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Introduction

At the annual American Physical Society meeting at Caltech on December 1959, Richard

Feynman, one of the greatest minds of all times said " There’s plenty of room at the bo-

ttom". He considered the direct manipulation of individual atoms as the future of phys-

ics and specially of condensed matter physics. This sentence became more and more

present in the 1960s when the development of more powerful and precise technology

was driven in part by the miniaturization of transistors. About this time, Gordon Moore,

co-founder of Fairchild Semiconductor and Intel, stated that the number of components

per Integrated Circuit would double every two years for the next decade. This prediction

is nowadays known as Moore’s Law (Figure 1) and it has proved accurate over several

decades. In 2001, the first nanometric transistor was built (130 nm). It was nearly 80 times

smaller than its homologue in 1971. With such a small scale, more technical challenges

appeared. Overcoming them not only requires a lot of time and research, but also money

and investments. And as such, Moore’s Law is actually slowing down and it could even-

tually stop in the near future (e.g. it took Intel about two and a half years to go from a 22

nm processor in 2012 to 14 nm in 2014 and three years to go from there to 10 nm in 2017).

Nowadays different and complex approaches are done to make even smaller processors.

In 2012 a single atom transistor was achieved using one phosphor atom attached to a

silicon surface [1]. This discovery has created an urgent need for a more precise under-

standing of matter at the nanoscale where quantum effects are becoming more and more

important (e.g. Kondo effect, quantum interference...) from the experimental but also

from the theoretical point of view. The development of computational tools capable of

predicting quantum transport properties of systems at this scale is an increasingly active

field of research [2,3].
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Figure 1: Evolution of the size of a processor with time. Moore’s Law is shown as a dashed line
whereas the full line represents the experimental achievements through the years.

Molecular junctions in which one or several molecules are connected to metallic elec-

trodes represent a proving ground for our understanding of charge transport and energy

level alignment in metal-molecule interfaces at the nanoscale. Most of our current un-

derstanding of this alignment builds on effective single-particle descriptions such as the

Kohn-Sham (KS) density-functional theory (DFT) [4]. In their description, the energy

levels of a molecule close to a surface are determined by Coulomb interactions. Unfortu-

nately, the KS description of excited energy levels is known to be inaccurate, especially for

nanometric systems [4]. Apart from that, we also know that when we place our molecule

between two metal contacts, screening effects which are not accounted by such methods

appear. These are induced by changes in the charged state of the molecule which are

not captured by available single-particle descriptions. Two extensions of KS DFT are of

special interest nowadays. One is the so called GW approach [7] which is more precise

on handling Coulomb interactions and screening effects for the energies of the single-
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particle excited states but is very computationally demanding and therefore only allows

to study very small molecules. The other one is the DFT+Σ approach which is less de-

manding and allows the study of larger molecules on a simpler but more limited way (it

is already implemented in our simulation tool GOLLUM) [2, 5]. However as I will show,

the screening correction implementation was done using a excessively simple model that

could not capture all the physics behind the simulations [5]; it only depends on an effect-

ive distance that has not a clear physical criteria to be selected. The results we get have

therefore some arbitrariness . In fact, when this distance is chosen to match the values

obtained from an experiment, the results obtained are not correct. On the other hand, the

screening correction explained in this thesis only depends of physical parameters such as

the position of the atoms we introduce in the simulation and their Mulliken population

[4, 6, 7]; this makes it more complete and also removes the problem of the arbitrariness

explained before. The pillar and motivation of this work is then to understand the factors

that make the new correction better than the previous one and also to implement it in

GOLLUM, making it a much more complete and precise simulation tool that can be used

in the future for a wide variety of problems.

The outline of this work can be summarized as follows. In part I we explain the basic

concepts of DFT needed to understand this thesis, its limitations to predict the Highest

Ocuppied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital

(LUMO) and so the conductance through the molecule and the most important correc-

tions that have been done to solve them. In part II we focus our attention in the screening

effect correction, we review some simple examples and at the end we explain the previous

implementation of this correction in GOLLUM. Last but not least, in part III my contri-

butions to this work are highlighted, the new screening correction is explained and im-

plemented in GOLLUM. An example is shown with a Benzeneditholate (BDT) molecule

between Au contacts to find to which extent it is precise. To conclude this thesis I explain



9

how we will try to generalize this correction in the future when we apply a voltage to the

contacts. In the appendix the calculation of Mulliken population is explained.
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Part I

Theoretical background

1 Landauer theory of electronic transport

The molecular junctions based on short molecules are examples of systems where trans-

port properties are dominated by elastic scattering events; conduction electrons preserve

their quantum mechanical coherence along the junction. These systems are described the-

oretically within the Landauer formalism [14]. The fundamental idea of this approach is

that electron transport through the junction can be modeled as a scattering problem. We

assume that the electrodes are ideal reservoirs of electrons at a well defined temperature

while the central region is the scattering center (Figure 2).

Figure 2: (Left) Scheme of the Landauer scattering problem where a central scattering region is
connected to a left and right electrode that act as ideal reservoirs of electrons at a well defined
chemical potential µL and µR. (Right) Analogy with the potential barrier problem in quantum
physics.
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As a result, all the transport properties of these systems are completely determined by

the transmission function τ(E, V ) which describes the probability of electrons to cross the

junctions at a given energy E when a voltage V is applied across the system. In general

this transmission function depends on V on a non trivial way but for a lot of cases we

can make the approximation τ(E, V ) ∼ τ(E, 0). Our molecules are then connected to a

left and right (L and R respectively) semi-infinite electrode, each of them with a chemical

potential µL,R and temperature TL,R. The transmission function can be obtained as [10]:

τ(E) = Tr[Gr(E)ΓL(E)Ga(E)ΓR(E)] (1)

where Ga,r(E) is the advanced (retarded) Green’s function and ΓL,R describes the broad-

ening of the energy levels of the molecule due to the coupling to the left and right elec-

trodes expressed in terms of the electrode self-energies ΣL,R (E) [10].

ΓL,R(E) = i
(
Σr
L,R(E)− Σa

L,R(E)
)

(2)

where Σa,r(E) is the advanced (retarded) electrode self-enery. The charge current has then

the form:

I(V ) = 2e
h

∞∫
−∞

dE τ(E) (fS(E, µS)− fD(E, µD)) (3)

where fS,D are the Fermi functions of the source and the drain and µS,D are the corres-

ponding chemical potentials such that µS − µD = eV . The prefactor 2 is due to the spin

degeneracy. To obtain a physical picture we consider an electron with an energy E which

is transmitted elastically through the junction region from the source to the drain. After

reaching the drain, the electron undergoes inelastic processes (via electron–phonon in-

teractions) and it decays to the chemical potential of the drain. In these processes, the

electron releases an energy E − µD in the drain. On the source side, the original electron

leaves behind a hole that is filled up by the same type of inelastic processes. In this way,
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an energy µS − E is dissipated in the source. The transmission function accounts for the

finite probability of an electron to tunnel through the junction, and the Fermi functions ac-

count for the occupation probabilities of the initial and final states in the tunneling events.

In particular, the appearance of the difference of the Fermi functions is a result of the net

balance between tunneling processes transferring electrons from the source to the drain

and from the drain to the source (Figure 3).

Figure 3: (a) The source and drain are described by Fermi seas with electrons occupying states
up to the HOMO. If a voltage V is applied across the junction µS − µD = eV. (b) When an electron
of energy E tunnels from the source to the drain, it leaves a hole behind. The electron releases its
excess energy E −µD in the drain, while the hole is filled up dissipating an energy equal to µS−
E in the source.[6]

To relate this concepts to a physical quantity that can be measured in the experiments we

define the differential conductance G as:

G = dI
dV

= 2e2

h
d
dV

∞∫
−∞

τ(E) (fS(E, µS)− fD(E, µD)) dE (4)
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Using the low temperature expansion we get to:

G = 2e2

h
τ(0, 0) = G0 τ0 (5)

where τ0 is the zero-bias transmission function at the Fermi energy (we use it as the ori-

gin). The calculation of the electrode and molecule self-energies and thus the conductance

through the junction is usually based in density functional theory (DFT) [6]. We now ex-

plain the fundamental concepts of it to understand this thesis.

2 Fundamentals of DFT

The dynamics of a time-independent non-relativistic system of N electrons are governed

by the Schrödinger equation:

EΨ = HΨ (6)

where Ψ is the many electron wavefunction, E is the system energy andH is the Hamilto-

nian of the system given by (in atomic units)

H =
∑
i=1

N

(
−1

2
∇2
i − Z

∑
R

1

|ri −R|

)
+

1

2

∑
i 6=j

1

|ri − rj|
(7)

Here ri is the position of electron i, whilst the nuclei are clamped at positions R. We

are interested in the electron behaviour so we have decoupled the nuclear and electronic

degrees of motion within the Born-Oppenheimer approximation and focus just on the

electronic ones. The first term is the many-body kinetic energy operator which yields

the electronic kinetic energies; the second term represents the interaction of the electrons

with the bare nuclei. Electron-electron interactions are described by the final term. Since

the many-electron wavefunction contains 3N degrees of freedom this makes the problem

computationally intractable for a system with more than a few electrons. Further, the
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electron-electron Coulomb interaction results in the electronic motions being correlated

which makes this problem even more difficult, as the effect of this correlation prevents a

separation of the electronic degrees of freedom into N single-body problems. Moreover,

the interaction is too strong to be treated as a perturbation so we have to look for approx-

imations that make this problem simpler.

The first historical approach to this many body problem was the Hartree-Fock (HF)

method but it only incorporated electron-electron interactions via a mean field potential

and therefore neglected correlation. A more complete approach is DFT which treats the

electron density as the central variable rather than the many-body wavefunction. This

conceptual difference leads to a remarkable reduction in difficulty: the density is a func-

tion of three variables, i.e. the three Cartesian coordinates, rather than 3N variables as

the full many-body wavefunction is. DFT is based upon the following Hohenberg-Kohn

theorems [16]:

Theorem 1 The external potential is a unique functional of the electron density only. Thus the

Hamiltonian, and hence all ground state properties, are determined solely by the electron density.

Theorem 2 The groundstate energy may be obtained variationally: the density that minimises

the total energy is the exact groundstate density.

Although these two theorems prove the existence of a universal functional, they do not

give any idea of the nature of it. In fact, if we want to calculate the ground state density we

have to minimise this functional that in principle we don’t know. In order to do so, we use

the Kohn-Sham (KS) formulation. This is based upon a trick whereby we map the fully

interacting system of N electrons onto a fictitious auxiliary system of N non-interacting

electrons moving within an effective KS potential, VKS , thereby coupling the electrons.

The requirement that the minimization of the exact Hamiltonian and the KS Hamilto-

nian with respect to the electron density gives the same electron density and energy of
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the ground state leads to a unique VKS potential for each full Hamiltonian of interacting

electrons, so that there is a one to one correspondence between the two. If we know the

exact VKS we can solve the non-interacting Hamiltonian and obtain the properties of

the interacting (exact) one on a much simpler way. We can see schematically:

HExact −→ HKS[n(r)] = T [n(r)] +
∑

VKS [n(r)] (8)

EExact −→ EKS [n(r)]

The minima satisfies for the exact KS potential:

n0 = nExact,0 = nKS,0 (9)

E0 = EExact,0 = EKS,0 [n0(r)]

where EExact,0 and EKS,0 denote the exact energy of the ground state of the interacting

system and the obtained with KS theory and nExact,0 and nKS,0 its electronic density. E0

and n0 are the ground state energy and density of the system. Without looking at details

we are required to solve the Schrödinger-type equations:

(
−1

2
∇2 + VKS

)
ΨK,i(r) = εKS,i ΨK,i(r) (10)

where Ψ are the eigenstates (orbitals) of equation 10 whereas ε correspond to the eigenen-

ergies. From now and on we will call them KS eigenstates and eigenenergies. The charge

density n(r) is constructed from the Kohn-Sham orbitals as:

n(r) =
N∑
i=1

Ψ∗K,i(r)ΨK,i(r) (11)



16 KS theory limitations in nanoelectronics

The KS formulation thus succeeds in transforming the N -body problem into N single-

body identical Hamiltonians, with the same KS potential. Formally there is no physical

interpretation of these εKS,i and KS orbitals: they are merely mathematical artefacts that

facilitate the determination of the true ground state density. On the other hand, the total

energy (E) has a physical interpretation and can be calculated as:

E =
N∑
i=1

εKS,i − EH [n0] + EKS[n0]−
∫
VKS(r)n0(r)dr (12)

where EH [n0] and EKS[n0] denote the Hartree and the KS energy of the ground state. The

last three terms of this expression account for the double counting of the electron-electron

interaction. Unfortunately, in this formulation it is almost impossible to know the KS

exact potential and then some approximations are done. This produces some problems

that become very important when we are working with nanoelectronics. On next section

we review them briefly.

3 KS theory limitations in nanoelectronics

It is extremely important for this manuscript to note that there is not a formal physical in-

terpretation of these single-particle Kohn-Sham eigenvalues and orbitals. The exception

is the highest occupied state, for which it can be shown that the eigenvalue correspond-

ing to the highest occupied state yields the ionisation energy of the system only for

the exact KS potential (Janak’s theorem) [17]. Unfortunately, to know this exact poten-

tial is almost impossible and thus we introduce approximate functionals based upon the

electron density to describe this term. Probably the most popular that is implemented

in all the DFT computational codes is the generalized gradient approximation (GGA).

Within this approximation the HOMO and LUMO are not correctly calculated because

GGA does not estimate right the Coulomb interactions among electrons. There are two
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aspects to this defficiency (1) Coulomb interaction among electrons of an isolated sys-

tem (remember that GGA is not the exact KS potential and thus Janak’s theory doesn’t

hold) (2) This Coulomb interaction is not the same if the system is isolated or near a

metallic surface that screens it. The fix of the first one is called gas phase correction

because it assumes that the system is isolated meaning in the gas phase. As a summary

we have two very important and fundamental problems:

→ GGA is not the exact KS potential of an isolated system and so the position of the

HOMO and LUMO with respect to the Fermi energy (EF ) ,which we will use as the ori-

gin for this manuscript, is not correctly calculated

→ GGA does not take into account screening effect if the system is not isolated but near a

metallic surface.

So the position of the HOMO and the LUMO is not correctly calculated because of these

two reasons. This implies that GGA, as all the computationally feasible approximations,

gives a wrong results for the conductance as I will explain later. This represents a huge

problem for nanoelectronics because of two reasons. (1) The KS energies are widely used

to study solids because they are easy to calculate and in general predict the correct band

structure of a material. This description is no longer valid for nanostructures or strongly

correlated systems and so a different approach is needed [6]. (2) The HOMO-LUMO gap

overestimation mentioned above leads to a KS conductance that differs a lot from the ex-

act one. On (Figure 4) a schematic graph is displayed where the KS transmission function

is compared with the exact one.
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Figure 4: Scheme of the transmission function for KS DFT (red) and the exact tranmission (blue)
where εKSHOMO, εKSLUMO ε

Exact
HOMO and εExactLUMO denote the position of the HOMO and LUMO for KS

and the exact result. Σocuppied and Σunocuppied denote the HOMO-LUMO miscalculation done
with KS DFT while ∆G the error in the conductance.

As explained before, the position of the HOMO and LUMO predicted with the KS form-

alism does not match the exact solution. The difference among them is the correction

we want to introduce (Σocuppied for the HOMO and Σunocuppied for the LUMO). The error

in conductance (∆G) is also shown.

A difference in one order of magnitude between the KS and the exact conductance is

common. Of course this is a huge problem that limits us when we study a lot of complex

systems at the nanoscale. To predict the position of the HOMO and the LUMO and so the

transmission and conductance through the molecule in a precise way, we have to correct

DFT-GGA self interaction errors and screening effects. To do so, two different approaches

are commonly used, the GW and the DFT+Σ correction.



19 GW correction

4 GW correction

This method is based in many body perturbation theory [6]. On it, the retarded Green’s

function of the molecule is given by:

Gr
GW (E) = [(E + iη)S − (HKS − VKS)− Σr

GW (E)− Σr
L(E)− Σr

R(E)]−1 (13)

We substract the KS potential VKS from the DFT Hamiltonian HKS and add the GW self-

energy ΣGW . As GW self-energy depends on Gr (E) at all energies, the equations for

it have to be solved self-consistently for all its values. It drastically improves the de-

scription of the electronic structure of metal-molecule interfaces compared to DFT [7] at

the cost of being computationally demanding. Two fundamental and technical advant-

ages are clear. (1) GW improves the fictitious potential (VKS) compared to LDA or GGA.

This improvement is because GW treats better the naked (nanostructure in vacuum) but

also the screened (molecule between contacts) Coulomb interaction thanks to the ΣGW

self energy introduction. (2) It searches for the poles of the many body Green’s function

which correspond to the quasiparticle excitations instead of the eigenenergies (εKS) of the

fictitious Hamiltonian which have no physical meaning as explained before. For all these

reasons self-consistent GW conductance calculations for simple molecules in idealized

junction geometries were shown to be in good agreement with experiments [7,8]. It is

then interesting to find another numerically easier method that allows the study of large

molecules. Such method is the non-self consistent correction DFT+Σ. This latter approach

has shown to predict conductance in good agreement with single-molecule experiments

[6,7,8] and also with the GW correction for some molecules [10]. However, its formal jus-

tification is limited to weakly coupled molecules. Specifically, charge transfer screening

as well as inelastic scattering are not accounted by such methods.
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5 DFT+Σ correction

As explained in the previous section, only the KS eigenvalue corresponding to the HOMO

can be obtained on a precise way because it corresponds to the ionisation energy of the

system for the exact KS potential (Janak’s theorem). Therefore we can correct the KS

HOMO (εHOMO) and LUMO (εLUMO) energies by calculating the ionization potential (IP )

and the electron affinity (EA) from total energy calculations:

EA = E(N − 1)− E(N) IP = E(N)− E(N + 1) (14)

where E(N) is the total energy of the system with N electrons. We have to take into

account that the total energy of the system (that we obtain with a DFT code) is not the

sum of the KS eigenenergies . EA is the energy gained by adding an electron to a system

and IP is the energy required to remove one electron entirely from a system. With it we

can get the shift we need to apply to εHOMO and εLUMO to obtain their correct values for

the molecule in vacuum:

∆unoccupied = −(εLUMO + EA) ∆ocuppied = −(εHOMO + IP ) (15)

where ∆unoccupied and ∆occupied represent the shift in the LUMO and HOMO. This first

correction is called gas phase correction. We can see then that the corrected HOMO is

now at -IP as it should (we have to be careful with the signs we choose) and the LUMO

is at -EA.
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To clarify the validity of this approximation we use the Hubbard dimer as an example

[15]:

H = −t
∑
σ

(
c+

1σ c2σ + h.c
)

+ U
∑
i

ni↑ ni↓ +
∑
i

vi ni (16)

where v are the on site energies, t the hopping terms, U the Coulomb energies, c+i are the

creation while ci the anhilitation operators on the i-th site and ni↑ and ni↓ are the spin up

and down density operators. ∆v = v2 − v1 represents the difference in on-site potential

between both atoms. It is useful to have a very simple physical scheme in mind (Figure

5).

Figure 5: Energetic configuration of the Hubbard dimer. (Left) Charging energy is greater than
the difference in on-site potentials (Right) Charging energy is smaller than the difference in on-
site potentials [15]

We are not going to explain the differences between the Mott-Hubbard and the charge-

transfer regime but it is interesting to see how correlations affect the precision of our

calculations. As the Hubbard Hamiltonian is possibly the simplest model of a interacting

electron system, it allows us to solve it analytically and see the differences with KS DFT

(e.g. in semiconductors with small gaps, such as germanium, approximate Kohn-Sham

(KS) gaps are often zero, making the material a band metal, but an insulator in reality).

We analyze two cases (1) U = 1 and 2t = 1,weakly correlated system (2) U = 5 and 2t = 1,
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strongly correlated system. (Figure 6).

Figure 6: (Left) Plot of -A, -I, εHOMO and εLUMO with U = 1 and 2t = 1 (Right) Plot of -A, -I,
εHOMO and εLUMO with U = 5 and 2t = 1. We denote A as the electron affinity in the figure and I
as the ionization potential (instead of EA and IP in the equations)[15]

The KS HOMO (εHOMO) is always at -IP but the KS LUMO (εLUMO) is not at -EA ( it

becomes clear that for a stronger correlation the approximation of the LUMO by EA is no

longer valid). To understand the difference between KS and the exact solution better, we

show their spectral functions. We represent their δ-function poles with lines whose height

is proportional to the weights via a simple sum-rule (Figure 7). On the figure Eg is the

real gap of the system which can be used to decide if they are metals (Eg=0) or insulators

(Eg>0) and Eg,s is the KS gap:

Eg = IP − EA Eg,s = εLUMO − εHOMO (17)

As we have explained both of them are different and in fact the stronger the correlations,

the more different they become. To quantify this difference we define:

∆xc = Eg − Eg,s (18)
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Figure 7: (Left) Spectral function of symmetric dimer for U = 1, and 2t = 1. We denote A as
the electron affinity in the figure and I as the ionization potential (instead of EA and IP in the
equations). The physical exact peaks are plotted in blue, the KS in red. Here IP = 0.1, EA =
−1.1 and εLUMO = 0.9 (Right) Same as left but now U = 5. Here IP = −0.3, EA = −4.7, and
εLUMO = 1.3 [15]

On (Figure 7 Left) we plot the spectral functions for the symmetric case, for U = 1, when

2t = 1. The gap is the distance between the highest negative pole (at IP ) and the lowest

positive pole (at -EA). We see that the exact spectral function also has peaks that corres-

pond to higher and lower quasi-particle excitations. If we now compare this to the exact

KS Green’s function GS , we see that, by construction, GS always has a peak at -IP , whose

weight need not match that of the exact function. It has only two peaks, the other being

at εLUMO, which does not coincide with the position of the exact peak. This is so because

the KS scheme is defined to reproduce the ground-state occupations, nothing else. For

a weakly correlated system, the KS spectral function can be a rough guide to the true

quasiparticle spectrum. On the other hand, when the correlation is very strong (Figure

7 Right), the KS spectral function is not even close to the exact spectral function. Now

the two lowest-lying exact peaks approach each other, as do the two highest lying peaks,

therefore increasing the quasi-particle gap and thus giving a wrong result for the con-

ductance through the molecule as explained on section 3.
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Apart from that, we have to take into account that theEA and IP are not the same for

the isolated molecule (this is how we have done the gas phase correction) that for the

molecule placed in the junction where screening effects become present. To compute

the IP and EA of the molecule directly on a nanostructure in a junction is not feasible

because of various reasons (1) It is computationally very demanding (2) If you add an

electron to the nanostructure, a fraction of the electron will not remain in the molecule,

but will spread to the electrodes. A protocol for a nanostructure in a junction is then: (1)

Compute EA and IP of an isolated molecule (e.g. in the gas phase, we have already done

it). We can see that with GGA, E(N + 1) − E(N) and E(N) − E(N − 1) estimate better

the HOMO and LUMO correct position that εHOMO,LUMO. Because of that, we can use

GGA to make a good estimation of IP and EA for the nanostructure in vacuum. With

it we solve the HOMO-LUMO gap miscalculation partially but another correction due to

the screening of the electrodes is needed. (2) Correct IP and EA for the presence of the

electrodes (e.g. screening correction). This will be done using the known "image charge

method" that we learnt in our Electromagnetism undergraduate course. Because of that

sometimes we will call the screening correction the image charge correction.
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Part II

Screening effect correction

Apart from the gas phase correction we know that when a molecule is close to a metallic

surface, screening interactions (electrons of the molecule "see" the electrons in the con-

tacts) will change the energy levels , shifting the occupied levels up and the unoccupied

levels down (Figure 8) [7]. Before explaining the image charge method in depth, it is inter-

esting to investigate to what extent the GW results can be described by a classical image

charge model.

Figure 8: (Left) Reduction in a molecule’s energy gap when it approaches a polarizable surface
[4] (Right) Level shifts predicted by the image-charge model with uncertainties for 5,15-di(p-
thiolphenyl)-10,20-di(p-tolyl)porphyrin (ZnTPPdT) coupled to gold (example) [11] .
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The electrostatic energy of a point charge q located in vacuum at (0, 0, z) above a polariz-

able medium z < zo is given by (a.u):

V =
qq′

4 (z − zo)
(19)

The image charge is q′=q (1-ε) (1+ε) where ε is the dielectric constant of the medium [4].

Khom showed that the energy of a classical point charge above a quantum jellium surface

follows this equation with q′ = −q (ε = ∞, perfect metal) with the image plane zo lying

0.5-0.9 Å outside the surface depending on the electron density [4]. On (Figure 8 Right)

we show an example of the HOMO-LUMO shift when we approach a ZnTPPdT molecule

to a metallic surface. Ab initio GW calculations have found the same asymptotic form of

the potential felt by an electron outside a metallic surface [4]. We show on (Figure 9) the

GW energy gap of benzene on NaCl, TiO2, and Ti surfaces and compare it to the classical

image charge model.

Figure 9: GW energy gap of benzene on NaCl, TiO2, and Ti surfaces (circles) as a function of the
distance to the surface, and the best fit to the classical model (full lines) [4]
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It seems reasonable to conclude that the asymptotic position of the electronic levels of

a molecule outside a surface would also follow the image potential of the equation (un-

occupied and occupied levels experience a shift in opposite directions). Now that we have

understood why this method is a good approach to the problem of the HOMO-LUMO gap

miscalculation (without being so computationally demanding as the GW approximation)

we explain the image charge method.

1 Image Charge Method

A lot of problems in electromagnetism involve boundary surfaces on which the potential

or the charge density is known. Unfortunately, solving the Poisson equation for these

cases can be very difficult. However, in some particular configurations, the equipoten-

tial surfaces of the conductors are reproduced by replacing them by some image charges

inside them. The validity of this method rests upon a corollary of the uniqueness the-

orem which states that the electric potential in a given volume is uniquely determined

if both, the charge density throughout the region and the value of the electric potential

on all boundaries are known. As the boundary is the metal surface, our result will be

valid outside the electrodes. With this technique, usually called image charges method

[12,13] the solution can be written as the sum of well known potentials of point charges.

We present the easiest example of this method, a point charge in front of a grounded

conducting plane.

2 Charge in front of a grounded conductor

We have to make sure that all the boundary conditions are satisfied; as the plane is groun-

ded, the potential at all its points is V = 0 (Figure 10).
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Figure 10: (Left) Scheme of the problem where P is an arbitrary point in which we impose the
boundary conditions and the red line is the conductor surface. The black line represents the z=0
plane. (Right) Equipotential lines (grey) and electric field lines (black) of the problem.

The potential at the middle point between both charges and then at point P (Figure 10) is

then:

VO =
(
q
d

+
Q
h

)
= 0 VP =

(
q√

d2 + a2
+

Q√
h2 + a2

)
= 0 (20)

Solving these equations we obtain Q = −q and d = h. This is actually the expected result

because of the symmetry of the problem. With the boundary conditions satisfied, we cal-

culate the potential at an arbitrary point (x, y, z) above the plane z = 0 (red line in Figure

10), taking into account the position of the charges is q (0, 0, d) and −q (0, 0,−d).

V = q

[
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

]
(21)

As we saw on (Figure 3) we need two planes to represent the contacts to which our mo-

lecule is connected. On part III we will see what happens when we apply a voltage V to

the plane.
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3 Charge between two grounded planes

When we place the image charge of q to the right part of the right plane we make the

potential at all its points zero but we change the potential in the left one (it is not zero

anymore). This can be solved by putting a new image charge that compensates the effect

of the previous one, this idea is repeated an infinite number of times. We put an infinite

set of image charges to both sides of the planes to cancel their contributions by pairs

(Figure 11).

Figure 11: Infinite set of image charges for the point charge between two grounded conducting
planes problem

We can get then a recurrence law for the charges and the distances of the form:

dn = L+ dn−1 Qn = −Qn−2 n even (22)

dn = L+ dn−3 Qn = −Qn−2 n odd (23)
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With the boundary conditions satisfied, we calculate the potential at an arbitrary point

P(x,y,z) :

V =
q√

r2 + z2
+

∞∑
neven

Qneven√
r2 + (z − d1 − dneven)2

+
∞∑
nodd

Qnodd√
r2 + (z − d1 + L+ dnodd)2

(24)

where r2 = x2 + y2. This result will be very important for the new screening correction on

part III. In future works we will study the effect of applying a different voltage on each

plane and how it changes the position of atomic orbitals. Even though it has not yet been

implemented in GOLLUM we sum up our analytical results at the end of this thesis.

4 Previous screening correction

To understand the differences and advantages of the new method over the previous one

it is interesting to explain the latter very briefly. The previous screening correction used

a simple image charge model where the molecule is replaced by a point charge located at

the middle point of the molecule and where the image planes are placed at an arbitraty

distance a (chosen by the user) above the electrodes surfaces leading to [2,5]:

∆unoccupied =
e2

8πε0

ln2

a
∆occupied = −∆unoccupied (25)

where a is the distance between the image plane and the point image charge. The total

correction Σoccupied and Σunoccupied (gas phase+screening) will have then the form:

Σoccupied = −IP − εH + ∆occupied Σunoccupied = −EA− εL −∆unoccupied

(26)
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where εH and εL are the KS HOMO and LUMO energies from a DFT calculation. First we

apply the gas phase correction so the HOMO is placed at -IP and the LUMO at -EA as

explained before (naked Coulomb interaction). After that, the HOMO (LUMO) is shifted

down (up) with ∆occupied ( ∆unoccupied) because of the electrodes screening. To explain this

result we shall discuss the calculation of the energy of a linear chain of ions of alternate

signs (e.g. Na+ and Cl−).

Figure 12: Linear chain of ions of alternate sign

A reference sodium ion has two negative chloride ions as its first neighbors on either side

at ±r0 so the Coulombic interaction is:

− e2

4πε0r0
− e2

4πε0r0
= − 2e2

4πε0r0
(27)

Similarly the repulsive energy due to the next two positive sodium ions at a distance of

2r0 is:

+
e2

4πε0(2r0)
+

e2

4πε0(2r0)
= +

2e2

4πε0(2r0)
(28)

The total energy due to all the ions in the linear array is then:

Etotal =
2e2

4πε0r0

(
1− 1

2
+

1

3
+ ...

)
=

2e2

4πε0

ln2

r0
=

2e2

4πε0

ln2

r0
(29)
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where the factor 4 is due to the chain double counting effects and that r0 = 2a. The only

parameter this previous screening correction takes into account is the distance between

the image plane and the point charge image (a) which can be chosen arbitrarily (it does

not have a clear physical criteria to be chosen). This is very useful when we already

know the properties of the molecule we want to analyze so that a might be "adjusted" to

deliver the correct results. Unfortunately, it is almost impossible to have an initial guess

for a without previous information. One hopes for the best and assumes that the choice

of a should be guided by physical intuition, but we shall show here with a well-known

example how physical intuition leads to wrong results. As a consequence, no physical

intuition can be brought whenever one faces a new phsyical problem or experiment, so

the results of the ensuing simulations might be completely wrong. This makes GOLLUM

an improvable simulation tool. On the other hand, our correction relies only in the atom

positions that are known from the start and their Mulliken population which are phys-

ical meaningful quantities. We will show how the new implementation leads to correct

estimates for G and so removes all the arbitrariness and sense of loss from the previous

implementation. On part III we will compare both models for a Benzeneditholate (BDT)

molecule between Au leads.
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Part III

My contribution

1 New screening correction

We have been writing about the classical screening correction and atomic orbitals but

the connection between both topics may seem loose. To understand it better we repeat

the same calculation that for the point charge between two grounded planes but from a

quantum mechanical point of view [11]. We start our calculation from the output of SI-

ESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) [18], a DFT

code that uses localized, non-orthogonal pseudo-atomic wavefunctions as basis set for the

electronic wavefunctions. We obtain the Hamiltonian (H) and the overlap matrix (S) des-

cribing both molecular and leads atoms from a calculation with the molecule placed in the

junction. From these matrices we take the submatrices Hmol and Smol spanned only by the

basis functions of the atoms in the molecule. The KS eigenenergies εKS and eigenvectors

ψi for the molecule in the junction are obtained from the equation.

Hmol ψi = εKS,i Smol ψi (30)

We approximate the orbital charge distribution at the molecule by a collection of point

charges placed at the atom’s position Rν . The charge at each point is approximated by

the so-called Mulliken charge |ψi,ν,α|2. In the appendix we explain very briefly how to

calculate them.

ρi (r) = −e
∑
ν

∑
α

|ψi,ν,α|2 δ(r −Rν) (31)
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where e is the electron charge and ψi,ν,α are the coefficients of the i-th eigenstate of the

orbital α of atom ν with position Rν . The image charge energy for a point charge distri-

bution placed between two image planes at z = 0 and z = L is then [11]:

∆i =
1

8πε0

N∑
α=1

N∑
β=1

ρi(rα)ρi(rβ)

(
∞∑
n=1

1√
(xα + xβ − 2nL)2 + r2αβ

+

+
1√

(xα + xβ + (n− 1)L)2 + r2αβ

− 1√
(xα − xβ + 2nL)2 + r2αβ

− 1√
(xα − xβ − 2nL)2 + r2αβ

)

(32)

where xα is the x coordinate of atom α, rαβ =
√

(yα − yβ)2 + (zα − zβ)2, L represents the

distance between image planes andN the number of image charges we use for the correc-

tion (of course we can not take an infinite set of image charges as explained for the point

charge between grounded planes) . We use the HOMO charge distributions to estimate

the screening correction ∆occupied for the occupied states and the LUMO charge distribu-

tion to obtain ∆unoccupied for the unoccupied states. As we explained before, the screening

correction relies on the assumption that screening by the electrodes can be described clas-

sically as two flat conductors characterized by an image plane which we can calculate

using DFT (for other geometries this effect can be much more complicated). The resulting

shifts within the DFT+Σ approximation are then:

Σoccupied = −IP − εH + ∆occupied Σunoccupied = −EA− εL −∆unoccupied

(33)

where the only factor that changes with respect to the previous correction is the screen-

ing. The HOMO (LUMO) is shifted up (down) with ∆occupied and ∆unoccupied according to

their Mulliken populations and positions. To understand the differences between both

methods we show an example: A Benzeneditholate (BDT) molecule between Au leads.
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2 BDT between Au leads

An archetypic example that has been extensively studied experimentally and theoretic-

ally is the BDT molecule coupled to gold contacts. In fact, it is one of the examples that

GOLLUM uses to explain the image charge method. We chose (001) gold leads with nine

atoms per slice, two slices on each side of the extended molecule, and three additional

slices to the left and two to the right to include the bulk leads (Figure 13).

Figure 13: BDT molecule connected to (001) Au leads. Dark grey, red, white and yellow spheres
are used to represent C, S, H and Au atoms respectively. Numeric labels are also included to
identity each atom of the BDT molecule

We also include periodic boundary conditions along the perpendicular directions to make

sure that the transmission coefficients were smooth. A SZ basis set for gold and hidrogen

with s orbitals is chosen while for sulfur and carbon atoms s and p orbitals are used . This

basis is too simple to understand the problem in depth or to compare to an experiment

but it is enough to see the differences between the previous and the new screening correc-

tion. For the exchange and correlation functional the generalized gradient approximation

is used within Perdew–Burke-Ernzerhof (PBE) parametrization. The energy cut-off is set
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at 200 Ry: this cut-off defines the mesh where the jump and the overlap integrals between

orbitals are solved (note that electron density is a function of position). The larger the

cut-off the more accurate simulation at the cost of being computationally more demand-

ing. Also 90 k-points are taken along the transport direction z while 1 k-point along the

perpendicular directions. With all these parameters we run SIESTA and obtain the energy

of the atomic levels without any of the corrections mentioned above. The implementation

of the gas phase correction has not changed from the previous correction to the new one;

we calculate the energy of the molecule with one electron more and one less which allows

us to calculate the electron affinity and ionization potential and shift the HOMO and the

LUMO accordingly. On the other hand, to apply the new screening correction we need

the position of all the atoms of the molecule and their Mulliken populations; specifically

of the HOMO and the LUMO that are the ones used to shift the levels up or down (Figure

14):

Figure 14: Scatter plot of Mulliken population of HOMO and LUMO. Only atoms with a di-
fferent Mulliken population from zero are plotted.
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In (Table 1) we summarize the Mulliken population of the HOMO and LUMO in units of

the electron charge. In order to define the precise HOMO-LUMO gap and compare the

previous and the new screening correction it is necessary to know the DFT HOMO (εH),

LUMO (εL) , the IP and EA (obtained by total energy differences).

Position ρHOMO(qelectron) ρLUMO(qelectron)

1 0.3833 0.3826
2 0.0535 0.0532
5 0.0382 0.0382
6 0.0382 0.0382
7 0.0358 0.0356
8 0.0355 0.0356

11 0.0566 0.0565
12 0.3576 0.3572

Table 1: Mulliken populations of HOMO and LUMO. Only atoms with a different one from zero
are shown.

The DFT HOMO, DFT LUMO, IP and EA are, respectively, −4.68, −1.38, 7.19 and -1.22

eV, from where we obtain gas phase corrections of −2.51 and 2.60 eV, for the occupied

and unoccupied levels, respectively [5]. To test the previous screening correction scheme

we work with two different cases (1) We assume that the image charge plane is on the

surface and the point charge is in the middle of the molecule, so that a = d/2 where d is

the distance between surfaces (a=5.34Å, arbitrary). (2) We take a as the distance between

the last atom of gold of the lead and the closest sulfur atom of the molecule (a=2.05Å).

This distance will make much more physical sense because as we have seen in (Figure

14) almost all the charge of the molecule is located at the sulfur atom; the weight of this

interaction will contribute a lot to the total. For the new correction the image plane posi-

tion can be calculated for a single flat surface using DFT yielding values of 1Å outside the

last metal layer [6]. We take then the distance between the image planes as the distance

between contacts L=10.7Å and this distance ±1Å (Table 2)
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a (Å) ∆occupied (eV) ∆unoccupied (eV) Σoccupied (eV) Σunoccupied (eV)

2.05 4.6140 4.7040 2.1004 -2.0040
5.34 1.7761 1.8661 -0.7339 0.8339

L (Å) ∆occupied (eV) ∆unoccupied (eV) Σunoccupied (eV) Σoccupied (eV)

9.70 0.3752 0.3069 2.2931 -2.1348
10.70 0.3646 0.3009 2.2991 -2.1454
11.70 0.3555 0.2958 2.3042 -2.1545

Table 2: HUMO and LUMO energy shifts due to screening corrections for the previous (up) and
the new scheme (down)

The first striking result is that for a=2.05 Å, the distance that makes more physical sense,

the shifts are done in opposite directions to the rest of the calculation (it shifts the HOMO

up and the LUMO down in energy). The screening correction is larger than the gas phase

correction; the interaction is being overcorrected (the charges are overscreening the inte-

raction between the molecule and the surface). Rigorously there is no reason for this not

to happen but here it only depends on the decision of the user (arbitrary). It is easy to

obtain an analytical expression of the distance under which this phenomena appears:

a <
e2

8πε0

ln(2)

(IP + εH)
(34)

In fact we can see on (Table 2) that the screening correction for the occupied and un-

occupied levels for a=2.05Å is huge. To show how the previous correction does not pre-

dict the physical properties correctly we plot the transmission function through the mo-

lecule for a=2.05Å, a=5.34Å (we already explained why) and a=3.05Å to compare with

them (Figure 15).
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Figure 15: Transmission function for the DFT calculation on a logarithmic scale (a) Without cor-
rections and with the gas phase correction (Σ) (b) Previous screening correction with a=2.05Å,
a=3.05Å and a=5.34Å (c) New screening correction with L=9.7Å, L=10.7Å and L=11.7Å. The
black points represent the conductance G obtained.

For a=2.05Å and a=3.05Å the HOMO and LUMO shifts are done in opposite directions to

the expected and there is not an HOMO-LUMO gap. This does not match the prediction of

the new screening correction (Figure 15). We will only have the correct results for some

values of a that in principle we don’t know (this kind of prediction is not trustworthy).

For the new correction a gap appears for all the distances we choose and the HOMO-

LUMO shifts are done in the direction expected. Probably at some distance our simulation

will have this problem of overcorrection but it will have a physical meaning and will not

depend on the choice of the user. We show the difference between the previous and the

new image correction better on (Figure 16).
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Figure 16: Transmission function for the DFT calculation on a logarithmic scale with the gas
phase correction, with the previous screening correction with a=2.05Å and the new one with
L=9.7Å.The black points represent the conductance G obtained.

To compare these results with experiments in the future it is interesting to show the con-

ductance results for both methods (Table 3).

a (Å) G (G0) L(Å) G(G0)

DFT+Σ 0.0046
2.05 0.3254 9.7 0.0891
3.05 0.7902 10.7 0.0790
5.34 0.0380 11.7 0.0707

Table 3: Conductance calculation for the model without screening correction (DFT+Σ) and for
the previous (left) and new scheme (right)
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For the previous correction it may look strange the huge changes in conductance from

a= 2.05Å to a= 3.05Å where it doubles and it decays in two orders of magnitude for a=

5.34Å. Again at this point we can see that the user choice can change completely the

behaviour of the simulation and the system making almost impossible to predict the

results of an experiment. To finish this thesis we show a comparison of the conductance

as a function of a (where we have added some more points) and L for the previous and

the new screening correction.

Figure 17: (Up) Conductance vs a for the previous correction (Down) Conductance vs L for the
new correction where we have divided L by two
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We can conclude with it that not only a is chosen arbitrarily but also that the simulation

has a strong dependence on its value. On the other hand, small changes of the distance

between image planes in the new correction don’t affect the conductance too much (we

have to remember that the possible values of L are given, we do not have the possibility

to choose whatever we want). The problem of the uncertainty in L for our case is not as

important as for the previous image charge correction. With these results the fundamental

idea of this work ,the arbitrariness of the previous screening correction and the strong

dependence of the simulation with a have been explained and shown. Our motivation

from the beginning was to correct it with a model that had more physical sense and was

more precise. This correction makes GOLLUM a more precise tool.

In the future we would like to test our results experimentally for a wide variety of

molecules with different geometries and chemical compositions. Apart from that, the

effect of applying a voltage to the planes in the screening correction will be studied. We

now show the analytical results obtained during the development of these thesis even

though they are not implemented in GOLLUM.

3 Charge in front of plane with potential V ∗

Now that we have already seen the result for the charge in front of a grounded plane, our

next question is, what will happen if we apply a potential V ∗ to the plane. The scheme

is the same that in (Figure 10) but the boundary conditions and so the equations are di-

fferent:

VO = 1
4πε0

(
q
d

+
Q
h

)
= V ∗ VP = 1

4πε0

(
q√

d2 + a2
+

Q√
h2 + a2

)
= V ∗ (35)
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To solve them a first idea is to take a = d (it may seem possible because the potential is

the same for all the points in the plane). We then get to (V̂ = 4πε0V
∗):

h2 =
q2(

(1− 1√
2

)V̂ +
q√
2d

)2 − d2 Q =
(
V̂ − q

d

)
h (36)

Unfortunately, the result depends on the a value we choose; the problem has no exact

solution. We present an alternative method for two planes with different applied poten-

tial on next section. At least this result helps us to make a physical picture of what is

happening. As we change the applied potential, the image charge and its position will

change, shifting the energy levels up or down tuning the conductance through the junc-

tion. We have to take into account that the image charge method is a mathematical trick

and some of its results have no physical meaning (e.g. charges smaller than the one of the

electron). Let’s generalize this result for two plates with applied potential V ∗1 and V ∗2

4 Charge between planes with V ∗1 and V ∗2

The scheme is the same that in (Figure 11) but we apply a voltage V ∗1 to the left electrode

and V ∗2 to the right. Using the results in last section we get to:

Q2 =

(
V̂2 −

q

d1

)
d2 Q3 =

(
V̂1 −

q

L− d1

)
d3 (37)

The distances are then:

d22 =
q2(

(1− 1√
2

)V̂2 +
q√
2d1

)2−d
2
1 d23 =

q2(
(1− 1√

2
)V̂1 +

q√
2(L− d1)

)2−(L−d1)2 (38)
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With an external applied voltage we can change the value of the image charge and their

positions; it will influence the interaction between the leads and the molecule shifting the

levels in a different way from the ones we have explained in this thesis. As in the two

grounded conducted planes once we know the distances of the first image charges we

cancel their contributions by pairs (Equation 22 and 23). As we have explained in the

previous section an alternative method is needed to solve this problem (because of the

result dependance with a). The scheme is the same as in (Figure 11), we put a charge in

the middle of the plates and we add an infinite set of image charges to cancel them by

pairs. After that we add two charges, one to the right part of the right plate (Qright) at a

distance L2 from it and one to the left part of the left plate (Qleft) at a distance L1 to fix the

voltage we want at the plates. With this method we get to:

V̂1 =
Qleft

L1
+

Qright

L2 + L V̂2 =
Qright

L2
+

Qleft

L1 + L (39)

Solving these system of equation we get to:

Qleft = 1
1

L1L2

− 1

(L2 + L)(L1 + L)

(
V̂1
L2
− V̂2
L2 + L

)
(40)

Qright = 1
1

L1L2

− 1

(L2 + L)(L1 + L)

(
− V̂1
L1 + L + V̂2

L1

)

We can shift the atomic levels of the molecule by applying a different voltage to each of

the planes. This will give us the possibility to tune conductance through the molecule. To

conclude this thesis we show a comparison between the results obtained for the charge

between two grounded planes and for the case where V ∗1 = −V ∗2 .
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Figure 18: Equipotential surfaces for (Left) the image charge between two grounded planes
(Right) the image charge between planes with V ∗1 = −V ∗2 . The red lines represent the planes.

The future image charge correction will depend of the Mulliken population of each atom

and the distance to the image charge planes as it does at present but also of the potential

that each of the atoms feels (it may be different for each case). Our goal in the future is

to implement this case in GOLLUM to test our predictions and make it a more complete

and precise simulation tool.
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Summary

We have explained how DFT underestimates the HOMO-LUMO gap and how we can cor-

rect it with the gas phase and also the screening correction. To understand the first one

better we work with the Hubbard dimer and how the analytical gap calculation differs

from the one obtained with DFT [15]. For the second case we reviewed the simplest image

charge calculations and how we can generalize them from a quantum mechanical point

of view [2,4,6]. With that results we studied how to shift the position of the occupied and

unoccupied molecular resonances in ab initio transport calculations of molecules between

electrodes to obtain gaps and transport properties. We pointed out the fundamental pro-

blem of the previous screening correction implemented in GOLLUM; the arbitrariness.

This model depended of an effective distance that has not a clear physical criteria to be

chosen. In fact, when we make it match with experimental values the transmission func-

tion obtained and thus the conductance were wrong (very difficult to study molecules we

do not know). An alternative method that depends only on physical parameters that we

know from the beginning is proposed (atoms position and Mulliken population) [2,4,6].

With it we remove all this arbitrariness improving at least the qualitative and we hope the

quantitative agreements with experiments. To test the accuracy of the method we worked

with one of the most studied molecules, the BDT molecule coupled to gold leads finding

that our results were more complete and precise than the previous ones. Last but no least

we show our analytical results for the effect of the application of a voltage to the planes

(contacts) and how it can shift the levels up or down changing the transmission function

and thus the conductance. In the future we will try to implement this in GOLLUM to

make a more complete and precise version of this program.
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Appendix: Mulliken population

We have a non-orthogonal basis set |µ〉, such that 〈µ|µ′〉 = Sµµ′ and define the dual basis

as:

|µ∗〉 =
∑
µ′

S−1µµ′ |µ
′〉 −→ S−1µµ′ = 〈µ∗|µ′∗〉 (41)

|µ〉 =
∑
µ′

Sµµ′ |µ′∗〉 −→ δµµ′ = 〈µ|µ′∗〉

We then decompose a state |ψ̂n〉 as:

|ψ̂n〉 =
∑
µ

〈µ∗|ψ̂n〉 |µ〉 =
∑
µ

Ĉn(µ) |µ〉 =
∑
µ

Cn↑(µ)

Cn↓(µ)

 |µ〉 (42)

To calculate the Mulliken population of an atom, first we need to know how a linear

operator Â acts over the states |µ〉:

Â =
∑
µµ′

|µ∗〉 〈µ|Â|µ′〉 〈µ′∗| =
∑
µµ′

|µ∗〉Aµµ′ 〈µ′∗| =
∑
µµ′

|µ〉 〈µ∗|Â|µ′∗〉 〈µ′| =
∑
µµ′

|µ〉 Ãµµ′ 〈µ′|

(43)

where we denote A=〈A〉 and Ã=〈Ã〉 so A = SÃS and Ã = S−1AS−1. With all this we

compute the density operator:

ρ̂ =
∑
n

|ψ̂n〉 fn 〈ψ̂n| =
∑
µµ′

|µ〉
∑
n

〈µ∗|ψ̂n〉 fn 〈ψ̂n|µ′∗〉 〈µ′| =
∑
µµ′

|µ〉 ρ̃µµ′ 〈µ′| (44)

With it we can define the Mulliken population of an orbital as:

̂Norbital = (ρ̃S)µµ (45)
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And so the total atom Mulliken population is the sum to all the Mulliken population of

its orbitals:

N̂ = Tr(ρS−1) = Tr(Sρ̃) = Tr(ρ̃S) (46)
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