
Accurate Prediction of Peptide Binding Sites on Protein
Surfaces
Evangelia Petsalaki, Alexander Stark¤a, Eduardo Garcı́a-Urdiales¤b, Robert B. Russell*

European Molecular Biology Laboratory, Heidelberg, Germany

Abstract

Many important protein–protein interactions are mediated by the binding of a short peptide stretch in one protein to a
large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins
for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no
structure of the protein–peptide complex is known. To address this gap, we present an approach that can accurately predict
peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding
sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a
putative or predicted peptide partner will bind. We used known protein–peptide complexes to derive preferences, in the
form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each
type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino
acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints
deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental
data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins
with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI
domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly
discovered peptides mediating critical events in biology.
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Introduction

Protein–protein interactions are vital for all cellular processes,

including signaling, DNA repair, trafficking, replication, gene-

expression and metabolism. These interactions can vary substan-

tially in how they are mediated. What perhaps most often comes to

mind are interactions involving large interfaces, such as those

inside the hemoglobin tetramer, however, many important protein

interactions, particularly those that are transient, low-affinity or

related to post-translational modification events like phosphoryla-

tion, are mediated by the binding of a globular domain in one

protein to a short (e.g., 3–10 amino acid) peptide stretch in another

[1]. These stretches often reside in the non-globular and/or

disordered parts of the proteome, including many of the

disordered interaction hubs [2,3], thus helping to explain many

of the emerging functional roles for such regions. Peptide regions

binding to a common protein, or domain, often conform to a

sequence pattern, or linear motif that captures the key features of

binding [4]. For instance, SH3 domains bind PxxP motifs, WW

domains bind PPxY or PPLP motifs, and SH2, 14-3-3 and PTB

domains bind phosphorylated peptides [1]. Since they are

generally held to be more chemically tractable than interactions

involving larger interfaces, protein–peptide interactions also

represent an important new class of drug targets, and there are

a growing number of small molecules that are designed to target

them [5].

The discovery of new peptides and motifs mediating interac-

tions has been of intense interest in recent years (e.g., [6–8]).

Several techniques have been developed to uncover new variants

of peptides that bind to known partners. For instance, phage

display and peptide array technologies have been applied to

uncover new peptide partners for many proteins or domains,

including SH3 [9], WW [10] and PDZ [11] domains. Several

computational approaches have also been developed that use

protein–peptide complexes of known 3D structure to find

additional peptides that are likely to bind (e.g., [12–16]), and

recently, probabilistic interaction networks have been used to

predict peptide regions corresponding to kinase substrate [17].

The common thread to all of these approaches is that they rely on

prior knowledge of the type of peptide binding to a domain and

often require further knowledge of the peptide binding site on the

globular protein. They are thus generally only effective for finding

new variants of known peptides, and cannot directly uncover new

protein–peptide interaction types. Protein–protein docking is

currently the only widely used technique that can be applied to

this problem generally, however this approach has limited
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application for peptides longer than 4 residues largely owing to the

high degree of flexibility that one must consider when docking a

typical peptide of 5–10 residues or the need for a known peptide

conformation which is only rarely available [18]. Moreover,

docking methods are very sensitive to conformational changes and

require very high-resolution structures to perform well.

Determining new protein–peptide interaction types is problem-

atic experimentally, mostly because it is difficult in advance to

know the regions in larger proteins responsible for binding,

necessitating painstaking experiments such as deletion mutagenesis

coupled to binding assays (e.g., [6,19]). To address this, several

computational methods have been developed to discover new

protein–peptide-motif pairs using the principle of sequence over-

representation in proteins with a common interacting partner [6–

8]. These methods, together with much conventional work focused

on understanding interactions, have identified or predicted

hundreds of new peptide-motifs mediating interactions with

particular protein domain families. However, these discoveries

rarely provide information about where the peptide binds the

protein. Knowing these details can suggest further experiments

and help ultimately to design chemical modulators of the

interaction.

Structures of protein–peptide complexes for all newly discov-

ered interactions will require substantial time to become available,

though the rapid increase in structural data for single proteins

means that very often 3D structures are available (or readily

modeled) for at least part of a protein in isolation. There is thus a

widening gap between proteins of known structure that are known

or predicted to bind to a particular peptide and available 3D

complexes that would foster a deeper understanding of mechanism

and afford the discovery of additional peptides. Here we present a

method that attempts to bridge this gap by predicting the binding

site for peptides on protein surfaces. We used a dataset of protein–

peptide complexes of known 3D structure extracted from the

Protein Data Bank (PDB) [20] to define spatial position specific

scoring matrices (S-PSSMs) capturing preferences for how each

amino acid binds to protein surfaces. Three dimensional position

specific scoring matrices have been used in the past to predict

protein folding [21], to assess the quality of structural models [22]

or to predict the function of proteins based on the matches of these

position specific scoring matrices to a new protein structure [23]

and to identify protein surface similarities [24]. However, to the

best of our knowledge, they have not been used to predict

interactions in this way. For a new protein–peptide pair, we

identify candidate peptide binding sites by linking predicted sites

for each residue on the protein surface according to peptide-

deduced distance constraints (Figure 1). We developed statistics to

determine the confidence of a prediction to estimate whether or

not a putative peptide binds. When applied to a benchmark in a

cross-validated fashion, we obtained excellent sensitivity and

specificity, which allowed us to apply the approach to several

new interactions, such as the interaction of the viral oncoprotein

latent membrane protein 1 (LMP1) with the tumor necrosis factor

receptor 1-associated death domain protein (TRADD) [25]

offering suggestions of binding sites for further investigation.

Results

Spatial Position Specific Scoring Matrices Capture Amino
Acid Binding Site Preferences

We created spatial position specific scoring matrices (S-PSSMs)

for each of the 20 standard amino acids and three phosphorylated

variants to capture their preferred binding environment. We

superimposed the binding sites for each type of amino acid and

quantified the protein atom preferences in a 3D grid (see Materials

and Methods). Comparing S-PSSMs between amino acids shows

that those with similar properties are often bound to similar

binding sites, as might be expected (Figure S1) with certain

exceptions (e.g., Trp/Gly). For example, S-PSSMs for phosphor-

ylated amino acids are similar to glutamate or asparate, but differ

from that for positively charged arginine (Figure S1). We then used

the S-PSSMs to scan protein surfaces to predict binding sites for

amino acids and, based on distance constraints between them,

binding sites for peptides (see Materials and Methods). Figure 1

shows an overview of how the S-PSSMs are generated and how

searches for binding sites are performed.

Performance on Benchmark Datasets
To assess the performance of the method in its ability to identify

the correct binding sites for peptides, we constructed a large

benchmark of 405 known protein–peptide complexes (Dataset S1),

from our training set, where at least one structure of the protein

not bound to the peptide was available (see Materials and

Methods). We then predicted binding sites for all peptides in the

set to all corresponding un-bound protein structures using leave-

one-out cross validation to ensure that no information derived

from identical or homologous proteins was used to compute the

parameters. Additionally we predicted the binding sites of random

peptides of variable length to random chains from the structure

database assuming this to be our negative dataset. For an

additional benchmark, we extracted a smaller dataset of 18

protein–peptide complexes that were deposited in the PDB after

we had constructed our training dataset (i.e., after 1st March

2007), and for which we could find the corresponding un-bound

protein, and where these did not have a sequence similar to any

protein used in the larger benchmark. The rationale was that this

would provide a true test of the approach, since none of the

development of the method could be biased in any way by

exposure to these new complexes.

Author Summary

An important class of protein interactions in critical cellular
processes, such as signaling pathways, involves a domain
from one protein binding to a linear peptide stretch of
another. Many methods identify peptides mediating such
interactions but without details of how the interactions
occur, even when excellent structural information is
available for the unbound protein. Experimental studies
are currently time consuming, while existing computa-
tional methods to predict protein–peptide structures
mostly focus on interactions involving specific protein
families. Here, we present a general approach for
predicting protein–peptide interaction sites. We show that
spatial atomic position specific scoring matrices of binding
sites for each peptide residue can capture the properties
important for binding and when used to scan the surface
of target proteins can accurately identify candidate
binding sites for interacting peptides. The resulting
predictions are highly illuminating for several recently
described protein–peptide complexes, including RG-rich
peptides with SMN domains, the Epstein-Barr virus LMP1
with TRADD domains, DBC1 with Sir2, and the Ago hook
with the Argonaute PIWI domain. The accurate prediction
of protein–peptide binding without prior structural
knowledge will ultimately enable better functional char-
acterization of many protein interactions involved in vital
biological processes and provide a better picture of
cellular mechanisms.

Protein-Peptide Binding Site Prediction
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The ROC curve (Figure 2) shows the false positive rate (x-axis)

versus the true positive rate (y-axis) when varying the p-value

cutoff and testing whether a peptide, predicted to bind to a site was

correct (i.e., a true positive) or incorrect (a false positive). The ratio

of the true positive predictions to the total number of predictions

made, represents the prediction accuracy of the method at

different p-value cutoffs, i.e., it shows what fraction of the

predictions made are actually correct and this corresponds to the

statistical measure of positive predictive value (PPV). We used the

top 5 scoring predictions for both the positive (1109 scores – we

used only correct predictions) and negative dataset (2455 scores).

The ROC curve, for the cross-validation tests on the large

benchmark, also shows that the method performs well. For

instance, predictions with p-values below 0.1 give a false positive

rate (fraction of non-binding events wrongly predicted) of 0.1 and

a true positive rate (fraction of known binding sites predicted

correctly) of approximately 0.3 (295/1109), i.e., a PPV of 75%,

while even a very low false positive rate of 0.01 (p-values below

0.003) still has a true positive rate of approximately 0.1 (94/1109),

which represents a PPV of 89.9%. The Matthews correlation

coefficient suggests the optimal p-value cut-off to be 0.04, which

gives a false positive rate of 0.03, a true positive rate of 0.17 (186/

1109), and a PPV of 85%. We obtain a similar result for the

smaller benchmark, with statistically significant predictions

(p,0.04) of the correct binding site for 2/18 (true positive rate

of 0.11) complexes.

Overall, the ROC analysis suggests that the approach will

correctly identify whether a peptide binds and where it binds for a

reasonable number of peptide binding sites with significance. The

curve resembles those for remote homology detection by

techniques like PSI-blast [26] or threading when tested on difficult

benchmarks consisting of structurally similar but sequence

dissimilar proteins (e.g., [27]). This suggests that the problem of

identifying binding sites in this way is a difficult one, but that the

method can often nevertheless make useful predictions.

Although the tests above show a coverage of only about 11% for

the optimal p-value, it is very important to emphasize that the

ROC analysis tests the most difficult scenario, whereby one knows

Figure 1. Overview of the method. (A) A training dataset of protein–peptide complexes is extracted from the Protein Data Bank [20]. (B) The
peptide residues are superimposed along with their associated binding environments. (C) Spatial Position Specific Scoring Matrices (S-PSSMs) are
created based on the spatial distribution of 14 defined atom types (Table S3) in the binding site of each residue. compared to background protein
surfaces sites (D) S-PSSMs corresponding to residues in a query peptide (FxPRD) are then scanned over the surface of the protein. (E) Potential
binding sites for each residue of the query peptide are identified, which are then combined using the distance constraints dictated by the peptide
sequence. (F) The binding site for the complete peptide is predicted and scored.
doi:10.1371/journal.pcbi.1000335.g001

Protein-Peptide Binding Site Prediction
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neither if a peptide binds nor where it binds to the protein surface.

This neglects the common situation where one has identified a

protein–peptide binding event, and does not know where on the

surface it binds. To test this situation one must simply ask how

often the correct binding site is found with any p-value. For the

large benchmark this greatly increases the coverage: the correct

site was found for 60% (241/405) of the complexes, which

corresponds to the accuracy of the binding site prediction, with a

similar fraction for the small benchmark (11/18).

Our leave-one-out cross-validation, which removed any detect-

able (BLAST [28] E-value,0.1) sequence homologues before

evaluation, still leaves a possibility that remote homologues could

in some way lead to S-PSSMs over-learning peptide binding sites.

To remove this possibility, we repeated the benchmark process

using stricter definitions of homology by taking single represen-

tatives from groups as defined in the Structural Classification Of

Proteins (SCOP [29]) database (family, superfamily and fold). This

gave results similar to those seen in the original benchmark: all

redundancy reductions (SCOP family, superfamily and fold gave

similar datasets) led to 56% (192/342) correct peptide binding site

predictions and a ROC performance similar to that for the

original dataset, which suggests that there was no real bias in the

creation of the S-PSSMs even with the sequence only reduction.

The similarity between family, superfamily and fold reduced sets is

due to the fact that the vast majority of the remotely homologous

relationships involving similar peptide binding sites are removed at

the family level (e.g., all SH3 or WW domains are in the same

SCOP family).

For very low p-values the method does not perform as well; this

is because there are very few high scoring predictions left after

removing proteins lacking SCOP assignments (i.e., the newest

structures), and is not statistically significant. For example for p-

values,0.003 only 6 of the 23 complexes that scored high in the

original dataset are left in the stricter dataset thus reducing the true

positive rate while not changing the false positive rate. Remote

homologues can play some role in defining binding sites for each

other—for instance in creating the original cross-validated S-

PSSMs for proline, three distantly related WW domains (i.e., PDB

IDs 1i5h, 1djyI and 1f8a) were present—but this effect does not

appear to bias the overall performance.

Failures in the Benchmark
For most unsuccessful predictions within the benchmarks (i.e.,

where the binding site was not predicted even with poor p-values)

there are explanations for failure. For 32 (,20%) out of the 165

incorrect predictions the peptide was bound via augmentation of a

beta-sheet [30], with a strong influence of backbone interactions

that are not currently considered because they are not based on

the specificity of particular residues for specific binding sites which

is the assumption the method is based on. In principle, this binding

mode could be accommodated by considering a backbone profile

and stricter distance constraints to enforce this conformation. For

25/165 (,15%), the peptides adopted a helical or circular

structure, making distance constraints less effective, and for 20/

165 (,12%) the peptide contained heteroatoms or modified

residues (e.g., biotinylated lysines, etc.) that the method had not

been trained on. There are currently too few examples of known

structure to derive effective S-PSSMs for rare modifications.

For 33/165 (,20%) of the wrong predictions, we could see no

obvious trends, but we noticed upon inspection that some were

likely correct binding sites not seen in the complex structure. For

example we predicted a different binding site for the peptide

GPAGPPGA from that found in a complex with the human

matrix metalloproteinase 2 (MMP2; PDB ID: 1eak). This

unpublished structure appears to be a complex between MMP2

and a fragment of collagen/gelatin, the natural substrate (e.g.,

[31]). Our binding site does not agree with that in the complex,

which resides in a central cavity of the protein, but is instead inside

an exposed aromatic surface on a fibronectin domain (Figure 3A).

This surface resembles that for many other proline-rich peptide

binding proteins (e.g., SH3, WW, etc.). This was originally

suggested to be the binding site for gelatin, based on an early single

domain structure [32] and alanine scanning mutagenesis in

MMP9 [33] and subsequent studies in MMP2 itself [34], showed

that residues equivalent to our prediction were important for

gelatin binding.

Comparison to Predictions Based on Surface
Conservation

Though no current approaches focus specifically on the

problem of generally predicting peptide binding sites on protein

surfaces, it is possible to predict binding sites generally by looking

for patches of conservation on protein surfaces, an approach that

has been under much focus for the past ten years [35]. Though not

directly comparable, we applied one readily available algorithm,

rate4site [36] to the same dataset for comparison. When

considering the best predictions, conservation alone identifies

51% of peptide binding sites compared to 60% for our approach.

However, the ROC curves show that conservation alone performs

poorly in terms of specificity, owing largely to the fact that the

approach identifies additional binding sites that do not bind

peptides (Figure 2). Inclusion of the conservation of the binding

sites in our predictive method results in a slight reduction of the

coverage of binding sites being predicted with an improvement of

only 2% in the true positive rate. Additionally it is computationally

Figure 2. ROC curve showing performance in the large
benchmark. False positive rate (X axis) plotted against true positive
rate (Y) for different p-value cut-offs. False positive predictions are
defined as those that either have predicted the wrong binding site or
have predicted a binding site for a peptide that is not known to bind.
The figure shows the result for our approach (pepsite) at two distance
thresholds defining accuracy (6 Å & 10 Å), and for 10 Å with a subset of
proteins smaller than 100 amino acids. Equivalent values for rate4site
on the same datasets are also shown as well as the ROC curve for
pepsite using a stricter cross-validation (i.e., excluding similarities/
homologies between proteins as given in the SCOP database).
doi:10.1371/journal.pcbi.1000335.g002

Protein-Peptide Binding Site Prediction
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costly and it is only applicable for proteins that have a sufficient

number of homologous sequences.

Application to Recent Discoveries of Protein–Peptide
Binding

We sought recently published examples of protein complexes

distinct from those used in the benchmark to test the approach in a

more real-world situation. Several recent protein–peptide com-

plexes lack a 3D structure, but the location of the binding site has

been partially determined by other means. For instance, the

conserved linear motif termed the ‘‘Ago hook’’, which was

determined to bind to the PIWI domain of the Argonaute protein

at the site where the 59 end of an siRNA normally binds [37]. The

interaction is important for transcriptional gene silencing and

miRNA-mediated translational silencing, as well as for the

recruitment of Ago proteins to specific cellular locations such as

P-bodies. There were no available structures of Eukaryotic PIWI

domains, so we predicted binding of the peptide PDNGTSAW-

GEPNESSPGWGEMD to Archaeal structures, either in isolation

or bound to RNA (PDB IDs: 1ytu [38]; 1w9h [39]). Most of the

best predictions lie near to the site of RNA binding (Figure 3B). A

similar example is found in the tudor domain of the protein SMN,

which plays a role in assembly of the spliceosomal ribonucleopro-

tein complexes by interacting with RG rich C-terminal tails of Sm

proteins. NMR titration showed that these repeats bind on the

tudor domain in a particular region rich in aromatic residues [40].

Our prediction for the binding of an RGRGRGRG peptide to the

human SMN tudor domain (PDB ID: 1mhn [40]) matches the

NMR mapped binding site (Figure 3C).

A recent example of a known protein–protein interaction

delineated to a region in one protein binding another, but lacking

a 3D structure, is the binding of the leucine zipper domain from

Deleted in Breast Cancer-1 (DBC1) to the catalytic domain of the

mammalian protein deacetylase Sir2 [41]. The predicted binding

site on Sir2 (PDB ID: 1m2g [42]) lies in the same region as a p53

peptide (PDB ID: 1ma3 [43]; Figure 3D), and is thus consistent

with the finding that DBC1 blocks the ability of Sir2 to deacetylate

p53 [41]. A similar picture emerges for the binding by Tumor

Figure 3. Examples of applying the method. Predicted peptides are depicted as spheres on the protein surface colored by amino acid type
(prolines – pink, alanines and glycines - white, serines - orange, asparagines and glutamines - teal and aspartic/glutamic acid – red). (A) Binding of a
collagen peptide (GPAGPPGA) on a human matrix metalloproteinase 2 (1eak). The peptide bound in the solved X-ray structure is colored in red. Note
the predicted binding site differs however it is likely correct (see text). (B) Binding of the Ago hook peptide (PDNGTSAWGEPNESSPGWGEMD) on the
PIWI domain of the Argonaute protein (PDB IDs: 1ytu [38]; 1w9h [39]): i) the best, though incorrect binding site; ii) the location of the other top
scoring predictions (correct). (C) Prediction for the binding of an RGRGRGRG peptide to the human SMN tudor domain (PDB ID: 1mhn [40]), which
agrees with NMR data. (D) Prediction of the leucine zipper (helical region 243–264) of the DBC1 sequence binding site on the catalytic domain of
SIRT1 (PDB ID: 1m2g [42]) (E) Prediction for the binding of the LMP1 protein of the Epstein-Barr virus peptide DDPHGPVQLS on the TRADD protein
(PDB ID: 1f2h [45]).
doi:10.1371/journal.pcbi.1000335.g003

Protein-Peptide Binding Site Prediction
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necrosis factor-receptor-1-associated death domain protein

(TRADD) to Latent membrane protein 1 (LMP1) of the

Epstein-Barr virus [44]. The 16 C-terminal residues of the

LMP1 (GDDDDPHGPVQLSYYD) bind to the TRADD protein

and cause the blockage of the apoptotic pathway, and induce the

NF-kappaB pathway by recruiting and activating I-kappaB kinase

beta [25]. The predicted binding sites on the TRADD N-terminal

domain (PDB ID: 1f2h [45]) for 3 overlapping 10 residue peptides

from this segment (GDDDDPHGPV, DDPHGPVQLS, and

HGPVQLSYYD) are roughly in the same site (Figure 3E) as the

TRAF2 protein (PDB ID: 1f3v [46]), which suggests the virus

might affect apoptosis and other processes by mimicking the

TRADD/TRAF2 association and subsequent binding to the

kinase [25].

When a protein–protein interaction is known, but the regions

involved are either not delineated, or are too long to be considered

short peptides, our approach can be used to scan for putative

binding peptides, by searching for significant scores among

overlapping predictions within a region (or the entire protein).

We demonstrate this for the interaction of Sec23/Sar1 with Sec31

which occurs as part of the COP II Coat Nucleation complex

formation process [19]. A fragment of Sec31 (residues 850–1175)

was initially identified to interact with full length Sec23 in a two-

hybrid analysis [47]. This region largely overlaps with a proline-

rich, disordered region that was subsequently revealed to contain a

40-residue segment responsible for the interaction, and confirmed

by X-ray studies [19]. We scanned the region 770–1100 from

human Sec31 (Uniprot O94979) using a 12 residue window for

peptides that were predicted bind the Sec23/Sar1 complex (un-

bound PDB ID: 1m2o [48]). The plot of averaged p-values

(Figure 4B) shows the best peptides to be near to those known to

bind Sec23/Sar1, and overlap with the most conserved region of

the 40 residue region of Sec31 (Figure 4A).

Discussion

This approach will be of benefit to researchers investigating

the structural basis of protein–protein interactions. It can be

applied to structures known to bind a peptide, and is likely to be

informative about the site of interaction, and thus readily

suggest further experiments to test the interaction. Although a

lack of data currently prevents many modified residues from being

studied we expect that the steady growth in structures will permit

additional residues to be considered in the near future, and that

new structures will continue to improve each residue profile and

the approach. Additional data will ultimately permit more

sensitive S-PSSMs, such as residue pairs, which we expect will

greatly increase the performance. We are also currently develop-

ing modifications to account for the limitations mentioned above,

such as the special case of peptides that bind via beta-sheet

augmentation.

The method has advantages over many others that predict

protein–peptide interactions. First, it does not require a known

binding site, such as those approaches specifically tailored to

predict SH3 or MHC binding peptides, and can thus be applied to

any protein for which a structure is available and ideas about

binding peptides or proteins. Second, it does not require that a

substantial number of interactions be known for predictions to be

made, but can in principle work on a single known or predicted

peptide sequence. Most importantly, the method is accompanied

by a statistic measure to estimate the reliability of predictions,

which means it can be applied to many structures systematically to

identify the strongest predictions, and to make predictions as to

whether binding occurs at all.

Our approach partly systemizes what structural biologists often

do when trying to guess a binding site from a protein surface (e.g.,

[49]) by trying to match properties of a binding peptide with

complementary properties on the protein surface. However, it has

the advantage that these inferences are coupled to rationally

derived knowledge of how amino acids in peptides bind proteins,

and a measure of the probability that such a predicted binding site

might occur by chance. As such, it provides a more reliable

starting point for site-directed mutagenesis, or other studies

designed for finding true binding sites experimentally. It also

provides an excellent starting point for protein docking approach-

es, which always fare better when applied to restricted binding

regions instead of the entire protein surface. The fact that several

sites are also found by a surface conservation method is perhaps

not surprising, since proteins that bind peptides will undoubtedly

often show conservation of the peptide binding site, as is generally

true for all sites of molecular recognition. However, the improved

performance over such approaches indicates that this method

offers a more precise, and specific way to study peptide binding

sites as distinct from general functional sites. Moreover, despite the

fact that when attempting to directly combine the two approaches

the improvement in accuracy is marginal and the cost in coverage

is high, they can still be complementary: if a predicted binding site

is also conserved this can provide additional evidence to increase

confidence in a prediction.

As the number of known protein–protein interactions grows, so

do the number of instances for which a peptide stretch is

discovered to mediate an interaction of importance. At the same

time, the increased pace of structure determination of single

proteins or domains, means that it is now rare to find globular

domains lacking structural information. Taken together, this

suggests that techniques like that described here will be of growing

importance to those interested in understanding, targeting and

modifying protein interaction networks involved in critical

biological processes.

Materials and Methods

Dataset
To train and test our method we created a manually-curated,

non-redundant set of protein–peptide complex 3D structures. We

first extracted 5055 complexes from the Protein Data Bank [20], in

which peptide stretches of 3–20 residues were in contact with

globular domains. Inspection showed that many complexes were

due to non-specific crystal contacts. We corrected for this by

manually inspecting a smaller subset of 386 highly non-redundant

complexes (permitting only one member of any family from the

SCOP database [29]), and classified these as one of: (1) true

protein–peptide complexes; (2) protein–protein interactions medi-

ated by a peptide stretch in one partner; and (3) probable crystal

contacts. Within the first two categories, 85% of complexes had

more than 18 protein atoms within 6 Å of those in the peptide,

compared to only 20% in the crystal contacts set (Figure S2). We

then applied this cutoff to the larger dataset to leave 2970

complexes.

We grouped the remaining complexes into 23 overlapping sets

according to the amino acids contained in the peptide. Each set

contained all complexes of proteins with a peptide stretch

containing at least one of each particular amino acid (including

the 20 standard plus phosphorylated serine, threonine and

tyrosine). To derive spatial position-specific scoring matrices (S-

PSSMs) for each amino acid (see below) we required the set of

complexes corresponding to each amino acid to be non-redundant

in order to avoid any bias due to homology. In principle, this could
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have been done across the entire dataset, however this lead to too

few data points for the rarer amino acids (e.g., Trp, Met,

phosphorylated-Tyr), owing to single complexes containing an

amino acid in a peptide being removed because of homology to

other complexes lacking it.

To make each set non-redundant, we performed an all against

all BLAST sequence comparison [28] within each set and kept one

representative of group of homologues sharing pairwise E-

values, = 0.1. We selected preferably recently determined, refined

X-ray structures, with the best resolution. These were then

manually inspected to remove complexes that were due to crystal

packing effects not captured by the filter above or that had missing

residues, or instances where a presumed peptide was actually part

of the original chain. This left a total of 553 complexes belonging

to 364 SCOP families, in 23 sets for each amino acid. The number

of non-redundant complexes per amino acid set varied from 13 for

phosphorylated threonine to 288 for leucine (Table S1). Given that

the redundancy reduction was performed inside each of the

residue sets the full set of 553 inevitably contained some

redundancy. For leave-one-out cross-validation, we thus removed

a particular complex and its homologous representatives (as

defined above) from every set in which it was contained, meaning

that no similar complex would be used to construct the S-PSSMs.

We also repeated the procedure using three stricter levels for the

definition of homologous representatives, i.e., we removed all

members of the same SCOP family, superfamily and fold for the

leave-one-out cross-validation. Note, however, that all three levels

gave almost identical datasets, since all cases of proteins binding

peptides were similar at the family level, even if homology was

remote (thus explaining a single curve in Figure 2).

Construction of Spatial Position Specific Scoring Matrices
We created S-PSSMs for each of the 23 residues, capturing their

preferred binding environment when present in a peptide. We first

computed the solvent accessible atoms for each protein, having

first removed the complexed peptide, using NACCESS [50] with

default parameters, and kept only atoms with accessibility scores

above zero. Our reasoning was that peptide stretches bind mostly

to the surface of the protein and thus the solvent accessible surface

should be sufficient to create robust matrices.

We then superimposed each of the residues found in the

peptides, along with their associated protein environments. The

superimposition is made in such a way that the residue side-chains

are oriented the same way (Figure 1B). This way we could observe

Figure 4. Using the method to scan for regions in Sec31 likely to bind Sec23. (A) Predictions for the most conserved region of the Sec31
disordered 40 residue peptide segment (GPQNGWNDPPAL) on the Sec23/Sar1 complex. In red is the region of the peptide from the solved structure
(PDB IDs: 2qtv [19], 1m2o [48]). (B) P-values (Y-axis) for each 12 residue peptides from residues 770 to 1100 of the Sec31 protein (X-axis) to identify the
binding region. The lowest p-values, in the region 965–1010, are very close to the known binding site (981–1021). The black line under the graph
shows the actual binding 40 residue peptide and the region colored in red-brown corresponds to the peptide predicted to bind shown in (A) of this
figure.
doi:10.1371/journal.pcbi.1000335.g004
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and quantify preferences for parts of each residue to be near to

particular protein atoms in three dimensions. We first defined

active parts of each side-chain as those most commonly involved in

side-chain functions (i.e., the active center of each residue side-

chain). We then performed superimpositions of the active part of

each side chain using the PINTS [51] & STAMP packages [52].

For simplicity we did not consider all atoms of each side chain for

the superimposition, but instead defined a subset (Table S2) that

was sufficient for the PINTS & STAMP packages to obtain

reasonable superimpositions.

To quantify the protein atom preferences for the space around

each peptide residue r we created a grid over each superimposed

residue environment. We placed the center of mass of the active

part of each residue in the centre of the grid, and divided the space

+/2 6 Å around it using a cell spacing of 3 Å (Figure 1C). We

then studied the types of atoms found in each grid point, and

computed a score for the preference of each atom type (as we have

defined them based on their properties in Table S3) as:

scorerci~
nc

navg

ni

nc
{fsi

dsi

� �

where nc is the number of atoms in cell c, navg is the average

number of atoms in a cell of this grid, ni is the number of atoms of

type i in cell c, fsi is the background frequency of atom type i on

protein surfaces and dsi is the standard deviation of the frequency

of atom type i on protein surfaces. In theory these values can range

from very negative, where the environment is very different to the

one favored by the particular residue, to very positive, which

represent a good match for the residue’s binding site. For the best

10 sites on the protein surface that we define as hot spots (see

below), the values are between 22 and 83 (Table S4).

Prediction of Amino Acid Binding Hot Spots
To predict binding sites for a given peptide on a protein surface

we first identify potential binding sites for each residue (hot-spots) by

scanning and scoring the whole protein surface using the S-PSSMs

(Figure 1D). To do this we place the corresponding S-PSSM at a

specific distance from multiple planes defined on the protein

surface, and oriented so that the active centre of the side chain faces

the surface as if it were bound as a peptide residue on that protein

site. This is accomplished by placing the centre of a grid on a vector

perpendicular to a local plane centered at the surface atom and

searching for the appropriate orientation of the grid. The distance is

defined from our training dataset as the average of the minimum

distances for each residue from the protein surface (Table S5). The

planes are defined by two vectors starting at the atom for which we

are calculating the score and ending at the previous (vector 1) or the

next atom (vector 2) in the coordinate file. We assume that these

atoms are close enough to the central atom to be able to define a

valid local plane for the score calculation. In practice, this means

that each amino acid is placed thousands of times on a structure in

many different relative orientations (i.e., using each atom on the

surface of the structure), and whilst it does not amount to a full 3D

search, we found that it is more than adequate to sample the

orientations actually found in known protein–peptide complexes.

The procedure is roughly equivalent conceptually to rotating the

protein with respect to the S-PSSM (Figure S3). In combination

with the flexibility provided by the size of the S-PSSM cells (3 Å),

this ensures that an effective sample of S-PSSM/protein orienta-

tions is considered when scanning the protein surface.

It is important to underscore that the method is not designed to

detect precise atomic details of protein–peptide binding sites, but

to offer approximate locations. This purpose is well served using

this approximation, with the advantage that it saves on the

computational time needed for an exhaustive 3D search of

orientations of the peptide residue on every possible site of the

protein.

The score for each orientation is calculated as:

scorea~
XK

i~1

XN

c~1

scorerci

 !

where K is the number of atom types that have been matched in

the grid that was placed locally, N ( = 64) is the number of cells in

the grid and scorerci is the value from the S-PSSM of the particular

residue r in cell c for atom type i. It is important to note that this

procedure, i.e., orienting the S-PSSM appropriately and scoring

the protein surface site, is performed for all atoms of the protein

surface, thus ensuring a complete search of the space of possible

surface/residue orientations.

Prediction of Peptide Binding Sites
After scoring each site on the protein surface for each of the 23

amino acid S-PSSMs, we use the top ten scoring sites as potential

binding sites for these residues (Figure 1E). It is possible to

marginally improve the sensitivity of the approach by including

more sites (i.e., down to a statistical significance threshold), but in

practice this slowed the approach and hindered usage. We then

search for combinations of amino acid hot-spots that are spaced

such that they satisfy the constraints deduced from the peptide

sequence. To derive the constraints we analyzed all peptides inside

the training dataset to compute average distances between C-

alpha atoms (DCal) at particular sequence separations (i) and

average distances from C-alpha atoms to the residue active centers

(Dr). Combinations of predicted residue sites are kept if all

distances lie within DCal6Dr. In practice, these constraints are

very flexible, with a slight preference for extended peptide

conformations, since they grow as a function of sequence

separation, and thus slightly disfavor helical or circular peptide

conformations.

For each potential peptide match (Figure 1F) we calculated the

overall score as:

scorep~
XN

i~1

scorea

Where scorea is calculated using the formula above.

We then computed a statistical significance p-value for each score

as 12W(x) where W(x) is the cumulative distribution probability that

represents the probability that a random variable V with that

distribution is less than or equal to x. Therefore the p-value

represents the opposite, i.e., the probability of the event that a

random variable V with that distribution is more than or equal to x.

We calculated a background score distribution defining random

scores as those for peptides selected randomly from our training

dataset having fewer than 2 residues (in any position) in common

with that seen to bind a particular protein. We selected 5 random

peptides for each of the 405 un-bound proteins (see above). We

cannot rule out that some of these random peptides will, in fact,

bind to the proteins, but the statistics hold (and indeed will be

conservative) even if a small fraction of random values correspond

to positives.

We defined correct binding site predictions as those where the

average distance between predicted and known amino acid
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locations was less than a threshold (between 6 and 10 Å). Visual

inspection of several dozen predictions suggested 10 Å to be a

reasonable upper limit, allowing for typical deviations in side-chain

placements that occur after structural rearrangements upon

binding, but not counting wildly different binding sites as correct.

Comparison with Conserved Functional Site Predictions
We compared our method to the rate4site [36] program that

predicts functional sites on proteins by finding clusters of

conserved residues. To do this we ran PSI-Blast [26] using the

sequence of the bound structure against the NCBI non-redundant

databases. For those with at least 3 significant sequence matches,

we created alignments of the best 50 sequences (which is the

default for Consurf, the web version of rate4site) using ClustalW

[53] and gave these (and the structure) as input to rate4site. We

defined correct predictions in a lenient fashion as those where at

least one of the top 5 conserved positions was within 10 Å of the

bound peptide. For the ROC analysis we defined negatives as all

other sites on the proteins. The results were very similar when

using conservation scores calculated only for the solvent accessible

residues and when using those for the full protein sequence. We

therefore used the full protein sequence since this is the way the

program is actually used.

Availability
A server to run predictions using the PEPSITE approach is

available at http://pepsite.embl.de.

Supporting Information

Dataset S1 Benchmark dataset used for the evaluation of the

method.

Found at: doi:10.1371/journal.pcbi.1000335.s001 (0.01 MB TDS)

Figure S1 Comparison of S-PSSMs for the 20 standard amino-

acid residues and phosphorylated tyrosine (PTR), threonine

(TPO), and serine (SEP). Similarities increase from blue to red.

Found at: doi:10.1371/journal.pcbi.1000335.s002 (3.25 MB TIF)

Figure S2 Graph to distinguish protein-peptide interactions

from probable crystal packing effects. Distribution of the number

of protein atoms within 6 Å of those in the peptide for the three

categories: (1) protein-peptide complexes; (2) protein-protein

interactions where the interaction consists largely of a peptide

stretch from one binding to a globular segment in the other; and

(3) probable crystal packing artifacts.

Found at: doi:10.1371/journal.pcbi.1000335.s003 (0.75 MB TIF)

Figure S3 The algorithm for scanning and scoring protein

surfaces using the S-PSSMs. (A) Example of real orientation for

proline within a peptide relative to a phenylalanine residue on a

protein surface. (B) Definition of orientation for the S-PSSM. For

each atom of a protein surface a plane is defined using the atoms

before and after it in the coordinate file. A vector of distance Dr is

then defined to be perpendicular to this plane. (C) The S-PSSM is

placed as defined by the previous vectors. (D) Examples of planes

resulting to different orientations of the S-PSSM relative to the

protein. (E) In practice and in combination with the flexibility

provided by the grid cell size (3 Å) repeating this procedure for all

protein surface atoms results in an effective rotation of the protein

with respect to the S-PSSM in thousands of orientations.

Found at: doi:10.1371/journal.pcbi.1000335.s004 (3.77 MB TIF)

Table S1 Number of complexes per amino acid dataset.

Found at: doi:10.1371/journal.pcbi.1000335.s005 (0.03 MB

DOC)

Table S2 Atoms from the active center of each peptide residue,

used for the superimposition of the peptide residue binding sites.

TYS was considered equivalent to PTR. Atoms marked with a *

represent atoms are not part of the active site but used because the

software requires minimum 3 atoms to perform the superimpo-

sition

Found at: doi:10.1371/journal.pcbi.1000335.s006 (0.04 MB

DOC)

Table S3 Atom types and their corresponding atoms in the

coordinate files. The different atom types were generated based on

their properties.

Found at: doi:10.1371/journal.pcbi.1000335.s007 (0.03 MB

DOC)

Table S4 Range of scores per residue hot-spots. The table shows

minimum value, average value, standard deviation, and maximum

value observed for the dataset.

Found at: doi:10.1371/journal.pcbi.1000335.s008 (0.04 MB

DOC)

Table S5 Distance constraints used for peptide binding

prediction and distances for placing the S-PSSMs on the protein

surface when scanning for residue binding sites. The table on the

left shows the average distance of the CA of each residue from its

active center as defined in Table S2 and the table on the right

shows the average distance of the CAs of the residues depending

on their in-between distance.

Found at: doi:10.1371/journal.pcbi.1000335.s009 (0.05 MB

DOC)
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26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25: 3389–3402.

27. Karwath A, King RD (2002) Homology induction: the use of machine learning
to improve sequence similarity searches. BMC Bioinformatics 3: 11.

28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.
29. Lo Conte L, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2002) SCOP

database in 2002: refinements accommodate structural genomics. Nucleic Acid
Res 30: 264–267.

30. Remaut H, Waksman G (2006) Protein-protein interaction through b-strand

addition. Trends Biochem Sci 31: 436–444.
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