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Abstract

Surface polaritons (hybrid light-matter waves occurring in metal-like materials) allow the
study of light at the nanoscale. This is because, as a difference to what happens with light
in conventional optics, surface polaritons allow for beating the diffraction limit, opening the
door for controlling light at the nanoscale. In this work, we will study from numerical sim-
ulations how surface polaritons propagate within different environments, including strongly
anisotropic media. Particularly, we will study how surface polaritons reflect at boundaries
with isotropic, uniaxial, and biaxial media, and analyze how different parameters, both from
a physical and a more purely numerical point of view, affect the results obtained. However,
the simulations will be performed with light (the excitation is straightforward in this case),
being able to extrapolate all the results obtained directly to SPs. This study will allow
us to explore a range of different exotic optical phenomena, such as anomalous reflections
and back-reflections. Finally, as anisotropic back-reflection observations have yet not been
achieved, we propose an experimental scenario based on our simulations that might allow
its visualization. All this work was carried out using the commercial software COMSOL
MULTIPHYSICS.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

Nowadays, nano-optics is a very important scientific field consisting on the study and
control of light at the nanoscale. Understanding and controlling light is a main objective
of modern physics, and it has achieved a great progress, however, light-matter interactions
have been addressed by the “classical”, rather traditional, way, meaning that most studies
have been limited by the diffraction limit of light.
This limit states that two objects separated by a distance d, smaller than λ/NA, being λ the
wavelength of the incident light and NA the numerical aperture of the imaging lens, cannot
be optically resolved due to diffraction:

d = λ

2n sin(θ) = λ

2NA (1.1)

The diffraction limit constitutes an important disadvantage from a fundamental and tech-
nological point of view as the promising ideas of the nanotechnology and nanoscience fields
cannot be applied. But it exists a physical concept with great potential to overcome this
limitation, which is the excitation of surface waves called surface plasmon polaritons and
surface phonon polaritons, known by its initials as SPPs and SPhPs, respectively. They
consist of surface waves, originated by the coupling of photons with mobile or bound charges
in metals or polar materials, that have the property to enhance and confine optical fields
into deeply sub-diffracting volumes. Since years, this capability has boosted many different
applications, allowing for controlling the emission and absorption of light, and also to mold
its flux on the nanometer scale [1].
Thanks to these recent technological advances and the capability to control surface polari-
tons properties, there is a renewed interest in their use on different applications, such as
for example, magneto-optic data storage, microscopy, solar cells, or biological sensors for
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CHAPTER 1. INTRODUCTION

molecule detection. One of the most interesting aspects of SPPs for researchers in optics is
the way they allow to concentrate and channel light using sub-wavelength structures, which
could lead to miniaturized photonic circuits with length scales much smaller than those cur-
rently achieved [2].
In the last years, with the emergence of 2D layered materials, there has been important
observations of a set of unique polaritonic excitations. For example, in graphene, a mate-
rial that shows extraordinary properties in many different aspects, electrically tunable and
highly confined SPPs were predicted and observed, opening the door to more efficient op-
toelectronics, bio-sensing and, generally, mid-infrared applications [3]. PhPs have also been
observed in hexagonal boron nitride (h-BN), in which, for specific frequencies, PhPs exhibit
hyperbolic behaviour and low losses, featuring ray-like propagation with high quality factors
and hyper-lensing effects [4,5]. Also, in-plane anisotropic PhPs with extraordinary low losses
have been also observed in the van der Waals biaxial crystal, α–MoO3 [6].
Although the field of 2D material polaritonics and their hybrids is still emerging, it is al-
ready quite remarkable their potential for manipulating light–matter interactions across the
visible, infrared and terahertz spectral ranges, allowing to control light one step further than
the conventional studies.

In this final master thesis, it will be firstly shown some aspects about the basics about
light-matter interactions and the general theory of polaritons at an interface between a semi-
infinite anisotropic and a semi-infinite isotropic medium. After, it will be introduced the
commercial software (COMSOL) allowing for carrying out full electromagnetic calculations
of polaritons propagating at the nanoscale, thus allowing us to confront the analytical theory
previously commented.
Finally, a study about reflections in the nanoscale will be carried out, taking into account
the importance of the simulation software, including the need to have a clean simulation, a
good mesh, etc. It will allow us to compare between reflections on different materials. To
simplify the simulations, we will consider light instead of SPs, but all of the results obtained
can be directly extrapolated to SPs, obtaining very interesting results and demonstrating
why nanooptics is a very interesting field nowadays.

1.2 Basics about light-matter interactions

1.2.1 Overview

When someone wants to explain whatever about light, it is necessary to introduce the
Maxwell’s Equations [7]. As every physicist knows, these equations were summarized by
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1.2. BASICS ABOUT LIGHT-MATTER INTERACTIONS

Maxwell in 1873 from all the previous knowledge about electricity and magnetism. They
can lead us to obtain all the different connections between the fundamental parameters of
electromagnetism: electric field ( ~E), magnetic field ( ~B, ~H), the electric displacement field
( ~D), the electric current density ( ~J) and the electric charge density (ρ). As Maxwell did, we
show in Equation (1.2.1) the relationship between these quantities in gaussian units and in
their differential form.

∇ · ~D = 4πρ, ∇× ~E + 1
c

∂ ~B

∂t
= 0,

(1.2)

∇ · ~B = 0, ∇× ~H − 1
c

∂ ~D

∂t
= 4π

c
~J,

In addition to these equations, it is necessary to include some relations that explain the
behavior of matter when it is acting an external field, known as material or constitutive
relations. These equations are usually tricky, but in a simply way, when the field is time-
harmonic (the time dependence is given by exp(−iωt)), the bodies are moving very slowly
with respect to each other or in rest, and the material is isotropic, it is possible to express
the constitutive relations as:

~J = σ ~E, ~D = ε ~E, ~B = µ ~H (1.3)

where σ represents the specific conductivity, ε represents the dielectric constant, also called
permittivity, and µ represents the magnetic permeability. From these 3 parameters, we are
more interested on ε, e. g. we are going to work with non-magnetic materials, so it is possible
to take µ = 1. The importance of ε lies in its direct dependence on the optical responses of
materials, representing the capacity of the material to resist an electric field. The response
of the material to an electric field depends on the frequency (ω) of itself, so the permittivity
is a function of ω and is expressed as the complex function shown below:

ε(ω) = ε′(ω) + iε′′(ω) (1.4)

As expected, ε′ corresponds to the real part and ε′′ is the imaginary of the permittivity, and
the values taken classify the materials according to the following considerations:

• The real part of the permittivity accounts for the energy stored in the medium. In the
simplest and most typical way, for a photon with a frequency given by ω, if ε(ω)′ < 0,
the light is screened, and the material behaves as a metal. In contrast, when the real
part of permittivity is positive, the light can penetrate through the material, and the
material behaves as a dielectric. Nevertheless, for specific frequencies in the infrared
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spectral range (Restrahlen bands), it is possible to have a typical dielectric in the
visible to behave like a metal with ε′(ω) < 0.

• The complex part is related to losses (energy losses). In a perfect dielectric, there are
no free charges, so ε′′(ω) is 0 or near to zero (most of times, dielectrics are lossless
materials). However, metallic materials have a lot of free charges, meaning a high

conductivity, and the complex permittivity is given by ε′′(ω) = σ(ω)
ω

.

1.2.2 Electromagnetic waves

For isotropic linear dielectric media, from Maxwell’s equations and assuming ρ = 0 and
J = 0, it is possible to obtain the wave equations (1.5) and (1.6).

∇2 ~E − 1
v2
∂2 ~E

∂t2
= 0 (1.5)

∇2 ~H − 1
v2
∂2 ~H

∂t2
= 0 (1.6)

Where v is the speed of the light in a specific medium (Eq. (1.7)):

v = 1
(εµ)1/2 = 1

[(ε0µ0)(εrµr)]1/2 = c

(εrµr)1/2 = c

n
(1.7)

Being εr and µr the relative permittivity and the relative permeability, respectively (as we
have said, for non-magnetic materials µr = 1), c = (ε0µ0)−1/2 is the light speed in vacuum
and n = (εrµr)1/2 is the refractive index. In our case, the refraction index is:

n = √εrµr
µr=1= √

εr (1.8)

From Eq. 1.7, it is possible to consider harmonic fields of the form:

~E = ~E0e
iωt and ~H = ~H0e

iωt (1.9)

And if we take into account Equation (1.9), and ω = 2πν, with ν the frequency, Equations
(1.5) and (1.6) become into Equations (1.10) and (1.11):

∇2 ~E0 −
ω2

v2
~E0 = 0 (1.10)

∇2 ~H0 −
ω2

v2
~H0 = 0 (1.11)
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1.2. BASICS ABOUT LIGHT-MATTER INTERACTIONS

The last 2 equations are known as Helmholtz equations.
Considering the solution in form of plane waves (Eq. (1.12) and (1.13)):

~E = Aei(ωt−
~k~r) (1.12)

~H = A′ei(ωt−
~k~r) (1.13)

They represent a plane wave moving in the direction of positive r, that is a forward wave.
The vector ~k is the wave-vector, also known as wave number or propagation vector, and it
is directed in the direction of the motion of the wave. Its modulus is |~k| = k = 2π/λ, where
λ is the wavelength (in the medium).
From Equations (1.5) and (1.6) it is possible to determine that:

ω2

k2
0

= c2 so k0 = ω/c = 2π/λ0 (1.14)

with λ0 the wavelength in vacuum. When the wave is in a medium of refractive index n:

k = 2π
λ

= 2πn
λ0

(1.15)

Going a little further, it is possible to determine the direction in which energy propagates.
This is given by the Poynting vector ~S:

~S = 1
2( ~E × ~H) (1.16)

It is important to note that for plane waves propagating in an isotropic medium the Poynting
vector has the same direction of ~k.

1.2.3 Absorption

Initially, the classical theory of absorption and dispersion of radiation was developed by
Drude and Voigt, and finally fulfilled by Lorentz [8].
We know that the velocity of a wave in a specific material depends directly on the refraction
index of this medium. Previously, we have said that the permittivity depends on frequency,
ε(ω), and n depends on εr, so n varies with the frequency, and can be also expressed as
function of λ. This phenomenon is called dispersion, and a medium with this property is
called dispersive medium.
For the classical Lorentz model for dielectrics, it is considered that the atom is formed
by some oscillators with frequencies equal to the atomic absorption frequencies, ωi. This
oscillators are modelled as particles with mass m and charge e, and, under the action of
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an oscillating electric field E, it is possible to write for the position vector ~r of the generic
oscillator with proper frequency (eigenfrequency) w0:

~̈r + γ~̇r + ω2
0~r = − e

m
~Eeiωt (1.17)

with γ the damping factor. A solution for Equation (1.17) is:

~r = − (e/m) ~Eeiωt
(ω2

0 − ω2) + iωγ
(1.18)

The oscillator has an electric dipole moment ~P :

~P = −e~r (1.19)

The polarization produced by the vibrating electric field ~P , and assuming that all oscillators
are equal and homogeneously distributed can be written as:

~P = −eN~r = Nα~Eeiωt = ε0χ~Ee
iωt (1.20)

where χ is the susceptibility, N is the number of atoms (oscillators) per unit volume, and
α = ε0χ/N the polarizability, which is a complex number (Drude’s formula), and can be
written, thanks to Eq. (1.18) and (1.20), as:

α = (e2/m)
(ω2

0 − ω2) + iωγ
(1.21)

From Eq. (1.18), if ω is not near to ω0, it is possible to neglect the imaginary term. Now,
let us introduce a complex refractive index (n̂):

εr = ε′r + iε′′r = 1 +
(
P

ε0E

)
= (n̂)2 = (n− ih)2 (1.22)

where εr is the complex relative permittivity, n is the real part of n̂ and h its imaginary part.
So we have:

(n̂)2 = (n2 − h2)− i(2nh) = 1 +Nα/ε0 =

Using Eq. (1.21):

= 1 + (N/ε0)[Re(α) + Im(α)] =

= 1 +
(
e2N

ε0m

)(
ω2

0 − ω2

(ω2
0 − ω2)2 + ω2γ2

)
− i

(
e2N

ε0m

)(
γω

ω2
0 − ω2)2 + ω2γ2

)
(1.23)
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In a low density gas it is possible to approximate: k << 1, |n−1| << 1 and n2−1 = 2(n−1),
leading to:

n = 1 +
(
e2N

ε0m

)(
ω2

0 − ω2

(ω2
0 − ω2)2 + ω2γ2

)
(1.24)

And then:
h =

(
e2N

ε0m

)(
γω

(ω2
0 − ω2)2 + ω2γ2

)
(1.25)

If we make k = n̂k0 = (n− ih)k0, we obtain:

E = A · exp (i[ωt− (n− ih)k0x]) = A · exp [−(hk0x)] exp [i(ωt− nk0x)] (1.26)

that represents a wave with wave vector nk0, propagating along the x-axis, with its amplitude
decaying exponentially as the wave travels within the medium. This behaviour is known as
Beer’s law. It is possible to define the intensity in terms of the absorption coefficient β:

I = I0e
−βx (1.27)

where β = 2k0h. h is part of the refraction index, such as increasing the absorption in a
material it also increases.

1.2.4 Drude-Lorentz model for metals

To explain the optical response of polar and metallic materials, it exits different models,
being the simplest the Drude or Drude-Loretnz [8]. In the Drude-Lorentz model, electrons
are free, and from the previous equations ω0 = 0, which means that there is no restoring
force. In this model, the metal consist of a free electron gas with a free electron density, N ,
and it moves against a fixed lattice background of positive ion cores.
Importantly, in the Drude-Lorentz model, the lattice potential and electron-electron inter-
actions are not taken into account. However, some details and aspects of the band structure
are include into the effective optical mass of each electron, m. This plasma model is known
as the Drude model.
If we repeat some calculations from the previous point but with this model, one can obtain
the Equation (1.28), for the dielectric constant (complex).

ε(ω) = 1−
ω2
p

ω2 − iγω
(1.28)

In this equation, γ corresponds to the damping factor and ωp is the plasma frequency of the
metal, represented in Equation (1.29), which depends on the free electron density (N) of the
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metal.
ωp =

√
Ne2

ε0m
(1.29)

Here e is the electron charge, m the electron mass and ε0 the permittivity of the vacuum.
From this, it is possible to determine the real (ε′(ω)) and imaginary (ε′′(ω)) parts of the
permittivity:

ε′(ω) = 1−
ω2
pτ

2

1 + ω2τ 2 (1.30)

ε′′(ω) =
ω2
pτ

2

ω(1 + ω2τ 2) (1.31)

where τ = γ−1 is the relaxation time of electrons taking values of about 10−14s. In the case
of a gas of free electrons, the relaxation time, τ is the characteristic time for a electrons dis-
tribution to reach the equilibrium once there is no disturbances and γ is a phenomenological
damping constant.
In optics, the usual working frequency range is below the ultraviolet. If ω < ωp, and ωτ >> 1,
the permittivity is real, and it can be written as:

ε(ω) = 1−
ω2
p

ω2 (1.32)

In the other hand, at low frequencies, ω << τ−1, which means ε′′ >> ε′. With respect to
the refractive index, both real part and imaginary part are of comparable magnitude:

n = h = (ε′′/2)1/2 =
(
τω2

p

2ω

)1/2

(1.33)

In this frequency region metals have a great absorption, the absorption coefficient, β, is
defined as:

β =
(

2ωτω2
p

c2

)1/2

(1.34)

The fields decays inside the metal as a result of e−x/δ, where δ is the skin depth:

δ = 2
β

= c

hω
(1.35)

When photon energies are below the threshold of transition between electronic bands, for
metals, the optical response is well described by the dielectric function of the Drude model.
If a more practical treatment is needed, it is possible to integrate the Drude model using Eq.
(1.17), and describing each transition between bands in a classical way of a bound electron
with resonance frequency ωj. Each band transition leads to a Lorentz-oscillator term of the
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form Ai/(ω2
i − ω2 − iγω) that have to be added to the free electron result, so:

ε(ω) = ε∞ −
q∑
j=1

fjω
2
p

[(ω2
j − ω) + iγjω] (1.36)

Being ε∞ a suitable constant, q is the number of oscillators with frequency ωj, fj is the
strength and 1/γj is the lifetime.
For metals, the absorption is related with the conductivity σ. The current density is defined
as:

j = −Nev (1.37)

Where v is the drift velocity of electrons, if we substitute it into Eq. (1.17), and with ω0 = 0:

dj

dt
+ γj =

(
Ne2

m

)
E (1.38)

We can use a local approximation to the current-field relation, assuming that the temporal
dependence of E and j are:

E = E0e
−iωt (1.39)

And
j = j0e

−iωt (1.40)

Replacing it in (1.38):

j =
(
Ne2τ

m

)( 1
1− iωτ

)
E = σE (1.41)

In the case of a static field, where ω = 0, it is defined the static conductivity:

σst = Ne2τ

m
(1.42)

Now, for the most general case, in which it is applied an oscillating field, the conductivity
becomes complex and dynamic:

σ = Ne2τ

m

1
1− iωτ (1.43)

For some particular conditions it is possible to obtain a purely real or purely imaginary
conductivity, e. g., for very low frequencies, which means ωτ << 1, the conductivity is purely
real and electrons and electric field oscillate with the same phase. If we start increasing the
frequency of the applied field, the electrons acquire inertia, that induces a phase lag, and the
conductivity becomes complex. In the case of using optical frequencies and above, that is
ωτ >> 1, the dynamic conductivity is purely imaginary and the electrons oscillate 90◦ out
of phase with respect to the incident electric field. The Drude conductivity is proportional
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to the relaxation time of the material. It is possible to express the conductivity in a complex
form:

σ = σ′ + iσ′′ (1.44)

with:
σ′ =

(
Ne2τ

m

)( 1
1 + ω2τ 2

)
(1.45)

and
σ′′ =

(
Ne2τ

m

)(
ωτ

1 + ω2τ 2

)
(1.46)

Relating this expression with Eq. (1.30) and (1.31), we obtain:

ε′ = 1− σ′

ε0τ
(1.47)

and
ε′′ = σ′′

ετω
(1.48)

Similar considerations can be done for dielectric materials, and also semiconductors, which
present spectral regions with a negative permittivity. Two dimensional plasmonic materials
(such as graphene) can be treated using this model, as well as topological insulators, which
are materials that behave as an insulator in its interior but at the surface there are conducting
states.
Other interesting material examples that can be fitted with this simple model are h-BN or
MoO3, which show a very interesting hyperbolic propagation of light, as we will see in next
sections.

1.2.5 Pulses and group velocity

A wave packet with a frequency distribution is a pulse (with finite duration). We can
describe its propagation in a linear medium as a superposition of plane waves of different
frequency:

Ψ(x, t) =
∫
A(k)ei(ωt−kx)dk (1.49)

where A(k) gives the amplitude of the plane wave, and k is the wavevector. At t = 0,
A(k) is the Fourier transform of Ψ(x, 0) and |A(k)|2 is the Fourier spectrum of Ψ(x, t). The
relationship between ω and k is the dispersion relation, but in an isotropic medium, the
dispersion properties do not depend on the direction of propagation, so:

ω(k) = ω(−k)
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The parameters that characterize a pulse are its central frequency ω0, and the frequency
width ∆ω, around the central frequency, which means that A(k) is sharply peaked around
k0. If we want to study the time evolotion of a pulse, we have to expand the frequency as a
Taylor series around k0:

ω(k) = ω0 +
(
dω

dk

)
0

(k − k0) + 1
2

(
d2ω

dk2

)
0

(k − k0)2 + ... (1.50)

From Eq. (1.49), considering only the first term of the expansion, we have:

Ψ(x, t) = exp (i[ω0t− kx])
∫
A(k) exp

(
i[
(
dω

dk

)
0
t− x][k − k0]

)
dk (1.51)

This integral corresponds to a Fourier transform of a function of the type:

E[x−
(
dω

dk

)
0
t]

So, it is possible to write the amplitude of the pulse as:

Ψ(x, t) = exp (i[ω0t− kx])E[x−
(
dω

dk

)
0
t] (1.52)

From Eq. (1.52) we can determine the group velocity. This equation represents a signal

carried by a frequency ω0 and modulated by a curve E[x−
(
dω

dk

)
0
t]. And this modulation

curve moves with a velocity:
vg = dx

dt
= dω

dk
(1.53)

which is the group velocity. When, in a given medium, the phase velocity is constant and
does not depend on the frequency, it means that vg = vp. This approximation is correct
only if the distribution A(k) is sharply peaked at k0 and the frequency is a smoothly varying
function of k around k0. Also, if the electromagnetic energy density of the pulse is related
with the square of the amplitude, vg represents the transport of energy.
In a medium with refractive index n, the phase velocity is given by:

vp = c

n(ω) (1.54)

which can be larger or smaller than the speed of light, depending if n is larger or not than
the unit. The relationship between k and ω is:

k = n(ω)ω
c

(1.55)
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Calculating the group velocity from Eq. (1.53), we obtain:

vg = c

ng
= c

n+ ω(dn/dω) (1.56)

being ng the group index:

ng = n+ ω

(
dn

dω

)
(1.57)

1.3 Optically anisotropic media

Hitherto, we have only taken into account isotropic materials, that is, materials with the
same response to electromagnetic fields in all direction of space. This type of materials are
always used for pedagogical examples, as it is easier to calculate their response; however,
more exotic and thus interesting optical phenomena can be observed in anisotropic materials
(and thus our interest on them in this work).
As we have shown in Eq. (1.3), we can relate ~D with ~E by the permittivity, which in the
most general case is a tensor of the form:

ε̂ =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


This is because anisotropic materials usually have different values of ε in each direction.
Taking the appropriate coordinate system, it is always possible to make this tensor diagonal
such as:

ε̂ =


εx 0 0
0 εy 0
0 0 εz


The components of the tensor, εx, εy and εz are the complex permittivities of the material
in the 3 directions (x, y and z respectively). The simplest case is thus the isotropic case,
where εx = εy = εz = ε.
Note that using the correct system of axes (principal axes), it is possible to write Eq. (1.3)
as: 

Dx

Dy

Dz

 =


εx 0 0
0 εy 0
0 0 εz



Ex

Ey

Ez

 = ε0


n2
x 0 0

0 n2
y 0

0 0 n2
z



Ex

Ey

Ez
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1.3.1 Uniaxial and biaxial crystals

When the permittivity for one of principal axes of the tensor is different from the other
and these are equal, the material is referred as uniaxial [9, 10]. The axis that is different is
called the optical axis. If we assume that z-axis is the optical axis, and the other two are
equal (i. e., εx = εy 6= εz), the permittivity tensor can be expressed as:

ε̂ =


ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖


Where ε‖ = εz representing the parallel component to the optical axis, and εx = εy = ε⊥

represent those components perpendicular to it.
Furthermore, there is another possibility apart from isotropic or uniaxial materials, i.e. when
the permittivity is different in all directions of space (that is a material characterized by three
refractive indices). In this case, the material is known as biaxial. Although there is no axis of
symmetry, there are 2 optical axes or binormals which are defined as directions along which
light may propagate without birefringence. The 3 cases of materials classified according to
its permittivity form are represented in Figure 1.1. Figure 1.1(a) represents an isotropic
material, in which all refractive indexes (directly related with the permittivity) are equal in
all directions, represented with a blue color. Figure 1.1(b) corresponds to an elliptic uniaxial
material where the optical axis is the z-axis, and the other axes are optically equal. Finally,
Figure 1.1(c) represents a biaxial material, where the 3 directions are optically different.
To study the propagation of light in a certain medium, we make use of the dispersion
ω(~k), where ~k is the wavevector, ~k = (kx, ky, kz), and ω is the frequency. Particularly, the
wavevector describes the number of oscillations that the wave completes per space unit, so
it is related with the wavelength as λ = 2π/|~k|. Interestingly, a solution of the dispersion
relation (generally a 3D complex function) for a given frequency leads to what is typically
called an isofrequency curve. The isofrequency curve is useful to describe the propagation
of light inside a certain medium in a graphical way, showing which directions (wavevectors)
can propagate through a medium for a given frequency ω.
In the simplest case, when light propagates in vacuum, the isofrequency curve has the fol-
lowing form:

k2
x + k2

y + k2
z = ω2

c2 = k2 (1.58)

i.e. a sphere with radius ω/c. By simply plotting it we obtain a direct visualization of the
direction of propagation of light, Figure 1.2(a). If, instead of vacuum, we have an isotropic
medium, we also have a sphere but enlarged, due to the different norm of the permittivity
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Figure 1.1: Representation of 3 different types of materials: (a) is a isotropic material, with the
same permittivity in the 3 axis, (b) is a uniaxial material, with n1 the refraction index of the optic
axis, which corresponds to the z-axis (it also corresponds to ε‖), (c) represents a biaxial material,
with 3 different permittivities.

(ε), which changes Equation (1.58) in k2 = ε2 ω2

c2 .
When light propagates in a uniaxial material the equation changes a little, and the isofre-
quency curve is not anymore an sphere but an ellipsoid or a hyperbola, given by:

k2
x + k2

y

ε‖
+ k2

z

ε⊥
= ω2

c2 (1.59)

In case that Re(ε‖) > 0 and Re(ε⊥) > 0, the curve represents an ellipsoid, as shown in Figure
1.2(b). If the anisotropy of the crystal is such that one of the signs of the permittivity in
one direction is opposite to the other two, the curve of the isofrequency is a hyperboloid and
the material behaves as a metal for the direction where the permittivity is negative and as
a dielectric in the other two directions.
Hyperbolic materials can also be biaxial, in this case the permittivity values with the same
sign possess different norm. There are two main groups where hyperbolicity in uniaxial
materials can be classified, which are known as type-I and type-II.
For type-I, the isofrequency surface is a two-sheeted hyperbola (Figure 1.2(c), Type I),
corresponding to: Re(ε‖) < 0 and Re(ε⊥) > 0. However, type-II surface is a single-sheeted
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Figure 1.2: Isofrequency curves for different materials: (a) vacuum or isotropic dielectric (dashed
lines), (b) positive uniaxial material, where ε‖ > ε⊥ > 1, it corresponds to an elliptic material, (c)
hyperbolic with 2 possible cases, Type I means ε‖ < 0 and ε⊥ > 0, and Type II means ε‖ > 0 and
ε⊥ > 0. Adapted from [11].

hyperbola (Figure 1.2(c), Type II), because two components of the permittivity tensor have
negative signs, Re(ε‖) > 0 and Re(ε⊥) < 0.
Classifying hyperbolicity in biaxial materials is a little more complicated certainly going
beyond the purpose of this master thesis.
It is important to highlight that the wavevector ~k, related with the phase velocity (vp = ω/k),
does not always represent the direction of propagation of light, in stark contrast to what
we typically observe in isotropic media. Note that the direction of propagation of a wave is
given by the group velocity, (vg = ∂ω/∂k), which is also the direction where the energy flows,
which is usually expressed by the Poynting vector (~S = ~E× ~H). Looking again to Figure 1.2,
for materials with strong anisotropy, ~S and ~k are not generally parallel, and in hyperbolic
materials they can be almost perpendicular. Actually, for large ~k values, the Poynting vector
is perpendicular to ~k, and ~S (and also vg) has a fixed angle with respect to the optical axis.
This makes possible to have a material where vp and vg show an opposite sign for a specific
direction, leading into very exceptional optical phenomena, such as negative refraction or
the propagation of backward waves [6].
Another interesting phenomena occurs when light is reflected in anisotropic materials, an
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particularly when considering coupled oscillations of photons and electrons, i.e. the quasi-
particle called surface polariton.

1.4 Surface Polaritons

Now, that we have remembered the main characteristics of light-matter interactions and
light propagation, it is time to go one step further. As our goal is simulate and study
reflections in different materials, in which surface waves (surface polaritons, SP) emerge at
the boundary between anisotropic media and air, we are going to explain what a SP is and
the different types of SP that we can have.
In the most simply way, surface polaritons are waves that propagate along the surface of
a material with negative permittivity, such as a metal in the visible spectral range or a
polar dielectric in the infrared. They can be seen as light waves trapped on a surface due
to the interaction with material excitations, such as collective oscillations of free electrons
(plasmons) or lattice vibrations (phonons), which try to screen out the impinging field.
Importantly, these surface waves exhibit unique properties as we will see in the following.

1.4.1 Surface Plasmon Polaritons (SPPs)

More accurately, SPPs are quasiparticles arising from the coupling of electromagnetic
waves with an electric or magnetic dipole-carrying excitation in matter, such as excitons,
phonons or plasmons (Fig. 1.3). Although Maxwell’s equations are defined for continuous
regions, SPPs can exist at interfaces, as we have said previously, and in the bulk, which will
not be covered here.
The most common surface excitations are the surface plasmon polaritons (SPPs), which are
excitations in the infrared or in the visible spectral range that propagate trough the inter-
face between a conductor and a dielectric, being evanescently confined in the perpendicular
direction to the surface. These waves are due to the coupling of the electromagnetic fields
to collective oscillations of the conductor’s electron plasma.
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Figure 1.3: Polaritons, a hybrid of light-matter oscillations, can originate from different material
excitations, such as conduction electrons in graphene and topological insulators (SPPs), infrared-
active phonons in boron nitride (SPhPs), excitons in dichalcogenide materials (exciton polaritons),
superfluidity in FeSe- and Cu-based superconductors with high critical temperature Tc (Cooper-
pair polaritons), and magnetic resonances (magnon polaritons). The matter oscillation component
results in negative permittivity (εB < 0) of the polaritonic material, giving rise to optical-field
confinement at the interface with a positive-permittivity (εA > 0) environment. VdW polaritons
exhibit strong confinement, as defined by the ratio of incident light wavelength λ0 to polariton
wavelength λP . From [12].

The interaction between the surface charges and the electromagnetic field that constitutes
the SPP has two consequences [2]:

• On the one hand, the interaction between the electromagnetic field and the surface
charge density results in the momentum of the SPP mode, which is ~kSP being greater
than the momentum of a free-space photon of the same frequency, ~k0 (where k0 = ω/c

is the free-space wavevector). Solving the Maxwell’s equations with the appropriate
boundary conditions, it shows the SPPs dispersion relation:

kSP = k0

√
εdεm
εd + εm

(1.60)

where εm is the permittivity of the metal, which depends on the frequency, and εd that
of the dielectric. Both of them must have different signs if SPPs are to be possible at
such an interface. This is possible in metals on air because the permittivity is negative
in the former and positive in the latter. The increase in momentum is associated with
the binding of the SPPs to the surface.

• On the other hand, the field perpendicular to the surface decays exponentially with
distance from it, which prevents power from propagating away from the surface.

Once a SPP is excited on the surface of a metal, it will propagate but will gradually attenuate
owing to losses arising from the absorption of the metal. The attenuation depends on the
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dielectric function of the medium at a given frequency, that is the oscillation frequency of
the SPP. The propagation length can be calculated from Equation (1.61).

δSP = 1
2k′′SP

= c

ω

(
ε′m + εd
ε′mεd

)3/2 (ε′m)2

ε′′m
(1.61)

where k′′SP is the complex surface plasmon wavevector, kSP = k′SP + ik′′SP , from Eq. (1.60),
and εm = ε′m+iε′′m. As a fact silver is the metal with the lowest losses in the visible spectrum,
with typically a propagation distances in the range 10–100 µm. Years ago, absorption by
the metal was a significant problem for SPPs, that they were not considered viable for
photonic elements. This view has changed thanks to the recent demonstrations of SPP-based
components that are significantly smaller than the propagation length. These developments
give the possibility to integrate many devices based on SPPs into circuits before propagation
losses become too significant.
Furthermore, SPPs have other uses in other photonic technologies, for example, they excel in
light generation. Thanks to their capability to enhance and confine light into subwavelength
scales, SPPs are considered a basic building block in nanophotonics.

1.4.2 Surface Phonon Polaritons (SPhPs)

SPhPs are very similar to SPPs, while SPPs can concentrate light to subwavelength scales
in conductors, SPhPs concentrate light to subwavelength scales in polar dielectrics. They
are the result of coupling light to polar optical phonons (Fig. 1.4).
As an introduction, the main technological inconvenience of SPPs is the high optical losses
inherent to metals at optical frequencies. Also, while plasmonics in metals has been success-
fully demonstrated in the UV to NIR spectral range, the very large negative permittivity
at longer wavelengths limits its usefulness beyond the NIR. It is thus necessary to search
into alternative low-loss optical materials supporting surface waves. One of the alternatives
consist on exploring the use of dielectric materials.
Actually, dielectric materials give a very interesting opportunity to achieve sub-diffraction
confinement, low optical losses and operation in the mid-IR to THz spectral ranges thanks
to the excitation of SPhPs modes.
Particularly, it is possible to excite SPhPs in polar dielectrics materials between the longitu-
dinal (LO) and transverse optic (TO) modes of the phonon frequencies, the spectral range
that is known as the “Reststrahlen” band. In this case, the mechanisms governing optical
losses come from the scattering of optical phonons, which usually occurs on time-scales in
excess of a picosecond. That means an important reduction in the optical losses of the SPhPs
modes in comparison with SPPs (e-e scattering occurs in the fs scale) [13].
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Figure 1.4: Schematic illustration of collective oscillations of (A) free carriers in metals and (B)
atomic displacements in the form of optical phonons in polar dielectrics. From [13].

The interaction between optic phonons in polar materials and electromagnetic waves can
be explained with Maxwell’s equations, similarly than we have done before for SPPs. Con-
sidering an incident plane wave with ~k the wavevector, and no free charges in the medium
(ρ = 0), and using the first equation from Eq. (1.2.1), with ~D the electric displacement
vector:

∇ · ~D = 0

which is equivalent to:
ε(ω)(~k · ~E) = 0 (1.62)

Eq. (1.62) has 2 solutions:

• Solution 1: ε(ω) = 0. This solution corresponds to the longitudinal mode (LO), with
a longitudinal resonance frequency ω = ωL.

• Solution 2: ~k · ~E = 0. This is the solution of the transversal mode (TO), which has a
transversal resonance frequency ω = ωT .

As said before, the spectral range of existence of SPhPs occurs between these 2 frequencies
and is called Reststrahlen band. When a plane wave with frequency ω, in the Reststrahlen
band, impinges on a polar dielectric surface, the positive charges associated to the lattice
vibration move along the direction of the incident field, and the negative charges move
against it. The result, as a consequence of the real part of the permittivity being negative
in this spectral range, is that the polar dielectric behaves like a metal in the visible.
The most common crystals that supports SPhPs are SiC, GaAs or quartz, and some uses
for SPhPs could be data storage, thermal emission or molecule sensing, etc [1].
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1.5 Numerical simulations. COMSOL

1.5.1 About COMSOL

COMSOL (COMSOLMultiphysics Modelling Software) is a software that solves Maxwell’s
equations. The own COMSOL website describes their software as [14]:

“COMSOL Multiphysics R© is a general-purpose simulation software for modeling designs,
devices, and processes in all fields of engineering, manufacturing, and scientific research.
In addition to using multiphysics modeling for your own projects, you can also turn your

models into simulation applications and digital twins for use by other design teams,
manufacturing departments, test labs, customers, and more.

The platform product can be used on its own or expanded with functionality from any
combination of add-on modules for simulating electromagnetics, structural mechanics,
acoustics, fluid flow, heat transfer, and chemical engineering. The add-on modules and
LiveLinkTM products connect seamlessly for a modeling workflow that remains the same

regardless of what you are modeling.”

COMSOL uses finite elements for analysis and is also a multiphysics simulation software. It
allows conventional physics-based user interfaces and coupled systems of partial differential
equations (PDEs). COMSOL provides an integrated development environment (IDE) and
unified workflow for optical, electrical, mechanical, fluid, acoustics and chemical applications.
In the next chapter we will explain the main features of COMSOL in more detail, explaining
about the interface, how to use it, and, of course, the results that can be obtained showing
our simulations on reflection.

1.5.2 Why COMSOL?

COMSOL is one of the most complete software available, in which you can study thermo-
dynamic problems, how a system evolves in time, fluids, and, of course, the optical behaviour
of a system. COMSOL allows the user to control all steps of the simulation process, you can
define the geometry, the properties and the physics that your system/material has, being
able to describe the phenomena that we want.
In spite of all different software that solve Maxwell equations numerically, we have chosen
COMSOL because it offers for the user (us) all the steps in the modeling workflow. For
example, as we will show in next chapter, we can define geometries with the properties and
physics that we specifically want in our model, i. e., we can exactly define the system and
phenomena that we have in our experiment.
Another important point for COMSOL is the capability to show how our systems evolves
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in time, (in addition to, of course, study the optical behaviour simulating, e. g., Gaussian
beams).

1.5.3 Gaussian Beams

COMSOL can work with gaussian beams, and we are going to use it in our work. Gaussian
beams are a particular solution for Maxwell equations with axial symmetry [8]. The name
of Gaussian beams comes from the shape of the transversal profile of the beam (obviously
Gaussian shape). Let us consider a beam that propagates in the z direction, where the
electric field at any position z is given in the (x, y) plane:

E = E0

(
w0

w

)
exp

[
−i(kz + Ψ)− (x2 + y2)

(
ik

2

)( 1
R
− 2i
kw2

)]
=

(1.63)

= E0

(
w0

w

)
exp

[
−
(
i[kz + Ψ]− ik (x2 + y2)

2R

)]
exp

[
−(x2 + y2)

w2

]

Here, E is the electric field, and it has a maximum at z = 0. The parameter w0 represents
the minimum beam width also at z = 0, w is called beam waist and represent the beam
width at a distance z:

w(z) = w0

1 +
(

zλ

w2
0nπ

)2
1/2

(1.64)

Looking at Eq. (1.64), we see that a Gaussian beam depends on the wavelength, but there
are other parameters that also influence the beam. At z = 0, the Gaussian beam has the
form of a plane wave, but it if z is increased, the beam changes to a curved wave front of
radius R. The radius of curvature is:

R(z) = z

1 +
(
w2

0k

2z

)2
 (1.65)

Actually, we can use for the spot size w(z) ∼ 2z/kw0, because the spot size is a hyperbolic
function around z = 0, with the minimum w0 at z = 0 and a, more or less, linear increase of
the beam radius for large distances.
When z becomes very large R→ z and the divergence angle is:

θbeam = w(z)
R

= 2
kw0

(1.66)
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It is useful to introduce a beam parameter called q, which is complex and defined as:

1
q

= 1
R
− 2i
kw2 (1.67)

Figure 1.5: A representation of a Gaussian beam. On the left the transverse profile, on the right
the shape of the beam as a function of z in the plane xz. From [8].

So, we can rewrite E in terms of q:

E = E0

(
w0

w

)
exp

[(
r2π

λ

)(
1
R
− iλ

πw2

)]
exp [−i(kz − ψ(z))] =

(1.68)

= E0

(
w0

w

)
exp

[(
r2π

λ

)
q(z)

]
exp [−i(kz − ψ(z))]

This parameter q is useful to see and study how a Gaussian beam changes when it traverses
through an optical system (lens, mirrors, etc.).
There are other parameters relative to Gaussian beams, as the Rayleigh length, but as we
will not use them, we will not describe them here in detail.
Note that Gaussian beams and planar waves are mathematical approximations. A real
Gaussian beam has a Gaussian profile in all the axis, which means that a true Gaussian
beam must have infinite energy, that is the reason why they are only approximations, but
these approximations allows us to obtain good results.
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Chapter 2

COMSOL Multyphysics

2.1 Overview

COMSOL is defined as a modeling and analysis tool for the virtual study of physics.
COMSOL Multiphysics can model virtually any physical phenomenon that an engineer or
scientist can describe with partial differential equations. The multiphysical capabilities inte-
grated into COMSOL Multiphysics enable the user to simultaneously model any combination
of phenomena. Thanks to these capabilities, it is possible to describe the model into 2 dif-
ferent ways, one through predefined applications that allow to create the model by fixing the
physical quantity that characterize the problem, and the other, through the equations that
model the problem, and it is also possible to combine both.
COMSOL facilitates the development of apps by having a lot of different libraries. All the
different libraries is the reason that COMSOL is used in such different areas (Fig. 2.1). One
of the most important areas in which COMSOL works are:

• Acoustics, electromagnetism, microelectromechanical systems (MEMS), microwave en-
gineering, radio frequency components, semiconductor devices, wave propagation.

• Chemical reactions, diffusion, fluid dynamics, fluids in porous media, heat transfer,
transport phenomena.

• Structure mechanics.

• General physics, geophysics, optics, photonics, quantum mechanics.

• Control systems.

• Component modeling.

• Applied mathematics.
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Figure 2.1: Some of the different fields in which COMSOL works.

Besides all this, there are some characteristics that makes COMSOL in a good election.
First of all, COMSOL has a friendly and interactive graphic interface for all the modelling
process, that is a very useful point, specially for new users. In addition, it is possible to
simulate 1D, 2D and 3D systems, incorporating tools from CAD for a solid modeling in
1D, 2D and 3D. COMSOL is able to read files and import geometries from other programs
like AutoCAD and CATIA. Another program compatible with COMSOL is MATLAB, with
which COMSOL has a total integration whit it ant its toolboxes.
There are also some important characteristics about the processing. COMSOL has an auto-
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matic and adaptive generation of meshes, with explicit and interactive control over their size.
Controlling the mesh is a very important point, as we will show in Chapter 3. COMSOL also
has the most newfangled solvers, including iterative solvers for seasonal linear and nonlinear
problems, dependent on time, and eigenvalues. Post-processing is interactive, being able to
visualize any function of the solution [14,15].
Another interesting point for beginners are all the examples (more than 80) that explain all
the features of COMSOL, e. g., related with optics, there are more than 5 examples which
you can learn to simulate some basic problems, like simulate fresnel equations or simulate a
Fabry Perot resonator1.

2.2 COMSOL main interface

Having a friendly interface is a very important point, specially to attract and confirm
new users, and COMSOL’s interface meets these points. In each icon, if you place the cursor
over it, it is given a brief description, which is always helpful for all users. In addition, with
a very intuitive graphic interface and comfortable menu shortcuts, it seems that COMSOL
is the correct option to our project.
COMSOL’s interface is shown in Fig. 2.2. As we can see, it is possible to separate the
interface in 3 different sections. The 3 divisions correspond to the toolbar, Fig. 2.2A, the
model builder menu, Fig. 2.2B, and the Graphics section, Fig. 2.1C.
In next subsections, the 3 different menus of COMSOL will be explained in more detail. Due
to the importance of seeing the interface well, it is displayed on the next page in landscape
format.

1If one wants to use these examples, they are available at File, Application Libraries, Wave Optics
Module, Verification Examples.
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2.2.1 Toolbar A)

COMSOL’s toolbar is like other programs toolbar, it is a graphical control element on
which on-screen buttons, icons, menus, or other input and other output elements are placed.
The toolbar allow us to select between the different menus to add or change elements to
our model. There are 10 different sections inside the toolbar, each section with different
subsections related with the section.
The sections are: File, Home, Definitions, Geometry, Materials, Physics, Mesh, Study, Re-
sults, Developer:

• File: by clicking it, it is shown the basic window that exits in every program, allowing
us to create, load or save a file, and also to open the options, read the help, go to the
applications libraries, etc.

• Home: home is, as the name suggests, the home section (Fig. 2.3), a quick access menu
for the other sections.
For example, the first option is the Application Builder, it open the Application Builder
to modify the user interface of the application and to create and edit code for the
application. Other options allow us to modify the geometry, define or edit parameters,
add some physics, build the mesh, compute the program or visualize the results. All of
these options are in their respective menus, but here we have a quick access to them.

• Definitions: in definitions we can add new parameters or formulas to our model or
modify them. Here is where we define all the parameters that are needed for the model,
e. g., in our model we define the wavelength and then the frequency as function of the
wavelength.

• Geometry: in this menu (Fig. 2.4) there are some options to define graphically our
model. Our program will be a 2D model, so the shapes that we will use are lines,
circles and squares. It is also possible to join different parts, or measure the size of the
objects.

• Materials: in materials we use the parameters in Definitions and the geometry defined
in the previous section to define specifically the behaviour of the model. In our model
we distinguish between air and glass.

• Physics: the physics section allows us to add the different physics that will be used in
the model, here is where the different modules are loaded, in our model we will use the
Electromagnetic Wave module in a Frequency Domain, but there are more different
modules like Acoustic or Heat module. It is also possible to perform simulations with
only one module, or multiple modules at the same time.
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• Mesh: this is one of the most important sections, here you define the mesh (Fig. 2.5),
that is, the space or the points where the solver will realize its calculations. Having
a good mesh is important to obtain correct results, generally, the finer the grid, the
better the result obtained, but it requires more computational time and more power.

• Study: in this menu it is chosen the conditions for the study through the use of solvers.
Solvers are defined depending on the way that we want the problem to be treated. The
solver that we use will take the variables defined in Definitions, the initial conditions
that we defined in Materials and Physics, the grid defined in Mesh and a Maxwell
Equation FDTD solver to obtain the solutions to our problem.

• Results: here we define how we want our solutions to be shown, for example, to
represent graphically the electric field on one axis and the position in another axis, or
extract a line of magnetic field for a specific area and then export it as a data set to
use it in a different program.

• Developer: Developer allow us to build an external application out of our model, with
the capability to study it without using COMSOL.

2.2.2 Model builder menu B)

Model builder menu (Fig. 2.6) is a graphic menu where we can individually edit each
parameter of our simulation.
It is possible to edit whatever you want: parameters, materials, variables, definitions, the
geometry of the model, wave equations, boundary conditions, mesh, study and also edit the
way to represent the results.
As an example, we can name the different variables and then edit their value or after drawing
the geometry, we can assign to it the type of material we desire.
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Figure 2.6: Model builder menu selected to edit the main parameters, but it is also possible to edit
the geometry, the material, etc.

2.2.3 Graphics menu C)

This menu (Fig. 2.7) is used to graphically see the Results section, and also visualize
other sections such as Mesh or Geometry, being also able to edit the geometry. It is also
possible to analyze the convergence while the simulation is running to detect if there are
problems in our model or the estimated error what might have in the calculations. At the
bottom of Figure 2.7, there are some sub-menus, here is where we can analyze the simulation
during the run.
Instead of selecting Results, in Figure 2.8 we are showing the grid, this is very useful to detect
in which points the simulation is doing the calculations. For example, in the case of a specular
reflection, we are not interested in having a fine mesh in the second material because the ray
will not enter in it, so we can see how the grid is in the first medium to optimize it. To get
the most accurate solutions, COMSOL bases its core in numerical methods. It realizes the
study of PDE for stationary, time-dependent, frequency domain and eigenfrequency studies,
discretizing by using the finite element method for the space directions. Also using boundary
element methods to discretize such space, having a system of ordinary differential equations
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which are solved using advanced implicit and explicit methods for time stepping.

Figure 2.7: Graphics menu showing us the Results of the electric field.
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Figure 2.8: Graphics menu showing the Mesh. This is a predefined mesh as an example, very thick,
and not useful for our simulations.

Our simulations in COMSOL will be solved by using the Finite-Difference Time-Domain
method (FDTD).

2.2.4 Finite-Difference Time-Domain method (FDTD)

FDTD method, also known as Yee’s method (Fig. 2.9), consist on a numerical analysis
technique used for modeling computational electrodynamics, and it is one of the simplest
numerical methods to implement. Furthermore, it is also a good approximation when solv-
ing Maxwell equations in spite of its simplicity. This method is used in a large number of
simulations, but if the object is small compared to the wavelength of the problem it would
be better to use quasi-static approximations. On the other hand, if the object is too large
compared to the wavelength, it might be better to use ray-based methodology to solve it.
FDTD belongs to finite difference methods where the time-dependent Maxwell’s equations in
partial differential form are discretized using central-difference approximations to the space
and time partial derivatives. The resulting finite-difference equations are solved in either
software or hardware in a leapfrog manner: the electric field vector components in a volume
of space are solved at a given instant in time; then the magnetic field vector components in
the same spatial volume are solved at the next instant in time; and the process is repeated
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over and over again until the solutions satisfies the desired criteria.

FDTD method can be summarized in the next 5 steps:

1. All the Maxwell’s equations in differential form are replace with finite differences,
discretizing time and space, that means electric and magnetic fields are divided in
time and space too.

2. The first iteration of the equations is solved, and then, there are obtained the new
equations, that express the future fields based on the past fields.

3. Evaluate electric fields one time-step so the new values are known.

4. Evaluate magnetic fields one time-step so the new values are known.

5. The steps 3 and 4 are repeated until the solution satisfies a stop criteria.

Figure 2.9: Illustration of how the finite-difference time-domain method in computational elec-
tromagnetism discretizes the space, interleaving the fields components for higher precision. For
a system with translation symmetry along an axis, the TE/TM problems can be decoupled and
solved separately. a) is a two-dimensional case with the magnetic field along the axis (perpendicular
to the screen); b) is likewise a case with the electric field along the axis. In a general case, the Yee
grid on figure c) is used. From [15]

Note that COMSOL makes all these calculations on its own, so that we only have to optimize
those parameters related to the design of the experiment and the materials involved.

2.3 Our simulation in COMSOL

In this section we will describe the simulation that we will run and study. First, we are
going to explain the different parameters used, and the geometry chosen. It will be also
necessary to differentiate between 2 materials, glass and air. And one of the most important
factors, as explained later, optimization of the mesh where the calculations will be carried
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out by the software. Thus, we will describe in detail some of the features related to this
process, and finally show the results obtained.

Figure 2.10: Sketch of our problem, there are 2 different media, in which a ray is reflected and SPs
are created on the surface of a material.

The simulation will consist on an incident ray propagating in a specific medium (isotropic/u-
niaxial/biaxial), which suffers a reflection at the boundary of such medium with a dielectric
(air). For simplicity, the ray is defined in air (in the biaxial medium it would be much more
cumbersome), then it enters the crystal at normal incidence, and then it is incident on the
crystal-dielectric boundary. Therefore, we need to define two different materials: the crystal
and the dielectric. The sketch of the experiment is represented in Figure 2.10.

2.3.1 Modeling instructions

Creating a new file

From the File menu, we choose New. Then, in the new window, we click on Model
Wizard where we select 2D, and in the physics tree, Optics>Wave Optics>Electromagnetics
Waves, Beam Envelopes (ewbe). Until now, we have selected the Physics, the next step is
to define the Study.
Clicking on study we open the study tree, here we choose frequency domain, and then we
click done.
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Global definitions

Figure 2.11: Initial parameters that we introduced in our problem.

On the Home toolbar, we click on Parameters, which open the Parameters settings in
the Model builder menu. In the table we introduce the parameters of Figure 2.11. These
parameters can be modified, and some of them can be overwritten in the future, such as the
refractive index if we want to modify the permittivity and properties of our crystal.

Geometry

We are going to define a geometry like that in Figure 2.10, so we need two rectangles, one
of them smaller than the other, which will consist of air as the medium where the incident
ray is created.
The larger rectangle is created on the Geometry toolbar by clicking Primitives and choos-
ingRectangle. In the settings window for Rectangle, we locate the Size and Shape section.
In the Width text field, we type2 a, as previously defined, and in the Height text field, we

2These parameters can change, they only represent the dimensions of the crystal.
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type b.
There is also a line to be defined that separates the two media, air and the material con-
sidered. To define the line, we click Primitives and choose Polygon, and in the Settings
window, we locate the Coordinates, defined by 2 vectors: x = −b/2 b/2 and y= a/2 − a/2.
The definition of the line will depend on how much separation between materials we want
and on the size of the rectangle.
As said, we also add another smaller rectangle, on the left of the first one, with the only
purpose of generating the incident ray always coming from air. This rectangle is arbitrary,
it can actually be defined inside the first rectangle or outside it, and we can also vary its
dimensions. To create it, we proceed with the same steps as for the first rectangle, but
choosing different dimensions and position vectors. For the dimension, we locate (again) the
Size and Shape section, and in the Width text field, we introduce b/10, and for Height
we introduce a/2. Then, we locate the Position section by typing x =−b/2 + b/20 and y
=0. If we want the rectangle to be outside the first one, we type x =−b/20− b/2 and y =0.
As said, there will be no difference between locating the smaller rectangle outside or inside
the material, its only purpose is to generate the incident ray in air (defining the incident ray
in other media could be more complicated, especially for biaxial media). In the following
results, we will always place the rectangle inside the material for convenience, so we can
slightly reduce the cost of meshing time. The results of this section are shown in Figure
2.12.

(a) Rectangle (where the incident wave is generated)
“inside” the crystal.

(b) Rectangle (where the incident wave is generated)
outside the crystal.

Figure 2.12: Both systems are equivalent

Materials

In the Model Builder window, under Component 1, we right-click Materials and
choose Blank Material. In the Settings window for Material, we type Air in the Label
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text field. Then, we locate the Materials Contents section and enter the parameters from
Figure 2.13:

Figure 2.13: Parameters for air material.

We have also to define which domains correspond to each material3. In this case, we localize
the Geometric Entity Selection section, and, for air, we add domains 2 and 3.
For defining the crystal material, the procedure is the same, in the Model Builder window,
under Component 1, we right-click Materials and choose Blank Material. In the Set-
tings window for Material, we type Glass in the Label text field. And, again, we locate
the Materials Contents section and enter the parameters from Figure 2.14:

Figure 2.14: Parameters for glass material.

For the glass material, in the Geometric Entity Selection section we add domain 1.

Electromagnetic Waves, Beam Envelopes (ewbe)

In the Model Builder window, under Component 1 (comp 1), we localize and click
on Electromagnetic Waves, Beam Envelopes (ewbe). In the Settings window, we
look for the Components section and, from the Electric field components solved for
list, we select Three-component vector.
Now, we have to define the boundaries, domains and initial values:

3By default, the first material that added is applied on all domains
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• On the Physics toolbar, we click Domains and select Wave Equation, Beam
Envelopes. Here, we are going to define some electromagnetic parameters.
We click on Wave Equation, Beam Envelopes 1, localize Domain Selection
section, and add domains 2 and 3. Now, we locate Electric Displacement Field,
and from the electric displacement field model list we select Relative permittivity.
In theMagnetic Field section, we locate theRelative permeability list, and choose
User defined, this parameter should be 1. Finally, we locate Conduction Current
section, and in the Electrical conductivity list, we choose User defined, which
must be 0.

• We now go to thePhysics toolbar, clickDomains and selectWave Equation, Beam
Envelopes.
We click Wave Equation, Beam Envelopes 2, first, and add domain 1 in the
Domain Selection. We locate Electric Displacement Field, and from the electric
displacement field model list we select Relative permittivity. Instead of using the
permittivity from the material, we are going to select it in the Relative permittivity
list User defined. Here we can define a uniaxial/biaxial material using a diagonal
tensor for the permittivity.
For the Magnetic Field section and Conduction Current section we repeat the
previous step.

• We now go again to the Physics toolbar, we click on Boundaries and select Initial
Values. On the Model Builder menu, under Wave Equation, Beam Envelopes
(ewbe), we select Initial Values 1, and in the Domain Selection section we add
all the domains, i.e. 1, 2 and 3.

• Now, we have to define the boundaries, on the Physics toolbar. To do that, we click on
Boundaries and selectPerfect Electric Conductor. On theModel Buildermenu,
under Wave Equation, Beam Envelopes (ewbe), we select Perfect Electric
Conductor 1, and, in the Boundary Selection section we include boundaries 1 and
5.

• It is time now to create the incident pulse. On thePhysics toolbar, we click onBound-
aries and select Matched Boundary Condition. On the Model Builder menu,
under Wave Equation, Beam Envelopes (ewbe), we select Matched Boundary
Condition 1.
In the Settings menu, we add boundary 3 in the Boundary Selection section. Then,
we locate the Matched Boundary Condition, and under the Incident electric
field envelope, for the y component, we type exp(−(y/w0)2) ∗ 1.
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We have defined a Gaussian pulse, that is launched in boundary 3, which corresponds
to the small rectangle (air).

• We now on the Physics toolbar, click on Boundaries and select Matched Bound-
ary Condition. On the Model Builder menu, under Wave Equation, Beam
Envelopes (ewbe), we select Matched Boundary Condition 2. In the Settings
menu, we locate the Boundary Selection section, and add boundary 2.

• Finally, on thePhysics toolbar, we click onBoundaries and selectMatched Bound-
ary Condition. On the Model Builder menu, under Wave Equation, Beam
Envelopes (ewbe), we select Matched Boundary Condition 2. In the Settings
menu, we locate the Boundary Selection section, and add boundaries 8 and 10.

Mesh

In the Model Builder menu, under Component 1 (comp 1), we right-click on Mesh
1 and choose Free Triangular. There are more options, for example, using a Free Quad.
In the next section we will explain why the Free Triangular is better than others for our
particular case.
Under Mesh 1, we right-click Free Triangular 1, and click Size. The purpose of this step
is to define a finer mesh for the areas where the calculations are carried out. For air, the
area where the pulse never goes through, we do not need a very fine mesh (which would cost
more computational power), so we define a different thicker mesh.
To do this, under Free Triangular 1, we click Size 1. We localize the Geometric Entity
Selection section, and add domains 1 and 2. We locate Element Size and select Custom.
Finally, we localize Element Size Parameters, select Maximum element size and type
wl/7.
The grid will depend on the wavelength, the smaller the wavelength the finer the mesh should
be. Indeed, the mesh can be set arbitrarily small depending on the computing capability.
For the mesh in air, we proceed as in the previous step: under Mesh 1, we right-click Free
Triangular 1, and click Size. Click Size 2. We localize the Geometric Entity Selection
section, and add domain 3. We locate Element Size and select Custom. Finally, in
Element Size Parameters, we select Maximum element size and type wl/5.

Study

On the Home toolbar, we click Compute and see the results.
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NOTES:

1. The selected parameters are defined for a default biaxial hyperbolic system, in the
next Chapter we will choose different parameters to simulate different material conditions
(isotropic, elliptical and hyperbolic). We will comment which parameters are changed and
their new values. It is also possible to use other parameters, but you should take into ac-
count that different parameters mean different conditions and the result could show a poor
resolution, so the idea is to find an optimal set of parameters and thus optimal results.

2. The following results will be performed with light instead of SPs due to the simplification
of the problem (specially when exciting the incident wave), however, all results can be
extrapolated to SPs. Furthermore, in the hyperbolic case it is possible to observe SPs that
emerge on the boundary.
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Chapter 3

Numerical simulations

In this chapter we are going to show the results of the simulations and discuss about them.
The first result that we found in the simulation procedure is the importance of the mesh, so
this will be our starting point. Then, once we have achieved a good mesh, the second point
is to simulate reflections in different materials to study the differences obtained depending
on the material properties.

3.1 The importance of the mesh

As seen in the previous chapter, there are different types of mesh, triangular, quad, etc.
We start selecting a free triangular mesh, but, as we show in Figure 3.1 this type of mesh is
not optimal.
The mesh suffers a crowding in the middle of each geometry, the crowding in the right part is
not important, because the light never refracts. The main problem is for the left part, where
the light goes through, so the mesh should be well defined because it will defined the points
where the program will realize the calculations. However, it exists a kind of agglomerated
grid, a discontinuity, so the mesh is not constant.
For the simplest case (isotropic material) the given solution is correct, but when the cal-
culations became more difficult, for example, when the medium is biaxial, it leads into
background noise, as shown in Figure 3.3.
In this case, the solution is not that bad, because one can correctly identify the expected
reflection process, however there is background noise. This noise could be improve in some
ways, but also it could be even worse, as we are going to show below. In Figure 3.2 are shown
two images, in Figure 3.2a we have change some values of the permittivity, particularly, we
have chosen a biaxial medium with negative refraction index in 2 different directions, such
that the calculations need to be more accurate, but the current mesh is not fine enough, so
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Figure 3.1: Initial mesh, it lacks of a grid continuity.

it results in a lot of background noise. If we compare both Figure 3.2a and Figure 3.1, the
noise concentrates at the discontinuities in the grid.

Figure 3.3: Solution for a biaxial medium, where some noise is generated due to the mesh.

In Figure 3.2b, instead of changing the permittivity, we have decreased the mesh size. The
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(a) Extreme case, with determined parameters to bring
on background noise.

(b) In this example, instead of changing the parameters,
the mesh is made bigger, so the results are poorer.

Figure 3.2: Examples of how a bad mesh can lead into wrong results.

result is the same solution as in Figure 3.3, but with more background noise.
There are some tricks to improve the mesh, the most basic and obvious is to reduce the
grid size, having a finer mesh means to have more points where to carry out the calculations
reducing the discontinuity, but it will also require more computational power.
Within all mesh types we have try in this work all of them (the most typical are triangular
and quad) and the best solution was obtained for the free triangular mesh, where the grid is
made up by triangles. To decide which mesh type was better we took care of the geometry
taking into account that for a rectangle the best mesh is a free quad mesh. However, in this
case, in which we separate the system into two triangles and one rectangle, the best way to
optimize the grid is using a free triangular mesh. But, why is this happening?.
First point, let us compare the use of a triangular or quad mesh in this system. To do that,
we define the grids, one made with a free triangular mesh, and the other with a free quad
mesh. Both will be defined with the same parameters, only changing the mesh type. The
chosen parameters are for the Maximum element size, as is Chapter 3, typing wl/5 for
domains 1 and 2 (the crystal and the small rectangle) and wl/3 for domain 3 (air)1.

1The parameters given in Chapter 3 were wl/7 and wl/5 but as this is only to demonstrate how the
mesh works we decided to reduce the mesh size a bit.
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(a) System with a Free Triangular Mesh.

(b) System with a Free Quad Mesh.

Figure 3.4: System to solve when comparing two different mesh types. To discuss them we marked
3 different areas. In A we compare the rectangle where the light is generated, in B we discuss about
the mesh in the corner, and in C we compare the center of the system.

At first glance (Fig. 3.4), it looks obvious that the triangular mesh generates a more regular
and finer grid than the free quad grid mesh. But paying attention to areas A, B and C, we
can observe in a better way why a triangular mesh is better in this case:
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• Section A:
In section A we are zooming to the place where the incident pulse is generated, it is
represented in Figure 3.5, there are more parts besides the rectangle, but now we are
going to only take the small rectangle into account.

(a) Triangular mesh. Section A. Zoom to the small rectangle.

(b) Quad mesh. Section A. Zoom to the small rectangle.

Figure 3.5: Comparison between triangular and quad mesh. Section A from Figure 3.4.

In Figure 3.5b it is shown how this part results with a quad mesh, as the geometry
corresponds to a rectangle, meaning that a quad mesh can fit better to it.
In the other hand, in Figure 3.5a it is shown the same rectangle but with a triangular
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mesh. The result is that here a free quad mesh is better, it is continuous in the entire
rectangle, however, the free triangular mesh has 2 small discontinuities above and
below the rectangle, with a triangular shape.

• Section B:
Section B corresponds to the upper left corner of the crystal (Fig. 3.6).

(a) Triangular mesh. Section B. Zoom to the upper left corner.

(b) Quad mesh. Section B. Zoom to the upper left corner.

Figure 3.6: Comparison between triangular and quad mesh. Section B from Figure 3.4.

In this part of the system (the corner), a triangular grid seems to fit much better than
a quad grid. This is because the corner corresponds to a triangle, so it is impossible
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to define it properly with square shapes.
It is also very difficult to have a perfect triangle grid in all the simulating area, as a
discontinuity that starts from the middle of the corner propagates along the material.
Both meshes show this discontinuity, but it is more noticeable for the quad mesh case.

• Section C:

(a) Triangular mesh. Section C. Zoom to the center of the system.

(b) Quad mesh. Section C. Zoom to the center of the system.

Figure 3.7: Comparison between triangular and quad mesh. Section C from Figure 3.4.

This section, Fig 3.7, represents the center of the system, with a very important bound-
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ary between the crystal and air. It is also a boundary between a fine grid and a larger
grid.
Here is interesting to notice that the discontinuity that started in the corner has spread
through the system and have induced a big discontinuity in the middle, specially for
the quad mesh. This is the most important area of the physics evaluation in our par-
ticular problem, so it is necessary to obtain an optimal mesh.
Another reason to explain why this happens is due to the boundary conditions. In
COMSOL, when there are 2 different geometries next to each other, it is necessary
to create boundary conditions between them. For example, when a pulse goes from a
material to another it always goes through a boundary, so the program must have a
well defined grid to calculate the path of the pulse. The way to implement this is with
a boundary such that the entire grid from one side must match with the other side
grid.
In the center of our system, we have a triangular grid in one side that has smaller ele-
ments than the grid of the other side, so, only near the border, where the grid is larger,
there are the same number of triangles in both sides, this is represented in Figure 3.8.
The crystal part has a finer mesh, in the boundary COMSOL creates the same number
of calculation points in one side than in the other. In the air side, the grid suffers a
change and acquires a more convenient geometry.

Figure 3.8: Boundary between crystal and air (center of the system, section C). The border is
highlighted with a black line.
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In summary, at the corner the triangle grid fits better, nonetheless it is always generated a
discontinuity which propagates along the material. The discontinuity is due to the need to
perfectly match the boundaries and the differences between the geometries. However, if the
mesh is fine enough we can obtain good results without any problem.
It is also important to notice that the background noise problem only occurs when the
calculations are complicated (negative refractive index), because the program needs to be
more accurate.

3.2 Reflections in different materials

In this section we are going to simulate the reflection of light in 3 types of materials, with
the purpose to excite SPPs/SPhPs in VdW biaxial materials. To do that, first we will define
a Gaussian pulse, defined by a Gaussian function.

Particularly, the 3 different systems that we will consider are:

• Isotropic: this is the most common case, which should show a typical specular reflec-
tion, where the incidence angle is the same than the reflection angle. Here, as we have
said, the energy will go in the same direction than the wavevector.

• Elliptic material: in this case the reflection angle will change with respect to the
incidence angle. Depending on the material (the permittivity function in all three
directions of space) the reflection angle will be different. The direction between the
Poynting vector and the wavevector will generally be different. The elliptic materials
that we simulate will be all uniaxial.

• Hyperbolic material: here we have the most uncommon case. The reflection angle could
be very different compared with the incidence angle, this is what is called as hyperbolic
reflection, where one (or two) optical directions of the material behaves as a metal.
In very particular case, can occur that the reflection angle is negative (anomalous
reflection) or even the wave comes back overlapping the incident one (backreflection).
The Poynting vector and the wavenumber will have different directions.

When talking about a pedagogical reflection problem the solution is given by the typical form
of the Snell’s law, where the incidence angle is the same as the reflection angle. However,
this condition is only true in isotropic materials (where n is constant and equal in all three
directions of space), when using anisotropic materials we will need to use a more generic
and difficult equation. Actually, the condition that must be satisfied is the momentum
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conservation given in Eq. (3.1), and the most basic Snell’s law comes from this condition.
To explain this we can take into account the isofrequency curve for each case.

∆~k = ~ki − ~kr = 0 (3.1)

Let us assume a isofrequency curve f(kx, ky), with the normalized incident and reflected
Poynting vectors ~Si and ~Sr, and the normalized wavevectors ~ki and ~kr for the incident and
reflected ray respectively. The incident ray impinges in a boundary mirror called B. Due
to the conservation of momentum at it, the tangential component of ~k must be conserved,
meaning that the reflected wave will follow the direction of the normalized Poynting vector
~Sr with normalized wave number ~kr.
In advance for the next section, for isotropic materials, the isofrequency curve is a circle, and
the reflection is represented in Fig. 3.9. The incident beam encounters a boundary where
it is reflected satisfying the condition from Eq. (3.1). In this case, (the simplest case), the
incident angle is the same as the reflection angle. The reflection is represented both in the
isofrequency curve and with a COMSOL simulation (right of Fig. 3.9).
Looking at the COMSOL simulation, we can clearly see the incident wave, and distinguish
between the Poynting vector and the wavevector. In the top right inset we schematically
represent the process. We can see that, for this simple case, the wavevector and the energy
goes in the same direction.

Figure 3.9: Isotropic material. On the left, it is represented the isofrequency curve, with the
incident (red) and reflected waves (blue). There is a boundary mirror between them (green). On
the right, it is represented the simulation in COMSOL, with the capability to distinguish between
the Poynting vector and the wavevector. Top right inset schematically shows the result of the
COMSOL simulation.
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Note that for isotropic materials the Poynting vector and the wavevector are parallel, im-
plying that the incidence angle θi and the reflected angle θr are equal, however, we will see
that this can be very different in other media.

3.2.1 Isotropic material

As said above, we have already defined a Gaussian pulse (Chapter 2). Particularly, a
Gaussian pulse is defined by a Gaussian function of the form:

f(x) = ae
−

(x− b)2

2c2 (3.2)

In our COMSOL program, b = 0, a = 1, x = y (we defined it in the y-direction) and
2c2 = w02. The parameters that we are going to change are the permittivity, the wavelength
and the spot radius. Changing the permittivity is obvious because we have to try different
media, but it also implies changing the absorption of the media, so, sometimes, it is necessary
to change the wavelength too.
Previously, we have defined the permittivity by a diagonal tensor, but now we will use an
isotropic tensor (in Wave Equation, Beam Envelopes 2). First, we work whit a medium
with εr = 2.50, so ncrystal = 1.58 and the results are shown in Figure 3.10.
In this case, the result follows the most common form of the Snell’s law, as the incident ray
makes 58◦ with the normal2, the reflected beam occurs at the same 58◦. What we see is
specular reflection, because the second medium (air) has a lower refraction index. We can
also see that, in this isotropic material, the Poynting vector and the wavevector are parallel.
Then, we can compare these results with another isotropic material, for example, let us try
a isotropic medium with relative permittivity εr = 3.5, one more unit than in the previous
case, this simulation is represented in Figure 3.11. In this case ncrystal = 1.87, and the
reflection angle is the same.
In both cases it is satisfied what we showed in Fig. 3.9, even when varying the permittivities,
θi, θr are always equal and the Poynting vector, wavevector and group velocities are always
parallel. However, the only difference is due to Beer’s Law (Eq. (1.27)), the higher the
permittivity the lower the intensity, because the absorption coefficient is directly proportional
to the refraction index.
The only problem here is that we are not simulating SPs but rather light, because none
of the permittivities is negative, however this problem can be extrapolated to SPs and a
metal, but the simulation would have been more complicated because we would have had to
previously excite the light.

2This can be calculated by trigonometry, knowing that we have a rectangle 64x90.
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Figure 3.10: Simulation for an isotropic medium, with εr = 2.5. It is a typical reflection, with angle
52◦. The energy and the wavevector have the same direction.

Figure 3.11: Simulation for an isotropic medium, with εr = 3.5. The reflection is the same as in
Figure 3.10.
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3.2.2 Elliptic material

In an uniaxial material the isofrequency curve can be an ellipsoid, which implies 2 impor-
tant related changes, first, depending on the incident wave, the Poynting vector might not
be parallel to the wavevector, and so, the reflection angle is not the same than the incident
angle.
For this case we cannot use an isotropic tensor, in Wave Equation, Beam Envelopes 2,
we have to select a diagonal tensor in which one of the elements are different to the other
two. We are going to try some different configurations and comment them.
First, we simulate a case where the optical axis is along the y-axis, with εy = 4, whereas the
other axis have εx,z = 3, which means:

εr =


3 0 0
0 4 0
0 0 3

 (3.3)

Here, the reflection is represented in Fig. 3.12

Figure 3.12: Simulation for an elliptic uniaxial medium. The incidence angle is different to the
reflected angle, also the Poynting and ~k vectors have different directions.
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Compared to the isotropic material, the reflection angle is a bit different, the main difference
lies in the direction of the Poynting vector and the wavevector.
For the second try, we have to think about what would happen if, keeping the same optical
axis we increase its norm.

εr =


3 0 0
0 6 0
0 0 3

 (3.4)

The result is represented in Fig. 3.13:

Figure 3.13: Simulation for an elliptic uniaxial medium. The reflected angle is different to that in
the previous figure, and also the Poynting and ~k wavevectors have different directions.

We can better compare the reflection angles in Fig. 3.14, as we see, the difference is not very
important, but the reflection changes in 5◦. For the optical axis where εy = 4, the angle is
66◦, and for the optical axis with εy = 6 the angle is 71◦. There can be an error of about
±1◦ in the calculation of the angles, but the difference is notorious and is still about 5◦.
We are starting to distinguish a particular behaviour, changing the permittivity we can
change the relationship between the incidence and reflection angles. Paying close attention
to the wavevector and Poynting vector we can see another different behaviour, as said previ-
ously, they have different directions, but this difference is not as noticeable to other elliptical
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cases.

(a) Reflection angle of Fig. 3.12

(b) Reflection angle of Fig. 3.13

Figure 3.14: Comparison between increasing the permittivity in the optical axis.

For the next simulation, let us change the optical axis to the z-axis:

εr =


3 0 0
0 3 0
0 0 6

 (3.5)
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This results in:

Figure 3.15: Simulation for an elliptical uniaxial medium, where the optical axis is the z-axis, and
the permittivity tensor is represented in Eq. (3.5).

Figure 3.16: Elliptic uniaxial material. kr and Sr are not parallel, and the reflected angle is different
from the incident angle.
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Setting the optical axis to the x-axis also results in a change in the reflection angle. As we
see the reflection angle depends on the 3 values of the permittivity, and it is interesting to
see how it changes and how is never the same than the incident angle, as it happens in an
isotropic material.
This behaviour can be studied using the isofrequency curve, always satisfying the Eq. (3.1).
For an elliptical material (Fig. 3.16) it does not follow the θi = θr condition, so θi 6= θr,
the condition that the system must follow is Eq. (3.1). As we see, for the reflected wave, kr
and Sr have different direction, meanwhile kr follows the corresponding equation, Sr must
be perpendicular to the isofrequency curve (in all points of the isofrequency curve).
On the left of Fig. 3.16, we see the isofrequency curve of an uniaxial material, similar to
the previous case, instead of being a circle is an ellipsoid. Due to this ellipsoid shape, the
reflection is different, we can see on the right of the picture how the wavevector goes and
how the energy flows with different direction.

3.2.3 Hyperbolic material

A hyperbolic material can be either uniaxial or biaxial, and they can generate 2 types hy-
perbolic isofrequency curves, depending on the values of the permittivity. Type I hyperbolas
occur when one of the permittivities is negative, and Type II, when 2 of the εi are negative.
This fact generates very exotic materials with interesting properties and very uncommon
refractions.
In hyperbolic materials, the medium has a behaviour as a metal along certain directions
(those with a negative εr), however, the medium has a dielectric behaviour along the other
directions.
Sometimes, the direction between the wavevector and the Poynting vector can be extreme,
and they can be, for example, perpendicular at some points.
First, let us start with a Type I refraction with:

εr =


2 0 0
0 1.8 0
0 0 −1.5

 (3.6)

In this case, the metallic optical behaviour corresponds to the z-axis, which is the axis that
comes out of the plane, so it does not affect the result too much, look at Fig. 3.17.
The result is a refraction angle of 55◦, about 10 degrees difference whit the previous cases,
but the most interesting fact is that, due to the metallic behaviour in one direction there
are SPs in the boundary.
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Figure 3.17: Simulation of a hyperbolic biaxial medium, represented in Eq. (3.6), as the negative
permittivity is not in this plane the reflection is similar to previous results, but looking at the
boundary we can see SPs.

The next step is to think what happens if we change the negative permittivity to the x-axis3,
we have tried the following configuration:

εr =


−1.3 0 0

0 2 0
0 0 2

 (3.7)

The result is represented in the next figure.
This simulation is not fully optimized there are some background noise that I cannot improve,
but fortunately it does not affect to the result, so we can use this simulation. The background
noise is created because the negative value is in the x-axis which is in the same plane as the
material, so the computer needs more power and accuracy, that is, reduce the grid size.

3We cannot set a negative permittivity in the y-axis because is the axis where the incident ray goes
through, so if it is negative it behaves as a metal and the wave is only reflected and never enters in the
crystal. However, exciting the wave in a certain way it is possible to set a negative value and obtain results.
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Figure 3.18: Simulation of a hyperbolic Type I reflection, where the negative ε corresponds to the
x-axis. This simulation is not fully optimized, as we see there are a lot of noise background, but it
does not affect to the result. We can see SPs at the boundary. The Poynting vector and wavevector
have very different directions and the refraction angle is 77◦.

Figure 3.19: Zoom into the boundary, we can see perfectly the SPs and the difference between
Poynting vector and wavevector directions.
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In this case the refraction angle is 77◦, a strong difference between other cases, remember
that the incidence angle is 58◦. However, we have already seen the difference between
incident and reflection angles in previous cases, here, another important difference is given
in the relationship between the Poynting vector and the wavevector. In this simulation,
there is the most notorious non-collinearity between them, we can see it better if we zoom
it, represented in Figure 3.19, the two vectors are near to be perpendicular.
There are also SPs due to the metallic behaviour, this did not happen in the previous cases.
This reflection is explained by the isofrequency curve in this way:

Figure 3.20: Biaxial material. In this case we see an hyperbolic reflection, in which the reflected
angle is more extreme than in previous cases, and kr and Sr are very close to be perpendicular.

Here, we have to highlight 2 facts, in the one hand, the material has a strong anisotropy,
having different optical properties in each directions, and on the other hand, the incident
and reflected waves must satisfy momentum conservation, these two facts lead to exotic
reflections.
Then, we have tried Type II hyperbolic refraction, having this type of material the reflection
could be more exotic, we have started with this tensor:

εr =


−1.3 0 0

0 2 0
0 0 −2

 (3.8)

We have only change the sign of εz, the numerical values are the same, and the result is the
same as for Eq. (3.7), so we can conclude:
First, we can se the emergence of SPs with one negative permittivity, because it adds a
metallic optical behaviour, however, having 2 negative permittivities does not improve the
SPs with respect a only one negative value, and also, having 2 negative εi creates more
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background noise, so we will only use one negative permittivity in the z-axis.
Second, having the negative permittivity in the plane where the ray goes through (x-axis in
this case) has a strong relation with the changing in the directions of ~S and ~k, because it
affects stronger to the isofrequency curve with our incidence angle.
Now, our goal could be to find an exceptional reflection. Exploring with these materials we
have found a interesting behaviour, keeping constant εy and decreasing the absolute values
of εx and εy the reflection angle becomes bigger with respect to the normal, on the other
hand, increasing these values (εx and εy), the reflection angle gets closer and closer to the
normal, and, on a certain moment, the reflection angle becomes negative.
When the reflection angle is negative this reflection is known as a negative or anomalous
reflection. Trying different configurations, we have found the following:

εr =


12 0 0
0 1.65 0
0 0 −12

 (3.9)

Figure 3.21: Anomalous reflection in a hyperbolic material. The reflection angle is negative, -21◦.

In this very exotic case of anomalous reflection (Fig. 3.21), the reflection angle is −21◦ with
respect the normal, and we still see very intense SPs on the surface of the boundary. This

Rafa Méndez Camino 61



CHAPTER 3. NUMERICAL SIMULATIONS

reflection is very exotic and important, this strongly anisotropic SPs come from the strong
anisotropy of the crystal (the medium in which they propagate).
But, there is also a more strange case, a very particular case called backreflection, in which
θi = −θr and the incident and reflected waves are overlapped. This case is common, for
example, in a mirror, in which this occur for a normal incidence, but seeing this behaviour
with an incidence angle of 58◦ is very exceptional.
This case can occur due to different reasons: a different incidence angle, different angles of
the interface between the hyperbolic material and the dielectric, or, (as we do) with specific
values of the permittivity. This reflection can be shown in the isofrequency curve as follows:

Figure 3.22: Isofrequency curve for a hyperbolic backreflection. A very particular case for hyper-
bolic materials.

Here (Fig. 3.22), due to the shape of the isofrequency curve, the result is even more anti-
intuitive. Vectors kr and Sr are perpendicular, and Sr is opposite to Si. The direction in
which the wave flows is given by the energy (the Poynting vector), being Sr opposite to Si
means that the reflected wave comes back.
This is a extreme case for the hyperbolic reflection, as we have said, called backreflection,
because the wave goes back to the source in non-intuitive angles.
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We have simulated a back-reflection with the following configuration:

εr =


15 0 0
0 5.75 0
0 0 −15

 (3.10)

Figure 3.23: Hyperbolic backreflection. The reflected wave is overlapped to the incident wave. Ver
exotic case.

This back-reflection can be very elusive and difficult to measure, what is more, in the research
group this has not yet been measured, however, we have demonstrated that this phenomenon
is possible, so our final point will be a experimental proposal to measure it in a laboratory.

3.2.4 Experimental proposal

Taking into account that this thesis is theoretical, we are not going to describe the
experimental setup with many details, however, it is interesting to show that this is possible
and can happen in real life and using SPs instead of light, as in the simulations.
The α−MoO3 is a natural Van der Walls material, which at certain frequencies is hyperbolic,
and thus it is possible to visualize and verify SPs in α−MoO3 flakes and disks using nano-
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imaging and nano-spectroscopy. These imaging techniques can be realized with a s-SNOM,
a scattering-type scanning near-field optical microscope [16].
The s-SNOM has a tip to which we focus a laser beam. This way the tip is able to excite
SPs into the material, and we can only detect with the tip the back-reflected ones, which
means that it can be used to measure back-reflections.
Once the flake is created, it is possible to create on it an air boundary (like the one in the
simulation) using a focused ion beam technique. Having the two media, crystal-air, and
then, experimentally, using the tip of the as antenna, take a near-field s-SNOM image of the
polaritons that are back-reflecting on the air boundary previously created.
As we have said, how we send and detect the polaritons from the tip, only the back-reflected
waves are detected, so this experimental propose can be a good choice to reproduce the last
point.
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Chapter 4

Conclusions

In this master thesis we have introduced the basics about nanooptics, focused in surface
polaritons, but simulated in this work with light to simplify the computational problem,
being aware that all the results obtained can be directly extrapolated to SPs. We have
shown that reflections are not always as simple as the most common form of the Snell’s
law predicts, introducing different media such as isotropic, uniaxial, biaxial an hyperbolic
materials.
Using the program COMSOL we have simulated these different materials. First of all, with
the first simulations, we obtain a conclusion for simulations in this field:

• It is very important to achieve an equilibrium between computational cost and results,
especially when calculations become more and more harder. We have shown the impor-
tance of the mesh, and how having a finer mesh result in better results, but obviously
requires more computational cost.

The mesh size has a more significant influence when one of the permittivities are negative
(thus supporting SPs), so a finer mesh is required.
Focusing on the reflection results, we have simulated three different types of materials:

• Isotropic: the material has only one permittivity value (one refractive index), so the
result satisfies the most common form of the Snell’s law, being θi = θr.

• Uniaxial/biaxial: the crystal has an optical axis along with the permittivity is different
to the other directions of space. The Snell’s law is not satisfied in its common form,
and the reflection needs to be derived from the isofrequency curve taking into account
momentum conservation. The main result was that θi 6= θr, and that, with negative
permittivities SPs emerge on the boundary.

• Hyperbolic: this type of material yields the most exotic results. Generally, two values
of the permittivity are negative, so the crystal acquires a metallic optical behaviour
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in these directions. One of the most interesting result was the anomalous reflection
in which the reflected angle is negative. Also, the other interesting result was the
condition for back-reflection, in which θi = −θr, overlapping the incident wave with
the reflected one at angles very different to that for normal incidence.

The back-reflection process has not been experimentally measured in hyperbolic media,
however, in this thesis we have proposed an experimental way to reproduce and study this
phenomenon.
The whole scope of the exotic materials that we have used with the emergence of SPs with
novel characteristics demonstrate that nanooptics are a very interesting field. So far, we
have simulate some aspects of reflection in these media, the next step would be translating
them to the lab.
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