂νn (R) |n′ (R)〉

〈
n′ (R) |∂µn (R)〉

]
we get

Ωn
µν (R) = i

∑
n′ 6=n

[
〈n (R)| ∂µĤ (R) |n′ (R)〉 〈n' (R)| ∂νĤ (R) |n (R)〉 − c.c

(En − E′n)2

]
(A.16)

A.3 Electron velocity under adiabatic perturbations

Computing the expectacion value of the velocity in the new basis, this is what we �nd:〈
u
′
n (k, t)

∣∣∣ 1
~∂qĤ (k, t)

∣∣∣u′n (k, t)
〉

= 〈un (k, t)| 1
~∂qĤ (k, t) |un (k, t)〉−

−i
∑
n6=n′

〈un (k, t)| ∂qĤ (k, t)
∣∣∣u′n (k, t)

〉〈
u
′
n (k, t)

∣∣∣ ∂tun (k, t)
〉

En − En′
− h.c

 (A.17)

The �rst term is clearly 1
~∂kEn (k). In the second one, taking into accout the relation

〈un (k, t)| ∂kĤ (k, t) |un′ (k, t)〉 = (En − En′)
〈
∂kun (k, t) |un′ (k, t)〉 (A.18)

we are able to rewrite it as

−i
∑
n6=n′

[〈
∂kun (k, t) |un′ (k, t)〉 〈un′ (k, t)| ∂tun (k, t)

〉
− h.c

]
(A.19)

obtaining the Berry curvature. Thus, a general �nal result can be given for the expectation value

of the velocity operator in k-space as

〈
u′n (k, t)

∣∣ v̂ (k)
∣∣u′n (k, t)

〉
=

1

~
∂kEn (k).− Ωn

kt (A.20)

A.4 TR polarization

One can choose a matrix representation for the time-reversal operator [35] in terms of the Bloch

states as

wαβ (unk) = 〈uα,−k|T |uβ,k〉 (A.21)
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It is not hard to notice that w is antisymmetric so wβα (−k) = −wαβ (k). For a 2-band model

(where a single Kramer's pair will exist) it is found

∑
α,β

〈uα,−k| T̂ |uβ,k〉 =
(
u1,−k u2,−k

)( Tu1,k

Tu2,k

)
=

(
0 w12

−w12 0

)
(A.22)

Since this a time reversal operator representation, one can try to �nd a expression which relates

TRS with another object. In the case of the Berry potential the following is found:

A (−k) = w (k)A∗ (k)w† (k) + iw (k) ∂kw
† (k) (A.23)

Tr [A (−k)] = Tr [A∗ (k)] + i · Tr
[
w (k) ∂kw

† (k)
]

(A.24)

From

Tr [A] = Tr [A∗] (A.25)

and

w (k) ∂kw
† (k) = − [∂kw (k)]w† (k) (A.26)

one �nds

Tr [A (k)] = Tr [A (−k)] + i · Tr
[
w† (k) ∂kw (k)

]
(A.27)

At this point it is compulsory to introduce the charge polarizations, constituted by a total

polarization Pρ = P1 + P2 and a time-reversal polarization Pθ = P1 − P2. The latter describes

the charge polarization di�erence between a spin-up and a spin-down band. The TR operator

acts on the bands as follows:

T |u2 (k)〉 = e−iχ(k) |u1 (−k)〉 (A.28)

T |u1 (k)〉 = −e−iχ(−k) |u2 (−k)〉 (A.29)

This allows to write an explicit version of the matrix representation:

w (k) =

(
0 e−iχ(k)

−e−iχ(−k) 0

)
(A.30)

Since the polarization charge behaves as

Pi =

ˆ π

−π

dk

2π
Aii (k) (A.31)
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Pρ =
∑

Pi = P1 + P2 (A.32)

the following is found in terms of the Berry connection:

P1 =
1

2π

[ˆ π

0
dk ·A11 (k) +

ˆ 0

−π
dk ·A11 (k)

]
=

=
1

2π

ˆ π

0
dk ·

[
A11 (k) +A22 (k)− dχ (k)

dk

]
=

29

=

ˆ π

0

dk

2π
A (k)− 1

2π
[χ (π)− χ (0)] =

ˆ π

0

dk

2π
A (k)− i

2π
ln

[
w12 (π)

w12 (0)

]
(A.33)

Now we calculate the time-reversal polarization Pθ:

Pθ = 2P1 − Pρ =

ˆ π

0
dk [Tr [A (k)]− Tr [A (−k)]]− i

2π
ln

[
w12 (π)

w12 (0)

]
=

=

ˆ π

0

dk

2π

[
i · Tr

[
w† (k) ∂kw (k)

]]
− i

π
ln

[
w12 (π)

w12 (0)

]
=
{
w2

12 = det (w)
}

=

=
1

iπ
ln

[
w (π)

w (0)

√
w2 (0)√
w2 (π)

]
(A.34)

B Topological phases calculations

B.1 QHE with non-perturbative approach

Taking the usual gauge potential A = (0, x, 0)B and the consideration that B = ∇×A = Bk,

we can write the canonical conjugate momentum as p + e
cA. The hamiltonian asociated with

this momentum is

Ĥ =
1

2m

(
p̂2
x +

(
p̂y +

e

c
Bx̂
)2
)

+ V (B.1)

Given that the expectation value for the intensity is de�ned as

< I = − e

m

∑
n,k

〈ψn,k|p +
e

c
A |ψn,k〉 (B.2)

where |ψn,k〉 denotes a Bloch function for the n-th band, one can manipulate the last equation

as follows:

〈I〉 = 〈Ix〉+ 〈Iy〉 (B.3)

29w12 (k) = e−iχ(k) ←→ χ (k) = i · ln (w12 (k))
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where

〈Ix〉 = − e
m

∑ν
n

∑
k 〈ψn,k| − i~∂x |ψn,k〉 = 0

〈Iy〉 = − e
m

∑ν
n

∑
k

(
~k + 〈ψn,k| ecxB |ψn,k〉

) (B.4)

The second term can be manipulated taking into consideration that the wavefunction is not

centered at x = 0 but at x = mc2E
2B2 − ~k c

eB , giving rise to the following result:

〈Iy〉 = − e

m

ν∑
n

∑
k

(
~k + 〈ψn,k|

e

c
xB |ψn,k〉

)
=

= − e

m

ν∑
n

∑
k

(
~k − ~k +

mcE

B

)
= −eνc

∑
k

E

B
(B.5)

In order to evaluate the sum, a given geometry has to be considered. Let us think of a slab with

area A = LxLy. Since invariance respect to the y axis is present, periodic boundary conditions

respect to this axis will lead to 2π
Ly
. The number of degenerate states for a given level is calculated

as follows:

g =
Ly
2π

ˆ 0

−Lx
l2
B

dk =
AeB

h
(B.6)

Thus one �nds that the expectation value for the current along the y axis is:

〈Iy〉 = −eνcE
B

AeB

h
= −e

2νc

h
EA (B.7)

while the current density jy = σxyEx will be

jy =
Iy
A

= −e
2νc

h
E ←→ σxy =

e2c

h
ν; ν ∈ N (B.8)

The previous calculations are mostly straightforward and show the quantization on the Hall

conductivity by an integer ν, which constitutes a topological quantum number with an enormous

importance, the TKNN invariant.

B.2 Peierls substitution

Since creation and destruction operators only a�ect the Wannier states, it is only necessary to

study the hopping amplitudes change. A tedious algebra leads to the following result:

Ĥ |ψR〉 = ei
q
~
´ r
R A(r′,t)dr′Ĥ0 |ψR〉 (B.9)

The hopping amplitude will be then:

t′ij = 〈ψRi | Ĥ
∣∣ψRj

〉
= 〈ψRi | e

i q~

(´Rj
r A(r′,t)dr′−

´ r
Ri

A(r′,t)dr′
)
Ĥ
∣∣ψRj

〉
=
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= e
i q~

(´Rj
Ri

A(r′,t)dr′
) ˆ

ei
q
~φ(r)ψ (r−Ri)Hψ (r−Rj) '

' e
i q~

(´Rj
Ri

A(r′,t)dr′
)
〈ψRi

| Ĥ
∣∣ψRj

〉
= e

i q~

(´Rj
Ri

A(r′,t)dr′
)
tij (B.10)

B.3 Haldane's model calculations

The terms in h1 are worked below:

−
(
f(k)tei

q
~ θij + f∗(k)t′e−i

q
~ θij
)

= −
3∑
j=1

(
e−ikδj t′ei

q
~ θij + eikδj t′e−i

q
~ θij
)

=

= −
(
e−ikδ1 + e−ikδ2 + e−ikδ3

)
t′ei

q
~ θij −

(
eikδ1 + eikδ2 + eikδ3

)
t′e−i

q
~ θij =

= −t′
(
e−i(kδ1−

q
~ θij) + e−i(kδ2−

q
~ θij) + e−i(kδ3−

q
~ θij)

)
−

−t′
(
ei(kδ1−

q
~ θij) + ei(kδ2−

q
~ θij) + ei(kδ3−

q
~ θij)

)
=

= −2t′
(
cos
(
kδ1 −

q

~
θij

)
+ cos

(
kδ2 −

q

~
θij

)
+ cos

(
kδ3 −

q

~
θij

))
(B.11)

−
(
f∗(k)t′ei

q
~ θij + f(k)t′e−i

q
~ θij
)

= −
3∑
j=1

(
eikδj t′ei

q
~ θij + e−ikδj t′e−i

q
~ θij
)

=

= −
(
eikδ1 + eikδ2 + eikδ3

)
t′ei

q
~ θij −

(
e−ikδ1 + e−ikδ2 + e−ikδ3

)
t′e−i

q
~ θij =

= −t′
(
ei(kδ1+ q

~ θij) + ei(kδ2+ q
~ θij) + ei(kδ3+ q

~ θij)
)
−

−t′
(
e−i(kδ1+ q

~ θij) + e−i(kδ2+ q
~ θij) + e−i(kδ3+ q

~ θij)
)

=

= −2t′
(
cos
(
kδ1 +

q

~
θij

)
+ cos

(
kδ2 +

q

~
θij

)
+ cos

(
kδ3 +

q

~
θij

))
(B.12)

The h (k) components will be then

h11 = ε− 2t′
(
cos
(
kδ1 −

q

~
θij

)
+ cos

(
kδ2 −

q

~
θij

)
+ cos

(
kδ3 −

q

~
θij

))
(B.13)
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h22 = −ε− 2t′
(
cos
(
kδ1 +

q

~
θij

)
+ cos

(
kδ2 +

q

~
θij

)
+ cos

(
kδ3 +

q

~
θij

))
(B.14)

h12 = h∗21 = −tf (k) (B.15)

B.4 Eigenstates in Haldane's model

The eigenstates calculation is performed:

ker(Ĥ − εI) −→

(
dz + |d (k)| dx − idy
dx + idy −dz + |d (k)|

)(
u

v

)
= 0 (B.16)

Using the second equation from the previous system:

(dx + idy)u− (dz − |d (k)|) v = 0←→ u = v
dz − |d (k)|
dx + idy

−→

|ψ−〉 = v

(
dz−|d(k)|
dx+idy

1

)
=

v

dx + idy

(
dz − |d (k)|
dx + idy

)
=

1

N

(
dz − |d (k)|
dx + idy

)
(B.17)

Normalizing one gets N :

1 =
〈
ψ− |ψ−〉 =

1

|N |2
(
dz − |d (k)| dx − idy

)( dz − |d (k)|
dx + idy

)
=

=
1

|N |2
[
(dz − |d (k)|)2 + d2

x + d2
y

]
=

2d (k) [d (k)− dz]
|N |2

←→

←→ 1

N
=

1

2d (k) [d (k)− dz]
(B.18)

Thus, the valence band wavefunction is

|ψ−〉 =
1

2d (k) [d (k)− dz]

(
dz − |d (k)|
dx + idy

)
(B.19)

C Berry curvature and circular degree of polarization calcula-

tions

The Berry curvature and circular degree of polarization for several TMDC's is shown in this

appendix:
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Figure 21: Berry curvature (left) and circular degree of polarization (right) calculation in MoSe2 across

the path M −→ −K −→ Γ −→ K −→ M in the frame of the up to third-neighbor hoppings 3-band TB

model.

Figure 22: Berry curvature (left) and circular degree of polarization (right) calculation in MoTe2 across

the path M −→ −K −→ Γ −→ K −→ M in the frame of the up to third-neighbor hoppings 3-band TB

model.
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Figure 23: Berry curvature (left) and circular degree of polarization (right) calculation in WS2 across

the path M −→ −K −→ Γ −→ K −→ M in the frame of the up to third-neighbor hoppings 3-band TB

model.

Figure 24: Berry curvature (left) and circular degree of polarization (right) calculation in WSe2 across

the path M −→ −K −→ Γ −→ K −→ M in the frame of the up to third-neighbor hoppings 3-band TB

model.
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Figure 25: Berry curvature (left) and circular degree of polarization (right) calculation in WTe2 across

the path M −→ −K −→ Γ −→ K −→ M in the frame of the up to third-neighbor hoppings 3-band TB

model.
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